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Abstract

From experience with wireless sensor networks it has be-
come apparent that dynamic reprogramming of the sensor
nodes is a useful feature. The resource constraints in terms of
energy, memory, and processing power make sensor network
reprogramming a challenging task. Many different mecha-
nisms for reprogramming sensor nodes have been developed
ranging from full image replacement to virtual machines.

We have implemented an in-situ run-time dynamic linker
and loader that use the standard ELF object file format. We
show that run-time dynamic linking is an effective method
for reprogramming even resource constrained wireless sen-
sor nodes. To evaluate our dynamic linking mechanism we
have implemented an application-specific virtual machine
and a Java virtual machine and compare the energy cost of
the different linking and execution models. We measure the
energy consumption and execution time overhead on real
hardware to quantify the energy costs for dynamic linking.

Our results suggest that while in general the overhead of a
virtual machine is high, a combination of native code and vir-
tual machine code provide good energy efficiency. Dynamic
run-time linking can be used to update the native code, even
in heterogeneous networks.
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C.2.4 [Computer Communication Networks]: Dis-
tributed Systems—~Network Operating Systems
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Design, Experimentation, Measurement, Performance
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1 Introduction

Wireless sensor networks consist of a collection of pro-
grammable radio-equipped embedded systems. The behav-
ior of a wireless sensor network is encoded in software run-
ning on the wireless sensor network nodes. The software in
deployed wireless sensor network systems often needs to be
changed, both to update the system with new functionality
and to correct software bugs. For this reason dynamically
reprogramming of wireless sensor network is an important
feature. Furthermore, when developing software for wire-
less sensor networks, being able to update the software of a
running sensor network greatly helps to shorten the develop-
ment time.

The limitations of communication bandwidth, the limited
energy of the sensor nodes, the limited sensor node memory
which typically is on the order of a few thousand bytes large,
the absence of memory mapping hardware, and the limited
processing power make reprogramming of sensor network
nodes challenging.

Many different methods for reprogramming sensor nodes
have been developed, including full system image replace-
ment [14, 16], approaches based on binary differences [15,
17, 31], virtual machines [18, 19, 20], and loadable na-
tive code modules in the first versions of Contiki [5] and
SOS [12]. These methods are either inefficient in terms of
energy or require non-standard data formats and tools.

The primary contribution of this paper is that we inves-
tigate the use of standard mechanisms and file formats for
reprogramming sensor network nodes. We show that in-situ
dynamic run-time linking and loading of native code using
the ELF file format, which is a standard feature on many op-
erating systems for PC computers and workstations, is fea-
sible even for resource-constrained sensor nodes. Our sec-
ondary contribution is that we measure and quantify the en-
ergy costs of dynamic linking and execution of native code
and compare it to the energy cost of transmission and execu-
tion of code for two virtual machines: an application-specific
virtual machine and the Java virtual machine.

We have implemented a dynamic linker in the Contiki op-
erating system that can link, relocate, and load standard ELF
object code files. Our mechanism is independent of the par-
ticular microprocessor architecture on the sensor nodes and
we have ported the linker to two different sensor node plat-
forms with only minor modifications to the architecture de-
pendent module of the code.



To evaluate the energy costs of the dynamic linker we im-
plement an application specific virtual machine for Contiki
together with a compiler for a subset of Java. We also adapt
the Java virtual machine from the 1lejOS system [8] to run un-
der Contiki. We measure the energy cost of reprogramming
and executing a set of program using dynamic linking of na-
tive code and the two virtual machines. Using the measure-
ments and a simple energy consumption model we calculate
break-even points for the energy consumption of the differ-
ent mechanisms. Our results suggest that while the execution
time overhead of a virtual machine is high, a combination of
native code and virtual machine code may give good energy
efficiency.

The remainder of this paper is structured as follows. In
Section 2 we discuss different scenarios in which reprogram-
ming is useful. Section 3 presents a set of mechanisms for
executing code inside a sensor node and in Section 4 we dis-
cuss loadable modules and the process of linking, relocat-
ing, and loading native code. Section 5 describes our imple-
mentation of dynamic linking and our virtual machines. Our
experiments and the results are presented in Section 6 and
discuss the results in Section 7. Related work is reviewed in
Section 8. Finally, we conclude the paper in Section 9.

2 Scenarios for Software Updates

Software updates for sensor networks are necessary for a
variety of reasons ranging from implementation and testing
of new features of an existing program to complete repro-
gramming of sensor nodes when installing new applications.
In this section we review a set of typical reprogramming sce-
narios and compare their qualitative properties.

2.1 Software Development

Software development is an iterative process where code
is written, installed, tested, and debugged in a cyclic fash-
ion. Being able to dynamically reprogram parts of the sensor
network system helps shorten the time of the development
cycle. During the development cycle developers typically
change only one part of the system, possibly only a single
algorithm or a function. A sensor network used for soft-
ware development may therefore see large amounts of small
changes to its code.

2.2 Sensor Network Testbeds

Sensor network testbeds are an important tool for devel-
opment and experimentation with sensor network applica-
tions. New applications can be tested in a realistic setting
and important measurements can be obtained [36]. When a
new application is to be tested in a testbed the application
typically is installed in the entire network. The application
is then run for a specified time, while measurements are col-
lected both from the sensors on the sensor nodes, and from
network traffic.

For testbeds that are powered from a continuous energy
source, the energy consumption of software updates is only
of secondary importance. Instead, qualitative properties such
as ease of use and flexibility of the software update mecha-
nism are more important. Since the time required to make an
update is important, the throughput of a network-wide soft-
ware update is of importance. As the size of the transmitted
binaries impact the throughput, the binary size still can be

Update Update | Update | Program

Scenario | frequency | fraction | level longevity
Development | Often Small All Short
Testbeds | Seldom Large All Long
Bug fixes | Seldom Small All Long
Reconfig. | Seldom Small App Long

Dynamic

Application | Often Small App Long

Table 1. Qualitative comparison between different repro-
gramming scenarios.

used as an evaluation metric for systems where throughput is
more important than energy consumption.

2.3 Correction of Software Bugs

The need for correcting software bugs in sensor networks
was early identified [7]. Even after careful testing, new bugs
can occur in deployed sensor networks caused by, for ex-
ample, an unexpected combination of inputs or variable link
connectivity that stimulate untested control paths in the com-
munication software [30].

Software bugs can occur at any level of the system. To
correct bugs it must therefore be possible to reprogram all
parts of the system.

2.4 Application Reconfiguration

In an already installed sensor network, the application
may need to be reconfigured. This includes change of pa-
rameters, or small changes in the application such as chang-
ing from absolute temperature readings to notification when
thresholds are exceeded [26]. Even though reconfiguration
not necessarily include software updates [25], application re-
configuration can be done by reprogramming the application
software. Hence software updates can be used in an applica-
tion reconfiguration scenario.

2.5 Dynamic Applications

There are many situations where it is useful to replace the
application software of an already deployed sensor network.
One example is the forest fire detection scenario presented by
Fok et al. [9] where a sensor network is used to detect a fire.
When the fire detection application has detected a fire, the
fire fighters might want to run a search and rescue applica-
tion as well as a fire tracking application. While it may possi-
ble to host these particular applications on each node despite
the limited memory of the sensor nodes, this approach is not
scalable [9]. In this scenario, replacing the application on the
sensor nodes leads to a more scalable system.

2.6 Summary

Table 1 compares the different scenarios and their prop-
erties. Update fraction refers to what amount of the system
that needs to be updated for every update, update level to
at what levels of the system updates are likely to occur, and
program longevity to how long an installed program will be
expected to reside on the sensor node.

3 Code Execution Models and
Reprogramming
Many different execution models and environments have
been developed or adapted to run on wireless sensor nodes.



Some with the notion of facilitating programming [1], oth-
ers motivated by the potential of saving energy costs for re-
programming enabled by the compact code representation of
virtual machines [19]. The choice of the execution model
directly impacts the data format and size of the data that
needs to be transported to a node. In this section we dis-
cuss three different mechanisms for executing program code
inside each sensor node: script languages, virtual machines,
and native code.

3.1 Script Languages

There are many examples of script languages for em-
bedded systems, including BASIC variants, Python inter-
preters [22], and TCL machines [1]. However, most script
interpreters target platforms with much more resources than
our target platforms and we have therefore not included them
in our comparison.

3.2 Virtual Machines

Virtual machines are a common approach to reduce the
cost of transmitting program code in situations where the
cost of distributing a program is high. Typically, program
code for a virtual machine can be made more compact than
the program code for the physical machine. For this reason
virtual machines are often used for programming sensor net-
works [18, 19, 20, 23].

While many virtual machines such as the Java virtual ma-
chine are generic enough to perform well for a variety of
different types of programs, most virtual machines for sen-
sor networks are designed to be highly configurable in order
to allow the virtual machine to be tailored for specific ap-
plications. In effect, this means that parts of the application
code is implemented as virtual machine code running on the
virtual machine, and other parts of the application code is im-
plemented in native code that can be used from the programs
running on the virtual machine.

3.3 Native Code

The most straightforward way to execute code on sensor
nodes is by running native code that is executed directly by
the microcontroller of the sensor node. Installing new native
code on a sensor node is more complex than installing code
for a virtual machine because the native code uses physical
addresses which typically need to be updated before the pro-
gram can be executed. In this section we discuss two widely
used mechanisms for reprogramming sensor nodes that ex-
ecute native code: full image replacement and approaches
based on binary differences.

3.3.1 Full Image Replacement

The most common way to update software in embedded
systems and sensor networks is to compile a complete new
binary image of the software together with the operating sys-
tem and overwrite the existing system image of the sensor
node. This is the default method used by the XNP and Del-
uge network reprogramming software in TinyOS [13].

The full image replacement does not require any addi-
tional processing of the loaded system image before it is
loaded into the system, since the loaded image resides at the
same, known, physical memory address as the previous sys-
tem image. For some systems, such as the Scatterweb system

code [33], the system contains both an operating system im-
age and a small set of functions that provide functionality
for loading new operating system images. A new operating
system image can overwrite the existing image without over-
writing the loading functions. The addresses of the loading
functions are hard-coded in the operating system image.

3.3.2 Diff-based Approaches

Often a small update in the code of the system, such as
a bugfix, will cause only minor differences between in the
new and old system image. Instead of distributing a new
full system image the binary differences, deltas, between the
modified and original binary can be distributed. This reduces
the amount of data that needs to be transferred. Several types
of diff-based approaches have been developed [15, 17, 31]
and it has been shown that the size of the deltas produced by
the diff-based approaches is very small compared to the full
binary image.

4 Loadable Modules

A less common alternative to full image replacement and
diff-based approaches is to use loadable modules to per-
form reprogramming. With loadable modules, only parts of
the system need to be modified when a single program is
changed. Typically, loadable modules require support from
the operating system. Contiki and SOS are examples of sys-
tems that support loadable modules and TinyOS is an exam-
ple of an operating system without loadable module support.

A loadable module contains the native machine code of
the program that is to be loaded into the system. The ma-
chine code in the module usually contains references to func-
tions or variables in the system. These references must be
resolved to the physical address of the functions or variables
before the machine code can be executed. The process of
resolving those references is called linking. Linking can be
done either when the module is compiled or when the mod-
ule is loaded. We call the former approach pre-linking and
the latter dynamic linking. A pre-linked module contains
the absolute physical addresses of the referenced functions
or variables whereas a dynamically linked module contains
the symbolic names of all system core functions or variables
that are referenced in the module. This information increases
the size of the dynamically linked module compared to the
pre-linked module. The difference is shown in Figure 1. Dy-
namic linking has not previously been considered for wire-
less sensor networks because of the perceived run-time over-
head, both in terms of execution time, energy consumption,
and memory requirements.

The machine code in the module usually contains refer-
ences not only to functions or variables in the system, but
also to functions or variables within the module itself. The
physical address of those functions will change depending
on the memory address at which the module is loaded in the
system. The addresses of the references must therefore be
updated to the physical address that the function or variable
will have when the module is loaded. The process of up-
dating these references is known as relocation. Like linking,
relocation can be done either at compile-time or at run-time.

When a module has been linked and relocated the pro-
gram loader loads the module into the system by copying the
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int memcpy() {
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Figure 1. The difference between a pre-linked module
and a module with dynamic linking information: the pre-
linked module contains physical addresses whereas the
dynamically linked module contains symbolic names.

linked and relocated native code into a place in memory from
where the program can be executed.

4.1 Pre-linked Modules

The machine code of a pre-linked module contains abso-
lute addresses of all functions and variables in the system
code that are referenced by the module. Linking of the mod-
ule is done at compile time and only relocation is performed
at run-time. To link a pre-linked module, information about
the physical addresses of all functions and variables in the
system into which the module is to be loaded must be avail-
able at compile time.

There are two benefits of pre-linked modules over dynam-
ically linked modules. First, pre-linked modules are smaller
than dynamically linked modules which results in less infor-
mation to be transmitted. Second, the process of loading a
pre-linked module into the system is less complex than the
process of linking a dynamically linked module. However,
the fact that all physical addresses of the system core are
hard-coded in the pre-linked module is a severe drawback as
a pre-linked module can only be loaded into a system with
the exact same physical addresses as the system that was to
generate the list of addresses that was used for linking the
module.

In the original Contiki system [5] we used pre-linked bi-
nary modules for dynamic loading. When compiling the
Contiki system core, the compiler generated a map file con-
taining the mapping between all globally visible functions
and variables in the system core and their addresses. This
list of addresses was used to pre-link Contiki modules.

We quickly noticed that while pre-linked binary mod-
ules worked well for small projects with a homogeneous set
of sensor nodes, the system quickly became unmanageable
when the number of sensor nodes grew. Even a small change
to the system core of one of the sensor nodes would make it

impossible to load binary a module into the system bedcase
the addresses of variables and functions in the core were dif-
ferent from when the program was linked. We used version
numbers to guard against this situation. Version numbers did
help against system crashes, but did not solve the general
problem: new modules could not be loaded into the system.

4.2 Dynamic Linking

With dynamic linking, the object files do not only con-
tain code and data, but also names of functions are variables
of the system core that are referenced by the module. The
code in the object file cannot be executed before the physi-
cal addresses of the referenced variables and functions have
been filled in. This process is done at run time by a dynamic
linker.

In the Contiki dynamic linker we use two file formats for
the dynamically linked modules, ELF and Compact ELF.

4.2.1 ELF - Executable and Linkable Format

One of the most common object code format for dynamic
linking is the Executable and Linkable Format (ELF) [3]. It
is a standard format for object files and executables that is
used for most modern Unix-like systems. An ELF object
file include both program code and data and additional in-
formation such as a symbol table, the names of all external
unresolved symbols, and relocation tables. The relocation
tables are used to locate the program code and data at other
places in memory than for which the object code originally
was assembled. Additionally, ELF files can hold debugging
information such as the line numbers corresponding to spe-
cific machine code instructions, and file names of the source
files used when producing the ELF object.

ELF is also the default object file format produced by the
GCC utilities and for this reason there are a number of stan-
dard software utilities for manipulating ELF files available.
Examples include debuggers, linkers, converters, and pro-
grams for calculating program code and data memory sizes.
These utilities exist for a wide variety of platforms, including
MS Windows, Linux, Solaris, and FreeBSD. This is a clear
advantage over other solutions such as FlexCup [27], which
require specialized utilities and tools.

Our dynamic linker in Contiki understands the ELF for-
mat and is able to perform dynamic linking, relocation, and
loading of ELF object code files. The debugging features of
the ELF format are not used.

4.2.2 CELF - Compact ELF

One problem with the ELF format is the overhead in terms
of bytes to be transmitted across the network, compared to
pre-linked modules. There are a number of reasons for the
extra overhead. First, ELF, as any dynamically relocatable
file format, includes the symbolic names of all referenced
functions or variables that need to be linked at run-time. Sec-
ond, and more important, the ELF format is designed to work
on 32-bit and 64-bit architectures. This causes all ELF data
structures to be defined with 32-bit data types. For 8-bit or
16-bit targets the high 16 bits of these fields are unused.

To quantify the overhead of the ELF format we devise an
alternative to the ELF object code format that we call CELF
- Compact ELF. A CELF file contains the same information
as an ELF file, but represented with 8 and 16-bit datatypes.



CELF files typically are half the size of the corresponding
ELF file. The Contiki dynamic loader is able to load CELF
files and a utility program is used to convert ELF files to
CELF files.

Itis possible to further compress CELF files using lossless
data compression. However, we leave the investigation of the
energy-efficiency of this approach to future work.

The drawback of the CELF format is that it requires a
special compressor utility is for creating the CELF files. This
makes the CELF format less attractive for use in many real-
world situations.

4.3 Position Independent Code

To avoid performing the relocation step when loading a
module, it is in some cases possible to compile the module
into position independent code. Position independent code is
a type of machine code which does not contain any absolute
addresses to itself, but only relative references. This is the
approach taken by the SOS system.

To generate position independent code compiler support
is needed. Furthermore, not all CPU architectures support
position independent code and even when supported, pro-
grams compiled to position independent code typically are
subject to size restrictions. For example, the AVR microcon-
troller supports position independent code but restricts the
size of programs to 4 kilobytes. For the MSP430 no com-
piler is known to fully support position independent code.

S Implementation

We have implemented run-time dynamic linking of ELF
and CELF files in the Contiki operating system [5]. To eval-
uate dynamic linking we have implemented an application
specific virtual machine for Contiki together with a compiler
for a subset of Java, and have ported a Java virtual machine
to Contiki.

5.1 The Contiki Operating System

The Contiki operating system was the first operating sys-
tem for memory-constrained sensor nodes to support dy-
namic run-time loading of native code modules. Contiki is
built around an event-driven kernel and has very low mem-
ory requirements. Contiki applications run as extremely
lightweight protothreads [6] that provide blocking operations
on top of the event-driven kernel at a very small memory
cost. Contiki is designed to be highly portable and has been
ported to over ten different platforms with different CPU ar-
chitectures and using different C compilers.

ROM

Loaded program

Device drivers

RAM

Language run—time

Loaded program Symbol table

Dynamic linker

Device drivers

Contiki kernel Contiki kernel

Core Core

Figure 2. Partitioning in Contiki: the core and loadable
programs in RAM and ROM.

A Contiki system is divided into two parts: the core and
the loadable programs as shown in Figure 2. The core con-
sists of the Contiki kernel, device drivers, a set of standard
applications, parts of the C language library, and a symbol
table. Loadable programs are loaded on top of the core and
do not modify the core.

The core has no information about the loadable programs,
except for information that the loadable programs explicitly
register with the core. Loadable programs, on the other hand,
have full knowledge of the core and may freely call func-
tions and access variables that reside in the core. Loadable
programs can call each other by going through the kernel.
The kernel dispatches calls from one loaded program to an-
other by looking up the target program in an in-kernel list of
active processes. This one-way dependency makes it possi-
ble to load and unload programs at run-time without needing
to patch the core and without the need for a reboot when a
module has been loaded or unloaded.

While it is possible to replace the core at run-time by run-
ning a special loadable program that overwrites the current
core and reboots the system, experience has shown that this
feature is not often used in practice.

5.2 The Symbol Table

The Contiki core contains a table of the symbolic names
of all externally visible variable and function names in the
Contiki core and their corresponding addresses. The table
includes not only the Contiki system, but also the C language
run-time library. The symbol table is used by the dynamic
linker when linking loaded programs.

The symbol table is created when the Contiki core binary
image is compiled. Since the core must contain a correct
symbol table, and a correct symbol table cannot be created
before the core exists, a three-step process is required to
compile a core with a correct symbol table. First, an inter-
mediary core image with an empty symbol table is compiled.
From the intermediary core image an intermediary symbol
table is created. The intermediary symbol table contains the
correct symbols of the final core image, but the addresses
of the symbols are incorrect. Second, a second intermedi-
ary core image that includes the intermediary symbol table
is created. This core image now contains a symbol table of
the same size as the one in the final core image so the ad-
dresses of all symbols in the core are now as they will be
in the final core image. The final symbol table is then cre-
ated from the second intermediary core image. This symbol
table contains both the correct symbols and their correct ad-
dresses. Third, the final core image with the correct symbol
table is compiled.

The process of creating a core image is automated through
a simple make script. The symbol table is created using a
combination of standard ELF tools.

For a typical Contiki system the symbol table contains
around 300 entries which amounts to approximately 4 kilo-
bytes of data stored in flash ROM.

5.3 The Dynamic Linker

We implemented a dynamic linker for Contiki that is de-
signed to link, relocate, and load either standard ELF files [3]
and CELF, Compact ELF, files. The dynamic linker reads



ELF/CELF files through the Contiki virtual filesystem inter-
face, CFS, which makes the dynamic linker unaware of the
physical location of the ELF/CELF file. Thus the linker can
operate on files stored either in RAM, on-chip flash ROM,
external EEPROM, or external ROM without modification.
Since all file access to the ELF/CELF file is made through
the CFS, the dynamic linker does not need to concern it-
self with low-level filesystem details such as wear-leveling
or fragmentation [4] as this is better handled by the CFS.

The dynamic linker performs four steps to link, relocate
and load an ELF/CELF file. The dynamic linker first parses
the ELF/CELF file and extracts relevant information about
where in the ELF/CELF file the code, data, symbol table,
and relocation entries are stored. Second, memory for the
code and data is allocated from flash ROM and RAM, re-
spectively. Third, the code and data segments are linked and
relocated to their respective memory locations, and fourth,
the code is written to flash ROM and the data to RAM.

Currently, memory allocation for the loaded program is
done using a simple block allocation scheme. More sophis-
ticated allocation schemes will be investigated in the future.
5.3.1 Linking and Relocating

The relocation information in an ELF/CELF file consists
of a list of relocation entries. Each relocation entry corre-
sponds to an instruction or address in the code or data in the
module that needs to be updated with a new address. A relo-
cation entry contains a pointer to a symbol, such as a variable
name or a function name, a pointer to a place in the code or
data contained in the ELF/CELF file that needs to be up-
dated with the address of the symbol, and a relocation type
which specifies how the data or code should be updated. The
relocation types are different depending on the CPU archi-
tecture. For the MSP430 there is only one single relocation
type, whereas the AVR has 19 different relocation types.

The dynamic linker processes a relocation entry at a time.
For each relocation entry, its symbol is looked up in the sym-
bol table in the core. If the symbol is found in the core’s sym-
bol table, the address of the symbol is used to patch the code
or data to which the relocation entry points. The code or data
is patched in different ways depending on the relocation type
and on the CPU architecture.

If the symbol in the relocation entry was not found in the
symbol table of the core, the symbol table of the ELF/CELF
file itself is searched. If the symbol is found, the address that
the symbol will have when the program has been loaded is
calculated, and the code or data is patched in the same way
as if the symbol was found in the core symbol table.

Relocation entries may also be relative to the data, BSS,
or code segment in the ELF/CELF file. In that case no sym-
bol is associated with the relocation entry. For such entries
the dynamic linker calculates the address that the segment
will have when the program has been loaded, and uses that
address to patch the code or data.

5.3.2 Loading

When the linking and relocating is completed, the text and
data have been relocated to their final memory position. The
text segment is then written to flash ROM, at the location
that was previously allocated. The memory allocated for the
data and BSS segments are used as an intermediate storage

for transferring text segment data from the ELF/CELF file
before it is written to flash ROM. Finally, the memory allo-
cated for the BSS segment is cleared, and the contents of the
data segment is copied from the ELF/CELF file.

5.3.3 Executing the Loaded Program

When the dynamic linker has successfully loaded the code
and data segments, Contiki starts executing the program.

The loaded program may replace an already running Con-
tiki service. If the service that is to be replaced needs to pass
state to the newly loaded service, Contiki supports the allo-
cation of an external memory buffer for this purpose. How-
ever, experience has shown that this mechanism has been
very scarcely used in practice and the mechanism is likely
to be removed in future versions of Contiki.

5.3.4 Portability

Since the ELF/CELF format is the same across different
platforms, we designed the Contiki dynamic linker to be eas-
ily portable to new platforms. The loader is split into one
architecture specific part and one generic part. The generic
part parses the ELF/CELF file, finds the relevant sections of
the file, looks up symbols from the symbol table, and per-
forms the generic relocation logic. The architecture specific
part does only three things: allocates ROM and RAM, writes
the linked and relocated binary to flash ROM, and under-
stands the relocation types in order to modify machine code
instructions that need adjustment because of relocation.

5.3.5 Alternative Designs

The Contiki core symbol table contains all externally vis-
ible symbols in the Contiki core. Many of the symbols may
never need to be accessed by loadable programs, thus caus-
ing ROM overhead. An alternative design would be to let the
symbol table include only a handful of symbols, entry points,
that define the only ways for an application program to inter-
act with the core. This would lead to a smaller symbol table,
but would also require a detailed specification of which entry
points that should be included in the symbol table. The main
reason why we did not chose this design, however, is that
we wish to be able to replace modules at any level of the sys-
tem. For this reason, we chose to provide the same amount of
symbols to an application program as it would have, would
it have been compiled directly into the core. However, we
are continuing to investigate this alternative design for future
versions of the system.

5.4 The Java Virtual Machine

We ported the Java virtual machine (JVM) from lejOS [8],
a small operating system originally developed for the Lego
Mindstorms. The Lego Mindstorms are equipped with an
Hitachi H8 microcontroller with 32 kilobytes of RAM avail-
able for user programs such as the JVM. The 1ejOS JVM
works within this constrained memory while featuring pre-
emptive threads, recursion, synchronization and exceptions.
The Contiki port required changes to the RAM-only model
of the 1ejOS JVM. To be able to run Java programs within the
2 kilobytes of RAM available on our hardware platform, Java
classes needs to be stored in flash ROM rather than in RAM.
The Contiki port stores the class descriptions including byte-
code in flash ROM memory. Static class data and class flags
that denote if classes have been initialized are stored in RAM



as well as object instances and execution stacks. The RAM
requirements for the Java part of typical sensor applications
are a few hundred bytes.

Java programs can call native code methods by declaring
native Java methods. The Java virtual machine dispatches
calls to native methods to native code. Any native function
in Contiki may be called, including services that are part of
a loaded Contiki program.

5.5 CVM - the Contiki Virtual Machine

We designed the Contiki Virtual Machine, CVS, to be a
compromise between an application-specific and a generic
virtual machine. CVM can be configured for the application
running on top of the machine by allowing functions to be
either implemented as native code or as CVM code. To be
able to run the same programs for the Java VM and for CVM,
we developed a compiler that compiles a subset of the Java
language to CVM bytecode.

The design of CVM is intentionally similar to other vir-
tual machines, including Maté [19], VM* [18], and the Java
virtual machine. CVM is a stack-based machine with sepa-
rated code and data areas. The CVM instruction set contains
integer arithmetic, unconditional and conditional branches,
and method invocation instructions. Method invocation can
be done in two ways, either by invocation of CVM bytecode
functions, or by invocation of functions implemented in na-
tive code. Invocation of native functions is done through a
special instruction for calling native code. This instruction
takes one parameter, which identifies the native function that
is to be called. The native function identifiers are defined at
compile time by the user that compiles a list of native func-
tions that the CVM program should be able to call. With the
native function interface, it is possible for a CVM program to
call any native functions provided by the underlying system,
including services provided by loadable programs.

Native functions in a CVM program are invoked like any
other function. The CVM compiler uses the list of native
functions to translate calls to such functions into the special
instruction for calling native code. Parameters are passed to
native functions through the CVM stack.

6 Evaluation

To evaluate dynamic linking of native code we compare
the energy costs of transferring, linking, relocating, loading,
and executing a native code module in ELF format using dy-
namic linking with the energy costs of transferring, loading,
and executing the same program compiled for the CVM and
the Java virtual machine. We devise a simple model of the
energy consumption of the reprogramming process. There-
after we experimentally quantify the energy and memory
consumption as well as the execution overhead for the repro-
gramming, the execution methods and the applications. We
use the results of the measurements as input into the model
which enables us to perform a quantitative comparison of the
energy-efficiency of the reprogramming methods.

We use the ESB board [33] and the Telos Sky board [29]
as our experimental platforms. The ESB is equipped with an
MSP430 microcontroller with 2 kilobytes of RAM and 60
kilobytes of flash ROM, an external 64 kilobyte EEPROM,
as well as a set of sensors and a TR1001 radio transceiver.

PROCESS_THREAD (test_blink, ev, data)
{
static struct etimer t;
PROCESS_BEGIN() ;

etimer_set (&t, CLOCK_SECOND);

while (1) {
leds_on (LEDS_GREEN) ;
PROCESS_WAIT_UNTIL (etimer_expired(&t));
etimer_reset (&t);

leds_off (LEDS_GREEN) ;
PROCESS_WAIT_UNTIL (etimer_expired(&t));
etimer_reset (&t);

}

PROCESS_END () ;
}

Figure 3. Example Contiki program that toggles the
LEDs every second.

The Telos Sky is equipped with an MSP430 microcontroller
with 10 kilobytes of RAM and 48 kilobytes of flash ROM
together with a CC2420 radio transceiver. We use the ESB to
measure the energy of receiving, storing, linking, relocating,
loading and executing loadable modules and the Telos Sky
to measure the energy of receiving loadable modules.

We use three Contiki programs to measure the energy ef-
ficiency and execution overhead of our different approaches.
Blinker, the first of the two programs, is shown in Figure 3.
It is a simple program that toggles the LEDs every second.
The second program, Object Tracker, is an object tracking
application based on abstract regions [35]. To allow run-
ning the programs both as native code, as CVM code, and
as Java code we have implemented these programs both in C
and Java. A schematic illustration of the C implementation
is in Figure 4. To support the object tracker program, we
implemented a subset of the abstract regions mechanism in
Contiki. The Java and CVM versions of the program call na-
tive code versions of the abstract regions functions. The third
program is a simple 8 by 8 vector convolution calculation.

6.1 Energy Consumption
We model the energy consumption E of the reprogram-
ming process with

E=E,+E+E+Ef

where E, is the energy spent in transferring the object over
the network, E; the energy cost of storing the object on the
device, E; the energy consumed by linking and relocating the
object, and E the required energy for of storing the linked
program in flash ROM. We use a simplified model of the
network propagation energy where we assume a propagation
protocol where the energy consumption £, is proportional to
the size of the object to be transferred. Formally,

E, =Pys,

where s, is the size of the object file to be transfered and P,
is a constant scale factor that depends on the network proto-
col used to transfer the object. We use similar equations for
E; (energy for storing the binary) and E; (energy for linking
and relocating). The equation for E¢ (the energy for load-



PROCESS_THREAD (use_regions_process, ev, data)
{
PROCESS_BEGIN() ;

while (1) {
value = pir_sensor.value();

region_put (reading_key, value);
region_put (reg_x_key, value * loc_x());
region_put (reg_y_key, value * loc_y());
if (value > threshold) {

max = region_max(reading_key);

if (max == value) {
sum = region_sum(reading_key);
sum_x = region_sum(reg_x_key);
sum_y = region_sum(reg_y_key);
centroid_x = sum_x / sum;
centroid_y = sum_y / sum;
send (centroid_x, centroid_y);

}

}

etimer_set (&t, PERIODIC_DELAY);
PROCESS_WAIT_UNTIL (etimer_expired(&t));

}

PROCESS_END () ;
}

Figure 4. Schematic implementation of an object tracker
based on abstract regions.

ing the binary to ROM) contains the size of the compiled
code size of the program instead of the size of the object file.
This model is intentionally simple and we consider it good
enough for our purpose of comparing the energy-efficiency
of different reprogramming schemes.

6.1.1 Lower Bounds on Radio Reception Energy

We measured the energy consumption of receiving data
over the radio for two different radio transceivers: the
TR1001 [32], that is used on the ESB board, and the
CC2420 [2], that conforms to the IEEE 802.15.4 stan-
dard [11] and is used on the Telos Sky board. The TR1001
provides a very low-level interface to the radio medium. The
transceiver decodes data at the bit level and transmits the
bits in real-time to the CPU. Start bit detection, framing,
MAC layer, checksums, and all protocol processing must be
done in software running on the CPU. In contrast, the inter-
face provided by the CC2420 is at a higher level. Start bits,
framing, and parts of the MAC protocol are handled by the
transceiver. The software driver handles incoming and out-
going data on the packet level.

Since the TR1001 operates at the bit-level, the communi-
cation speed of the TR1001 is determined by the CPU. We
use a data rate of 9600 bits per second. The CC2420 has
a data rate of 250 kilobits per second, but also incurs some
protocol overhead as it provides a more high-level interface.

Figure 5 shows the current draw from receiving 1000
bytes of data with the TR1001 and CC2420 radio
transceivers. These measurements constitute a lower bound
on the energy consumption for receiving data over the radio,
as they do not include any control overhead caused by a code
propagation protocol. Nor do they include any packet head-
ers. An actual propagation protocol would incur overhead

Time | Energy | Time per | Energy per

Transceiver (s) (ml]) byte (s) byte (mJ)

TR1001 0.83 21 0.0008 0.021

CC2420 0.060 4.8 | 0.00006 0.0048
Table 2. Lower bounds on the time and energy con-

sumption for receiving 1000 bytes with the TR1001 and
CC2420 transceivers. All values are rounded to two sig-
nificant digits.

because of both packet headers and control traffic. For ex-
ample, the Deluge protocol has a control packet overhead of
approximately 20% [14]. This overhead is derived from the
total number of control packets and the total number of data
packets in a sensor network. The average overhead in terms
of number of excessive data packets received is 3.35 [14]. In
addition to the actual code propagation protocol overhead,
there is also overhead from the MAC layer, both in terms of
packet headers and control traffic.

The TR1001 provides a low-level interface to the CPU,
which enabled us to measure only the current draw of the
receiver. We first measured the time required for receiving
one byte of data from the radio. To produce the graph in the
figure, we measured the current draw of an ESB board which
we had programmed to turn on receive mode and busy-wait
for the time corresponding to the reception time of 1000
bytes.

When measuring the reception current draw of the
CC2420, we could not measure the time required for re-
ceiving one byte because the CC2420 does not provide an
interface at the bit level. Instead, we used two Telos Sky
boards and programmed one to continuously send back-to-
back packets with 100 bytes of data. We programmed the
other board to turn on receive mode when the on-board but-
ton was pressed. The receiver would receive 1000 bytes of
data, corresponding to 10 packets, before turning the receiver
off. We placed the two boards next to each other on a table
to avoid packet drops. We produced the graph in Figure 5 by
measuring the current draw of the receiver Telos Sky board.
To ensure that we did not get spurious packet drops, we re-
peated the measurement five times without obtaining differ-
ing results.

Table 2 shows the lower bounds on the time and en-
ergy consumption for receiving data with the TR1001 and
CC2420 transceivers. The results show that while the current
draw of the CC2420 is higher than that of the TR1001, the
energy efficiency in terms of energy per byte of the CC2420
is better because of the shorter time required to receive the
data.

6.1.2 Energy Consumption of Dynamic Linking

To evaluate the energy consumption of dynamic linking,
we measure the energy required for the Contiki dynamic
linker to link and load two Contiki programs. Normally,
Contiki loads programs from the radio network but to avoid
measuring any unrelated radio or network effects, we stored
the loadable object files in flash ROM before running the
experiments. The loadable objects were stored as ELF files
from which all debugging information and symbols that were
not needed for run-time linking was removed. At boot-up,
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Figure 5. Current draw for receiving 1000 bytes with the TR1001 andWéS)C2420, respectively.
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Figure 6. Current draw for writing the Blinker ELF file
to EEPROM (0 - 0.166 s), linking and relocating the pro-
gram (0.166 - 0.418 s), writing the resulting code to flash
ROM (0.418 - 0.488 s), and executing the binary (0.488 s
and onward). The current spikes delimit the three steps
and are intentionally caused by blinking on-board LEDs.
The high energy consumption when executing the binary
is caused by the green LED.

one ELF file was copied into an on-board EEPROM from
where the Contiki dynamic linker linked and relocated the
ELF file before it loaded the program into flash ROM.

Figure 6 shows the current draw when loading the Blinker
program, and Figure 7 shows the current draw when load-
ing the Object Tracker program. The current spikes seen
in both graphs are intentionally caused by blinking the on-
board LEDs. The spikes delimit the four different steps that
the loader is going through: copying the ELF object file
to EEPROM, linking and relocating the object code, copy-
ing the linked code to flash ROM, and finally executing the
loaded program. The current draw of the green LED is
slightly above 8 mA, which causes the high current draw
when executing the blinker program (Figure 6). Similarly,
when the object tracking application starts, it turns on the
radio for neighbor discovery. This causes the current draw
to rise to around 6 mA in Figure 7, and matches the radio
current measurements in Figure 5.

Table 3 shows the energy consumption of loading and
linking the Blinker program. The energy was obtained from
integration of the curve from Figure 6 and multiplying it by

Writing to EEPROM Linking and relocating |Writing | Executing

Current (mA)
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Figure 7. Current draw for writing the Object Tracker
ELF file to EEPROM (0 - 0.282 s), linking and relocat-
ing the program (0.282 - 0.882 s), writing the resulting
code to flash ROM (0.882 - 0.988 s), and executing the
binary (0.988 s and onward). The current spikes delimit
the three steps and are intentionally caused by blinking
on-board LEDs. The high current draw when executing
the binary comes from the radio being turned on.

the voltage used in our experiments (4.5 V). We see that the
linking and relocation step is the most expensive in terms of
energy. It is also the longest step.

To evaluate the energy overhead of the ELF file format,
we compare the energy consumption for receiving four dif-
ferent Contiki programs using the ELF and CELF formats.
In addition to the two programs from Figures 3 and 4 we in-
clude the code for the Contiki code propagation mechanism
and a network publish/subscribe program that performs peri-
odic flooding and converging of information. The two latter
programs are significantly larger. We calculate an estimate of
the required energy for receiving the files by using the mea-
sured energy consumption of the CC2420 radio transceiver
and multiply it by the average overhead by the Deluge code
propagation protocol, 3.35 [14]. The results are listed in Ta-
ble 4 and show that radio reception is more energy consum-
ing than linking and loading a program, even for a small pro-
gram. Furthermore, the results show that the relative average
size and energy overhead for ELF files compared to the code
and data contained in the files is approximately 4 whereas
the relative CELF overhead is just under 2.



ELF ELF ELFradio | CELF CELF | CELF radio

Code | Data file | file size reception file | file size reception

Program size | size | size | overhead | energy (ml) size | overhead | energy (mlJ)
Blinker 130 14 | 1056 7.3 17 361 2.5 5.9
Object tracker 344 22 | 1668 5.0 29 758 2.0 12
Code propagator | 2184 10 | 5696 2.6 92 | 3686 1.7 59
Flood/converge | 4298 42 | 8456 1.9 136 | 5399 1.2 87

Table 4. The overhead of the ELF and CELF file formats in terms of bytes and estimated reception energy for four Con-

tiki programs. The reception energy is the lower bound of the radio reception energy with the CC2420 chip, multiplied

by the average Deluge overhead (3.35).

Blinker | Energy | Obj. Tr. | Energy
Step time (s) (m]) | time (s) (ml])
Wrt. EEPROM 0.164 1.1 0.282 1.9
Link & reloc 0.252 1.2 0.600 2.9
Wrt. flash ROM 0.070 0.62 0.106 0.76
Total 0.486 2.9 0.988 5.5

Table 3. Measured energy consumption of the storing,
linking and loading of the 1056 bytes large Blinker binary
and the 1824 bytes large Object Tracker binary. The size
of the Blinker code is 130 bytes and the size of the Object
Tracker code is 344 bytes.

Module ROM | RAM
Static loader 670 0
Dynamic linker, loader 5694 18
CVM 1344 8
Java VM 13284 59

Table 5. Memory requirements, in bytes. The ROM size
for the dynamic linker includes the symbol table. The
RAM figures do not include memory for programs run-
ning on top of the virtual machines.

6.2 Memory Consumption

Memory consumption is an important metric for sensor
nodes since memory is a scarce resource on most sensor node
platforms. The ESB nodes feature only 2 KB RAM and 60
KB ROM while Mica2 motes provide 128 KB of program
memory and 4 KB of RAM. The less memory required for
reprogramming, the more is left for applications and support
for other important tasks such as security which may also
require a large part of the available memory [28].

Table 5 lists the memory requirements of the static linker,
the dynamic linker and loader, the CVM and the Java VM.
The dynamic linker needs to keep a table of all core symbols
in the system. For a complete Contiki system with process
management, networking, the dynamic loader, memory allo-
cation, Contiki libraries, and parts of the standard C library,
the symbol table requires about 4 kilobytes of ROM. This is
included in the ROM size for the dynamic linker.

6.3 Execution Overhead

To measure the execution overhead of the application
specific virtual machine and the Java virtual machine, we
implemented the object tracking program in Figure 4 in C
and Java. We compiled the Java code to CVM code and
Java bytecode. We ran the compiled code on the MSP430-
equipped ESB board. The native C code was compiled

Execution type | Execution time (ms) | Energy (mlJ)
Native 0.479 0.00054
CVM 0.845 0.00095
Java VM 1.79 0.0020

Table 6. Execution times and energy consumption of one
iteration of the tracking program.

Execution type | Execution time (ms) | Energy (mlJ)
Native 0.67 0.00075
CVM 58.52 0.065
Java VM 65.6 0.073

Table 7. Execution times and energy consumption of the
8 by 8 vector convolution.

with the MSP430 port of GCC version 3.2.3. The MSP430
digitally-controlled oscillator was set to clock the CPU at a
speed of 2.4576 MHz. We measured the execution time of
the three implementations using the on-chip timer Al that
was set to generate a timer interrupt 1000 times per second.
The execution times are averaged over 5000 iterations of the
object tracking program.

The results in Table 6 show the execution time of one run
of the object tracking application from Figure 4. The exe-
cution time measurements are averaged over 5000 runs of
the object tracking program. The energy consumption is cal-
culated by multiplying the execution time with the average
energy consumption when a program is running with the ra-
dio turned off. The table shows that the overhead of the Java
virtual machine is higher than that of the CVM, which is turn
is higher than the execution overhead of the native C code.

All three implementations of the tracker program use the
same abstract regions library which is compiled as native
code. Thus much of the execution time in the Java VM
and CVM implementations of the object tracking program is
spent executing the native code in the abstract regions library.
Essentially, the virtual machine simply acts as a dispatcher of
calls to various native functions. For programs that spend a
significant part of their time executing virtual machine code
the relative execution times are significantly higher for the
virtual machine programs. To illustrate this, Table 7 lists the
execution times of a convolution operation of two vectors
of length 8. Convolution is a common operation in digital
signal processing where it is used for algorithms such as fil-
tering or edge detection. We see that the execution time of
the program running on the virtual machines is close to ten
times that of the native program.



Dynamic Full image
Step linking (mJ) | replacement (mJ)
Receiving 17 330
Wrt. EEPROM 1.1 22
Link & reloc 1.4 -
Wrt. flash ROM 0.45 72
Total 20 424

Table 8. Comparison of energy-consumption of repro-
gramming the blinker application using dynamic linking
with an ELF file and full image replacement methods.

Step ELF | CELF | CVM | Java
Size (bytes) 1824 968 123 | 1356
Receiving 29 12 2.0 22
Wrt. EEPROM 1.9 0.80 - -
Link & reloc 2.5 2.5 - -
Wrt. flash ROM 1.2 1.2 - 4.7
Total 35 16.5 2.0 | 26.7

Table 9. Comparison of energy-consumption in mJ of re-
programming for the object tracking application using
the four different methods.

6.4 Quantitative Comparison

Using our model from Section 6.1 and the results from
the above measurements, we can calculate approximations
of the energy consumption for distribution, reprogramming,
and execution of native and virtual machine programs in or-
der to compare the methods with each other. We set P,, the
scale factor of the energy consumption for receiving an ob-
ject file, to the average Deluge overhead of 3.35.

6.4.1 Dynamic Linking vs Full Image Replacement
We first compare the energy costs for the two native code
reprogramming models: dynamic linking and full image re-
placement. Table 8 shows the results for the energy con-
sumption of reprogramming the blinker application. The size
of blinker application including the operating system is 20
KB which is about 20 times the size of the blinker applica-
tion itself. Even though no linking needs to be performed
during the full image replacement, this method is about 20
times more expensive to perform a whole image replacement
compared to a modular update using the dynamic linker.

6.4.2 Dynamic Linking vs Virtual Machines

We use the tracking application to compare reprogram-
ming using the Contiki dynamic linker with code updates for
the CVM and the Java virtual machine. CVM programs are
typically very small and are not stored in EEPROM, nor are
they linked or written to flash. Java uncompressed class files
are loaded into flash ROM before they are executed. Table 9
shows the sizes of the corresponding binaries and the energy
consumption of each reprogramming step.

As expected, the process of updating sensor nodes with
native code is less energy-efficient than updating with a vir-
tual machine. Also, as shown in Table 6, executing native
code is more energy-efficient than executing code for the vir-
tual machines.

By combining the results in Table 6 and Table 9, we can
compute break-even points for how often we can execute na-
tive code as opposed to virtual machine code for the same
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Figure 8. Break-even points for the object tracking pro-
gram implemented with four different linking and execu-
tion methods.
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Figure 9. Break-even points for the vector convolution
implemented with four different linking and execution
methods.

energy consumption. That is, after how many program it-
erations do the cheaper execution costs outweigh the more
expensive code updates.

Figure 8 shows the modeled energy consumption for exe-
cuting the Object Tracking program using native code loaded
with an ELF object file, native code loaded with an CELF
object file, CVM code, and Java code. We see that the Java
virtual machine is expensive in terms of energy and will al-
ways require more energy than native code loaded with a
CELF file. For native code loaded with an ELF file the en-
ergy overhead due to receiving the file makes the Java virtual
machine more energy efficient until the program is repeated
a few thousand times. Due to the small size of the CVM code
it is very energy efficient for small numbers of program iter-
ations. It takes about 40000 iterations of the program before
the interpretation overhead outweigh the linking and load-
ing overhead of same program running as native code and
loaded as a CELF file. If the native program was loaded with
an ELF file, however, the CVM program needs to be run ap-
proximately 80000 iterations before the energy costs are the
same. At the break-even point, the energy consumption is
only about one fifth of the energy consumption for loading
the blink program using full image replacement as shown in
Table 8.

In contrast with Figure 8, Figure 9 contains the break-
even points from the vector convolution in Table 7. We as-
sume that the convolution algorithm is part of a program with
the same size as in Figure 8 so that the energy consumption
for reprogramming is the same. In this case the break-even
points are drastically lower than in Figure 8. Here the native
code loaded with an ELF file outperforms the Java imple-



mentation already at 100 iterations. The CVM implementa-
tion has spent as much energy as the native ELF implemen-
tation after 500 iterations.

6.5 Scenario Suitability

We can now apply our results to the software update sce-
narios discussed in Section 2. In a scenario with frequent
code updates, such as the dynamic application scenario or
during software development, a low loading overhead is to
prefer. From Figure 8 we see that both an application-
specific virtual machine and a Java machine may be good
choices. Depending on the type of application it may be ben-
eficial to decide to run the program on top of a more flexible
virtual machine such as the Java machine. The price for such
a decision is higher energy overhead.

In scenarios where the update frequency is low, e.g. when
fixing bugs in installed software or when reconfiguring an
installed application, the higher price for dynamic linking
may be worth paying. If the program is continuously run for
a long time, the energy savings of being able to use native
code outweigh the energy cost of the linking process. Fur-
thermore, with a virtual machine it may not be possible to
make changes to all levels of the system. For example, a bug
in a low-level driver can usually only be fixed by installing
new native code. Moreover, programs that are computation-
ally heavy benefit from being implemented as native code as
native code has lower energy consumption than virtual ma-
chine code.

The results from Figures 8 and 9 suggest that a combi-
nation of virtual machin code and native code can be energy
efficient. For many situations this may be a viable alternative
to running only native code or only virtual machine code.

6.6 Portability

Because of the diversity of sensor network platforms, the
Contiki dynamic linker is designed to be portable between
different microcontrollers. The dynamic linker is divided
into two modules: a generic part that parses and analyzes
the ELF/CELF that is to be loaded, and a microcontroller-
specific part that allocates memory for the program to be
loaded, performs code and data relocation, and writes the
linked program into memory.

To evaluate the portability of our design we have ported
the dynamic linker to two different microcontrollers: the TI
MSP430 and the Atmel AVR. The TT MSP430 is used in
several sensor network platforms, including the Telos Sky
and the ESB. The Atmel AVR is used in the Mica2 motes.

Table 10 shows the number of lines of code needed to
implement each module. The dramatic difference between
the MSP430-specific module and the AVR-specific module
is due to the different addressing modes used by the ma-
chine code of the two microcontrollers. While the MSP430
has only one addressing mode, the AVR has 19 different ad-
dressing modes. Each addressing mode must be handled dif-
ferently by the relocation function, which leads to a larger
amount of code for the AVR-specific module.

7 Discussion

Standard file formats. Our main motivation behind
choosing the ELF format for dynamic linking in Contiki was

Lines of code, Lines of code,
Module total | relocation function
Generic linker 292
MSP430-specific 45 8
AVR-specific 143 104

Table 10. Number of lines of code for the dynamic linker
and the microcontroller-specific parts.

that the ELF format is a standard file format. Many com-
pilers and utilities, including all GCC utilities, are able to
produce and handle ELF files. Hence no special software is
needed to compile and upload new programs into a network
of Contiki nodes. In contrast, FlexCup [27] or diff-based
approaches require the usage of specially crafted utilities to
produce meta data or diff scripts required for uploading soft-
ware. These special utilities also need to be maintained and
ported to the full range of development platforms used for
software development for the system.

Operating system support. Dynamic linking of ELF
files requires support from the underlying operating system
and cannot be done on monolithic operating systems such as
TinyOS. This is a disadvantage of our approach. For mono-
lithic operating systems, an approach such as FlexCup is bet-
ter suited.

Heterogeneity. With diff-based approaches a binary diff
is created either at a base station or by an outside server. The
server must have knowledge of the exact software configu-
ration of the sensor nodes on which the diff script is to be
run. If sensor nodes are running different versions of their
software, diff-based approaches do not scale.

Specifically, in many of our development networks we
have witnessed a form of micro heterogeneity in the soft-
ware configuration. Many sensor nodes, which have been
running the exact same version of the Contiki operating sys-
tem, have had small differences in the address of functions
and variables in the core. This micro heterogeneity comes
from the different core images being compiled by different
developers, each having slightly different versions of the C
compiler, the C library and the linker utilities. This results
in small variations of the operating system image depending
on which developer compiled the operating system image.
With diff-based approaches micro heterogeneity poses a big
problem, as the base station would have to be aware of all
the small differences between each node.

Combination of native and virtual machine code. Our
results suggest that a combination of native and virtual ma-
chine code is an energy efficient alternative to pure native
code or pure virtual machine code approaches. The dynamic
linking mechanism can be used to load the native code that
is used by the virtual machine code by the native code inter-
faces in the virtual machines.

8 Related Work

Because of the importance of dynamic reprogramming of
wireless sensor networks there has been a lot of effort in the
area of software updates for sensor nodes both in the form
of system support for software updates and execution envi-
ronments that directly impact the type and size of updates as
well as distribution protocols for software updates.



Mainwaring et al. [26] also identified the trade-off be-
tween using virtual machine code that is more expensive to
run but enables more energy-efficient updates and running
native code that executes more efficiently but requires more
costly updates. This trade-off has been further discussed by
Levis and Culler [19] who implemented the Maté virtual ma-
chine designed to both simplify programming and to lever-
age energy-efficient large-scale software updates in sensor
networks. Maté is implemented on top of TinyOS.

Levis and Culler later enhanced Maté by application spe-
cific virtual machines (ASVMs) [20]. They address the main
limitations of Maté: flexibility, concurrency and propaga-
tion. Whereas Maté was designed for a single application
domain only, ASVM supports a wide range of application
domains. Further, instead of relying on broadcasts for code
propagation as Maté, ASVM uses the trickle algorithm [21].

The MagnetOS [23] system uses the Java virtual ma-
chine to distribute applications across an ad hoc network
of laptops. In MagnetOS, Java applications are partitioned
into distributed components. The components transparently
communicate by raising events. Unlike Maté and Contiki,
MagnetOS targets larger platforms than sensor nodes such
as PocketPC devices. SensorWare [1] is another script-
based proposal for programming nodes that targets larger
platforms. VM* is a framework for runtime environments
for sensor networks [18]. Using this framework Koshy and
Pandey have implemented a subset of the Java Virtual Ma-
chine that enables programmers to write applications in Java,
and access sensing devices and I/O through native interfaces.

Mobile agent-based approaches extend the notion of in-
jected scripts by deploying dynamic, localized and intelli-
gent mobile agents. Using mobile agents, Fok et al. have
built the Agilla platform that enables continuous reprogram-
ming by injecting new agents into the network [9].

TinyOS uses a special description language for compos-
ing a system of smaller components [10] which are statically
linked with the kernel to a complete image of the system.
After linking, modifying the system is not possible [19] and
hence TinyOS requires the whole image to be updated even
for small code changes.

Systems that offer loadable modules besides Contiki in-
clude SOS [12] and Impala [24]. Impala features an ap-
plication updater that enables software updates to be per-
formed by linking in updated modules. Updates in Impala
are coarse-grained since cross-references between different
modules are not possible. Also, the software updater in
Impala was only implemented for much more resource-rich
hardware than our target devices. The design of SOS [12]
is very similar to the Contiki system: SOS consists of a
small kernel and dynamically-loaded modules. However,
SOS uses position independent code to achieve relocation
and jump tables for application programs to access the op-
erating system kernel. Application programs can register
function pointers with the operating system for performing
inter-process communication. Position independent code is
not available for all platforms, however, which limits the ap-
plicability of this approach.

FlexCup [27] enables run-time installation of software
components in TinyOS and thus solves the problem that

a full image replacement is required for reprogramming
TinyOS applications. In contrast to our ELF-based solution,
FlexCup uses a non-standard format and is less portable.
Further, FlexCup requires a reboot after a program has been
installed, requiring an external mechanism to save and re-
store the state of all other applications as well as the state of
running network protocols across the reboot. Contiki does
not need to be rebooted after a program has been installed.

FlexCup also requires a complete duplicate image of the
binary image of the system to be stored in external flash
ROM. The copy of the system image is used for constructing
a new system image when a new program has been loaded.
In contrast, the Contiki dynamic linker does not alter the core
image when programs are loaded and therefore no external
copy of the core image is needed.

Since the energy consumption of distributing code in sen-
sor networks increases with the size of the code to be dis-
tributed several attempts have been made to reduce the size
of the code to be distributed. Reijers and Langendoen [31]
produce an edit script based on the difference between the
modified and original executable. After various optimiza-
tions including architecture-dependent ones, the script is dis-
tributed. A similar approach has been developed by Jeong
and Culler [15] who use the rsync algorithm to generate the
difference between modified and original executable. Koshy
and Pandey’s diff-based approach [17] reduces the amount
of flash rewriting by modifying the linking procedure so that
functions that are not changed are not shifted.

XNP [16] was the previous default reprogramming mech-
anism in TinyOS which is used by the multi-hop reprogram-
ming scheme MOAP (Multihop Over-the-Air Programming)
developed to distribute node images in the sensor network.
MOAP distributes data to a selective number of nodes on
a neighbourhood-by-neighbourhood basis that avoids flood-
ing [34]. In Trickle [21] virtual machine code is distributed
to a network of nodes. While Trickle is restricted to single
packet dissemination, Deluge adds support for the dissemi-
nation of large data objects [14].

9 Conclusions

We have presented a highly portable dynamic linker and
loader that uses the standard ELF file format and compared
the energy-efficiency of run-time dynamic linking with an
application specific virtual machine and a Java virtual ma-
chine. We show that dynamic linking is feasible even for
constrained sensor nodes.

Our results also suggest that a combination of native and
virtual machine code provide an energy efficient alternative
to pure native code or pure virtual machine approaches. The
native code that is called from the virtual machine code can
be updated using the dynamic linker, even in heterogeneous
systems.
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