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Abstract

Motivated by applications such as the detection of sources of worms or viruses
in computer networks, identification of the origin of infectious diseases, or deter-
mining the causes of cascading failures in large systems such as financial markets,
we study the question of inferring the source of a rumor in a network.

We start by proposing a natural, effective model for the spread of the rumor in a
network based on the classical SIR model. We obtain an estimator for the rumor
source based on the infected nodes and the underlying network structure – it as-
signs each node a likelihood, which we call the rumor centrality. We show that
the node with the maximal rumor centrality is indeed the maximum likelihood
estimator for regular trees. Rumor centrality is a complex combinatoric quantity,
but we provide a simple linear time message-passing algorithm for evaluating it,
allowing for fast estimation of the rumor source in large networks.

For general trees, we find the following surprising phase transition: asymptotically
in the size of the network, the estimator finds the rumor source with probability 0
if the tree grows like a line and it finds the rumor source with probability strictly
greater than 0 if the tree grows at a rate quicker than a line.

Our notion of rumor centrality naturally extends to arbitrary graphs. With ex-
tensive simulations, we establish the effectiveness of our rumor source estimator
in different network topologies, such as the popular small-world and scale-free
networks.

1 Introduction

In the modern world the ubiquity of networks has made us vulnerable to new types of network risks.
These network risks arise in many different contexts, but share a common structure: an isolated risk
is amplified because it is spread by the network. For example, as we have witnessed in the recent
financial crisis, the strong dependencies or ‘network’ between institutions have led to the situation
where the failure of one (or few) institution(s) have led to global instabilities. Other network risks
include computer viruses or worms spreading in the Internet or contagious diseases spreading in
populations. Another situation where network risks arise is when social networks allow information
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and instructions to be disseminated. In this case finding the leader of these networks is of great
interest for various purposes – identification of the ‘hidden voice’ in a spy network or determining
the ‘latent leader’ in a political network.

In essence, all of these situations can be modeled as a rumor spreading through a network. The goal
is to find the source of the rumor in these networks in order to control and prevent these network
risks based on limited information about the network structure and the ‘rumor infected’ nodes. In
this paper, we will provide a systematic study of the question of identifying the rumor source in a
network, as well as understand the fundamental limitations on this estimation problem.

1.1 Related Work

Prior work on rumor spreading has primarily focused on viral epidemics in populations. The natural
(and somewhat standard) model for viral epidemics is known as the susceptible-infected-recovered
or SIR model [1]. In this model, there are three types of nodes: (i) susceptible nodes, capable of
being infected; (ii) infected nodes that can spread the virus further; and (iii) recovered nodes that are
cured and can no longer become infected. Research in the SIR model has focused on understanding
how the structure of the network and rates of infection/cure lead to large epidemics [2],[3]. This
motivated various researchers to propose network inference techniques to learn the relevant network
parameters [4],[5],[6],[7],[8]. However, there has been little (or no) work done on inferring the
source of an epidemic.

The primary reason for the lack of such work in finding epidemic sources is that the problem is
quite challenging. To substantiate this, we briefly describe a closely related (and relatively simpler)
problem of reconstruction on trees [9],[10], or more generally, on graphs [11]. In this problem, a
known source transmits a binary value (-1 or 1) to other nodes in a network with a noisy channel. The
problem then is to use the noisy value at the other nodes to infer the value of the source. Currently
this problem is only understood for trees and tree-like graphs. Now the rumor source identification
problem is, in a sense harder, as we wish to identify the location of the source among many nodes
based on the infected nodes – clearly a much noisier situation than the reconstruction problem.

1.2 Our Contributions

In this paper, we provide a systematic study of the question of finding the rumor source in a network.
We construct the rumor source estimator in Section 2. We first propose a simple rumor spreading
model based upon the SIR model and then cast finding the rumor source as a maximum likelihood
(ML) estimation problem. Following the approach of researchers working on the reconstruction
problem and efficient inference algorithm design (i.e. Belief Propagation), we begin by addressing
the rumor source estimation problem for tree networks. For regular trees, we are able to reduce the
ML estimator to a novel combinatoric quantity we call rumor centrality. Despite being a complex
combinatoric object, we are able to provide a simple linear time message-passing algorithm for
evaluating rumor centrality. We note that this message-passing algorithm has no relation to standard
Belief Propagation or its variants, other than that it is an iterative algorithm.

We extend this notion of rumor centrality to construct estimators for general trees. Building on the
tree estimator, we design an estimator for any graph. We study the performance of this general graph
estimator through extensive simulations. As representative results, we test its performance on the
popular small-world and scale-free networks. This is detailed in Section 4, along with simulation
results for the tree estimator.

Section 3 presents our theoretical results on the rumor source estimator performance. For arbitrary
trees, we find the following surprising threshold phenomenon about the estimator’s effectiveness. If
a tree grows like a line, then the detection probability of the ML rumor source estimator will go to
0 as the network grows in size; but for trees growing faster than a line, the detection probability of
our estimator will always be strictly greater than 0 (uniformly bounded away from 0) irrespective
of the network size. In the latter case, we find that when the estimator makes an error, the wrong
prediction is within a few hops of the actual source. Thus, our estimator is essentially the optimal
for any tree network.

We conclude in Section 5 with implications of these results and future directions for this work.

2



2 Rumor Source Estimator

2.1 Rumor Spreading Model

We consider a network of nodes to be modeled by an undirected graph G(V,E), where V is a
countably infinite set of nodes and E is the set of edges of the form (i, j) for some i and j in V .
We assume the set of nodes is countably infinite in order to avoid boundary effects. We consider the
case where initially only one node v∗ is the rumor source.

For the rumor spreading model, we use a variant of the popular SIR model known as the susceptible-
infected or SI model which does not allow for any nodes to recover, i.e. once a node has the rumor,
it keeps it forever. Once a node i has the rumor, it is able to spread it to another node j if and only if
there is an edge between them, i.e. if (i, j) ∈ E. The time for a node i to spread the rumor to node j
is modeled by an exponential random variable τij with rate λ. We assume without loss of generality
that λ = 1. All τij’s are independent and identically distributed.

2.2 Rumor Source Maximum Likelihood Estimator

We now assume that the rumor has spread in G(V,E) according to our model and that N nodes
have the rumor. These nodes are represented by a rumor graph GN (V,E) which is a subgraph of
G(V,E). We will refer to this rumor graph as GN from here on. The actual rumor source is denoted
as v∗ and our estimator will be v̂. We assume that each node is equally likely to be the source a
priori, so the best possible estimator will be the ML estimator. The only data we have available is
the final rumor graph GN , so the estimator is

v̂ = arg max
v∈GN

P(GN |v∗ = v) (1)

In general, P(GN |v∗ = v) will be difficult to evaluate. However, we will show that in regular tree
graphs, ML estimation is equivalent to a combinatorial problem.

2.3 Rumor Source Estimator for Regular Trees

To simplify our rumor source estimator, we consider the case where the underlying graph is a regular
tree where every node has the same degree. In this case, P(GN |v∗ = v) can be exactly evaluated
when we observe GN at the instant when the N th node is infected.

First, because of the tree structure of the network, there is a unique sequence of nodes for the rumor
to spread to each node in GN . Therefore, to obtain the rumor graph GN , we simply need to construct
a permutation of the N nodes subject to the ordering constraints set by the structure of the rumor
graph, which we refer to as a permitted permutation. For example, for the network in Figure 1, if
node 1 is the source, then {1, 2, 4} is a permitted permutation, whereas {1, 4, 2} is not because node
2 must have the rumor before node 4.

Second, because of the memoryless property of the rumor spreading time between nodes and the
constant degree of all nodes, each permitted permutation resulting in GN is equally likely. To see
this, imagine every node has degree k and we wish to find the probability of a permitted permutation
σ conditioned on v∗ = v. A new node can connect to any node with a free edge with equal proba-
bility. When it joins, it contributes k − 2 new free edges. Therefore, the probability of any N node
permitted permutation σ for any node v in GN is

P(σ|v∗ = v) =

(
1

k

) (
1

k + (k − 2)

) (
1

k + 2(k − 2)

)
...

(
1

k + (N − 2)(k − 2)

)
(2)

The probability of obtaining GN given that v∗ = v is obtained by summing the probability of all
permitted permutations which result in GN . Because all of the permutations are equally likely,
P(GN |v∗ = v) will be proportional to the number of permitted permutations which start with v
and result in GN . Because we will find it necessary to count the number of these permutations, we
introduce the following definition:

Definition 1. R(v,T ) is the number of permitted permutations of nodes that result in a tree T and
begin with node v ∈ T .
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Figure 1: Illustration of variables T 1
2 and T 1

7 .

With this definition, the likelihood is proportional to R(v, GN ), so we can then rewrite our estimator
as

v̂ = arg max
v∈GN

P(GN |v∗ = v) = arg max
v∈GN

R(v, GN ) (3)

Because the ML estimator for the rumor source is also the node which maximizes R(v, GN ), we
call this term the rumor centrality of the node v, and the node which maximizes it the rumor center
of the graph. Now, there can be an exponential number of permitted permutations, so it is not clear if
this result has made the problem any easier. However, we will see next that there is a simple closed
for expression for the rumor centrality.

2.4 Evaluating Rumor Centrality

We now show how to evaluate the rumor centrality R(v, GN ). To begin, we first define a term which
will be of use in our calculations.

Definition 2. T v
vj

is the number of nodes in the subtree rooted at node vj , with node v as the source.

To illustrate this definition, a simple example is shown in Figure 1. In this graph, T 1
2 = 3 because

there are 3 nodes in the subtree with node 2 as the root and node 1 as the source. Similarly, T 1
7 = 1

because there is only 1 node in the subtree with node 7 as the root and node 1 as the source.

We now can count the permutations of GN with v as the source. In the following analysis, we will
abuse notation and use T v

vj
to refer to the subtrees and the number of nodes in the subtrees. To

begin, we assume v has k neighbors, (v1, v2, ...vk). Each of these nodes is the root of a subtree
with T v

v1
, T v

v2
, ..., T v

vk
nodes, respectively. Each node in the subtrees can receive the rumor after its

respective root has the rumor. We will have N slots in a given permitted permutation, the first of
which must be the source node v. Then, from the remaining N − 1 nodes, we must choose T v

v1
slots

for the nodes in the subtree rooted at v1. These nodes can be ordered in R(v1, T
v
v1

) different ways.
With the remaining N − 1 − T v

v1
nodes, we must choose T v

v2
nodes for the tree rooted at node v2,

and these can be ordered R(v2, T
v
v2

) ways. We continue this way recursively to obtain

R(v, GN ) =

(
N − 1

T v
v1

)(
N − 1 − T v

v1

T v
v2

)
...

(
N − 1 − ∑k−1

i=1 T v
vi

T v
vk

) k∏

i=1

R(vi, T
v
vi

) (4)

= (N − 1)!

k∏

i=1

R(vi, T
v
vi

)

T v
vi

!
(5)

Now, to complete the recursion, we expand each of the R(vi, T
v
vi

) in terms of the subtrees rooted
at the nearest neighbor children of these nodes. To simplify notion, we label the nearest neighbor
children of node vi with a second subscript, i.e. vij . We continue this recursion until we reach the
leaves of the tree. The leaf subtrees have 1 node and 1 permitted permutation. Therefore, the number
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of permitted permutations for a given tree GN rooted at v is

R(v, GN ) = (N − 1)!

k∏

i=1

R(vi, T
v
vi

)

T v
vi

!
(6)

= (N − 1)!

k∏

i=1

(T v
vi
− 1)!

T v
vi

!

∏

vij∈T v
vi

R(vij , T
v
vij

)

T v
vij

!
(7)

= (N − 1)!

k∏

i=1

1

T v
vi

∏

vij∈T v
vi

R(vij , T
v
vij

)

T v
vij

!
(8)

= N !
∏

u∈GN

1

T v
u

(9)

In the last line, we have used the fact that T v
v = N . We thus end up with a simple expression for

R(v, GN ) in terms of the size of the subtrees of all nodes in GN .

2.5 Calculating Rumor Centrality: A Message Passing Algorithm

In order to find the rumor center of a tree graph of N nodes GN , we need to first find the rumor
centrality of every node in GN . To do this we need the size of the subtrees T v

u for all v and u in
GN . There are N2 of these subtrees, but we can utilize a local condition of the rumor centrality in
order to calculate all the rumor centralities with only O(N) computation. Consider two neighboring
nodes u and v in GN . All of their subtrees will be the same size except for those rooted at u and v.
In fact, there is a special relation between these two subtrees.

T v
u = N − Tu

v (10)

For example, in Figure 1, for node 1, T 1
2 has 3 nodes, while for node 2, T 2

1 has N − T 1
2 or 4 nodes.

Because of this relation, we can relate the rumor centralities of any two neighboring nodes.

R(u, GN ) = R(v, GN )
T v

u

N − T v
u

(11)

This result is the key to our algorithm for calculating the rumor centrality for all nodes in GN . We
first select any node v as the source node and calculate the size of all of its subtrees T v

u and its
rumor centrality R(v, GN ). This can be done by having each node u pass two messages up to its
parent. The first message is the number of nodes in u’s subtree, which we call tup

u→parent(u). The

second message is the cumulative product of the size of the subtrees of all nodes in u’s subtree,
which we call pup

u→parent(u) . The parent node then adds the tup
u→parent(u) messages together to

obtain the size of its own subtree, and multiplies the pup
u→parent(u) messages together to obtain its

cumulative subtree product. These messages are then passed upward until the source node receives
the messages. By multiplying the cumulative subtree products of its children, the source node will
obtain its rumor centrality, R(v, GN ).

With the rumor centrality of node v, we then evaluate the rumor centrality for the children of v
using equation (11). Each node passes its rumor centrality to its children in a message we define as
rdown
u→child(u). Each node u can calculate its rumor centrality using its parent’s rumor centrality and its

own subtree size T v
u . We recall that the the rumor centrality of a node is the number of permitted per-

mutations that result in GN . Thus, this message passing algorithm is able to count the (exponential)
number of permitted permutations for every node in GN using only O(N) computations.

2.6 Rumor Source Estimator for General Trees

Rumor centrality is an exact ML rumor source estimator for regular trees. In general trees where
node degrees may not all be the same, this is no longer the case, as all permitted permutations may
not be equally likely. This considerably complicates the construction of the ML estimator. To avoid
this complication, we define the following randomized estimator for general trees. Consider a rumor
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that has spread on a tree and reached all nodes in the subgraph GN . Then, let the estimate for the
rumor source be a random variable v̂ with the following distribution.

P(v̂ = v|GN ) ∝ R(v, GN ) (12)

This estimator weighs each node by its rumor centrality. It is not the ML estimator as we had for
regular trees. However, we will show that this estimator is qualitatively as good as the best possible
estimator for general trees.

2.7 Rumor Source Estimator for General Graphs

When a rumor spreads in a network, each node receives the rumor from one other node. Therefore,
there is a spanning tree corresponding to a rumor graph. If we knew this spanning tree, we could
apply the previously developed tree estimators. However, the knowledge of the spanning tree will
be unknown in a general graph, complicating the rumor source inference.

We circumvent the issue of not knowing the underlying rumor spanning tree with the following
heuristic. We assume that if node v ∈ GN was the source, then it spread the rumor along a breadth
first search (BFS) tree rooted at v, Tbfs(v). The intuition is that if v was the source, then the BFS
tree would correspond to all the closest neighbors of v being infected as soon as possible. With this
heuristic, we define the following rumor source estimator for a general rumor graph GN .

v̂ = arg max
v∈GN

R(v, Tbfs(v)) (13)

We will show with simulations that this estimator performs well on different network topologies.

3 Detection Probability: A Threshold Phenomenon

This section examines the behavior of the detection probability of the rumor source estimators
for different graph structures. We establish that the asymptotic detection probability has a phase-
transition effect: for line graphs it is 0, while for trees with finite growth it is strictly greater than 0.
We exclude all proofs for this section due to space constraints.

3.1 Line Graphs: No Detection

We first consider the detection probability for a line graph. This is a regular tree with degree 2, so
we use the ML estimator for regular trees. We will establish the following result for the performance
of the rumor source estimator in a line graph.

Theorem 1. Define the event of correct rumor source detection after time t on a line graph as Ct.
Then the probability of correct detection of the maximum likelihood rumor source estimator, P(Ct),
scales as

P(Ct) = O

(
1√
t

)
(14)

The line graph detection probability scales as t−1/2, which goes to 0 as t goes to infinity. The
intuition for this result is that the rumor source estimator provides very little information because of
the line graph’s trivial structure.

3.2 Geometric Trees: Non-Trivial Detection

We now consider the detection probability of our estimator in a geometric tree, which is a non-
regular tree parameterized by a number α. If we let n(d) denote the maximum number of nodes a
distance d from any node, then there exist constants b and c such that b ≤ c and

bdα ≤ n(d) ≤ cdα (15)

We use the randomized estimator for geometric trees. For this estimator, we obtain the following
result.
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Figure 2: Plots of the rumor source estimator detection probability for line graphs (left) and geo-
metric trees (middle) vs. number of nodes N , and a histogram of the error for a 100 node geometric

tree with α = 1 (right). In the left plot, the dotted line is a plot of
√

2/πN−1/2 and the circles are
the empirical error probability. 1000 rumor graphs were generated for each rumor graph size N .

Theorem 2. Define the event of correct rumor source detection after time t on a geometric tree with
parameter α > 0 as Ct. Then the probability of correct detection of the randomized rumor source
estimator, P(Ct), is strictly greater than 0. That is,

lim inf
t

P(Ct) > 0 (16)

This theorem says that α = 0 and α > 0 serve as a threshold for non-trivial detection: For α = 0,
the graph is essentially a line graph, so we would expect the detection probability to go to 0 based on
Theorem 1, but for any strictly positive α, we always have a strictly positive detection probability.

While Theorem 2 only deals with correct detection, one would also be interested in the size of the
rumor source estimator error. The following corollary addresses the estimator error.

Corollary 1. Consider a rumor that has spread on a geometric tree with parameter α > 0. Define
d(v̂, v∗) as the distance between the randomized rumor source estimator v̂ and the actual source v∗.
Then, for any ǫ > 0 there exists a finite dǫ such that

lim inf
t

P(d(v∗, v̂) < dǫ) > 1 − ǫ (17)

This corollary says that the error will remain finite with high probability no matter how large the
rumor graph is. We will see how small this error is for certain trees in Section 4.

4 Simulation Results

4.1 Tree Networks

We generated 1000 rumor graphs per rumor graph size on an underlying line graph. The detection
probability of the rumor source estimator versus the graph size is show in Figure 2. As can be seen,

the detection probability decays as N−1/2 as predicted in Theorem 1.

We generated 1000 instances of rumor graphs per rumor graph size on underlying geometric trees.
The α parameters ranged from 0 to 4. As can be seen in Figure 2, the detection probability of the
rumor source estimator remains close to 1 as the tree size grows for α > 0 and decays to 0 for
α = 0, as predicted by Theorem 2. A histogram for a 100 node rumor graph on a geometric tree
with α = 1 shows that the rumor source estimator error is no larger than 4 hops. This indicates that
the estimator error remains bounded, as predicted by Corollary 1.

4.2 General Networks

We performed simulations on synthetic small-world [12] and scale-free [13] networks. These are
two very popular models for networks and so we would like our rumor source estimator to perform
well on these topologies. We generated 1000 instances of 400 node rumor graphs for each topology.
For both topologies, the underlying graph contained 5000 nodes. Figure 3 shows an example of
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Figure 3: An example of a rumor graph (infected nodes in white) and a histogram of the rumor
source estimator error for a 400 node rumor network on small-world (left) and scale-free networks
(right). 1000 rumor graphs were generated for each histogram.

rumor spreading in a small-world and a scale-free network. The graphs show the rumor infected
nodes in white. Also shown is the histogram of the rumor source estimator error for 400 node
rumor graphs in each network. As can be seen, we have correct detection (0 hop error) 15 percent
of the time for the small-world network and at most 1 hop error at least 15 percent of the time
for the scale-free network. Also, the error in these simulations did not exceed 7 hops, while the
average diameters of the rumor graphs were 22 hops for the small-world network and 12 hops for
the scale-free network. Thus, we are seeing good performance of the general graph estimator for
both small-world and scale-free networks.

5 Conclusion and Future Work

We constructed estimators for the rumor source in regular trees, general trees, and general graphs.
We defined the ML estimator for a regular tree to be a new notion of network centrality which
we called rumor centrality. Rumor centrality was used as the basis for estimators for general trees
and general graphs. We provided a fast, linear time message-passing algorithm to evaluate rumor
centrality.

We analyzed the asymptotic behavior of the rumor source estimator for line graphs and geometric
trees. For line graphs, it was shown that the detection probability goes to 0 as the network grows in
size. However, for geometric trees, it was shown that the estimator detection probability is bounded
away from 0 as the graph grows in size and that the estimator error was bounded. Simulations
performed on synthetic graphs agreed with these tree results and also demonstrated that the general
graph estimator performed well in different network topologies such as small-world and scale-free
networks.

There are several future steps for this work. First, we would like to develop estimators for more
general rumor spreading models. Second, we would like to have theoretical bounds for the general
graph estimator, similar to the results for trees. Third, we would like to test our estimators on real
networks to accurately assess their performance.
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