
To appear in BTW 2007, Aachen Germany

1

Ruminations on Multi-Tenant Databases

Dean Jacobs, Stefan Aulbach

Technische Universität München
Institut für Informatik - Lehrstuhl III (I3)

Boltzmannstr. 3
D-85748 Garching bei München

{dean.jacobs, stefan.aulbach}@in.tum.de

Abstract: This is a position paper on multi-tenant databases. As motivation, it first describes the emerging
marketplace of hosted enterprise services and the importance of using multi-tenancy to handle high traffic
volumes at low cost. It then outlines the main requirements on multi-tenant databases: scale up by
consolidating multiple tenants onto the same server and scale out by providing an administrative framework
that manages a farm of such servers. Finally it describes three approaches to implementing multi-tenant
databases and compares them based on some simple experiments. The main conclusion is that existing
database vendors need to enhance their products to better support multi-tenancy.

1 Hosted Services and Multi-Tenancy

In the hosted service model [GM02a, GM02b, Wa03], a service provider develops an application and operates
the system that hosts it. Customers access the application over the Internet using industry-standard web
browsers or Web Services clients. As the Internet has matured, hosted services have appeared for an
increasingly wide variety of enterprise applications, including ones that manage sales, marketing, support,
human resources, planning, manufacturing, inventory, financials, purchasing, and compliance [Th06]. While
hosted services are attractive to all segments of the market, they are particularly appealing to small- to medium-
sized businesses, which often lack the resources to maintain a complex data center. Hosted services are
exploiting such “greenfield” opportunities to expand the overall size of the market.

In comparison to traditional on-premises solutions, hosted services can reduce the total cost of ownership of an
application by aggregating customers together and leveraging economy of scale. This principle applies to both
capital expenditures, e.g., for hardware and software, and operational expenditures, e.g., for bandwidth and
personnel. Because a hosted service is focused on one application, the infrastructure and the procedures for
managing it can be highly optimized: well-known examples here include the Google File System [GGL03] and
Hotmail [Sm05]. Such optimizations are essential to support large numbers of small- to medium-sized
businesses, which would otherwise be prohibitively expensive.

Multi-tenancy is an optimization for hosted services in which multiple customers are consolidated onto the same
operational system, a technique pioneered by salesforce.com [Sa06, Co06]. Multi-tenancy allows pooling of
resources, which improves utilization by eliminating the need to provision each customer for their maximum
load. Multi-tenancy can also improve management efficiencies by providing a uniform framework for
administering the system. A multi-tenant system should support both scale up and scale out [De99]: scale up by
consolidating multiple customers onto the same server and scale out by having the administrative framework
span a farm of such servers. Scale out is required because it is not cost effective to scale up a single server
indefinitely.

The administrative framework of a multi-tenant system should support the ability to migrate a customer from
one server to another within the farm. For example, a customer might start out on a server that manages trial
accounts, be moved to a server that manages small production accounts, and grow until it is moved to a
dedicated server that manages only one account. Migration should also be possible between farms, for example,
to allow customers to be moved from one data center to another. The administrative framework should also
support rolling upgrade, where the servers in a farm are upgraded to a new version of the application one at a
time. Since it is difficult to generate realistic Internet-scale workloads for testing, rolling upgrades are needed to
gain experience with new versions before they are put widely into production.

2

2 Requirements on Multi-Tenant Databases

Multi-tenancy can be applied at the database layer of a hosted service, where it can be very effective due to the
high cost of provisioning and operating databases. This section argues that, in addition to managing customers’
private data, a multi-tenant database should manage customer metadata and shared public data.

The administrative framework of a multi-tenant database should maintain metadata about customers, such as
their contact information, their location in the farm, and the features they are allowed to access. Certain
administrative operations will need to access this metadata alongside of customer data. For example, a service
provider might want to scan the metadata to find all customers in a given region and then determine which of
those customers have more than a certain amount of data. To support such operations, the administrative
framework should offer a unified query language that obviates the need for a general-purpose programming
language with embedded queries. In addition to being easier to use, this approach makes it simpler to execute
administrative operations in bulk on individual databases in the farm.

The target application for a hosted service will generally have a base schema that specifies all of its standard
data. A multi-tenant database should maintain an instance of this base schema for each customer. The unified
query language should ensure that DDL statements for modifying the base schema and DML statements for
transforming existing data within it are applied to all customers in the farm, within the context of a rolling
upgrade. The ability to perform such operations in bulk on the individual databases is essential to minimize
downtime during an upgrade. Many business applications, such as CRM or ERP, allow customers to extend the
base schema, e.g., by adding new columns to existing tables and adding new tables. The administrative
framework should maintain the specification of each customer’s schema extensions as part of their metadata.

A service provider may want to maintain public information, such as area code data, census data, streaming
stock prices, or industry best practices, that is accessible to all customers. Such shared data will generally be
read-only, although there are cases where space-saving technologies like copy-on-write [PB03] should be used
to allow customers to privately update the data. A multi-tenant database should allow customers to seamlessly
access shared data alongside of their private data. This will entail either replicating the shared data on each
server in the farm or providing a mechanism to access it remotely.

3 Implementing Multi-Tenant Databases

This section describes and compares three approaches to implementing multi-tenant databases: shared machine,
shared process, and shared table. These approaches are increasingly better at pooling resources and executing
administrative operations in bulk. However they increasingly break down the isolation between customers,
weakening security and increasing contention for resources.

The discussion presents the results of some preliminary experiments on the memory and disk usage of five
databases: PostgreSQL [Po06], MaxDB [Ma06], and three commercial databases cleverly code-named
Commercial1, Commercial2, and Commercial3. Unless otherwise indicated, no specialized tuning was
performed on these databases. The experiments used a simplified version of the CRM schema offered by
salesforce.com containing eleven tables, each with about twelve fields.

The experiments were focused on the shared process approach: they created different numbers of schema
instances, each with eleven empty tables, and loaded them into memory in the same database process. The
experiments are preliminary in that the tables were not populated and no queries were executed against them.
The results are shown in Table 1. In all cases, the storage requirements were close to being linear in the number
of schema instances, hence only the end points at 1 and 10,000 instances are presented. PostgreSQL and
Commercial1 produced various errors that prevented the experiments from completing and the final numbers are
extrapolated. These errors were generally fixed limits on internal structures, such as the number of objects in a
table space. All numbers are in megabytes.

3

 Memory

1 instance

Memory

10,000 instances

Disk

1 instance

Disk

10,000 instances

PostgreSQL 55 79 4 4,488

MaxDB 80 80 3 1,168

Commercial1 171 616 200 414,210

Commercial2 74 2,061 3 693

Commercial3 273 359 1 13,630

Table 1. Storage Requirements for Schemas Instances (in megabytes)

3.1 Shared Machine

In the shared machine approach, each customer gets their own database process and multiple customers share
the same machine. An example of this approach is CasJobs, which supports analysis of data in the Sloan Digital
Sky Survey database [Mu05]. This approach is popular in practice because it does not require modifying the
implementation of the database. In addition, it does not substantially reduce customer isolation, particularly if
each process is placed in its own virtual machine.

The main limitation of this approach is that it does not pool memory. The first column of Table 1 shows that the
memory requirements to handle one schema instance vary from 55 MB to 273 MB across the five databases.
This result indicates that this approach cannot scale beyond tens of active customers per server. Another
limitation of this approach is that each database requires its own connection pool on each application server, so
sockets will not be shared among customers. To improve this situation, the implementation could be modified to
share memory and sockets among co-located database processes, possibly at a level below those processes.

Because isolation between customers is strong in this approach, executing administrative operations in bulk is
not feasible: each database will execute queries on its own. In addition, providing seamless access to shared data
requires a mechanism to access it remotely, otherwise it will end up being replicated multiple times on the same
server. Customer migration is straightforward however, in that it entails simply moving files from one server to
another.

An interesting issue is brought to light by the third column of Table 1, which shows the disk requirements to
handle one schema instance. Commercial1 pre-allocates 200 MB for the database, although this could be
reduced by additional tuning. Under this approach, this practice could result in terabytes of wasted disk space
when multiplied across thousands of small businesses.

3.2 Shared Process

In the shared process approach, each customer gets their own tables and multiple customers share the same
database process. For most databases, it does not matter whether each customer gets their own schema, since
schemas are implemented using a lightweight prefixing mechanism. However, it is useful if each customer gets
their own physical table space so that customer migration entails simply moving files from one server to
another. In addition, it allows the system administrator to balance the I/O load by distributing customers across
different backing disks.

4

This approach is considerably better at pooling memory. The second column of Table 1 shows that the memory
requirements to handle 10,000 schema instances vary from 79 MB to 2,061 MB across the five databases.
MaxDB stands out in that the memory requirements were the same regardless of the number of schema
instances, suggesting that the data dictionary is being paged. Further experiments are required to determine the
performance implications of this technique. In any case, this result indicates that this approach should easily
scale up to thousands of active customers per server, a two orders of magnitude improvement over the shared
machine approach. Further improvements could be provided by modifying the implementation to keep only one
copy of the schema and having each instance refer to it. This technique could also be applied to the disk,
although the third and fourth columns of Table 1 indicate that it would save only gigabytes of storage.

Since there is only one database in this approach, customers can share connection pools. There is a well-known
downside to connection pooling however: all connections must be associated with a fixed principal who can
access everything. This means that both security and the management of resource contention have to be handled
at the application layer. Thus errors in the application code could allow one customer to access another
customer’s tables or prevent them from getting their fair share of resources. This problem could be mitigated by
allowing the principal associated with a database connection to be picked up from the application server.
Support for this feature is beginning to appear in databases today.

To execute administrative operations in bulk in this approach, the metadata embodied in the schemas has to be
made available as data and it must be possible to create operations that are parameterized over the domain of
table names. Some support for these features is available in databases today. These capabilities are also required
in the administrative framework to handle queries that go across the individual databases in the farm.

In this approach, administrative operations such as adding customers, removing customers, and extending the
base schema entail executing DDL statements. This requirement can be problematic for some databases, which
behave poorly if schemas are modified while the system is in operation.

3.3 Shared Table

In the shared table approach, data from many customers is stored in the same tables, as illustrated in Figure 1. A
TenantId column is added to each table to identify the owner of each row. Every application query is
expected to specify a single value for this column. To allow customers to extend the base schema, each table is
given a fixed set of additional generic columns. These columns might be of type VARCHAR, as shown in
Figure 1, or they might have a mix of types. The data for the n-th new column of a table for each customer is
placed in the n-th generic column of the appropriate type, after performing any necessary type conversions.

TenantId Account Name … Val0 … Val100

1041 0021 Acme 1/3/95 ----

1041 0029 Ball 3/7/72 ----

1053 0016 Gump red ----

1053 0049 Wonk blue ----

Figure 1. Account Table in the Shared Table Approach

This approach is clearly the best at pooling resources. Its ability to scale up is limited only by the number of
rows the database can hold, which should offer several orders of magnitude improvement over the shared
process approach. Administrative operations can be executed in bulk simply by executing queries that range
over the TenantId column. And since there is only one database, customers can share connection pools.

There are however several significant problems with this approach. First, since files on the disk have
intermingled data from multiple customers, migration requires executing queries against the operational system.
Second, such intermingling can impact the performance of accessing a customer’s data, since it may be spread
out across many pages. Third, security can be pushed down into the database only if different access privileges
can be assigned to different rows in the same table. Fourth, the use of generic columns is feasible only if the
database has a compact representation for sparse tables. Fifth, if typing of the generic columns has been
abandoned, it will be hard to use column-oriented features such as indexes and integrity constraints.

5

The sixth and biggest problem with this approach is that queries intended for a single customer have to contend
with data from all customers, which compromises query optimization. In particular, optimization statistics
aggregate across all customers and table scans go across all customers. Moreover, if one customer requires an
index on a column, then all customers have to have that index. To improve this situation, the implementation
could be modified to treat the TenantId column as if it defined separate tables. Alternatively, this problem
could be handled above the database in a query preprocessor that performed its own optimizations.

4 Conclusions

This paper has argued that multi-tenant databases are essential for hosted services to manage high traffic
volumes at low cost. Multi-tenant databases may also be useful behind the firewall of a single organization, e.g.,
to handle multiple branches that have the same schema.

This paper described and compared three approaches to implementing multi-tenant databases. The authors’
opinion is that, among these, shared-process is the most promising approach. Shared-machine will continue to
be used in circumstances where security concerns are paramount. Modifications to increase resource pooling
could provide moderate improvements in scalability, however they may not be worth the effort of performing
delicate inter-process coordination. Shared-table swings too far in the other direction, potentially compromising
performance, customer migration, security, and typing. Shared-process can be made more scalable by
maintaining only one copy of the base schema, and more secure by having the principal associated with a
database connection be picked up from the application server. In any case, it is clear that existing database
vendors need to enhance their products to better support multi-tenancy.

It is interesting to note that support for multi-tenancy generally requires blurring the line between data and
metadata: shared-process offers bulk execution of administrative queries by allowing them to be parameterized
over the domain of table names, while shared-table repairs query processing by having the TenantId column
implicitly define tables. Since these features require only limited support for dynamic manipulation of schemas,
it should be possible to support them without compromising query optimization.

Acknowledgements This paper benefited greatly from discussions with Alfons Kemper, Mike Carey, Jim
Gray, Adam Messinger, Anno Langen, and the people who started it all, the developers at salesforce.com.

References

[GM02a] Greschler, D.; Mangan, T.: Networking lessons in delivering ‘Software as a Service’ - Part I. Int. J. Network Mgmt
12, 2002.

[GM02b] Greschler, D.; Mangan, T.: Networking lessons in delivering ‘Software as a Service’ - Part II. Int. J. Network
Mgmt 12, 2002.

[Wa03] Walsh, K. R.: Analyzing the Application ASP Concept: Technologies, Economies, and Strategies. CACM Vol. 46,
No. 8 August, 2003.

[Th06] THINKstrategies: http://saas-showplace.com/. 2006.
[GGL03] Ghemawat, S.; Gobioff, H.; Leung, S.: The Google File System. Proc. 19th ACM Symp. on Operating Systems

Principles, New York, 2003.
[Sm05] Smoot, P.: A Conversation with Phil Smoot. ACM Queue Vol.3 Issue 10, 2005.
[Sa06] http://www.salesforce.com/, 2006.
[Co06] Salesforce.com boasts of architectural superiority. Computer Business Review Online.

http://www.cbronline.com/article_news.asp?guid=A6156ED5-55F7-432B-95BC-7CF413E1BB88&z=rc_CRM,
2006.

[De99] Devlin, B.; Gray, J.; Laing, B.; Spix, G.: Scalability Terminology: Farms, Clones, Partitions, and Packs: RACS and
RAPS. MSR-TR-99-85, December 1999.

[PB03] Peterson, Z. N. J.; Burns, R. C.: Ext3cow: The Design, Implementation, and Analysis of Metadata for a Time-
Shifting File System. Technical Report HSSL-2003-03, Hopkins Storage Systems Lab, The Johns Hopkins
University, 2003.

[Po06] http://www.postgresql.org/, 2006.
[Ma06] http://www.mysql.com/products/maxdb/, 2006
[Mu05] Mullane, W.; Li, N.; Nieto-Santisteban, M.; Szalay, A.; Thakar, A.; Gray, J.: Batch is back: CasJobs, serving

multi-TB data on the Web. Proc. IEEE Int. Conf. on Web Services, 2005.

