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Access control policies define what resources can be accessed by which subjects and under which conditions.
It is, however, often not possible to anticipate all subjects that should be permitted access and the conditions
under which they should be permitted. For example, predicting and correctly encoding all emergency and
exceptional situations is impractical. Traditional access control models simply deny all requests that are
not permitted, and in doing so may cause unpredictable and unacceptable consequences. To overcome this
issue, break-glass access control models permit a subject to override an access control denial, if he accepts
a set of obligatory actions and certain override conditions are met. Existing break-glass models are limited
in how the override decision is specified. They either grant overrides for a pre-defined set of exceptional
situations, or they grant unlimited overrides to selected subjects, and as such they suffer from the difficulty
of correctly encoding and predicting all override situations and permissions. To address this, we develop
Rumpole, a novel break-glass language that explicitly represents and infers knowledge gaps and knowledge
conflicts about the subject’s attributes and the contextual conditions, such as emergencies. For example, a
Rumpole policy can distinguish whether or not it is known that an emergency holds. This leads to a more
informed decision for an override request, whereas current break-glass languages simply assume that there
is no emergency if the evidence for it is missing. To formally define Rumpole, we construct a novel many-
valued logic programming language called Beagle. It has a simple syntax similar to that of Datalog, and its
semantics is an extension of Fitting’s bilattice-based semantics for logic programs. Beagle is a knowledge
non-monotonic langauge, and as such is strictly more expressive than current many-valued logic program-
ming languages.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection

General Terms: Design, Algorithms

Additional Key Words and Phrases: security, access control, break-glass access control, logic programming,
many-valued logics

ACM Reference Format:
Marinovic, S., Dulay, N., Sloman, M. 2012. Rumpole - An Introspective Break-glass Access Control Model.
ACM Trans. Info. Syst. Sec. X, X, Article XX (July 2013), 31 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Access control policies define which subjects are permitted to use protected resources
and under which conditions. A crucial assumption underlying access control enforce-
ment is that policies are complete and precisely define the subject, the resource and
the conditions for access. In life-critical domains, such as healthcare [Anderson 1996],
it is unrealistic to have a complete set of policies, since it is not practical to anticipate
all the situations that may occur that require an access control decision. Furthermore
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the information that is available to make access control decisions may be incomplete,
contradictory or unreliable. The gap that is created between resource needs, policy
specifications and poor quality information can lead to systems where access control is
too strict – preventing critical resources being accessible, for example, in an emergency.

The default behaviour of most access control systems is to deny all requests that are
not permitted by a security policy. Even if a subject has a justified reason for requesting
access there is no mechanism to override the denial, other then asking a security ad-
ministrator to change the policy. The subject is never given the benefit of the doubt or
allowed to present new evidence for why access should be permitted. We do not argue
that all subjects have to be given the benefit of the doubt, but that in some applications
the consequences of denial might be more damaging than allowing the override.

Break-glass access control models allow a subject to override access control deci-
sions but impose obligatory actions on the subject and/or the system itself [Povey 2000]
[WBG 2004] [Longstaff et al. 2000]. Break-glass policies attempt to mediate between
a normal access control policy and the subject by asking the subject to accept specific
obligations that offset the perceived risk introduced by the override. We stress that
not all override requests need to be granted, some requests may be deemed to risky or
inappropriate.

Fig. 1. Overriding an access control denial.

To illustrate the break-glass model consider the healthcare example shown in Figure
1. Late at night, a visiting nurse notices a mild allergic reaction developing on a pa-
tient’s arm. This is not a high-risk emergency, but it would be considered good practice
for the nurse to treat it. She needs some information from the patient’s record to se-
lect an appropriate treatment, but she is not authorised to treat patients in this ward,
especially when the situation is not life threatening. Break-glass policies are able to
address such situations. For example, a break-glass policy may grant an override to an
appropriately qualified nurse if she accepts to have her actions recorded by the hospi-
tal’s CCTV cameras and reported to the head-nurse. Such obligations have a two-fold
purpose. First, they raise the subject’s awareness that the request is unanticipated
and potentially has serious consequences. Second they attempt to provide a means to
hold subjects accountable for their actions.

Current break-glass models either grant overrides for exceptional situations
[Brucker and Petritsch 2009] [Ardagna et al. 2010] [Ardagna et al. 2008] [Gupta et al.
2006] [Longstaff et al. 2000], or they grant unlimited overrides to selected subjects
[Ferreira et al. 2009] [Rissanen et al. 2004] [Povey 2000]. Both of these approaches,
however, suffer from the difficulty of correctly encoding and predicting all override sit-
uations and permissions – the same problem that afflicts traditional access control
policies.
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Encoding all conditions that determine whether an exceptional situation exists or
not, is not feasible. Similarly a priori deciding all subjects that should be given over-
ride access may also be infeasible. To address these issues, we develop Rumpole, a
novel break-glass language that explicitly represents and infers knowledge gaps and
knowledge conflicts. We say that there is a knowledge gap when it is not possible to
infer, based on the supplied evidence whether a condition holds or not, or whether an
override can be granted or denied i.e. uncertainty in the available information. Simi-
larly, a knowledge conflict denotes that it is possible to infer that some condition both
holds and does not hold. For example, if fire alarms have failed, or if a user is not
present to manually signal an emergency, Rumpole’s semantics would infer that it is
“unknown” whether there is an emergency or not.

When combining evidence from different sources, different levels of confidence in
their reliability may be needed. For example, a nurse signalling an emergency can be
taken as strong evidence, but temperature sensor data can often produce poor quality
information, which might appropriately be labelled as “unreliably-true” or “unreliably-
false”. Therefore the composition of nurse and sensor evidence for an emergency does
not necessarily result in a clear conflict but rather a “weak-conflict”. These weaker
values also represent gaps and inconsistencies. The range of these unreliable values is
domain specific and Rumpole lets break-glass policies specify any discrete range that
they require.

Rumpole represents gaps and inconsistencies both at the language (semantic) meta-
level and also at the language (syntactic) object-level. We, therefore, refer to Rumpole
as an introspective language since its rules can be constrained with knowledge levels.

Consider our earlier example. Rumpole can express a break-glass policy, which when
it is unknown whether there is an any emergency would ask the nurse to agree to a
stricter obligation, such as CCTV and sound recording. A policy could also say that if
it is unknown whether a subject has been blacklisted by the patient (e.g. such informa-
tion cannot be obtained at a current moment), and there is conflicting evidence that
there is an emergency, then the override can be given provided that a subject agrees
that the override will be reviewed and inspected by the head-nurse. It is precisely this
additional (epistemic) specification dimension, which we believe leads to more flexible
break-glass policies that can cope with a wider range of override requests.

Rumpole extends the introspective reasoning to the policy decisions as well. At the
policy decision level, a knowledge gap appears when the policy is underspecified for a
given request. Similarly, some requests may be both explicitly permitted and denied,
resulting in a conflict. Rumpole adopts an algebraic approach to specifying a break-
glass policy and thus any decision gaps and conflicts are made explicit during a policy
evaluation.

In summary, we see our main contributions as follows:

(1) Rumpole - a novel break-glass policy language for expressing policies that formu-
late their security decisions based on different levels of knowledge: ranging from
complete gaps to strong conflicts. This is in contrast to current break-glass lan-
guages, which assume that each contextual condition can be correctly established.
Rumpole adopts an algebraic approach to policy specification and thus a policy can
also make its decision based on whether its own rules contain decision gaps or con-
flicts. We believe that this added flexibility improves the overall applicability of the
break-glass approach, since this approach is precisely needed when there is a lack
of knowledge about subjects and the context.

(2) Beagle - a novel logic-programming language for reasoning over many-valued
bilattice-based truth spaces. Bilattices have been successfully applied in AI for
reasoning with incomplete and incoherent knowledge. Beagle’s syntax contains a

ACM Transactions on Information and System Security, Vol. X, No. X, Article XX, Publication date: July 2013.



XX:4 S. Marinovic et al.

functionally-complete set of operators, which means that any truth-value operator
can be captured with Beagle’s core operators. In contrast, current bilattice-based
logic-programming languages do not have a functionally-complete set of operators.
We further define preferred-model semantics for a class of stratified Beagle pro-
grams and use it for defining Rumpole’s semantics.

We provide semantics for both languages as well as detailed rationale for our design
choices.

In this paper, we substantially improve our previous work on Rumpole [Marinovic
et al. 2011]. First, we extend Rumpole in the number of values to represent uncertain
knowledge. Second, we extend Rumpole with full range of override operators. Third, in
our previous work, Rumpole’s semantics was split in two disjoint parts. We rectify this
through Beagle, which we use as the basis for Rumpole’s unified semantics. Finally,
through a use case, we demonstrate how Rumpole can formalise HIPAA-compliant
break-glass policies.

The rest of this paper is structured as follows. In Section 2 we cover related work, fol-
lowed by an introduction to bilattices as a means of representing gaps and uncertain-
ties in knowledge. Section 4 presents an informal overview of the Rumpole Language
in section we describe our Billatice Logic Programming Language called Beagle. Sec-
tion 6 presents a more formal description of Rumpole’s semantics. Section 7 is a case
study on the use of Rumpole to specify overrides with respect to the Health Insurance
Portability Act (HIPAA) Privacy Rule followed by a summary in Section 8.

2. RELATED WORK
Povey [Povey 2000] was amongst the first to articulate support for a break-glass con-
cept. He argued that there is always an expressiveness gap between what can be
encoded and what the needs of an organisation are. He introduced partially-formed
transactions, whose effects can be rolled-back; a subject with no permissions could
then freely execute such transactions. Risannen et al. [Rissanen et al. 2004] have sim-
ilarly argued that all requests cannot be anticipated and that many conditions are not
fully encodable. Their model provides the can predicate, which permits the requestor to
override a denied decision. Medical information systems [Ferreira et al. 2009] require
break-glass provisions but implement them in an ad-hoc fashion, e.g. giving super-user
roles which have no restrictions.

Brucker et al.’s break-glass model is one of the first generic models [Brucker and
Petritsch 2009]. The model views an access control policy as a partially ordered set of
low-level permissions, with conditional override permissions attached to each access
permission. Ardagna et al. [Ardagna et al. 2010] present another generic break-glass
model, where all access control policies are split into different categories: the standard
access control policies, anticipated emergency policies, and no-restriction break-glass
policies. Unless the access is explicitly denied, it can be obtained by either finding an
applicable emergency policy with obligations or, if that is not successful, the override
is granted if the system is in the emergency state and the supervisor can be notified
about the override. Even though these two models are generic, they still implicitly
hard-code their break-glass resolution procedures, rather than, as with Rumpole, ex-
pressing it as a declarative algebraic expression. This means that a policy writer has to
specify a break-policy according to a particular model’s break-glass procedure, which
in turn may limit the expressiveness of the intended break-glass policy. For example
in Ardagna et al.’s work explicit access control denials can never be overridden, and
the override depends on correctly encoding and identifying emergency situations. In
contrast, our work makes no assumptions on the conditions or the context in which a
break-glass policy is applied. The major difference, however, between Rumpole and the
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surveyed break-glass models is in the explicit reasoning over unknown and conflicting
knowledge in order to permit an override. For example, in situations where it is known
that the subject does not have an override permission, an override can still be given if
the subject has not broken any prior obligations. Existing approaches do not attempt
to recognise gaps and conflicts in a break-glass policy specification itself. They also
assume that all missing information is false by default.

The problem of predicting and encoding all permissible requests has been recognised
in A posteriori compliance control model [Etalle and Winsborough 2007] and Audit-
based access control model [Cederquist et al. 2007; Hasan and Winslett 2011]. These
models allow access to take place but it retrospectively checks to determine whether it
conforms to policy. The difference with the break-glass approach is that the subject is
unaware of any overriding and the system does not issue any obligations as a result of
the overriding.

Obligations have been used to augment access control policy [Ni et al. 2008; Bettini
et al. 2002; Irwin et al. 2006; Park and Sandhu 2004], in contrast to the break-glass
approach obligations are issued without user interaction. A notable exceptions are
languages Ponder2 [Twidle et al. 2008] and PlexC [Gall et al. 2012], whose side-effects
can initiate user interaction and issue additional obligations.

[Lee et al. 2006] use policy rules with different inference strengths to facilitate con-
flict resolution between their conclusions. In addition, they use priority overriding be-
tween rules. This approach does not model explicit knowledge gaps and it does not
propagate conflicts. Access control policy algebras, such as [Li et al. 2009; Bruns and
Huth 2008; Crampton and Morisset 2012], explicitly denote conflicts and gaps in a
policy specification. A policy writer can also specify further policies to resolve such is-
sues. Rumpole’s algebraic approach is inspired by Bruns and Huth’s PBel [Bruns and
Huth 2008] language. Rumpole can express existing policy algebras, and can further-
more express delegation operators (where one subject delegates his authority to other
subjects) which the existing policy algebras do not consider.

3. PRELIMINARIES: REPRESENTING GAPS AND INCONSISTENCIES THROUGH BILATTICES
We use bilattices as underlying truth spaces for Rumpole. Their truth values represent
the amount of knowledge and the amount of truth that is assigned to information used
during policy evaluations. We first define bilattices and then show how the truth values
of two common bilattices can be interpreted. In Section 4, we discuss a guideline for
selecting bilattices.

Ginsberg [Ginsberg 1988] introduced bilattices as many-valued structures, where
each truth value denotes both the amount of truth and the amount of knowledge as-
sociated with a piece of information. The amount of knowledge differentiates truth
values in how much evidence (and whether it is contradictory) is present to support
the associated amount of truth. To construct a many-valued structure with two order-
ings (i.e., amount of truth and amount of knowledge), Ginsberg combined two lattices
into one many-valued structure with two orderings as follows:

Definition 3.1. [Ginsberg 1988] A bilattice is a structure B = (B,≤t,≤k,¬) such
that B is a non empty set containing: (B,≤t), (B,≤k), which are complete lattices,
and ¬ is a unary operation on B that has the following properties: (i) if a ≤k b, then
¬a ≤k ¬b; (ii) if a ≤t b, then ¬a ≥t ¬b; (iii) ¬¬a = a.

Building on top of Ginsberg’s work, Fitting defined a very natural many-valued truth
spaces for logic programs using the � product:

Definition 3.2. [Fitting 1990] Let (L,≤) be a complete lattice. The structure L �
L(L× L,≤t,≤k,¬) is defined as follows:
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— (x1, x2) ≤t (y1, y2) iff x1 ≤ y1 and y2 ≤ x2.
— (x1, x2) ≤k (y1, y2) iff x1 ≤ y1 and x2 ≤ y2.
—¬(x1, x2) = (x2, x1).

Restricting L to only {0, 1}, we obtain the smallest (non-trivial) bilattice, called
FOUR, which has four truth values. This bilattice and its logical operators correspond
to Belnap logic [Belnap 1977], and is the smallest bilattice over which Rumple’s se-
mantics are defined. The four truth values in FOUR are: the classical values t (true)
and f (false), and two additional ones, ⊥, intuitively denoting lack of information (no
knowledge), and >, denoting inconsistency or conflict of information (over-knowledge).

>

⊥

d> tf

≤t

≤k

df dt

of ot

f t

>

⊥

Fig. 2. The bilattices FOUR and NINE respectively.

Figure 2 orders the truth values using both the knowledge≤k, and the truth ordering
≤t. The meet and join of ≤t lattice, ∧ and ∨ respectively, correspond to the classical
truth operators. Negation is represented through the unary operator ¬, for which > =
¬>, ⊥ = ¬⊥. The ≤k, as indicated, reflects the differences in the amount of knowledge
that each truth value exhibits. The four values again form a lattice such that > is the
maximal element, ⊥ is the minimal, and t and f are incomparable w.r.t. ≤k. Fitting
[Fitting 1991] introduced symbols ⊗ and ⊕ to denote respectively the meet and join
operations. The operator ⊗ can be seen as giving the least amount of knowledge that
the truth values can agree on, while the operator ⊕ can be seen as giving the most
amount of knowledge that can be derived.

We adopt the following interpretation of FOUR’s truth values:

—> – The knowledge about a piece of information is in “conflict”, because it has evi-
dence that it is both true and false.

—⊥ – The knowledge about a piece of information is “unknown”, it has no evidence to
support either claim.

— t – A piece of information is considered to be true, because there is evidence to
support this notion and no evidence to the contrary.

— f – A piece of information is considered to be false, because there is evidence to
support this notion and no evidence to the contrary.

FOUR does not represent unreliable (uncertain) knowledge levels, since an atom
can only be either true or false, in addition to gaps and conflicts. To add partial evi-
dence, we extend L to {0, 1

2 , 1} and obtain the bilattice NINE (Figure 2):

Definition 3.3. Let the lattice L be defined as 〈{0, 1
2 , 1},≤〉, then the bilatticeNINE

is defined as L� L = 〈{0, 1
2 , 1} × {0,

1
2 , 1},≤t,≤k〉, where the ≤k and ≤t are interpreted

in the already described way.

We adopt the following interpretation of NINE ’s uncertain values:
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— dt = ( 1
2 , 0) – The evidence to support the truth is partial or weak and there is no

evidence for false.
— df = (0, 1

2 ) – The evidence to support the falsity is partial or weak and there is no
evidence for true.

— d> = ( 1
2 ,

1
2 ) – There is partial or weak evidence to support both truth and falsity.

— ot = (1, 1
2 ) – There is strong (certain) evidence to support the truth, and weak evi-

dence to support the falsity.
— of = ( 1

2 , 1) – There is strong (certain) evidence to support the falsity, and weak
evidence to support the truth.

The bilattice NINE can be considered as a natural extension of FOUR, because
NINE ’s meet and join operators (∧, ∨, ⊕, and ⊗), as well as the ¬ operator, when
restricted to Belnap values, coincide with those operators in FOUR.

If further precision is needed to capture more subtle notions of impreciseness, we can
proceed to construct {0, 1

3 ,
2
3 , 1}�{0,

1
3 ,

2
3 , 1}, and {0, 1

4 ,
1
2 ,

3
4 , 1}�{0,

1
4 ,

1
2 ,

3
4 , 1} bilattices,

ending up with 16 and 25 truth values respectively.

4. RUMPOLE LANGAUGE: AN INFORMAL OVERVIEW
In this section we present an informal overview of Rumpole. As Beagle is Rumpole’s
underlying formal language, we also highlight Beagle’s main features. The formal pre-
sentation is in Section 5 and 6.

4.1. Policy Structure and Enforcement Model
A Rumpole policy comprises three types of rules:

(1) Evidential Rules – define how evidence is composed to determine how much is
known about the context of an override request. For example an evidential rule
may define an emergency.

(2) Break-glass Rules – define break-glass permissions based on override contexts.
For example, a policy may say that an override is permitted in an emergency if
the subject will accept an obligation to submit a reason for this override within the
next four hours.

(3) Grant Policies – define break-glass rules are combined to reach the final override
decision.

A Rumpole policy does not specify access control permissions, its aim is to encode
only the break-glass permissions. Rumpole could specify some access control policies
(e.g. the algebraic ones [Bruns and Huth 2008] [Crampton and Morisset 2012]) through
its grant policies. We do not however pursue such a combined specification approach
in this work.

Rumpole’s enforcement model, depicted in Figure 3, consists of a Break-glass Policy
Enforcement Point (BPEP) and a Break-glass Policy Decision Point (BPDP). The BPDP
evaluates its stored Rumpole policy against override requests, which contain a subject-
action-resource tuple and a set of obligations that the subject is willing to accept in
order to have access to the requested object. Override requests are issued by subjects
and by access control enforcement points (AC-PEPs). In the latter case, AC-PEPs act as
proxies between subjects and the BPEP. An AC-PEP can be configured to automatically
generate an override request for each request that it denies. The BPDP returns one of
the following evaluation decisions:

(1) grant – allow access to the requested resource.
(2) request obligations – contains a set of obligations that a subject has to accept to

qualify for a grant.
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Break-glass
PEP

Break-glass
PDP

Subject

Access 
Control

PEP

3. Break-glass decision

2. Break-glass request 
+ obligations

1. Break-glass request 

+ obligations

1. Break-glass request

+ obligations

4. Required obligations

4. Required obligations

Necessary

Optional

Fig. 3. Rumpole’s Enforcement Model.

(3) deny – deny access to the requested resource.

The BPEP enforces BPDP’s decisions by allowing/denying access to requested objects
for grant/deny break-glass decisions. In case of a request obligations decision, the BPEP
forwards the set of required obligations that the subject has to accept. If the subject
accepts the obligations, a new override request must be issued with those obligations.
This is needed because the contextual conditions may have changed by the time the
subject has accepted the obligations. Finally, input/output components that present re-
quested obligations to subjects and record subjects’ responses are outside of our model.

4.2. Selecting Bilattices for Rumpole Policies
The policy writer selects for each Rumpole policy one bilattice whose truth values de-
note the amount of knowledge and truth associated with the information used and
inferred during policy evaluations. This selection depends on the trustworthiness of
the policy’s information sources for supplying the required evidence.

If all information sources are fully and equally trusted, then the bilattice FOUR
should be used. In this case, evidence from all sources has the same strength in sup-
porting the notion that some piece of information is either true or false. The gap de-
notes that no evidence exists, and the conflict denotes that contradictory evidence is
present. To illustrate, consider a workflow break-glass policy that grants the override
of a task execution if the subject has already executed the same task during the work-
flow’s execution and accepts to perform certain additional tasks. If the task-execution
databases with high integrity are the information sources, and the policy writer does
not consider one database to be more trustworthy than others, then FOUR is suffi-
cient.

If the policy’s evidence sources are not equally trusted, then NINE and larger bi-
lattices should be used. In this case, the additional truth values denote that evidence
of different strength has been obtained. Intuitively, given a bilattice L � L where L’s
elements are from [0..1], then L’s elements denote the different trust levels that can
be assigned to the presented evidence that supports the notion that the information is
true or false. In Section 3, we discuss such interpretations of NINE ’s truth values. To
illustrate, consider a hospital break-glass policy where emergency situation informa-
tion depends on evidence from both nurses and patient sensors. The policy writer may
prefer the nurses’ inputs over the sensors’, as the sensors are known to be unreliable.
The policy writer can use NINE ’s values to denote different trustworthiness of these
sources. We expand this example in the rest of this section.
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4.3. Evidential Rules and Beagle’s Foundations
Rumpole rules are syntactically constrained Beagle rules. Evidential rules are however
an exception and have no syntactic restrictions. Hence, in this subsection, we combine
the overview of Beagle and evidential rules.

The Beagle language has the typical logic programming syntax:

p(X, a)⇐ q(X)⊗ ¬r(X)

An atom is an expression made up of a predicate name and its arguments, e.g. p(X, a),
q(X). We say that p(X, a) is the rule’s head, and the rule’s body is a formula consisting
of bilattice operators (Section 3) and atoms.

Atoms that represent a policy’s context are referred to as evidential atoms. All rules
that have an evidential atom as their heads are called evidential rules. Consider the
following example:

emergency(Patient)⇐ bsnEmergency(Patient)

⊕ (saysEmergency(Nurse, Patient) ∧ assigned(Nurse, Patient))

The body’s formula combines evidence to determine the amount of knowledge as-
signed to the rule’s head. In this case, the formula maximises the combined knowl-
edge from the Patient’s body sensor network (bsn) and the Patient’s assigned nurse.
The relation saysEmergency(Nurse, Patient) defines whether a nurse has declared an
emergency for a particular patient. In Beagle, the symbol ⇐ is not the classical ma-
terial implication, which is used in traditional logic programming. It denotes that a
rule’s head should have assigned to it at least the amount of knowledge as given by
the evaluation of its body. Beagle’s semantics, therefore, assign to each head atom only
as much knowledge as can be derived from the evidence. The amount of knowledge
assigned is (i) minimal since it uses only the evidence and the given set of rules, and
(ii) supported meaning that all rules are taken into account.

To illustrate, consider a scenario for Patient bob monitored by a body sensor network
bsn where both the bsn and bob’s nurse alice declare an emergency. We represent such
a scenario as a set of input facts over which Beagle rules are applied:

bsnEmergency(bob) = t, saysEmergency(alice, bob) = t, assigned(alice, bob) = t

In this case emergency(bob) will also be t, and Beagle will infer as true that bob is in an
emergency. Consider a case where bob is not displaying any characteristic symptoms
of an emergency, and his bsn declares the emergency as “false”, but alice sees some
suspicious perspiration and declares an emergency giving:

bsnEmergency(bob) = f, saysEmergency(alice, bob) = t, assigned(alice, bob) = t

In this case emergency(bob) will be >. We say that policy inferences are truth values
assigned to atoms based on the supplied evidences and evidential rules. When we say
that Rumpole (through Beagle) infers gaps or conflicts in a policy’s knowledge base, we
mean that some atoms are explicitly assigned ⊥, > or other unreliable truth values.

Beagle, and thus Rumpole, adopts the Open-World Assumption (OWA) for all
missing facts, that is all input atoms for which no truth value is assigned, are as-
signed ⊥ by default. In contrast, traditional logic programming treat missing data as
false by default, adopting a form of Closed-World Assumption (CWA). This can lead to
erroneous conclusions. For the previous example, it would mean that a sensor being
offline would be treated as false, i.e. equating it with no emergency.

4.3.1. Query Operator. The previously defined emergency rule, though deceptively sim-
ple, can produce unexpected inferences through the ∧ operator. For example, if it were
the case that alice is not assigned to bob and she says that there is not an emergency,
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this would result in the whole expression being > (given that bsn declared the emer-
gency). This is not what we intended to capture with this rule: alice’s testimony should
not have been taken into account. We have to limit when some evidence is applicable
and relevant. To this end we introduce the query operator, and we apply it as follows:

emergency(Patient)⇐ bsnEmergency(Patient)

⊕ (saysEmergency(Nurse, Patient)⊗ [assigned(Nurse, Patient) = t])

The query operator is defined as [φ1 op φ2], where op is in {>t/k, <t/k,≤t/k,≥t/k,=}.
In Beagle rules, constants written in the sans font represent the bilattice truth-values
(e.g. t represents the truth value t, d> represents d>). The intuitive understanding
of the query operator is as follows: return > if the comparison within the brackets
holds, otherwise return ⊥. For the example the query operator effectively blocks the
nurse’s evidence if she is not assigned (assigned(Nurse, Patient) 6= t). If the nurse was
assigned, the evaluation would be > and the final result would be the truth value
assigned to saysEmergency(...).

The query operator is useful for defining other similar operators. For example, we
take a if b as the syntactic shortcut for a⊗ [b = t]. The value of a is returned only if b is
evaluated as t, otherwise it is ⊥. We further define the following syntactic shorthcut:

a[b op c]
def
= (a⊗ [b op c])

This expression returns the value of a if b op c, otherwise it is ⊥. The query operator is
≤k non-monotonic and it cannot be captured through any combination of core bilattice
operators because they are all≤k monotonic operators. In the next section, we formally
show that Beagle’s set of operators is functionally-complete over its designated bilat-
tice, so Beagle’s rule body can express any operator that maps a set of input arguments
to a designated resulting truth value.

4.3.2. Combining multiple rules. Complex relations between input facts and evidential
atoms are often easier to capture and manage using multiple evidential rules, whose
bodies are then combined for the final evaluation result. For example:

bsnEmergency(Patient)⇐ bsn1(Patient)⊕ bsn2(Patient)

emergency(Patient)⇐ bsnEmergency(Patient)⊗ d>
emergency(Patient)⇐ saysEmergency(Nurse, Patient) if assinged(Nurse, Patient)

Note that in the second rule the effect of having the d> as a highest consensus value
for bsn’s decision is to declare the bsn as an unreliable source of evidence.

Traditional logic programming languages combine the bodies of multiple rules with
the same head using the ∨ operator. We, however, find this to be unsuitable. Consider
the following facts:

bsn1(bob) = ⊥, bsn2(bob) = ⊥, saysEmergency(alice, bob) = >, assigned(alice, bob) = t

Were the rules combined in the traditional way, then emergency(bob) = t would hold
(since the first rule is evaluated as ⊥ and the second as >). This is not an intuitive
interpretation of Beagle rules, because they combine the knowledge expressed through
its rules. Beagle’s semantics, therefore, uses the ⊕ operator to combine rule bodies.
Using ⊕, we have emergency(bob) = >. This is preferred since the rules convey how
much is known in terms of knowledge ordering, rather than truth ordering. The use of
> and ⊕ in Beagle’s semantics shall be further explained in Section 5.

Existing break-glass approaches (see Section 2) cannot express Rumpole’s evidential
rules, and they do not consider that information may be missing and conflicting. These
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models are therefore not suited for break-glass applications where the system may ex-
perience failures (resulting in missing information) and use partially trusted informa-
tion sources. Similarly, existing logic programming languages and many-valued policy
algebras cannot be used to express and evaluate the given evidential rules. Beagle
cannot be thus readily replaced as Rumpole’s underlying language.

4.4. Break-glass Rules and Grant Policies
A break-glass rule is a mapping from what is known about a break-glass context and
which obligations a subject has accepted into an intermediate break-glass decision.
Intermediate decisions are later combined to make a final override decision.

Using Beagle, as is, to specify break-glass rules without any restrictions would eas-
ily lead to unintended decisions, because each rule would support both denials and
permits. The reason why such issues are not present in evidential rules is that they
rely on both supporting and opposing evidence to be propagated within the same rule.
Rumpole’s syntactic restrictions for break-glass rules are inspired by the PBel lan-
guage [Bruns and Huth 2008], where a policy is an algebraic expression.

We split break-glass rules into:

(1) Positive rules – support granting an override, possibly given a set of obligations.
(2) Negative rules – support denying an override, i.e. it opposes granting an override.
(3) Composite rules – combine positive, negative and other composite rules.

A positive rule takes an override context and either returns t (grant an override), or
⊥ (no decision). A negative rule, in contrast, returns f (deny an override) or ⊥. Com-
posite rules take positive and negative rules and combine their decisions based on
various operators such as: priority, majority, and so forth. A composite rule can, fur-
thermore, return > indicating that it was not able to resolve conflicts between its input
rules. The reader will notice that we have chosen FOUR as the underlying bilattice for
break-glass rules. This is because FOUR is the minimal bilattice required to indicate
whether there are any gaps and inconsistencies in the rule decisions. A policy writer
can expand break-glass rules so that positive and negative rules return more truth
values, for example dt and t in case of positive break-glass rules. Such an extension
would follow the same principles and we do not pursue it here.

4.4.1. Positive and Negative (Break-glass) rules. Positive and negative rules have the fol-
lowing syntax:

π(Sub, Tar,Act)⇐ (t | f) [ψ] if acceptedObl(...) ∧ · · · ∧ acceptedObl(...)
If at least one of the required obligations was not accepted then a rule will return ⊥.

Similarly, if the conditions within [. . . ] are not satisfied a rule will return⊥. Otherwise,
a rule will return t or f depending on its type. Consider the following example:

π1(Sub, Tar,Act)⇐ (t[emergency(Tar)⊗ nurse(Sub) ≥t >])

if acceptedObl(Sub, reason, log, twindow)

π1 grants an override under the two following conditions:

(1) The expression within the query operator [. . . ], is satisfied – there is at least posi-
tive evidence that the request’s target Tar is in an emergency and also that a nurse
has requested an override.

(2) The subject Sub has accepted the proposed obligation (submitted with the request).

To illustrate how different levels of knowledge about the context can be used in
Rumpole break-glass rules, we consider a scenario in which failures happen, e.g. sen-
sors fail, responsible nurses are unavailable, etc. In these cases it may be unknown
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whether there is an emergency. This reasoning is orthogonal and supplementary to
the choice of break-glass conditions (in this case “emergency”). Consider the policy, an
override when there is no positive evidence for an emergency is granted to nurses, but a
head-nurse needs to be alerted and a nurse has to submit a reason.

π2(Sub, Tar,Act)⇐ t[emergency(Tar)⊗ nurse(Sub) ≤k d>]

if acceptedObl(Sub, reason, log, twindow)

∧ acceptedObl(sys, Tar, alert head nurse, twindow)

4.4.2. Composite rules and grant policies. A composite rule is a Beagle rule whose body
atoms are heads of other break-glass rules. For example, a composite rules, which non-
deterministically combines the given π1 and π2 is specified as:

πcomp(Sub, Tar,Act)⇐ π1(Sub, Tar,Act)⊕ π2(Sub, Tar,Act)

If Sub, Tar,Act are the only variables in its body, then we usually omit them from
the specification; they are be considered to be implicit. We can further compose this
rule with another conflict-resolution rule and thus build more elaborate constructs.
In Section 6, we show that due to functional-completeness of Beagle’s operators over
a particular bilattice, a composite break-glass rule can express any rule-combining
operator. More elaborate examples of combinatorial operators are in the case study in
Section 7.

Given the set of positive, negative and composite rules, we have to designate one
composite rule, which will be used to derive the final override decision. We refer to this
rule as a grant policy, and we denote it with Ω. For example:

Ω⇐ (πcomp .⊥ π3)

π3(Sub, Tar,Act)⇐ t[canBeRecorded(Sub) = t]

if acceptedObl(cctv, Sub, record, twindow)

This grant policy evaluates πcomp and denies or permits if there is a conclusive deci-
sion. However, if there is a gap in πcomp then π3 is consulted. The .⊥ operator is an
override operator which only evaluates the right-hand policy if the left-hand policy is
incomplete.

Finally, we map the evaluation of the Ω rules onto Rumpole’s override decisions as:

(1) grant – Ω is evaluated as t.
(2) request obligations – There exists a set of obligations such that Ω is evaluated as t.
(3) deny – Otherwise.

If conflicts and gaps are not handled then the final decision will be the most conserva-
tive one. The second decision request obligations requires a form of a satisfiability check
over the grounded grant policy expression. For example for the given Ω expression,
the request obligations is returned with the set {acceptedObl(sub, reason, log, twindow)}
when a subject has not violated any obligations, and there is positive evidence that the
patient is in emergency and sub is a nurse.

Existing break-glass approaches have fixed grant policies (see Section 2) and thus
they limit the kind of policies that the policy writer can specify. In contrast, Rumpole
does not use a fixed grant policy, and its algebraic approach enables it to express how
different amounts of knowledge about the context are put together to reach a break-
glass decision. In Section 6, we formally study Rumpole’s expressiveness. Finally, we
note that Rumpole can express the grant policies of all existing approaches.
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5. BEAGLE: A BILATTICE LOGIC-PROGRAMMING LANGUAGE
5.1. Truth Spaces and Operators
Beagle does not have a fixed truth-space, its semantics are defined over a subset of
distributive and interlaced bilattices. A Beagle program must be coupled with one
bilattice from this set.

Definition 5.1. A Beagle program’s underlying truth space is a bilattice L�L, where
L = 〈S,≤〉 and S a finite set of discrete numerical values in the range [0, 1].

We use the term B to denote a bilattice that is a member of this set. The term VB de-
notes the set of truth values contained in its respective bilattice. The minimal bilattice
over which Beagle’s semantics is defined is FOUR. For a bilattice B, an interpretation
I over a finite set of atomic formulae is a function that assigns to every atomic formula
a truth value from B. For any formula ψ, we write A(ψ) for the set of atomic formulae
(atoms) over which it is defined. Following Arieli and Avron [Arieli and Avron 1998],
we formally define an operator as:

Definition 5.2. Given a bilattice B, an operator g is a function V nB 7→ VB. It is rep-
resented by a formula ψ, where A(ψ) ⊆ {p1, . . . , pn} (where pi is an atomic formula), if
for every interpretation I it holds: I(ψ) = g(I(p1), . . . , I(pn)).

For the language LB = {∧,∨,⊗,⊕,¬}∪VB, we extend the interpretation of a formula
ψ composed from its operators, constants, and atomic formulas in the usual manner.
Note that this language is not functionally-complete over B: it cannot express ≤k non-
monotonic operators [Ruet and Fages 1997] and [Arieli and Avron 1998]. To define a
functionally-complete set of operators, we first introduce the equality operator:

I(ψ ∼= φ)
def
=

{
> if I(φ) = I(ψ)
⊥ otherwise

With this operator, we have the following:

THEOREM 5.3. Given a finite bilattice B, the language LB ∪ ∼= is functionally com-
plete.

PROOF. Case n = 0 : All B’s truth values are already in L?B.
Case n :

ψn
def
=
⊕
v1∈B

· · ·
⊕
vn∈B

((p1
∼= v1) ⊗ . . . ⊗ (pn ∼= vn) ⊗ ?g(v1,...,vn))

where ?g(v1,...,vn) stands for the evaluation g(v1, . . . , vn). Given ψn constructed in this
way, and an arbitrary interpretation I of atoms p1, . . . , pn and an arbitrary n-tuple
(v1, . . . , vn), then there is one and only one expression of the form (p1

∼= v1)⊗· · ·⊗ (pn ∼=
vn) that is evaluated as> in ψn. This is the expression where v1 = I(p1), . . . , vn = I(pn),
while all others are evaluated as ⊥. Thus I(ψn) = ⊥⊕ · · · ⊕ (>⊗?g(v1,...,vn))⊕ · · · ⊕ ⊥,
where v1 = I(p1), . . . , vn = I(pn).

Since this is true for an arbitrary I and any n-tuple, it follows that
I(ψn) =?g(v1,...,vn) = g(I(p1), . . . , I(pn)).

This theorem does not establish that the given set of operators is a minimal set needed
for functional completeness.

5.2. Syntax
Beagle is a function-free logic programming language. Its rules define relationships
between the degree of knowledge of truth values of a program’s atomic formulae. This
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is in contrast to normal logic programs [Ceri et al. 1989] [Subrahmanian 1999] [Przy-
musinski 1988b] whose rules contribute to the degree of truth about its atomic formu-
las.

We assume the existence of an arbitrary but fixed first-order language LB [B] gen-
erated from a selected alphabet of constant symbols, variable symbols, predicate
symbols, and the truth values from a designated bilattice B. In this manner, we
parametrise Beagle’s syntax with a given set of truth values. A term is a variable
or a constant. An atomic formula, or simply an atom, is either a truth value from B, or
an expression p(t1, ..., tn) where p is a predicate of arity n, ti is a term and ti 6∈ B. An
atom p(t1, ..., tn) is ground, if all of its terms are constants. We adopt Prolog’s notation
of using a capital letter to start a variable symbol and a lower case letter to start a
predicate or a constant. We define an LB [B] formula as:

Definition 5.4. An LB [B] formula, ψ, is defined inductively as:

ψ ::= a | v | ψ ⊕ ψ′ | ψ ⊗ ψ′ | ψ ∼= ψ′

where a is an atom in LB , and v is a truth value in VB.

The constants in the sans font v denote the respective truth values in B. We also use
other previously introduced bilattice operators as syntactic shorthand.

Definition 5.5. A Beagle rule of language LB [B] is an expression of the form:

A⇐ ψ

where A is an LB [B] atom, and ψ is an LB [B] formula.

A is the rule’s head and ψ is the rule’s body. A Beagle rule says that there is sup-
porting evidence for a ground atom A to have at least the truth value of ψ with respect
to the degree of knowledge (≤k ordering) that the truth value has. Since variables in
a Beagle rule are unbound, we extend the definition of a Beagle rule to a normalised
Beagle rule as:

Definition 5.6. Let A ⇐ ψ be a Beagle rule with variables X1, . . . , Xn appearing in
A and ψ, and variables Y1, . . . , Ym appearing in ψ but not in A, then its normalised
form is defined as:

∀X1 . . . ∀Xn(A⇐ ΣY1 . . .ΣYm ψ)

where the quantifier Σ is the infinitary (knowledge) join operation on ≤k.

Intuitively, the operator Σ takes a (possibly infinite) list L of billatice truth values
and returns ⊥ if L = ∅, otherwise it returns (x0⊕x1⊕ . . . ), where xi is an element of L
and all the elements are accounted for. We bind a body’s variables with the infinitary
join operator Σ so that a Beagle rule accounts for all possible testimonies that can be
found within a program.

Definition 5.7. A Beagle program is a finite set of normalised Beagle rules.

5.3. Supported Model Semantics
The intended domain of a Beagle program P is its Herbrand universe HP

U , defined as
a set of all ground terms that appear in P ’s definition. A Herbrand base HP

B of P is the
set of all ground atoms with predicate symbols from P and arguments from HP

U .

Definition 5.8. An interpretation IP (of a program P ) is a mapping from every
ground atoms in HP

B to truth values in B.

IP is extended to an LB [B] formula as follows:
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— IP (d>) = > and similarly for other v constants.
— IP (¬ψ) = ¬IP (ψ) where ψ is an LB formula.
— IP (ψ ∧ψ′) = IP (ψ)∧ IP (ψ′) where ψ and ψ′ are LB formulae, and similarly for other

operators.
— IP (∀Xψ(X)) =

∧
x∈HP

U

IP (ψ(x)).

— IP (A⇐ ψ) =

{
t if IP (A) ≥k IP (ψ)
f otherwise

— IP (ΣXψ(X)) =
⊕

x∈HP
U

IP (ψ(x)).

We define a model of P as:

Definition 5.9. An interpretation of P is a model of P , denoted as MP , iff for every
rule B in P it holds: MP (B) = t.

This definition emphasises that a rule a⇐ ψ is interpreted as MP (a) ≥k I(ψ).
For a Beagle rule B, A⇐ ψ, we associate a set ground(B) containing the ground rules

constructed through the following two steps:

(1) Consistently substitute ground terms from HU
P for each variable in B’s head to

produce a set of rules a⇐ ΣY1 . . .ΣYm ψ′, where a is a ground term.
(2) For each rule from (1), consistently substitute ground terms from HU

P for each vari-
able in ψ′ to produce a⇐ ψ1 ⊕ · · · ⊕ ψk.

For a Beagle program P we associate a ground Beagle program P ? such that: P ? =⋃
B∈P ground(B). The following theorem establishes that P and P ? have exactly the

same models:

THEOREM 5.10. An interpretation I is a model of P iff it is a model of P ?.

PROOF. We can obtain a proof by contradiction in both directions:
Take I as a model of P then there is one arbitrary rule B? (with some a as head) in P ?

for which I(B?) = f . There must be a rule B of which the rule B? is a ground instance.
From the grounding of B? it follows that I(ψ1 ⊕ · · · ⊕ ψk) = I(

⊕
Y1 · · ·

⊕
Ym ψ), since

a free variable is uniformly replaced with each constant (as described in step 2 of the
grounding). It follows that I(a) �k I(

⊕
Y1 · · ·

⊕
Ym ψ), which implies that I(B) = f ,

which is a contradiction since I is a model of P .
Take I to be a model of P ? then assume that there is one arbitrary rule B in P for which
I(B) = f . It follows that there must exist at least one partially ground instance of B for
which I(a) �k I(

⊕
Y1 · · ·

⊕
Ym ψ). By its construction, ground(B) will contain a rule

a⇐ ψ1⊕ · · · ⊕ψk which will be a fully grounded instance B? of a⇐
⊕
Y1 · · ·

⊕
Ym ψ. It

follows that I(B?) = f , but this is a contradiction since I is a model of P ?.

P ’s model can over-assign knowledge, for example by assigning > to some atoms
without any rule’s support for such a value. To ensure that only the program’s rules
influence a model, we define a supported model as:

Definition 5.11. A model MP of P is a supported model if for every a ∈ HP
B it holds:

MP (a) = MP (ψ1)⊕ · · · ⊕MP (ψn)

where ψi is a body of a rule a⇐ ψi in P .

LEMMA 5.12. I is a supported model of P iff I is a supported model of P ?.

PROOF. By contradiction in both directions.
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A supported model uses ⊕ to enforce the intended reading of a Beagle program as a
join of all the given testimonies. Consider the following P :

p⇐ w ∨ r p⇐ q w ⇐ t r ⇐ ⊥ q ⇐ f

A supported model MP assigns > to p. In standard logic programs, the bodies are
combined using the ∨ operator. Had we adopted this approach, IP (ψi) ∨ IP (ψi+1), we
would haveMP (p) = t. This assignment would ignore the reliable testimony that q is at
least f , and thus that p should be at least f as well. If P is changed by modifying q ⇐ >
and w ⇐ ⊥, then an ⊕-based supported model has MP (p) = >, but the ∨-based model
results in MP (p) = t. This discussion also clarifies the reason for binding a body’s free
variables with Σ.

A supported model, however, is not guaranteed to exist. The program: {p ⇐ (p ∼=
>B) ∼= ⊥B} has one model {p = >B}, which is not supported. A Beagle program can
also have many supported models, just as is the case with normal logic programs.

In the rest of this section, we impose syntactic restrictions on a Beagle program to
ensure that supported models exist, and then we select one canonical model to repre-
sent its preferred model semantics. The same approach is applied to stratified seman-
tics in normal logic programs [Przymusinski 1988b].

5.4. Minimal Supported OWA Model
We can compare supported models is in the amount of knowledge that they assign to
individual atoms.

Definition 5.13. For models MP and M ′P of a program P it holds M ′P ≤k MP if for
every ground atom a it holds M ′P (a) ≤k MP (a).

We say that M ′P <k MP if M ′P (a) ≤k MP (a) and there is at least one ground atom a
such that M ′P (a) <k MP (a). We define a minimal supported model as:

Definition 5.14. A supported model MP of a program P is minimal if there does not
exist another supported model M ′P of P , such that M ′P <k MP .

LEMMA 5.15. A model M is a minimal supported model of P iff it is a minimal
supported model of P ?.

PROOF. By contradiction in both directions.

Before constructing a minimal supported model, we need to address how missing
facts are treated in Beagle programs. Consider the following program:

p⇐ q ∧ w w ⇐ ¬r

There are no rules to infer the truth values for atoms r and q. Normal logic programs
use a form of Closed-World Assumption (CWA) [Przymusinski 1988a] to assume that
all facts that are not specified are by default f . In case of Beagle programs, it is appro-
priate to adopt the Open-World Assumption [Reiter 1977] (OWA), whereby the missing
information is assigned the ⊥ truth value, because it fits our intuitive understanding
of ⊥ as the “unknown” truth value. Formally:

Definition 5.16. An interpretation IP of a Beagle program P is an OWA model of P,
denoted MOWA

P , if it is a model of P and for every ground atom a, which is not in a
head of any rule in P , it holds that MOWA

P (a) = ⊥.

Fitting introduced a mapping operator TP [Fitting 1990] that maps an interpretation
I of a ground logic program P ?, whose truth values are based on an interlaced bilattice,

ACM Transactions on Information and System Security, Vol. X, No. X, Article XX, Publication date: July 2013.



Rumpole - An Introspective Break-glass Access Control Language XX:17

onto an interpretation I ′, also of P ?, in the following way:

TP (I)(a) =

{
I(ψ1 ⊕ ...⊕ ψn) ∀a where a⇐ ψi ∈ P ?
⊥ 6 ∃a where a⇐ ψi ∈ P ?

If only ≤k monotonic operators appear in rules, then TP is a monotonic operator.
Thus for any two interpretations it holds that: I1 ≤k I2 ⇒ TP (I1) ≤k TP (I2). Fitting
showed that the operator TP is also (chain) continuous (for any chain of interpretations
I1 ≤k I2 ≤ ... it holds that: TP (ΣiIi) = ΣiTP (Ii)). Based on the Knaster-Tarski theorem
[Tarski 1955], a monotonic and continuous operator TP has the least fixpoint TP ↑ω,
given as:

I0
P

def
= I⊥

In+1
P

def
= TP (InP )

. . .

TP↑ω
def
= Σα<ωI

α
P

where Σ is the infinitary join operator on ≤k ordering and I⊥ assigns ⊥ to every atom
from P ’s Herbrand base.

THEOREM 5.17. Given a ground Beagle program P ? with only ≤k monotonic opera-
tors, then its least fixpoint, TP↑ω, is its unique minimal supported OWA model.

PROOF. First, TP ↑ω is a supported OWA model. Second, TP ↑ω is the least fixpoint,
so it follows that TP↑ω is the unique minimal supported OWA model of P ?.

5.5. Iterated Fixpoint OWA Model
A Beagle program with a ≤k non-monotonic operator is not guaranteed to have the
least fixpoint. Similarly there can be more than one minimal supported model. Hav-
ing ≤k non-monotonic operators, however, greatly increases the expressivity of Bea-
gle rules. In the following, we introduce a syntactic restriction called stratification,
which guarantees the existence of a minimal supported OWA model and provides an
intuitive method to select a preferred model when many exist. This follows the same
reasoning underpinning locally stratified semantics for normal logic programs [Przy-
musinski 1988b].

Stratification splits a program into a set of strata. Each stratum defines evaluations
for a subset of the program’s Herbrand base, and only monotonic operators can be used
in recursive relations within a stratum. A higher stratum can query a lower stratum
about the values that it assigns to atoms in the heads of the lower stratum’s rules. To
this end, we introduce a generalisation of the ∼= operator, called the query operator,
defined as:

I([φ1 op φ2])
def
=

{
> if I(φ1) op I(φ2)
⊥ otherwise

where op ∈ {=, 6=, <t/k, >t/k,≤t/k,≥t/k}. I
Using the query operator, we slightly redefine the set of core operators as:

Definition 5.18. An LB [B] formula in a stratified Beagle program contains the op-
erators: {∧,∨,¬,⊗,⊕,query} ∪ VB.

We define a top query formula of a Beagle rule as:

Definition 5.19. Given a Beagle rule A⇐ ψ, then its >Q is defined as a set of all ψ’s
atoms that appear in its query operators and their sub-formulae.
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To illustrate, consider A ⇐ a[(b ⊕ c) = t] ⊗ d[g = f], then its >Q = {b, c, g, f}. Now, we
define a stratified Beagle program as:

Definition 5.20. A ground Beagle program P ? is stratified in n strata, P ? = P ?1 ∪
... ∪ P ?n if for every atom p (in HP?

B ):

(1) The definition of p (all rules with p as their heads) is in one stratum.
(2) If p depends on q, then q’s definition is in a stratum j, where j ≤ stratum(p).
(3) If q is in the >Q of a rule with head p, then q’s definition is in a stratum j, where

j < stratum(p).

LEMMA 5.21. Given a stratified Beagle program P , if there is a cyclic dependency
between two ground atoms, then those two atoms must be in the same stratum.

PROOF. The proof follows from the last two conditions of Definition 5.20.

A stratified Beagle program is an ordered list of programs, Pi, where i is a particular
stratum’s index. Every Pi depends on the “lower” Pjs (j < i) to determine the truth
values of atoms appearing within its query formulas.

To formalise this intuition we introduce the t operator, which merges the evalutions
of two interpretation as follows. Given I1 and I2 with their respective (possibly over-
lapping) domains D1 and D2, then I1 t I2 is an interpretation that assings to a the
value of I1(a)⊕I2(a) if a is in both domains, otherwise it assigns the value given by the
interpretation that has a in its domain.

The stratified semantics are defined with an iterated fixpoint model as follows:

Definition 5.22. For a ground stratified program, P ? = P ?1 · · · ∪ P ?n , an iterated
fixpoint model IFMP? is defined as:

I1 = TP?
1
↑ω

I2 = TP?
2 tI1↑

ω

. . .

In = TP?
ntIn−1↑ω

where TP?
i tIi−1↑ω is defined as:

I0
P?

i tIi−1

def
= Ii⊥ t Ii−1

In+1
P?

i tIi−1

def
= TP?

i
(InP?

i tIi−1
) t Ii−1

. . .

TPi
?tIi−1↑ω

def
= (Σα<ωI

α
P?

i tIi−1
) t Ii−1

This definition adds the minimal supported model of the lower stratum (Ii−1) as the
input for the initial minimal interpretation Ii⊥ of the stratum’s atoms for which we
are about to construct the fixpoint model (e.g. P ?i t Ii−1). Because the stratum i does
not have any rules to regenerate Ii−1 we have to propagate this interpretation in each
application of TP .

Note that TP is still not monotonic in general (due to the presence of query oper-
ators). However, since the given construction fixes the values of all atoms defined in
lower strata, then they can be replaced with the truth constants in the given input. In
this way, the application of TP for a stratum does not exhibit non-monotonic behaviour.
Furthermore, each application of the TP for a stratum produces a unique minimal sup-
ported model for the stratum rules when the atoms defined in the lower strata are
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replaced with the corresponding values from the given input. Finally, the fixpoint of
the last stratum is taken as the canonical model of P ?.

Given the previous definition, we can state the following theorem:

THEOREM 5.23. An iterated fixpoint model IFMP? of a ground stratified Beagle
program P ? is also its minimal supported OWA model.

PROOF. We can see that IFMP? is a supported OWA model. Now, assume that
IFMP? is not a minimal supported model. This implies that there exists another sup-
ported model, M , such that M <k IFMP? . Therefore there is an atom p such that
M(p) <k IFMP?(p).

If p depends only on the atoms from the same stratum it is not possible to have a
lower value of p and still have a supported model, since IFMP? contains the unique
minimal supported model for that strata. Therefore, ψ must depend on an atom q from
a lower stratum, such that it also holds thatM(q) <k IFMP?(q) otherwiseM <k IFMP?

would not hold.
Inductively the same analysis is applied to q, and again we are forced to find some

atom r from a lower stratum. Finally, we are forced to find an atom from I⊥ and these
values are already minimal. Therefore in order to decrease a value of some p and still
keep a supported model we are forced to increase a truth value for some q from a
lower stratum on which p is directly or indirectly dependent. Hence this results in
M 6<k IFMP? . It follows that IFMP? is a minimal supported OWA model.

Since IFMP? is a minimal supported OWA model, it follows our original intuition un-
derpinning the semantics of Beagle programs. We stress, however, that that this result
does not establish that IFMP? is a unique minimal supported OWA model. Consider
the following example:

a⇐ t if b⊕ t b⇐ ¬b

In this case, there are two minimal supported OWA models, namely {b = ⊥, a = t}
and {b = df, a = ⊥}. The former one is the canonical model chosen by the stratified
semantics. We argue that this model is the intuitive one because a lower layer ought
to contain as little knowledge as possible.

The following theorem establishes that the semantics are independent of the exact
stratification:

THEOREM 5.24. Given a stratified Beagle program P ?, the iterated fixpoint model
IFMP? constructed over one particular stratification is the same iterated fixpoint model
obtained over any other stratification of P ?.

PROOF. The proof is obtained by considering whether the differences between two
stratifications of P ?, Q1 ∪ · · · ∪Qn and R1 ∪ · · · ∪Rm, can yield different results, for an
arbitrary atom p, through their respective iterative fixpoint models Qn and Rm.

First, the definition of an atom cannot be split between different strata. All of its
rules must be confined in the same stratum.

Second, if p’s definition depends on q’s, but q’s definition also depends on p’s, then by
Lemma 5.21 q’s rules are also in p’s stratum in both stratifications.

Third, if p depends on some q through a query operator, q’s definition is in a lower
stratum for both stratifications. Note, that in precisely which lower stratum is irrele-
vant since once calculated all values are continuously propagated to all upper strata.

Thus, the only way stratifications can differ for an arbitrary p is in placing an atom
q, on which p depends, in a different lower stratum, unless p is cyclically dependent
on q. We do not have to concern ourselves with atoms that p does not depend on, since
they do not influence p’s calculated value.
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Note that TQn∪In−1 and TRm∪Im−1 cannot compute different values for p if q’s value is
pre-computed in In−1, or if q’s value is computed together with p’s in the same stratum
(Qn or Rm). The number of steps taken by TQn∪In−1 is different, but not its final result.
The same argument is made for any other dependency of p.

The same argument is inductively extended to each of p’s dependent atoms, until
the lowest stratum (containing only facts) which is the same for any two stratifica-
tions. Therefore calculating p’s value does not depend on the placement of its depen-
dent atoms’ definitions in a particular stratum, assuming it obeys the stratification
requirements.

Finally, for a stratified Beagle program P , we take the its IFMP? as its designated
denotational semantics.

5.6. Beagle’s Data Complexity
The time complexity of constructing a canonical model is often referred to as data
complexity in the logic programming literature [Schlipf 1995] [Dantsin et al. 2001].
The complexity is measured with respect to the size of the facts (atoms that are not
a head of any clause). We similarly define the data complexity for a stratified Beagle
program P ? as the computational complexity of constructing IFMP? measured as a
function of the size of the P ?’s facts. We refer to a particular fact set as F , and |F |
denotes the size of F , i.e. the total number of (constant) symbols needed to write F .
Similarly to normal logic programs, we observe that the grounding of P into P ? has a
polynomial time computational complexity with respect to P ’s |F |.

THEOREM 5.25. Given a ground Beagle program, P ?, containing only≤k-monotonic
operators, its data complexity is polynomial time.

PROOF. The proof follows the similar proof given for well founded semantics [Gelder
et al. 1991].

Let n = |F |. Let a be the maximum arity of any predicate of P ?. For each truth value,
v, from B we define a set, Sv, that holds an atom if and only if TP assigns it value t
such that v ≤k t.

Rather than implementing TP for stratified semantics, we take its progressive ver-
sion, T ′P defined as T ′P (I) = I ⊕ TP (I). We can see that T ′P is monotonic, and based on
Fitting’s distributivity laws for bilattices, we also have that it is continuous as well:

T ′P (ΣiIi) = TP (ΣiIi)⊕ ΣiIi = ΣiTP (Ii)⊕ ΣiIi = Σi(TP (Ii)⊕ Ii) = ΣiT
′
P (Ii)

Now we show that TP and T ′P have the same minimal fixpoint:

T ′P↑0= I⊥ = TP↑0

T ′P↑1= TP↑1

T ′P↑2= T ′P (T ′P↑1) = TP (T ′P↑1)⊕ T ′P↑1= TP (TP↑1)⊕ TP↑1= TP↑2 ⊕TP↑1

Assuming that T ′P↑n= Σni TP↑i, we have:

T ′P↑n+1= T ′P (T ′P↑n) = TP (T ′P↑n)⊕ T ′P↑n=

TP (Σni TP↑i)⊕ Σni TP↑i= Σni TP (TP↑i)⊕ Σni TP↑i= Σn+1
i TP↑i

The number of times T ′P is applied for each atom is at most the number of truth val-
ues of B. This is because at every step T ′P adds knowledge and it settles monotonically
on one value. Therefore the greatest number of steps that T ′P can be applied is the com-
bined size of all Sv sets. The size of each set is bound by the size of P ?’s Herbrand base,
which in turn is polynomial to n because its size is given as na + · · · + n0. Therefore
constructing T ′P?↑ω is polynomial in |F |.
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The corollary of the previous theorem is that the iterated fixpoint construction is also
polynomial.

6. RUMPOLE: A FORMAL ACCOUNT
We briefly recall the structure of Rumpole’s override policy:
(1) Evidential Rules – define how evidence facts determine how much is known about
the context surrounding the break-glass request.
(2) Break-glass Rules – map a context of the override request including all accepted
obligations into intermediate break-glass decisions.
(3) Grant Policies – combine all intermediate break-glass decision into a final override
decision.

6.1. Rumpole Break-glass Policy Specification
We define a rumpole break-glass policy as a mapping from a set of requests, accepted
obligations, and the context of a request to the override decisions:

Definition 6.1. A Rumpole break-glass policy Π is a mapping:

Req ×AcceptedObls× Context 7→ D.

—Req is the set of override requests, 〈sub, tar, act〉 tuples, over which Π is defined.
—AcceptedObls is the set of obligations that a subject has accepted.
—Context is the set of all evidential atoms.
—D = {grant, deny, request obls}

To specify and evaluate a break-glass policy Π, we use Beagle rules and Beagle’s
stratified semantics. The predicates, which appear in a Rumpole policy, are split into
the following disjoint sets: LAux, LObl, LBG, and LGrant. The set LAux is an open
set and contains all the auxiliary predicates that describe the context of a break-
glass request. The set LObl is closed and contains only one predicate: acceptedObl
(Subject × Target × Action × Time), which denotes whether the subject has accepted
to perform the requested obligatory action on the designated target within the time
window designated by the last argument. The set LBG is open and contains only the
following type of predicates: πi (Subject×Target×Action), where i ∈ N0. The set LGrant
is closed and contains: Ω (Subject× Target×Action). Formally:

Definition 6.2. A Rumpole break-glass policy Π predicate set LΠ is defined as:

LΠ = LAuxΠ ∪ LBGΠ ∪ LObl ∪ LGrant

where LAuxΠ ⊇ LAux.

We also define Π’s context state as follows:

Definition 6.3. Π’s context state, CΠ, is a set of all ground atoms with predicates
from LAuxΠ ∪ LOblΠ grounded over constants from Π’s Herbrand universe.

An interpretation of CΠ is denoted as I(CΠ).
Given these definitions, we formally define a Beagle-based specification of a Rumpole

policy as:

Definition 6.4. A Rumpole policy Π is a set of Beagle rules ∆Π such that ∆Π =
∆Aux

Π ∪∆BG
Π ∪∆Facts

Π , where:

— ∆Aux
Π ’s rules have only predicates from LAuxΠ as heads.

— ∆BG
Π ’s rules have only predicates from LBGΠ ∪ LGrant as heads.
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— ∆Facts
Π ’s rules have only LAuxΠ ’s atoms as heads and their bodies are truth-value

constants. No head in ∆Facts
Π is a head in ∆Aux

Π .
— ∆Π forms a stratified Beagle program.

We denote Π’s knowledge base with ∆Π. The set ∆Facts
Π represents collected facts

that a Rumpole implementation (Policy Decision Point) would collect before making
an override decision. ∆Aux

Π are evidential rules and ∆BG
Π are break-glass rules.

6.2. Override Request and Decision
An override request consists of a mandatory triple 〈sub, tar, act〉 and an optional set
of obligations that a user is willing to accept. ∆AcceptedObl represents which obliga-
tions have been accepted by which subjects. If ∆AcceptedObl is empty, then all ground
acceptedObl atoms will be ⊥.

To evaluate Π against a request 〈sub, tar, act〉, a PDP takes ∆Π ∪ ∆AcceptedObl and
constructs a minimal supported OWA model denoted as IFMΠ:

Definition 6.5. Given Π’s specification ∆Π and its designated bilattice BΠ, a PDP
grants an override for a request 〈sub, tar, act〉 and its ∆AcceptedObl iff

IFMΠ |= Ω(sub, tar, act) = t

where: Π = ∆Π ∪∆AcceptedObl.

If a subject is denied an override, a PDP evaluates the policy specification to find
all combinations of obligations which, if accepted, would result in the override grant.
Formally, the request obligations(A) is defined as a satisfiability relation:

Definition 6.6. Rumpole PDP returns request obls(A) decision for the request
(sub, tar, act) and the policy specification ∆Π iff

IFM∆Π∪It(A) |= Ω(sub, tar, act) = t)

where It(A) assigns t to all a ∈ A. All the sets that are found are presented to the
subject for possible acceptance. If obligations are accepted, the override is not auto-
matically granted but a new override request is formed with the same sub, tar, act
constants and ∆AcceptedObl = A.

6.3. Specifying Evidential Rules
Evidential rules map fact atoms onto evidential atoms, they can also further combine
and map evidence onto other evidential atoms. First, we define Π’s set of evidential
atoms as:

Definition 6.7. Given a policy Π, ΣAuxΠ is a set of all ground atom with predicates
from LAuxΠ .

We say that a Π’s evidential atom is a ground atom from ΣAuxΠ .
Given an override policy Π’s predicate set, an evidential rule is defined as:

Definition 6.8. An evidential rule is a Beagle rule containing only LAuxΠ predicates.

We do not allow break-glass decisions acceptedObl atoms to appear in an evidentail
rule because we want to enforce a separation of concerns between different rules. In
particular, evidential rules should only describe the context of a request, and break-
glass rules are the ones to combine this evidence to reach a policy decision.

If a particular evidential atom s depends only on facts (put into ∆Facts
Π ), then we can

state the following theorem, which establishes that any such mapping from facts onto
evidence can be expressed in Rumpole:
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THEOREM 6.9. Let I be an interpretation of the set of Π’s ground facts, ΣFactsΠ . Then
for a given ground evidential atom s and a given function g : BnΠ 7→ BΠ there is a Beagle
rule, s⇐ ψ, such that:

IFMΠ(s) = IFMΠ(ψ) = g(IFMΠ(p1), . . . , IFMΠ(pn))

where pi ∈ ΣFactsΠ .

PROOF. First observe that Beagle contains a functionally-complete set of operators.
Following Theorem 5.3, for any operator g(X1, . . . , Xn) : BnΠ 7→ BΠ, there exists a Bea-
gle formula ψ, such that I(ψ(p1, . . . , pn)) = g(I(p1), . . . , I(pn)), where I is an arbitrary
interpretation of pi’s.

Since IFMΠ is a minimal supported model of the Beagle program containing s⇐ ψ,
and s is not the head of any other rule, and pi is a ground fact atom, it follows that
IFMΠ(s) = IFMΠ(ψ). Then replacing pis with Π’s facts gives the proof for the theorem,
since no other rule with s as head is added to ∆Aux

Π .

The corollary of this theorem is that any non-recursive mapping between evidential
atoms can be expressed as long as it is not recursive.

6.4. Specifying Break-glass Rules
Rumpole break-glass rules are split into three types: (1) Positive rules, (2) Negative
rules, and (3) Composite rules. Positive rules can only grant an override, while neg-
ative rules can only deny an override. Composite rules explicitly combine low-level
positive and negative rules to express more complex policies that may include conflict
resolution strategies, votings, overrides and so forth.

Formally, positive and negative rules are defined as:

Definition 6.10. Let CΠ be a context state, I(CΠ) a set of all possible interprations
of CΠ, then a positive/negative break-glass rule πi is a set of mappings πi〈sub,tar,act〉 :

I(CΠ) 7→ {grant/deny, gap}, for each override request 〈sub, tar, act〉.

Composite rules are defined as:

Definition 6.11. A composite break-glass rule, πi, is a set of mappings πi〈sub,tar,act〉 :

I(BGΠ) 7→ FOUR, where I(BGΠ) is the set of all possible interpretations of Π’s break-
glass rules.

We insist that the composite break-glass rules use four policy decisions
{grant, deny, gap, conflict} (denoted as t, f, ⊥, and > respectively). This interpreta-
tion follows PBel’s usage of bilattice FOUR to allow policy rules to propagate more
information than just grant or deny. This is useful when a policy rule cannot make a
decision (for example it is not applicable), or it itself does not want to resolve a conflict.
We support the argument, made by PBel, that this four valued approach is more suit-
able for complex policy compositions. Each break-glass rule is specified as one or more
Beagle rules with πi as their heads as follows:

Definition 6.12. A positive/negative break-glass rule πi is specified with Beagle
rules:

πi(Sub, Tar,Act)⇐ ([t|f] [ψ]) [if φObl(Sub, Tar,Act)]

— πi ∈ LBGΠ .
— ψ is a Beagle formula containing only predicates from LAuxΠ .
— φObl(Sub, Tar,Act) is a Beagle formula with predicate symbols from LObl and ∧.
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This definition insists that free variables cannot appear in the obligation formula,
because free variables would be implicitly bound and potentially a large number of
obligations would end up being issued.

Definition 6.13. A composite break-glass rule πi is specified with Beagle rules:

πi(Sub, Tar,Act)⇐ ψ

— πi ∈ LBGΠ .
— ψ is a Beagle formula containing only predicates from LBGΠ .

Composite rules do not have any explicit obligations attached to them. They are con-
tained within the positive and negative rules to make the composition of rules easier
to specify and manage.

Finally, we insist that there are no cyclic dependencies between break-glass rule
atoms in ∆BG

Π . If there were cyclic dependencies, break-glass rules could be defined
only in terms of themselves without considering obligations or evidence:

Definition 6.14. ∆BG
Π is cyclic-free if there are no cyclic dependency between ground

LBGΠ atoms.

This definition does not exclude acyclic dependencies, which allow a policy writer to
express a closure operator whereby a policy decision for one request depends on a
policy decision for another request. For example, a subject cannot have read access to
both the record a and the record b. From the outset, this is a cyclic relationship, and
explicitly expressing it as such is not syntactically allowed. However, using composite
break-glass rules, the policy writer can break such cyclic relationships and capture the
closure operator, as demonstrated with the following policy snippet:

π0(Sub, Tar,Act)⇐ t[. . . ]

π1(Sub, b, read)⇐ f if π0(Sub, a, read)

π2(Sub, a, read)⇐ f if π0(Sub, b, read)

Ω(Sub, Tar,Act)⇐ π0(Sub, Tar,Act)⊕ π1(Sub, Tar,Act)⊕ π2(Sub, Tar,Act)

In this case, π1 and π2 prevent the override to be granted by Ω when the conflict ap-
pears over a or b.

6.4.1. Composite Break-glass Rules: Compositional Expressiveness. Following the discus-
sion regarding the compositional expressiveness of evidential rules, we can state the
following theorem:

THEOREM 6.15. Let ∆BG
Π be a set of Π’s break-glass rules, and ΣBGΠ its set of ground

break-glass atoms (with n as the highest number used in the rule identifiers). Then for
a given g : FOURn 7→ FOUR, there is a Beagle rule πn+1(sub, tar, act) ⇐ ψ such that
IFMΠ(πn+1(sub, tar, act)) = IFMΠ(ψ) = g(IFMΠ(p1), . . . , IFMΠ(pn)), where pi ∈ ΣBGΠ .

PROOF. The proof follows from: (1) Theorem 6.9’s proof when its set of facts is re-
placed with ΓBGΠ , and (2) observing that no cyclic dependencies can exist between πn+1

and other rules, since πn+1 is a newly added predicate to LBGΠ . Thus it can be safely
added to ∆BG

Π while preserving its correctness.

This is an important result, since it means that Rumpole can express any combina-
torial operator that maps decisions of break-glass rules onto an another decision.

To further illustrate how composite rules can capture various combinatorial opera-
tors for break-glass rules, we define two operators, priority and majority-rule.
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The priority override operator, π1(Sub, Tar,Act) .⊥ π2(Sub, Tar,Act) uses its right-
hand side rule only if the left-hand side rule contains a gap. We can simply use this
operator as a syntactic short-hand for the following body formula:

π1 ⊕ (>[π1 = ⊥]⊗ π2)

In a similar manner, we can have .> defined as π3 ⇐ π1 ⊗ (>[π1 6= >]⊕ π2).
The majority rule operator supports the decision made by the largest subset of

rules. To this end, PBel defines an interesting majority-rule operator for three rules,
G3(π1, π2, π3), whose definition is: (π1 ∧ π2) ∨ (π1 ∧ π3) ∨ (π2 ∧ π3). We can expand the
operator in the same fashion to define G4 that takes four rules as its arguments:

(π1 ∧ π2 ∧ π3) ∨ (π1 ∧ π2 ∧ π4)

∨ (π1 ∧ π3 ∧ π4) ∨ (π2 ∧ π3 ∧ π4)

There are cases when there is no majority, such as two >s and two ⊥s. With the
current G4 encoding, the decision would be f ; it would be the greatest lower bound in
≤t ordering of the individual decisions. This can be further changed as needed.

6.5. Grant Policy: Determining the Final Override Decision
A grant policy is a designated composite break-glass rule that a PDP uses to make the
override decision (Definition 6.5), formally:

Definition 6.16. A grant policy is a set of Beagle rules of the following form:

Ω(Sub, Tar,Act)⇐ ψ

where ψ contains only predicates from LBGΠ .

Theorem 6.15 establishes that a grant policy can capture any combinatorial mapping
between override decisions of Π’s break-glass rules. However, since primitive break-
glass rules are syntactically constrained, we need to establish that these syntactic
constraints over the break-glass rules do not limit a policy writer in expressing how
the knowledge of the context of a break-glass request can be mapped onto override
decisions and their required obligations. We want to establish that any combination of
evidential and obligation atoms can be mapped onto grant and deny decisions. We do
not have an explicit mapping for the request obligations decision since its purpose to
put forth additional obligations which ultimately result in a grant decision.

We therefore need to establish that Rumpole can express all desired mappings from
selected evidential and obligation atoms’ evaluations onto t and that no other evalu-
ations result in t (within the expression that captures this mapping). To this end we
state the following theorem:

THEOREM 6.17. Given Π’s CΠ and an arbitrary f〈sub,tar,act〉 : I(CΠ) 7→ FOUR for
the request 〈sub, tar, act〉. Then a Beagle rule, Ω(sub, tar, act)⇐ ψ, can be added to ∆BG

Π
such that:

IFMΠ(Ω(sub, tar, act)) = IFMΠ(ψ) = f〈sub,tar,act〉(IFMΠ(a0), . . . , IFMΠ(an))

where ai ∈ CΠ.

This theorem establishes that a policy writer can define a grant policy as an arbi-
trary mapping from evidential and obligation atoms onto a required truth value from
FOUR, thus implicitly establishing that any mapping from evidential and obligation
atoms onto break-glass decisions can be expressed. In this theorem, we assume that
two requests are identical if they share the same request constants.

ACM Transactions on Information and System Security, Vol. X, No. X, Article XX, Publication date: July 2013.



XX:26 S. Marinovic et al.

PROOF. The proof consists of two main parts. The first part shows how a set of prim-
itive break-glass rules can be used to represent each truth-value assignment that an
interpretation can make. Using this representation the task of constructing f〈sub,tar,act〉
is abstracted from I(CΠ) to a set of (newly constructed) break-glass rules. The second
part uses theorem 6.15 to define a grant policy, as a composite break-glass rule, whose
body captures an arbitrary f〈sub,tar,act〉 of a set of break-glass rule decisions. We now
turn to a detailed description of the proof:
(1) With each ground atom a ∈ CΠ, we associate a set of tuples (a, v) where v ∈ VB.
Each tuple is assigned a unique value i ∈ N0 and a corresponding break-glass rule
predicate (πi) in LBGΠ . Thus, we can add a Beagle rule πi(Sub, Tar,Act) ⇐ t if a = v,
where i is associated with (a, v), to ∆BG

Π . Therefore for each possible interpretation I
there is a set of break-glass rule decisions that reflect this interpretation by assigning
t to πi(Sub, Tar,Act) iff I(a) = v (i is assigned to (a, v)). Hence the interpretation is
represented through a set of primitive break-glass rules, i.e. each atom has a set of πi’s
and only one of them has value t at any one time. In this way, the break-glass rules are
only implicitly linked to an override request if a subset of request’s constants (sub, act,
tar) are in (ground) a which a particular rule represents.
(2) Following theorem 6.15, we can define Ω(sub, tar, act) as any function f that maps
the set of πi’s onto FOUR. For an arbitrary f we can add: Ω(sub, tar, act) ⇐ ψ to
∆BG

Π , where IFMΠ(ψ) = f(IFMΠ(π0(sub, tar, act)), . . . , IFMΠ(πn(sub, tar, act))). Thus
we have IFMΠ(Ω(sub, tar, act)) = IFMΠ(ψ) (Ω(sub, tar, act) is the head of only one rule
in ∆BG

Π ). Furthermore Ω can be constructed for any request since the primitive CΠ-
representative break-glass rules are defined over all requests.

Note that a grant policy specification is stratified since a composite policy is acyclic
and evidential rules cannot use break-glass rule atoms.

6.6. Complexity of Policy Evaluation
The time complexity of making an override decision for a given set of accepted obliga-
tions is in PTIME. This follows from the complexity of Beagle’s iterated fixpoint con-
struction. The complexity of request obls decision is in NP. This is because a grant
query has a finite number of grounded obligations that can make the query true. Al-
though there are not scalable decision procedures for determining required obligations,
in practice if the number of obligations is low then the brute-force searches can be used.

The decision problem of obligation accountability is closely related to the problem
of evaluating request obls decisions. The former decides whether there exists a set of
obligations that a subject can fulfill in the future, but for which he may not currently
hold all the necessary permissions [Irwin et al. 2006]. This problem is in general in-
tractable, but the authors show that with certain restrictions the problem is in PTIME.
For our future work, we intend to study whether additional restrictions on Rumpole
policies can similarly put the problem of evaluating request obls in PTIME.

7. CASE STUDY: REGULATING OVERRIDES IN THE HIPAA PRIVACY RULE
In this section, we first study and highlight override provisions within the US Health
Insurance Portability and Accountability Act (HIPAA) Privacy Rule, henceforth the
“HIPAA Privacy Rule”. Second, we use Rumpole to construct a HIPAA-compliant
break-glass policy.

Exisiting formalizations of the HIPPA Privacy Rule in [Barth et al. 2006] and
[Chowdhury et al. 2013] focus on encoding HIPAA’s access control provisions and not
on the override provisions. Our work is complementary to these efforts since the ac-
cess control provisions are enforced through AC-PEPs, and override provisions through
BPEPs (see Figure 3).
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7.1. Overview of the HIPAA Privacy Rule
The U.S. Department of Health and Human Services (US-HHS) issued the HIPAA
Privacy Rule to implement the requirements posed by the Health Insurance Portability
and Accountability Act (HIPAA) of 1996. Our overview is based on: (i) the HIPAA Rule’s
motivations and principles highlighted in “Summary Of the HIPAA Privacy Rule” by
US-HHS [for Civil Rights 2003]; (ii) the HIPAA Rule’s specification, 45 Code of Federal
Regulations (C.F.R.) Part 164, published by the U.S. Federal Register1.

7.1.1. The HIPAA Privacy Rule’s main permissions. The HIPAA Privacy Rule’s main goal is:
“to assure that individuals health information is properly protected while allowing the
flow of health information needed to provide and promote high quality health care and
to protect the public’s health and well being”. The HIPAA Privacy Rule regulates the
use and disclosure of individuals’ health information, referred to as “protected health
information” (PHI) by organisations and individuals (termed “covered entities”) subject
to the HIPAA Privacy Rule. We focus on hospitals (as covered entities) and their rights
and duties with respect to usage and disclosure of PHI.

The HIPAA Privacy Rule’s key permission rule is: a covered entity may use and
disclose PHI, without consulting the individual, for the following main purposes. (1)
Disclosure to the individual. (2) Treatment, payment, and health-care operations (45
C.F.R. §164.502(a)), where treatment is defined as a provision, coordination, or man-
agement of health-care services for an individual by one or more health-care providers
(45 C.F.R. §164.506(c)). (3) Public Interest and Benefit Activities (45 C.F.R. §164.512),
such as: public health, research, disclosures regarding domestic violence, law enforce-
ment, disclosures to avert a serious threat to health or safety. Furthermore, a covered
entity may not use or disclose PHI if the HIPAA Privacy Rule does not permit it (45
C.F.R. §164.502(a)), or unless it obtains the individual’s (written) authorisation (45
C.F.R. §164.508).

The outlined core permission is overruled in case PHI contains psychotherapy notes
(45 C.F.R §164.508). In detail, a covered entity must obtain an individual’s authorisa-
tion to use or disclose psychotherapy notes with the following main exception: they can
be disclosed to avert serious threat or immediate danger to the individual.

Individuals can also request that a covered entity further restricts the use and dis-
closure of its PHI (45 C.F.R. §164.522(a)). A covered entity is not obliged to accept such
a request, but if it accepts the request then it must comply with the agreed restrictions,
except in the case of a medical emergency.

7.1.2. Enforcement obligations. In addition to regulating the use and disclosure of PHI,
the HIPAA Privacy Rule also sets obligatory enforcements that a covered entity must
put in place when guarding the access to PHI. Any HIPAA-compliant access control
policy must respect the principle of “minimal necessary” use and disclosure (45 C.F.R.
§160.502(b)). That is, when using or disclosing PHI, a covered entity must make rea-
sonable efforts to limit PHI to the minimum necessary to fulfil its tasks. The HIPAA
Privacy Rule mandates that a covered entity identifies those people in its workforce
who need to use or disclose PHI during the course of their work tasks, and then it
needs to identify which subset of the PHI is required for each member of its workforce
(45 C.F.R. §164.514(d)). However, treatments and law enforcement purposes override
the minimality principle. For example, a ward-nurse can override the minimality prin-
ciple and access the PHI of a patient who is not under her care. But, had this nurse
wanted the PHI for the purpose of research, she would have needed to obtain an ex-
plicit authorisation to do so.

1http://www.gpo.gov/fdsys/pkg/FR-2011-05-31/pdf/2011-13297.pdf
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7.2. A Break-glass Policy for HIPAA-compliant Overrides
Even though the HIPAA Privacy Rule does not employ explicit “break-glass” and “over-
ride” terms and clauses, the given overview identifies two main situations where emer-
gencies and threats to safety take higher priority than the regular permissions:
(1) Averting serious threat and injury – If an individual is under threat, the sec-
tion §164.512(j) permits the disclosure of PHI (regardless of any restrictions), including
psychotherapy notes, to a care provider. Such an override should be reviewed by an ap-
propriate person or persons.
(2) Overriding a hospital’s established minimality principle – A hospital must
enforce the minimality principle by restricting access to individuals’ PHI based on
perceived and assumed work requirements. The details regarding enforcement of the
minimality principle, such as which staff roles have which permissions, are managed
internally by the hospital itself. As argued, it is impossible to predict and foresee all
possible data requirements. The HIPAA Privacy Rule explicitly acknowledges this no-
tion in §160.514(d), stating that all irregular PHI uses are reported and subsequently
reviewed. Note that the overrides of the minimality principle assume that a patient is
not under immediate threat. This means that the psychotherapy notes and explicitly
censored information by a patient should never be released through these overrides.
Furthermore, they should be restricted to treatment and law enforcement purposes
which have a high priority.

Although these are not the only override situations or obligations that must be en-
forced within the HIPAA Privacy Rule, they are sufficiently illustrative for the purpose
of our case study.

Given the identified two break-glass provisions, we propose the following require-
ments that a HIPAA-compliant hospital may choose to enforce:

R1 – Each override must be accompanied with a reason, and reviewed.
R2 – Patient’s explicit prohibitions can be overridden only if there is an emer-
gency. An emergency is established either by a designated staff member or by
the patient’s monitoring sensors. If it is impossible to establish an emergency, a
subject can be permitted an override if additional alarms are raised and he is not
explicitly prohibited.
R3 – All minimality principle overrides must be granted by the Head of Medicine.
R4 – All minimality principle overrides are granted only to senior staff members
and exclude psychotherapy notes.

R1 and R2 are mandated by the HIPAA Privacy Rule, while R3 and R4 stem from
our intuition for general and practical fine-grained override provisions that are in ac-
cordance with the HIPAA override provisions.

7.3. Specifying HIPAA Break-glass Policy in Rumpole
The approach taken for encoding a break-glass policy that enforces the given require-
ments consists of three steps. (1) For each requirement we define a set of break-glass
rules that capture the conditions needed to enforce it. (2) These rules are combined
within the grant policy to enforce the requirements. Break-glass rules provide the nec-
essary requirements’ building blocks, and the actual enforcement depends on their
placement within the grant policy. (3) We define reactive obligations to use in the
break-glass rules.

For Requirement 1, we need π11 and π12:

π11(Sub, Tar,Act)⇐ t if acceptedObl(sys,Sub:Tar:Act, review, 36)

π12(Sub, Tar,Act)⇐ t if acceptedObl(Sub, reason, submit, 24)
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The expression Sub:Tar:Act is a constant, which carries all the elements of the override
request. For example, a request (alice, bobPHI , read) corresponds to alice:bobPHI :read
constant.

For Requirement 2, we need π21, π22, and π23:

π21(Sub, Tar,Act)⇐ t[emergency(Tar) ≥k t]

π22(Sub, Tar,Act)⇐ f[prohibited(Sub, Tar,Act) ≥t t]
π23(Sub, Tar,Act)⇐ (t[emergency(Tar) ≤t ⊥])

if acceptedObl(sys,Sub:Tar:Act, alert, 0)

For Requirement 3, we need π3:

π3(Sub, Tar,Act)⇐ t[granted(head of medicine, Sub, Tar) = t]

For Requirement 4, we need π4, π5:

π4(Sub, Tar,Act)⇐ t[senior(Sub) = t)]

π5(Sub, Tar,Act)⇐ t[p notes(Tar) = t)]

Grant policy. We now define the grant policy which ties the given break-glass rules
together. We start with the enforcement of Requirement 1:

Ω⇐ (π11 ∧ π12) ∧ π100

The given rule enforces Requirement 1 by not allowing an override grant unless the
first two rules are satisfied, i.e. their obligations accepted. Requirement 2 is enforce-
ment with π100.

π100 ⇐ (π21 ∨ π23) .⊥ (π22 .⊥ π101)

If either π21 or π23 are t then the override is granted. If they are not then the override
is not treated as an emergency override, and π22 will block any prohibited requests,
since it returns f , which results in deny. If the request is not prohibited its evaluations
is delegated to π101 (enforcing Requirements 3 and 4):

π101 ⇐ π3 ∧ π4 ∧ ¬π5

7.4. Evaluation Example
To illustrate how the specified policy is evaluated, when deployed within a system,
consider the following scenario: Patient Bob is not in an emergency and nurse Alice is
requesting read access to Bob’s psychotherapy notes.

Since the first two obligations are mandatory, we assume that all subjects have ac-
cepted them in advance due to their familiarity with the system. The request is repre-
sented as: 〈alice,bob:p notes, read〉 together with the accepted obligations:

∆acceptedObl = {acceptedObl(alice, reason, submit, 24),

acceptedObl(sys,alice:bob:p notes:read, review, 36)}
When emergency(bob) = f , the immediate decision for Ω(alice,bob:p notes, read) is f .

A Policy Decision Point (PDP) attempts to find any further obligation. Since the read-
ing p notes is prohibited, the PDP reports the deny decision. Since Alice is convinced
that the emergency is real, she raises the emergency herself and gets the override.

8. SUMMARY
The last decade has seen the emergence of security models, such as trust management
and auditing models, that supplement traditional access control models to cope with
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the problem of having to predict and anticipate all permissible requests. Break-glass
models are a less well known approach to handle this problem. The central idea is
to permit a subject to override a denial if the subject accepts particular obligations.
Existing break-glass models, however, either grant overrides for a pre-defined set of
exceptional situations, or they grant unlimited overrides to selected subjects.

Rumpole is a novel break-glass language that explicitly represents and infers knowl-
edge gaps and knowledge conflicts about a subjects attributes as well as contextual
situations such as emergencies and can vary the severity of obligations based on the
quality of evidence available. The formal semantics of Rumpole is based on Beagle, a
novel many-valued logic programming language that extends Fittings bilattice-based
semantics for logic programs.

Rumpole’s override decision procedure is in PTIME for a given set of accepted obli-
gations and contextual facts. However, the procedure to find a set obligations, which
can potentially lead to a permitted override, is in NP. As our future work, we plan to
explore different syntactic restrictions on obligations to result in tractable solutions
for the problem of finding obligations. Another aspect of our future work is an analysis
procedure for satisfiability and containment of Rumpole policies.
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