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Run-Time Management for Future MPSoC
Platforms

Summary

on-Chip (MPSoC) era. In essence, this era is triggered by the need to handle

more complex applications, while reducing overall cost of embedded (handheld)
devices. This cost will mainly be determined by the cost of the hardware platform
and the cost of designing applications for that platform.

In recent years, we are witnessing the dawning of the Multi-Processor System-

The cost of a hardware platform will partly depend on its production volume. In
turn, this means that flexible, (easily) programmable multi-purpose platforms will
exhibit a lower cost. A multi-purpose platform not only requires flexibility, but
should also combine a high performance with a low power consumption. To this
end, MPSoC devices integrate computer architectural properties of various comput-
ing domains. Just like large-scale parallel and distributed systems, they contain mul-
tiple heterogeneous processing elements interconnected by a scalable, network-like
structure. This helps in achieving scalable high performance. As in most mobile or
portable embedded systems, there is a need for low-power operation and real-time
behavior.

The cost of designing applications is equally important. Indeed, the actual value of
future MPSoC devices is not contained within the embedded multiprocessor IC, but
in their capability to provide the user of the device with an amount of services or
experiences. So from an application viewpoint, MPSoCs are designed to efficiently
process multimedia content in applications like video players, video conferencing,
3D gaming, augmented reality, etc. Such applications typically require a lot of pro-
cessing power and a significant amount of memory. To keep up with ever evolving
user needs and with new application standards appearing at a fast pace, MPSoC
platforms need to be be easily programmable. Application scalability, i.e. the ability
to use just enough platform resources according to the user requirements and with
respect to the device capabilities is also an important factor.
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Hence scalability, flexibility, real-time behavior, a high performance, a low power
consumption and, finally, programmability are key components in realizing the suc-
cess of MPSoC platforms.

The run-time manager is logically located between the application layer en the plat-
form layer. It has a crucial role in realizing these MPSoC requirements. As it abstracts
the platform hardware, it improves platform programmability. By deciding on re-
source assignment at run-time and based on the performance requirements of the
user, the needs of the application and the capabilities of the platform, it contributes
to flexibility, scalability and to low power operation. As it has an arbiter function
between different applications, it enables real-time behavior.

This thesis details the key components of such an MPSoC run-time manager and
provides a proof-of-concept implementation. These key components include ap-
plication quality management algorithms linked to MPSoC resource management
mechanisms and policies, adapted to the provided MPSoC platform services.

First, we describe the role, the responsibilities and the boundary conditions of an
MPSoC run-time manager in a generic way. This includes a definition of the mul-
tiprocessor run-time management design space, a description of the run-time man-
ager design trade-offs and a brief discussion on how these trade-offs affect the key
MPSoC requirements. This design space definition and the trade-offs are illustrated
based on ongoing research and on existing commercial and academic multiprocessor
run-time management solutions.

Consequently, we introduce a fast and efficient resource allocation heuristic that con-
siders FPGA fabric properties such as fragmentation. In addition, this thesis intro-
duces a novel task assignment algorithm for handling soft IP cores denoted as hier-
archical configuration. Hierarchical configuration managed by the run-time manager
enables easier application design and increases the run-time spatial mapping free-
dom. In turn, this improves the performance of the resource assignment algorithm.

Furthermore, we introduce run-time task migration components. We detail a new
run-time task migration policy closely coupled to the run-time resource assignment
algorithm. In addition to detailing a design-environment supported mechanism that
enables moving tasks between an ISP and fine-grained reconfigurable hardware, we
also propose two novel task migration mechanisms tailored to the Network-on-Chip
environment. Finally, we propose a novel mechanism for task migration initiation,
based on reusing debug registers in modern embedded microprocessors.

We propose a reactive on-chip communication management mechanism. We show
that by exploiting an injection rate control mechanism it is possible to provide a
communication management system capable of providing a soft (reactive) QoS in a
NoC.

We introduce a novel, platform independent run-time algorithm to perform quality
management, i.e. to select an application quality operating point at run-time based
on the user requirements and the available platform resources, as reported by the
resource manager. This contribution also proposes a novel way to manage the inter-
action between the quality manager and the resource manager.

In order to have a the realistic, reproducible and flexible run-time manager testbench
with respect to applications with multiple quality levels and implementation trade-
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offs, we have created an input data generation tool denoted Pareto Surfaces For Free
(PSFF). The the PSFF tool is, to the best of our knowledge, the first tool that generates
multiple realistic application operating points either based on profiling information
of a real-life application or based on a designer-controlled random generator.

Finally, we provide a proof-of-concept demonstrator that combines these concepts
and shows how these mechanisms and policies can operate for real-life situations.
In addition, we show that the proposed solutions can be integrated into existing
platform operating systems.
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CHAPTER 1

Key MPSoC Requirements

Chip (MPSoC) era. In essence, this era is triggered by the need to handle more

In recent years, we are witnessing the dawning of the Multi-Processor System-on-
complex applications, while reducing the overall cost of embedded devices.

From an architecture viewpoint, these MPSoC platforms integrate computer archi-
tectural properties of various computing domains. Just like large-scale parallel and
distributed systems, they contain multiple heterogeneous processing elements in-
terconnected by a scalable, network-like structure to provide high compute perfor-
mance. As in most mobile or portable embedded systems, there is a need for low-
power operation and predictable behavior. To accommodate multiple applications
and their varying needs, platform resources need to be allocated in a flexible way. In
order to decrease time-to-market and to support software reuse, these MPSoC plat-
forms should be easy programmable and provide hardware components that enable
scalable software solutions.

From an application viewpoint, MPSoC platforms are designed to efficiently pro-
cess e.g. multimedia content in applications like video players, video conferencing,
3D gaming, etc. Such applications typically require a lot of processing power and
a significant amount of memory. In order to support such complex applications,
MPSoC platforms need the to be easily programmable. In addition, they have to be
flexible in order to keep up with ever evolving application standards. Application
scalability, i.e. the ability to use just enough platform resources according to the user
requirements and with respect to the platform capabilities, is equally important.
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Hence, the key requirements with respect to both the platform hardware and appli-
cation software of the MPSoC platform are: a high performance, a low power con-
sumption, easy programmability, predictability and real-time behavior, flexibility,
scalability, and reliability.

Executing a set of such challenging applications on an MPSoC platform requires
matching the needs of every application with the offered MPSoC platform services.
Due to changing run-time conditions with respect to e.g. user application require-
ments or having multiple simultaneously executing applications competing for plat-
form resources, there is a need for a run-time decision-making and arbitration entity:
the run-time manager.

The run-time manager is logically located between the application layer en the plat-
form layer. As we will show, it has a crucial role in enabling or fulfilling the key
MPSoC requirements. As it abstracts the platform hardware, it enables easy pro-
grammability. By deciding on resource assignment at run-time and based on the
performance requirements of the user, the needs of the application and the capabili-
ties of the platform, it contributes to flexibility, scalability and low power operation.
Finally, as an arbiter, it enables predictable behavior in the presence of multiple si-
multaneously executing applications.

In this thesis, we detail the overall structure of the run-time manager and its role
within the MPSoC context. We describe, in more detail, its components with their
respective algorithms integrated into a global MPSoC application design and map-
ping flow. We show how the run-time manager interacts with the design-time appli-
cation creation phase, how the application is managed at run-time with respect to
the user requirements and the platform resources and how the run-time manager
interacts with the distributed components of the platform. In addition, we provide
an in-depth look at a proof-of-concept implementation of an MPSoC platform and
its associated run-time manager.

The rest of this chapter is organized as follows. Section 1.1 motivates the origin
of the MPSoC revolution and details the key requirements. Section 1.2 details the
most prominent MPSoC platform components and their respective properties. This
includes the heterogeneous processing elements, the flexible on-chip interconnect
and the memory hierarchy. This section also investigates the contribution of ev-
ery platform component with respect to the key requirements. Obviously, the way
an MPSoC platform is composed will have an influence on the run-time manager
requirements and implementation. Section 1.3 details contemporary and future ap-
plications targeted at these MPSoC platforms. These applications also have certain
requirements with respect to the offered run-time management services. Section 1.4
first describes the overall role and structure of the run-time manager and details its
potential contribution for tackling the key MPSoC requirements. This section also
provides the thesis problem statement. Finally, Section 1.5 details the main contribu-
tions and presents the thesis outline.
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1.1 Dawning of the Multi-Processor System-on-Chip Era

When taking a closer look at our everyday electronic devices, it is clear that we en-
tered the MPSoC era. This section first explains why we entered this MPSoC era.
Then, it details and motivates the key requirements of the MPSoC platform.

1.1.1 Motivating the MPSoC Revolution

Three main factors triggered the dawning of the System-on-Chip era: the enabling
factor, the cost factor and the customer-pull factor.

The first factor is the enabling factor. As the silicon processing technology has entered
the deep sub-micron (DSM) domain, it enables creating integrated circuits (IC) with
billions of transistors.

The cost factor has multiple components. The first cost component entails the grow-
ing divergence between the silicon processing capability (i.e. the ability to put bil-
lions of transistors on a chip) and the design capability (i.e. the number of transistors
a designer can design within a limited timeframe). This phenomena is known as
the design productivity gap [3,4] (Figure 1.1). This trend indicates that the amount of
designer-months for a specific project is increasing rapidly.

Potential Desigh Complexity and Designer Productivity
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Figure 1.1: The so-called design productivity gap indicates a growing divergence between the
silicon processing capability and the design capability [3].

A second cost component is the investment associated with creating such large ICs.
On the one hand this investment entails the exponentially rising cost of the IC fabri-
cation facilities [173]. For example, in 2005 Intel decided to build a new 300mm Fab
in Arizona at an estimated cost of about $3 billion [149].

On the other hand, this investment entails rapidly growing non-recurring engineering
(NRE) costs and lithography costs (i.e. the mask sets). For example, the cost of a
90nm node mask set is about $1 million, while the cost of a 45nm node mask set is
well over $2 million [202]. Obviously, such investments represent a major stumbling
block for creating low-volume ICs.

A solution for this cost problem is the so-called platform-based design paradigm [4], i.e.
an extension to core-based design that uses groups of cores that already form a com-
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plete functional hardware component. These components contains programmable
cores and reconfigurable logic. This way, derivative designs can easily be created.
This flexibility also allows to, on the one hand, reuse the same platform for a dif-
ferent set of applications (i.e. increase the IC production volume) and, on the other
hand, cope with ever evolving standards. This way, both the NRE and the design
cost per IC will drop substantially.

The third factor is the customer-pull factor. MPSoC platforms serve the ever-increasing
user or customer desire for more complex and integrated applications. Currently,
MPSoC platforms are found in embedded devices ranging from consumer electron-
ics to industrial equipment. This includes cell phones and PDAs, telecommunica-
tions equipment, digital televisions and set-top boxes, home video gaming equip-
ment, etc. Pricing for these consumer devices is very competitive. A typical DVD
player or a cell phone starts selling for as low as 50 Euro. This again confirms cost is
an important factor in designing and manufacturing an MPSoC platform. Further-
more, these embedded devices are taking an ever more prominent role in our every-
day life. The users expect them to be always functioning (i.e. behaving predictably)
and always-on (i.e. low power operation).

An MPSoC platform can thus be defined as an application-focused, integrated circuit
that implements most or all of the functions of a complete electronic system [103].
What components exactly are embedded in such an MPSoC heavily depends on the
purpose of the MPSoC platform. In general, it contains I/O circuitry (analog or
mixed signal), memory components, multiple instruction set processors (ISP), special-
ized logic and accelerators, buses, etc.

1.1.2 Definition and Motivation of the MPSoC Requirements

In this thesis, the MPSoC requirements are considered in the context of embedded
platforms. The general purpose multiprocessor platform, also denoted as a Chip
Multi-Processor (CMP), is mainly concerned with combining multiple processors on
a single chip to increase overall compute performance. In contrast, the embedded
platform also considers the power budget, cost constraints and application timing!
constraints [102].

The key requirements for an embedded MPSoC platforms (with respect to both its
hardware and its software) are flexibility, scalability, predictability and real-time behavior.
In addition, MPSoC platforms should have a low power consumption, while providing
a large amount of processing power i.e. performance. Finally, these MPSoC solutions
should be produced at a low cost. As designing complex software applications in an
efficient way takes an increasing amount of time, the MPSoC platforms should be
easily programmable.

Flexibility and Programmability

Flexibility can be defined as the ability to use the same hardware resources for dif-
ferent purposes. Flexibility is needed to handle fast moving application standards,
support new applications and amortize the high platform NRE cost. The program-

IThe view on timing between an embedded platform and a general purpose platform is essentially
different. In case of an embedded platform, timing is a constraint, while for a general purpose platform,
it is a component of the cost function which needs to be minimized.
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ming effort can be defined as the design effort required to get a wide variety of
applications executing within specifications on the MPSoC platform. Indeed, cus-
tom design for a single product or application is no longer feasible. In this context,
Software Defined Radio (SDR) shows the need for flexibility, as the same wireless dig-
ital baseband engine should be capable of seamlessly switching between multiple
wireless communication services [224]. Combining platform flexibility with efficient
application design and mapping also decreases the product time-to-market.

Scalability

Platform scalability is important, both from a design-time point of view as from
a run-time point of view. Design-time scalability implies the possibility of adding
more components to the platform without the need for a global platform redesign.
Run-time scalability can be defined as the ability to run the same application with-
out redesign on both a high-end, resource-rich platform and a low-end platform with
minimal resources.

Predictability and Real-time behavior

Predictability refers to the degree that one can make a correct forecast of the applica-
tion behavior. Real-time behavior refers to the degree at which the expected appli-
cation or system output is produced within the predicted time-frame. Predictability
and real-time behavior are important to ensure the always functioning user require-
ment of an embedded system.

Performance

Multiprocessor compute performance is important because contemporary multime-
dia and wireless applications require more processing power than a single flexi-
ble, programmable processing element can deliver. Furthermore, the user often
wants to run multiple applications at the same time or some applications like e.g.
video conferencing will require multiple platform services simultaneously.  Pol-
lack’s Rule [182] states that for a single processor, increase in performance is roughly
proportional to the square root of increase in complexity (i.e. additional transistors).
A multiprocessor architecture, however, has the potential to provide near-linear per-
formance improvement [27].

Power consumption

Power consumption is definitively an issue for battery-operated devices. A recent
survey [232] conducted by market research group TNS revealed that two days of
battery-life during active use was on top of the user’s wish list for future mobile de-
vices. The study also indicates a large consumer appetite for new multimedia and
entertainment applications. However, users refrain from using these kinds of ap-
plications because of accelerated battery depletion. The continuously growing di-
vergence between battery-capacity and the required power makes energy conserva-
tion of utmost importance. Even in non-battery operated devices we still care about
power consumption. Limiting the power consumption is good for the lifetime of
the chip, potentially avoids the need for a more expensive package and, reduces the
power leakage, which is becoming quite dominant for deep sub-micron-and-beyond
technology nodes. With respect to single processor platforms, multiprocessor plat-
forms enable a reduced power consumption. Indeed, one can reduce the power con-
sumption by executing an application on multiple processing elements operating at
a lower voltage and frequency.
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Reliability

Reliability can be defined as the ability of a system or component to perform its required
functions under stated conditions for a specified period of time [80]. In other words, a re-
liable hardware or software component consistently performs according to its spec-
ifications and, in theory, is totally free of technical errors. In practice, a reliable sys-
tem has often been designed to cope with technical errors. In the deep sub-micron-
and-beyond technology nodes, reliability issues will play an increasingly important
role [61] (see Section 8.2.5).

Obviously, these requirements will have an effect on the components and the com-
position of the MPSoC platform. In turn, this will have an effect on how such future
embedded multiprocessor platforms are managed at run-time.

1.2 The MPSoC Platform

The main components of the System-on-Chip (SoC) are: the processing elements, re-
sponsible for executing the applications, the on-chip memories, responsible for stor-
ing both the application data and instructions, I/ O components, responsible for com-
municating with the outside world and, finally, the on-chip interconnect structure,
responsible for linking the processing elements with the memories and the I/O com-
ponents.

Figure 1.2 details the MPSoC platform template used throughout this thesis. This
template lives up to the prediction that future MPSoC platforms will consist of a
mixture of tiles, containing heterogeneous computing resources and memory re-
sources, interconnected by a flexible and configurable on-chip communications fab-
ric [27,123,130]. Next to a configuration and communication engine, every process-
ing tile also contains some local (private) memory. Furthermore, the SoC also con-
tains some shared memory tiles. This view roughly corresponds to the SoC template
presented in the 2005 ITRS roadmap [5].

The rest of this section details the rationale behind each of these SoC components
and shows how they contribute to the key MPSoC requirements, i.e. increasing the
compute power of the MPSoC platform while controlling both power consumption
and SoC cost and while ensuring scalability, flexibility, predictability and real-time
behavior.

1.2.1 Heterogeneous Processing Elements

The need for more platform performance can be fulfilled in various ways. Some
companies, like ARM and MIPS are upgrading their General Purpose Processor (GPP)
cores with signal processing capabilities like e.g. the ARM1136 and the MIPS24KEc
core. Their rationale is to provide a single general purpose processing element with
enough power to replace the Digital Signal Processor (DSP), while still retaining the
original GPP functionality. However, Pollack’s Rule [27,182] states that it is far more
efficient to put multiple cores on a chip than to boost the performance of the single
core by adding more complexity.
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Figure 1.2: MPSoC template: a tile of the MPSoC system can contain a PE with communication
infrastructure and local memory (a). The MPSoC will be composed of a set of tiles (PE, memory
or 1I/O) (b).

A far better solution is to put multiple general purpose cores together on a single
chip. This way, the multicore benefits can be harvested easily when multiple (legacy)
applications run simultaneously. The ARM MPCore, for example, is a homogeneous
architecture that contains up to four ARM11 cores. Such homogeneous MPSoC plat-
forms are well suited to dominate the more general purpose processing domain and
to handle legacy applications.

Due to the energy-flexibility and the flexibility-performance trade-off, domain-specific
MPSoCs are likely to contain several specialized, programmable processing elements
(PE), like a configurable accelerator, a DSP, fine-grain or coarse-grain reconfigurable
hardware, etc. next to one or more general purpose PEs. This way it is possible to
increase the compute performance while, at the same time, reduce the power con-
sumption and remain flexible. This implies that domain-specific MPSoCs will, to a
certain extent, be heterogeneous when it comes to processing elements.

Although the number of processing elements contained in such an MPSoC plat-
form obviously depends on its purpose, there is a clear trend for an ever increas-
ing amount of cores. Indeed, the ITRS roadmap predicts a five-fold increase of the
amount of processing elements by 2010 with respect to 2005 [5].

A quick look at some contemporary MPSoC platforms shows that most of them con-
tain application-specific PEs next to more general purpose PEs.

STI CELL

The CELL Processor [128], jointly developed by Sony, Toshiba and IBM (STI), con-
tains up to nine PEs. One general purpose Power Processor Element (PPE) and eight
so-called Synergistic Processor Elements (SPE). The PPE runs the operating system and
the control tasks, while the SPEs provides the required compute performance. This
MPSoC is at the heart of the PlayStation 3 game console.
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STMicroelectronics Nomadik

The STMicroelectronics Nomadik [15] contains an ARM926 RISC CPU with Java ac-
celeration and DSP instruction extensions. In addition, the Nomadik features several
Very Long Instruction Word (VLIW) DSP cores that act as accelerators for handling
graphics and for image, video and audio processing. This MPSoC uses high end cell
phones as its key driver.

Texas Instruments OMAP

The TT OMAP2 MPSoC contains an ARM11 RISC CPU, a TI C55x digital signal pro-
cessor, a 2D /3D graphics accelerator and a video accelerator. The OMAP MPSoC
technology can be found in e.g. high end Nokia cell phones.

Philips Nexperia

The Philips Nexperia PNX8550 (also known as the Viper2) is a media SoC mainly
targeted at digital television set-top boxes. It contains three processors: one MIPS
PR4450 general purpose RISC processor for control processing and balancing off-
chip functions and two TriMedia TM3260 DSP processors for processing the real-
time multimedia content.

Configurable Cores (Tensilica, ARC, etc.)

Another trend in dealing with the energy/flexibility and the flexibility / performance
trade-off is configurable cores. Tensilica, for example, advocates the sea of processors
idea, where each processor is tuned towards a specific function or application. Ten-
silica provides tools to generate both the optimized processor core, further denoted
as Application Specific Instruction set Processor (ASIP), and the corresponding software
programming toolset. The ASIP motivation is that tuned PEs are more efficient than
general-purpose PEs, while providing more flexibility than ASICs [188].

Fine-grain Reconfigurable Hardware (Xilinx, Altera, etc.)

As Section 1.1 explains, cost, flexibility and scalability are key requirements of an
MPSoC platform. That is why the Field Programmable Gate Array (FPGA), also de-
noted as fine-grain reconfigurable hardware, is becoming a viable alternative for the
ASIC in many markets. As FPGAs are an off-the-shelf product, there is no NRE cost.
In addition, FPGA fabric also starts to get integrated into SoCs. This way, it is pos-
sible to create high performance custom logic after manufacturing. Performance has
long been the primary figure of merit with respect to FPGA technology [55]. Power
consumption was never an issue, up till recently. Today, designers of next gener-
ation FPGA fabric pay greater attention to power consumption as some potential
application domains have a constrained power budget. Furthermore, there is still no
consensus on how this FPGA fabric should be used as a regular processing element
within the MPSoC platform [103]. Additionally, most FPGA fabric vendors also pro-
vide soft IP blocks that provide GPP and DSP functionality. This enables creating
custom MPSoC platforms that combine easy programmability with flexibility and
scalability.

Intuitively, it is quite clear that supporting this heterogeneity with respect to process-
ing elements will make both application development and run-time management
harder with respect to the homogeneous case.
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1.2.2 Flexible on-Chip Interconnect

Issues like power consumption, flexibility and scalability of the communication in-
frastructure and predictable platform behavior are also tackled by novel MPSoC on-
chip communication architectures. Instead of interconnecting the different PEs (or
IP blocks in general) through a wide variety of buses, future SoCs will use a more
flexible interconnect like e.g. a Network-on-Chip (NoC) [22,57].

In contrast to a bus-based interconnect, a NoC does not need to drive long (i.e. cross-
chip) wires, only wire segments. Scalability is inherently present in the NoC con-
cept [132]. In a bus-based platform, the arbitration bottleneck grows with the num-
ber of bus masters and the bus bandwidth is shared by all attached IP blocks. In
a NoC-based platform, the routing and arbitration is distributed and the aggregate
bandwidth scales with the network As most advanced on-chip communication fab-
rics, NoCs have a way to allocate a certain amount of resources for a certain applica-
tion. This results in minimal inter-application interference with respect to the shared
resource and, hence, predictable behavior. By interconnecting IP blocks in a flexible
way and by allowing to alter both communication paths and the reserved communi-
cation bandwidth at run-time, NoCs contribute to using the MPSoC computational
resources in a flexible way.

Although, the NoC communication architecture bears a close resemblance with tra-
ditional parallel and distributed systems, there are some important key differences.
In contrast to off-chip networks, the on-chip networks have limited resources (e.g.
memory resources) and therefore require adapted communication protocols. In ad-
dition, NoCs can have a higher bandwidth and the NoC traffic is likely to be more
deterministic and periodic than in off-chip networks [119].

The term Network-on-Chip is used for a variety of state-of-the-art on-chip intercon-
nect solutions [194]: ranging from multi-layer segmented buses and (partial) cross-
bars to on-chip networks as envisioned by Dally et al. [57]. The latter view is used
throughout this thesis. Well known examples of research NoCs are Philips Athe-
real [84], SPIN [7] and MANGO [25]. Bjerregaard et al. [25] provide an excellent
survey of existing NoC research and NoC best practices. Salminen et al. compares
a wide range of NoC solutions (including the Gecko NoC, discussed in Chapter 6).
In recent years, several start-up companies like Arteris, with the Arteris NoC, and
Sonics [235], with the SonicsMX SMART Interconnect have started to commercialize
these NoC concepts.

This new communication architecture also introduces new run-time management
challenges. For example, using a NoC will make it possible to reroute communi-
cation, i.e. to change at run-time the communication path between source and des-
tination. In addition, resource management algorithms have to take the properties
of the interconnect into account. In contrast to a bus architecture, for example, the
communication latency between PEs can be different.

1.2.3 MPSoC Memory Hierarchy

A key area to handle requirements like scalability, high performance and low power
consumption is the memory subsystem.
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Memory access latency can cause the compute process to halt (i.e. dropping perfor-
mance) and accessing memories represents an important component in the overall
system energy cost. Typically, smaller memories require less time and less energy
to access and require a smaller chip area. Stravers et al. [213] deduced that, in the
future, an ever increasing percentage of silicon die area will be dedicated to mem-
ory functionality. Limiting the amount of required memory will reduce chip cost as
die area represents a clear cost factor. This reasoning is also adopted by the ITRS
roadmap [5]. Hence, for memory-intensive applications such as the upcoming mul-
timedia applications (see Section 1.3) reducing memory needs is of utmost impor-
tance.

One way to deal with the memory latency and power consumption issue is to add a
memory hierarchy: instead of using a single on-chip memory block to store all data,
the hierarchy enables to store data that is often used in smaller memories closer to
the processor. A memory hierarchy also relieves the contention on a central shared
memory, hence improving the scalability. Unfortunately, adding a memory hierar-
chy also has its downsides: it increases die area and, in case of a cache-based hierar-
chy, it amplifies processing time variations. These processing time variations have a
devastating effect on the predictability.

As a solution, scratchpad memories have been introduced in the MPSoC platform
environment [181,228]. Compared to caches, scratchpad memories require less en-
ergy per memory access, they require less on-chip area, and exhibit a predictable
behavior. However, the use of scratchpad memories requires extensive design-time
application analysis and exploration of the application in combination with suitable
run-time management support.

In the CELL processor architecture, for example, the Power PE has 32kB instruction
and data level-1 cache combined with 512kB level-2 cache. The Synergistic PEs each
contain 256 kB scratchpad memory.

1.3 The Rise of Multimedia Services

The actual value of future devices containing MPSoC platforms does not lie within
the embedded multiprocessor IC itself, but in its capability to provide the user of
the device with an amount of services or experiences. Indeed, the industry has far
larger opportunities (and incentives) to differentiate on the services it provides to
its customers than on platform differentiation. This means that the applications will
drive the need for and the evolution of the MPSoC platforms. So what multimedia
applications and services will be created on top of these MPSoC platforms?

Current smartphones and feature phones combine mobile phone functions with PDA
functionality. These devices have the ability to take low-resolution pictures, play
low-quality low-resolution video and provide 2D and 3D games. However, resolu-
tion as well as framerate and video quality continuously improve.

Video decoding and encoding will undoubtedly be a major future driver applica-
tion for mobile devices. These video applications will require considerable compute
power. Stating that, due to device size limitations, the mobile display does not al-
low high-resolution and, hence, the amount of required compute power will remain
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limited does not hold. As mobile storage capacity keeps rising at a high rate, these
embedded devices will act as a container for pictures and home video collections.
These devices will also act as a decoding device for high resolution external displays
(e.g. TV display). Furthermore, rising storage capacity and increasing phone-camera
resolutions will enable using the cell phone as a video recorder. This implies that
the mobile terminal must also be capable of encoding video, which is typically more
compute intensive than video decoding.

Mobile TV, like the DVB-H standard, is also considered to be a driver application
[177]. On the one hand, network providers see it as a revenue-generating service at
a time where more traditional income flows (e.g. voice traffic) are stagnating. Inte-
grated Device Manufacturers see it as an opportunity to create new upmarket hand-
held devices.

Wireless enabled terminals are also looking for flexible, low-power MPSoC solutions
in order to support an increasingly large variety of wireless communication modes
(e.g. Cellular, WiFi, WiMax, WPANSs) [224]. Creating a dedicated ASIC for every
mode is no longer feasible due to fast changing requirements and a decreasing time-
to-market. Hence, the motivation to create a Software Defined Radio (SDR).

In a more distant future, handheld devices will be providing augmented reality ser-
vices. Augmented reality enhances the user’s perception of the surroundings by
combining the physical world with the virtual world. Thus paving the way for
media-rich, location-aware and context-aware applications [88] like e.g. attaching
audio and video objects to physical objects. In addition, there is the possibility of
augmented reality gaming, where 3D virtual opponents are placed in a life real-
world video stream [220].

Set-top boxes, building on MPSoC platforms, will provide services like digital tele-
vision, Internet access, in-home entertainment (e.g. act as a game console) and home
automation.

But even beyond multimedia, in the automotive and robotics environment, there is
need for the key properties that MPSoC platforms provide. Consider for example
the compute power required for creating an autonomous driverless car or for a personal
robot servant. Even the very limited prototypes of today already rely on an array of
general purpose processors and DSPs [85].

The run-time manager has an important role in enabling these multimedia applica-
tions. In short, the run-time manager has to ensure that these driver applications
receive the platform resources and services they require. In addition, the run-time
manager has to provide the appropriate platform abstractions to make application
design easier and faster. Section 1.4.1 provides more details.

1.4 MPSoC Run-Time Management

From an abstraction viewpoint, the run-time manager is located between the MPSoC
platform and the application(s) (Figure 1.3). It is composed of a system manager and
a run-time library. The system manager, containing the quality manager and the
resource managet, is responsible for decision making, while the Run-Time Library
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(RTLib) provides platform abstraction services. The run-time library collaborates
with the system manager for executing the decisions, for run-time interaction with
the applications and for monitoring both platform resources. Chapter 2 provides an
in-depth description of these components, their interaction and their implementa-
tion options.

Application(s)

Quality
Manager
Run-Time

Library

Resource
Manager

MPSoC Platform Services

Figure 1.3: The run-time manager contains system management components and a run-time
library. In turn, the system manager contains a quality manager and a resource manager.
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This section first describes the role of the run-time manager and its components with
respect to the key MPSoC requirements. Then, it details the general run-time man-
agement problem statement, followed by a short description of the specific solutions
presented in this thesis.

1.4.1 Role in Addressing the MPSoC Requirements

The run-time manager plays a crucial role in enabling or fulfilling the key MPSoC
requirements and in linking the needs of the application in an efficient way to the
provided platform services. This section briefly describes how the different run-time
management components (Figure 1.3) contribute to addressing these requirements.

- Cost reduction. As the run-time manager abstracts the MPSoC platform hard-
ware details with respect to the application designer, it has an important part
in providing an easily programmable platform. Meaning that the provided
platform abstractions should allow the designer to create applications in a fast
and efficient way (i.e. RTLib).

- Scalability. Applications can have multiple application quality levels. These
quality levels provide a certain user experience given a certain amount of plat-
form resources. By selecting the right application quality, depending on the
available platform resources and the run-time user requirements, the run-time
manager enables both platform and application scalability. This means that
the run-time manager should provide appropriate algorithms for quality man-
agement (i.e. Quality Manager). Furthermore, one has to take into account that
platform resource availability as well as the user requirements can change over
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time. Hence, the run-time manager should also provide a way to seamlessly
switch between quality levels.

- Flexibility. Depending on the user requirements and the available platform
resources, the run-time manager (i.e. Resource Manager) has to allocate the ap-
propriate platform resources in a flexible way. These resource allocation deci-
sions have to be made at run-time, so one requires a fast and efficient decision
making algorithm. As the MPSoC platform will contain multiple heteroge-
neous processing elements, this allocation algorithm must be able to handle
tasks that have support for multiple processing element types and it has to
take the specific properties of the on-chip processing and communication re-
sources into account. Also here, one has to take into account that run-time
conditions change. This means that the run-time manager needs to be able
to seamlessly reallocate resources at run-time, even when e.g. the source and
target processing element of a certain task have a different architecture.

- Predictability and Real-time behavior. To achieve predictable and real-time
application performance, this thesis focuses on how to use design-time applica-
tion mapping and characterization information for run-time decision-making.
This means that the run-time manager should provide an abstraction layer (i.e.
RTLib) on top of the platform hardware services that allows the designer or the
design tool to reason about application timing and mapping performance. At
run-time, the application must also be able to depend on the availability (col-
laboration between RTLib and Resource Manager) and the predictable behavior
of the offered platform services.

- High compute performance and low power operation. The cost functions in-
corporated into the decision making algorithms of the Resource Manager have
to consider power and performance. This means, for example, that when as-
signing platform resources to the application the run-time manager can opti-
mize for a low power solution that still satisfies the performance constraints.
Furthermore, the run-time manager has to consider the trade-off between flex-
ibility and performance. This especially holds in case of e.g. reconfigurable
hardware processing elements.

- Reliability. The run-time manager also plays a central role in providing a re-
liable computing platform for the application designer. This means managing
platform degradation effects caused by e.g. chip hot-spots. This thesis does not
directly address the reliability platform requirement. In the future, however,
some concepts (like e.g. task migration, discussed in Chapter 4) could be ex-
tended to handle such degradation effects.

1.4.2 Application Composability

Besides playing a role in ensuring predictable and real-time application behavior, the
run-time manager is a crucial component in ensuring application composability.

Consider an application designer responsible for getting an application to execute
on an MPSoC platform given a set of real-time performance constraints. In case this
application designer can assume full control of the MPSoC platform resources for
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the target application, the amount of uncertainty is fairly low. However, in case the
platform user is free to execute multiple (at design-time unknown) applications, a
single designer can no longer assume to have full control of the resources. Ideally,
these applications should not interfere with each other, while the real-time behavior
of the individual applications with respect to the user requirements still need to be
guaranteed.

Application Platform
Characterization Virtualization
enables predictable enables predictable

application performance platform resource usage

user

Run-Time Arbitration preference

predictable
system performance

Composability

Figure 1.4: System composability can be achieved through application characterization and plat-
form resource virtualization combined with run-time arbitration given user preferences.

Hence, a composability issue arises when multiple applications are executing simulta-
neously. Composability deals with the degree to which a single application designer
can create a single application in isolation, but can still reason about the application
performance on the MPSoC platform when combined with other applications [118].

In this sense, the ability to provide system composability is built on application char-
acterization, platform virtualization and the presence of a run-time arbiter (Figure 1.4).

Application characterization deals with estimating the platform resource require-
ments of an application in order to reach a certain performance goal. This charac-
terization involves determining the required computing resources as well as the re-
quired memory resources and on-chip communication resources. Application char-
acterization is needed for predictable application performance. This characterization
information is passed to the run-time manager as part of the design-time application
analysis information.

Platform virtualization involves providing the platform means to ensure that a cer-
tain application (or part of the application) is granted a guaranteed service. This can
involve computing resource services but it also means access to on-chip communi-
cation services and memory services. The provided guarantees can either be hard
(strictly enforced) or soft (i.e. enforced within certain boundaries). In addition, the
services can be implemented in hardware or in a combination of hardware (platform
services) and software (RTLib).

As multiple applications will content for resources, the run-time manager, acting
as a resource arbiter, is responsible for reserving the required amount of platform
resources for every application and for enforcing the resource usage bounds. This
way, predictable and real-time system performance can be achieved which, in turn,
leads to composability.
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1.4.3 Problem Statement

In a broad sense, the main problem an MPSoC run-time manager needs to solve is:
matching of the needs and the properties of the application® in a fast, efficient and flexible
way with the provided MPSoC platform services and properties in order to execute multiple
applications while minimizing inter-application interference.

Obviously, this problem domain is so vast that exploring the entire problem space
easily exceeds the scope of this thesis. Hence, we create and demonstrate a quality
manager, a resource manager and a RTLib and, consequently, apply them to some
specific example problems. These run-time manager components have to consider
the following requirements.

In order to match the needs of the application with the available platform services in
a fast and efficient way, one requires a quality manager and a resource manager with
their respective algorithms. The quality manager has to consider the application user
requirements to derive the application resource requirements, while the resource
manager takes these resource requirements and matches them with the available
platform resources. These platform resources include the heterogeneous processing
elements, the memory hierarchy and the flexible on-chip interconnect. It is obvious
that, to find the optimal user value and to minimize inter-application interference
on all levels, the quality manager and the resource manager will have to cooperate.
Furthermore, both the quality manager and the resource manager should be capa-
ble of considering design-time application information, generated by the application
design flow and its associated tools. This information will enable faster and more ac-
curate (application-specific) decision making.

In order to retain the run-time flexibility with respect to the changing application re-
quirements and the availability of platform resources, the run-time manager should
be capable of changing both the application quality level as well as the application’s
resource allocation without causing (too much) inter-application interference.

The run-time management functionality should also provide a platform abstraction
layer (i.e. RTLib) that allows a designer to create applications in an efficient way. At
the same time, this abstraction layer should optimally exploit the offered platform
services in order to produces as little run-time overhead as possible.

1.5 Main Contributions and Thesis Outline

This section details the contributions of this thesis with respect to the run-time man-
agement of embedded systems in general and heterogeneous multiprocessor SoCs
in particular. Figure 1.5 illustrates our contributions.

The main contributions of our work can be summarized as follows.

- Generic description of the MPSoC run-time management components and
their design space (Chapter 2). [163] Chapter 2 describes, in a generic way, the
role, the responsibilities and the boundary conditions of an MPSoC run-time

2This includes the user needs with respect to the application.
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Figure 1.5: Detailed view of the main thesis contributions. The resource management aspects
are covered in Chapter 3, Chapter 4 and Chapter 5. Chapter 6 details a proof-of-concept imple-
mentation that mainly focuses on these resource management components. Chapter 7 deals with
the run-time quality management and its link with both the application characterization infor-
mation and the resource manager. Appendix A details a generator for testbench applications with
multiple operating points.
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manager. To the best of our knowledge, we are the first to generically describe
the MPSoC run-time management functionality and its implementation space.
We show that the MPSoC run-time manager has to unite the embedded en-
vironment, the desktop environment and the parallel and distributed systems
environment. We also provide an in-depth description of the responsibilities
and the interaction of the MPSoC run-time manager components. We substan-
tiate these run-time management functions and their implementation space by
describing and positioning existing academic and commercial multiprocessor
run-time management solutions.

- Run-time resource manager algorithms (Chapter 3) [131, 136, 157, 158, 160,
161]. Chapter 3 details a run-time resource assignment algorithm that takes
the properties of fine-grain reconfigurable hardware tiles, present within the
MPSoC, into account. Besides providing a fast and efficient generic heuristic
for MPSoC resource assignment, we also propose a set of add-ons to improve
the performance of this algorithm in the presence of fine-grain reconfigurable
hardware tiles. In addition, we introduce a novel resource assignment algo-
rithm that combines assignment of application tasks and soft IP cores. This
technique is denoted as hierarchical configuration. Hierarchical configuration
managed by the run-time manager enables easier application design and in-
creases the run-time spatial mapping freedom. In turn, this results in a higher
performance for the resource assignment algorithm.

- MPSoC run-time task migration (Chapter 4) [136,143,144,155,157]. Chapter 4
describes run-time task migration in a heterogeneous MPSoC environment. We
detail a new run-time task migration policy closely coupled to the run-time re-
source assignment algorithm. In addition to detailing a design-environment
supported mechanism, that enables moving tasks between an ISP and fine-
grained reconfigurable hardware, we also propose two novel task migration
mechanisms tailored to the Network-on-Chip environment. Finally, we pro-
pose a novel mechanism for task migration initiation, based on creative use of
the debug registers in modern embedded microprocessors.

- Reactive Network-on-Chip communication management (Chapter 5) [17,162].
Chapter 5 details a communication management algorithm linked to a Network-
on-Chip traffic shaping mechanism. We propose a reactive on-chip commu-
nication management mechanism with several MPSoC specific management
policies. We show that by exploiting an injection rate control mechanism with
global decision making, it is possible to provide a communication manage-
ment system capable of providing a soft QoS in a best-effort NoC. Hence, we
provide an MPSoC-specific communication management algorithm tailored to
the injection rate control mechanism.

- MPSoC proof-of-concept implementation (Chapter 6) [136,156]. Chapter 6
describes the Gecko demonstrators. This implementation-oriented contribu-
tion shows that our run-time management contributions, i.e. resource assign-
ment and hierarchical configuration, run-time task migration and Network-on-
Chip communication management can be implemented into an operating sys-
tem handling the MPSoC platform resources. The MPSoC platform, denoted
as Gecko, is emulated on a Field Programmable Gate Array (FPGA) linked to a
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Compaq iPAQ PDA. The PDA Strong ARM processor is linked to 8 FPGA slave
processors by a 3-by-3 mesh Network-on-Chip. This chapter also details how
the Gecko RTLib functionality is provided by an IMEC in-house 16-bit proces-
sor instantiated next to every Gecko processing element. The Gecko proof-of-
concept applications consist of an edge detector, a small 3D shoot’em up game
and a motion-JPEG video decoder.

- Algorithms for run-time quality management (Chapter 7) [49-52]. Chapter 7
introduces a novel, platform independent run-time algorithm to perform qual-
ity management, i.e. to select an application quality operating point at run-
time based on the user requirements and the available platform resources, as
reported by the resource manager. This contribution also proposes a way to
manage the interaction between the quality manager and the resource man-
ager.

- Pareto Surfaces For Free (Appendix A). In order to have a realistic, repro-
ducible and flexible run-time manager testbench with respect to applications
with multiple quality levels and implementation trade-offs, Appendix A de-
tails an input data generation tool denoted Pareto Surfaces For Free (PSFF). The
PSFF tool is, to the best of our knowledge, the first tool that generates multiple
realistic application operating points, either based on profiling information of
a real-life application, or based on a designer-controlled random generator.

The last two appendices provide additional information with respect to the contri-
butions. Appendix B provides the Task Graphs For Free (TGFF) configuration file
used to generate task graphs and associated details for the experiments of Chap-
ter 3. More specifically, it details the options for the resource assignment experiments
(Section 3.6) and for generating the softcore library for the hierarchical configuration
(Section 3.9) experiments. Appendix C details the IMEC MPSoC application map-
ping flow and its associated tool-chain. It shows how the run-time manager fits in
this mapping flow and it details the different trade-offs a designer can make when
mapping a sequential application onto an MPSoC platform.

This thesis also pays a lot of attention to related work The run-time manager com-
ponents and their implementation space, detailed in Chapter 2, are substantiated
with academic and industrial MPSoC run-time manager examples. In addition, ev-
ery chapter provides an overview of the related work relevant to its contribution.
Related work that motivates a statement or an assumption is provided when ap-
propriate. Throughout this thesis, the reader will also find a number of example
text boxes. These examples should help the reader in understanding the explained
concepts. They do not contain additional information required to understand the
remainder of the thesis.

1.6 Contributions Acknowledgments

We have to give credit where credit is due. The close link between run-time man-
ager and the Gecko hardware was achieved by a close collaboration with Theodore
Marescaux. As a result, the introduction of Chapter 5 (i.e. Sections 5.1 till 5.3) and
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the contribution of Chapter 6 are, shared between the author and the PhD the-
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among whom Theodore Marescaux, Jean-Yves Mignolet, Andrei Bartic, Will Mof-
fat, Paul Coene, Prabhat Avasare, Nam Pham Ngoc and Diederik Verkest (apologies
to those I may have forgotten). The contributions contained in Chapter 7 required
a close collaboration between the design-time mapping flow, its associated design
tools and the run-time manager. So, the base-line operating point selection algorithm
(Section 7.2 of Chapter 7) was achieved in close collaboration with Chantal Ykman-
Couvreur. The QSDPCM case study, to illustrate the application design trade-offs
and application adaptivity (Section 7.1.2 of Chapter 7), was achieved due to the ex-
tensive discussions and enthusiastic collaboration of Chantal Ykman-Couvreur and
Erik Brockmeyer. The contribution related to combining design-time application
analysis with run-time decision-making (Chapter 7) was seeded by the work of the
IMEC TCM PhD team (among whom Peng Yang and Zhe Ma).
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CHAPTER 2

A Safari Through the MPSoC Run-Time
Management Jungle

ing device. It has a far greater impact on how a user or programmer perceives

the system than the actual hardware does [217]. In general, the operating sys-
tem is responsible for a broad range of system managerial tasks such as processor
management, managing computing platform peripherals and I/O devices. This in-
cludes data and file system management and maintaining an interface with the user.
The operating system also provides a set of entry points for starting applications.

The operating system is the most important software that runs on any comput-

At the heart of the operating system is the run-time manager. The run-time manager
is responsible for handling the critical (typically shared) resources of any computing
platform: one or more potentially heterogeneous processing elements, the (on-chip)
volatile memory and the platform communication infrastructure including I/O.

The run-time manager is composed of multiple interacting components. The quality
manager is responsible for application interaction with respect to the quality needs of
the user. The resource manager is responsible for efficiently managing the platform re-
sources with respect to the requirements of the different executing applications. This
includes minimizing the amount of inter-application interference. Furthermore, the
run-time manager provides a run-time library component that provides the necessary
platform abstraction functions used by the designer for creating the application and
called by the application at run-time.
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There are multiple ways of implementing the MPSoC run-time management func-
tionality depending on the needs of the application and the services provided by the
platform. We introduce an MPSoC run-time management implementation design
space that contains three axis. The first axis describes the amount of distribution. The
second axis details the range from pure software implementation to a pure hardware
implementation. The third axis is concerned with the amount of specialization of the
run-time manager with respect to the application or the offered platform services.

Besides detailing the run-time manager functionality and its implementation design
space, this chapter also serves as a reference for the rest of the thesis as it puts the
introduced run-time manager functionality and the implementation decisions in the
correct perspective. In short, the chapter contains the following sections. Section 2.1
details the boundary conditions in which the run-time manager has to operate. Con-
sequently, Section 2.2 details the different run-time management components and
their respective roles. This section also describes the information flow that drives the
run-time manager and the role of the run-time manager in guaranteeing determinis-
tic application behavior and in minimizing inter-application interference. Section 2.3
details the run-time management design space and illustrates the implementation
options with examples. In addition, this section motivates the design decisions for
the run-time manager detailed throughout this thesis. Finally, Section 2.4 briefly
describes some MPSoC run-time management examples and places them into the
design space.

2.1 MPSoC Run-time Management Constraints

The run-time manager is squeezed between the platform hardware layer and the
application layer. This means that the run-time manager has to provide the services
required by the application by building on top of the available platform services.

Desktop Domain

Dynamic set of Adaptive
Multimedia Applications

T
Application aspect

MPSoC
Run-Time Manager

Platform aspect Non-functional aspect
~N

Multiple high-performance Low-power, real-time
heterog PEs inter d (deterministic) behavi ined
by a switched network with a small memory footprint
Parallel and Distributed Domain Embedded Domain

Figure 2.1: MPSoC run-time manager at the crossroad of classic computing domains.

The run-time manager has to operate within the boundary constraints of the MP-
SoC environment. As Figure 2.1 illustrates, the MPSoC run-time manager sits at
the crossroad of several classic computing domains when it comes to applications,
platform hardware and non-functional constraints.
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- Platform hardware. The MPSoC platform hardware (see Section 1.2) is in fact
the on-chip equivalent of traditional parallel and distributed systems. These
systems are composed of multiple, often heterogeneous, processing elements
with a complex memory hierarchy interconnected by a switched network fab-
ric.

- Applications functionality As Section 1.3 explains, the actual user value of the
MPSoC device sits in its capability of handling a dynamic set of applications.
This requirement is typically found in the desktop computing domain'. In this
domain, it is important to maximize the overall throughput and to provide
fairness between applications. However, run-time management support for
soft real-time behavior, adaptivity towards the application and user interaction
play an equally important role [185].

- Non-functional application constraints. The discussed MPSoC platforms will
often end up in embedded and/or mobile devices. This means that the run-
time manager will have to consider the constraints that deal with resource
scarcity. This includes, for example, a limited amount of battery power. Ad-
ditionally, there are constraints that deal with the (expected) behavior of the
device such as e.g. real-time behavior and the users’ always-on expectation.

Dealing with these constraints not only requires a decision on which run-time man-
agement functionality to provide with respect to the application design flow and the
platform services (Section 2.2), it also requires a decision on how this functionality
will be implemented (Section 2.3).

2.2 Run-Time Management Functionality

This section details the responsibilities of the run-time manager, i.e. what services
should the run-time manager provide with respect to the application and what tasks
should it take care of with respect to the platform. We first detail the system man-
agement components. Consequently, we describe the role of the run-time library.

2.21 System Management
As Figure 2.2 illustrates, three basic functions are contained within system manage-

ment: the quality management block, a block containing the resource management
policies, and a block with the resource management mechanisms.

Quality Management

As Section 2.3.3 explains more in-depth, dealing with the MPSoC run-time man-
agement requirements and constraints in an efficient way can be achieved (1) by en-

1Recently, multiprocessor platforms have been introduced in an accelerated way into the Desktop
computing domain. This also improves the performance of the Desktop platforms with respect to the
requirements of their application.
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abling the run-time manager to exploit design-time and run-time application knowl-
edge, and (2) by tuning the run-time manager in order to take into account the plat-
form properties and the offered hardware services. Our run-time manager accepts
application quality and implementation information that is generated at design-
time. This means the run-time manager is aware about the capabilities and quality
levels supported by the (adaptive) application and their respective properties.

The quality manager, sometimes referred to as Quality of Service (QoS) manager, is
a platform independent component that interacts with the application, the user and
the platform-specific resource manager. The goal of the quality manager is to find the
sweet-spot between the capabilities of the application, i.e. what quality levels does
the application support, the requirements of the user, i.e. what quality level provides
the most value at a certain moment, and the available platform resources. In order to
be generic, the quality manager should contain two specific subfunctions: a Quality
of Experience (QoE) manager and an operating point selection manager (Figure 2.3).

The QoE manager deals with quality profile management, i.e. what are, for every
application ¢, the different supported quality levels ¢;; and how are they ranked. For
example, a video application can make different trade-offs when it comes to fram-
erate, resolution and image quality. Every application quality level g;; is associated
with a platform resource vector r7; = {r};,r7},rf;} that describes how much plat-
form processing (rfj), memory (r7}) and communication (rf;) resources are needed
in order to support this quality. This resource vector can be determined either by
the application mapping tools or by profiling an already mapped application. Every
quality level g¢;; also comes with its own set of implementation details d;;. These
implementation details are forwarded to the resource manager.

The QoE manager also has to determine the value every quality provides with respect
to the user of the application. One could attribute a fixed value to every application
quality level. However, this assumes that a certain quality level always provides
the same value to the user. In reality, a certain quality level might provide a dif-
ferent user value or experience at different moments in time [79] depending on a
range of parameters. Consider, for example, a mobile TV application. Intuitively it
is easy to understand that the user quality needs (i.e. framerate, resolution, image
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size and image quality) will be different for viewing a commercial than for watch-
ing a sports event.In addition, the desired user video quality will also be different in
case high quality implies that the battery will not last until the end of the movie or
that other applications will have to be terminated. Hence, a session utility function®
fu(--+) needs to be defined [30,112,121] in order to determine a relative value v;;
for every quality level ¢;; at a certain moment. The user input and other parame-
ters such as e.g. expected input data, platform information (like battery status) and
time/location can be reflected in f,(---). The end result is an ordered set of appli-
cation quality levels g;;, each with an associated value v;;, resource vector r;; and
implementation details d;;. The tuple (v;j;, 17}, d;;) is further denoted as an applica-
tion operating point.

in?™in;

{(04,720), (AT Gi)s ooy (@oFisd,)}— Application quality levels
(o}

Environment information

QoE Manager User application preference
V= IZ() Platform information

Operating Point Platform resource
Selection Manager information

Quality Manager

J (O e (A 93— Application operating points

(Vyohyod) —— Selected operating point

Figure 2.3: Run-time quality management. (1) The QoE manager receives a set of application
quality levels and their associated resource needs from the design-time phase and attributes a
value to each quality level according to a session utility function f,(---). The result is a set of
application operating points. (2) The operating point selection manager selects a good operating
point according to a system utility function and with respect to the available platform resources.

The operating point selection manager deals with selecting the best quality level or
operating point for all active user applications given the current platform resource
status and non-functional constraints like e.g. available energy. The goal of the oper-
ating point selection manager is to maximize the system utility function [30,112,121].
This means selecting an operating point (v;;,75;,d;;) for every active application 4
such that the total system utility is maximized, while the total amount of required
resources does not exceed the available platform resources. In its simplest form, the
system utility function maximizes the total application value.

Quite some authors also use a quality manager on top of a resource manager to man-
age application and global system quality. Wust et al. [237], Bril et al. [30] and Van
Raemdonck et al. [225] all provide such run-time management setups. Pastrnak et
al. [171,172] distinguish a design-time phase to estimate application resource needs
and quality settings and, consequently, a run-time quality selection phase. In addi-
tion to a global quality manager, some authors also introduce a local, application-

2 Also denoted as job utility function [30] or application utility function
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specific quality manager that manages quality within the boundaries negotiated
with the global quality manager.

Separating quality management from resource management and creating a set of
well-defined (in the future, maybe even standardized) interfaces between them, en-
ables reuse and interchangeability of these run-time management components. In
addition, the separation supports the platform based design paradigm (Section 1.1.1)
as it allows a global quality manager to work with a resource manager instantiated
inside an application-service providing third party component.

Resource Management: Policies

Once an application operating point (v;;, 75, di;) has been selected, the resource re-
quirements r;; and the implementation details d;; containing the application task
graph (T'G) are known. Some authors [112] also include in the implementation de-
tails d;; a fixed allocation of platform resources. Such a fixed resource allocation
greatly reduces the decision freedom of the resource manager. So, in order to remain
flexible, one should rely on a run-time resource manager to map the application task
graph (T'G) onto the platform architecture graph (AG). In other words, to decide
on the allocation of platform resources and to ensure the execution of this decision.
This means that application tasks need to be assigned to processing elements, data
to memory, and that communication bandwidth needs to be allocated. As Figure 2.4
illustrates, the resource management policy can be divided into a platform indepen-
dent resource management algorithm and platform specific cost functions.

The different ways the task graph can be mapped onto the architecture graph define
the mapping solution space. The resource management algorithm is responsible for
the way this solution space is searched. Different types of algorithms can be used in
this context depending on e.g. the trade-off of mapping speed versus mapping qual-
ity, or depending on the distribution of the mapping algorithm over the platform
(see Section 2.3.1). Casavant et al. [221] provide a comprehensive taxonomy of those
(platform independent) resource management algorithms in the domain of general
purpose parallel and distributed systems. The decision making process of this algo-
rithm relies on platform specific cost functions to determine the quality of a certain
(maybe partial) mapping solution. This taxonomy is illustrated by Figure 2.5.

The first distinction of this taxonomy, static versus dynamic, is made based on when
the task assignment is made. In both the static and dynamic domain, schemes can
be divided into optimal and sub-optimal mapping solutions. In case all information
regarding the problem is known and it is computationally feasible one can use an
algorithm that derives the optimal solution (e.g. searching the full solution space).
Within the algorithms that provide sub-optimal solutions, we can identify two cat-
egories: approximate and heuristic. The approximate solution uses the same algo-
rithm as the optimal solution. However, instead of searching for an optimal solution,
the algorithm is stopped as soon as a satisfactory solution is found. Heuristic solu-
tions use some simple rules of thumb to determine a good (but often non-optimal)
solution. All the optimal and sub-optimal/approximate techniques can be classi-
fied as based on searching the solution space by enumeration, on graph theory, on
mathematical programming, or on queuing theory.



Run-Time Management Functionality 27

Task Graph (TG)

B @ B Architecture Graph (AG)

[ gl

Resource Manager

PE Allocation

Resource Management Comm. Allocation |
Algorithm

Memory Allocation

Cost functions

Figure 2.4: The resource manager maps a task graph onto an architecture graph. The policy for
doing so contains a platform independent resource management algorithm and platform specific
cost functions. The resource management algorithm determines how the mapping solution space
is searched, while the cost functions allow the algorithm to assess the quality of a certain (maybe
partial) mapping solution.

Besides the hierarchical scheme of algorithms, detailed in Figure 2.5, there is a flat
classification that contains properties that can appear in any node of the hierarchy.
The flat portion of the algorithm taxonomy handles properties like adaptivity, i.e. if
the mapping policy takes the current and/or the previous behavior of the system
into account, load distribution or one-time assignment versus dynamic reassignment, i.e.
whether a resource assignment remains or can be revisited during the application
execution. Tanenbaum [217] denotes these policies as non-migratory and migratory
respectively.

So the platform independent part of the resource manager could be e.g. a heuris-
tic, a branch & bound algorithm, a genetic algorithm, a full solution space search
algorithm, etc. that uses the platform specific resource cost functions to determine
the overall cost or quality of a certain TG’ to AG mapping. Intuitively, it is easy
to understand that the cost of the communication resources, allocated between two
processors, will be different in case these processors are interconnected by a sim-
ple bus or by a complex NoC. In a NoC, the cost of communication depends on the
number of hops between source and destination tile, while this is not applicable in
case of a bus. A similar reasoning holds for determining the cost of allocating tasks
to different types of processing elements (e.g. DSP, accelerator or FPGA fabric tile)
and for different types of memories (e.g. number of banks, ports, cost per memory
access, etc.).
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Figure 2.5: Taxonomy of resource assignment algorithms (policies) for parallel and distributed
systems [221].

In recent years, a number of authors have considered the task graph (7'G) to archi-
tecture graph (AG) mapping and resource allocation problem. Hu et al. [96] use a
branch & bound algorithm to walk through the task graph T'G to architecture graph
AG mapping search space. Hansson et al. [91] use a greedy design-time heuristic
to map an application graph of IP blocks onto an empty interconnection network
graph. This design-time heuristic combines placement of IP blocks with NoC path
selection and timeslot allocation. Recently, Stuijk et al. [215] employs a design-time
heuristic to assign and schedule a task graph onto an architecture graph. Both the
order at which tasks® are selected for assignment as well as the tile cost for a certain
task is determined by a cost function. Several authors perform the mapping in two
phases: a design-time phase and a run-time phase. Yang et al. [239,240] use a genetic
algorithm for the design-time detection of the most promising task graph to archi-
tecture graph assignment and scheduling options. At run-time, they use a greedy
heuristic [239] to select right options for all active task graphs. Ma et al. [127] extend
this approach by introducing a run-time local search heuristic to further optimize the
scheduling (not the assignment) produced by the greedy heuristic.

In Chapter 3, we introduce a heuristic to perform dynamic (run-time) assignment of
resources based on cost functions specifically tuned for the on-chip interconnect and
specific processor types. The processor cost function takes the specific properties
of the FPGA processor tiles into account. Consequently, in Chapter 4, we turn it
into a migratory algorithm by adding run-time task migration capabilities to the
heuristic. In order to assess the heuristic performance, we compare it with a full
search algorithm that searches for the most optimal solution.

3The author uses the term actor to refer to the task graph nodes, i.e. the tasks.
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Resource Management: Mechanisms

The resource manager makes the resource allocation decisions. However, for exe-
cuting these decisions, the resource manager has to rely on the underlying mecha-
nisms. A mechanism describes a set of actions, the order in which they need to be
performed and their respective preconditions or trigger events. In order to detect
trigger events, a mechanism relies on one or more monitors. The action is performed
by one or more actuators. The mechanisms are typically associated with the plat-
form dependent parts of the resource management policies depicted in Figure 2.4.
The resource management mechanisms closely collaborate with the run-time library
in order to perform both basic allocation functions, like instantiating tasks on the
processing elements, allocating memory blocks and setting up inter-task communi-
cation structures, and more complex functions like e.g. run-time task migration.

In this thesis, we introduce a set of mechanisms to support our resource manage-
ment policies: two task migration mechanisms support the resource manager’s task
migration decisions. On-chip communication conflicts cause inter-application inter-
ference. Such situations are first detected by a monitor, then corrective decisions are
taken by the resource manager according to the communication management policy.
Finally, the actuator executes and enforces these decisions.

2.2.2 Associated Platform Run-Time Library

The Run-Time Library (RTLib), shown in Figure 2.2, essentially has two functions.
First, it provides primitives to abstract the services provided by the hardware ((1) in
Figure 2.6(a)). At design time, these RTLib primitives are used by the designer or the
design tools. At run-time, the primitives are called by the application. This means
that an RTLib implementation should be available on every processing element. Sec-
ondly, it acts as the run-time interface to the system manager ((2) in Figure 2.6(a)). In
that sense, it plays an important role in enforcing the decisions of the quality man-
ager and the resource manager.

With respect to the provided primitives, one can distinguish three types:

- Quality management primitives. These primitives link the application or the
application-specific quality manager to the system-wide quality manager em-
bedded in the run-time manager. This allows the application to e.g. renegotiate
the selected quality level [171,172,237].

- Data and communication management primitives. These primitives are closely
linked to the programming model. For example in a programming model
where tasks communicate by passing messages, the typical primitives require
send() and receive() primitives. To allocate memory blocks, either for processor-
local or shared memory, one requires malloc() and free() alike primitives. Finally,
the RTLib can also provide primitives to manage the memory hierarchy. In or-
der to manage scratchpad memory a designer would need a transfer() function
to move arrays or parts of arrays through the memory hierarchy [31]. As Fig-
ure 2.6(b) illustrates, both the transfer() and the send() RTLib primitive can rely
on the platform hardware DMA service to transfer data to move data to an-
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other memory hierarchy layer or the destination task respectively. The RTLib
is responsible for configuring the DMA service. In case of software controlled
caches, the RTLib could provide invalidate() and prefetch() primitives [244].

- Task management primitives. These primitives allow a designer to create and
destroy tasks (e.g. spawn() and join()) and manage their interaction (e.g. with
semaphores, mutexes and barriers). The RTLib can also provide primitives
to select a specific PE-local scheduling policy or to explicitly invoke the local
scheduler (e.g. yield()). In addition, there are primitives used for task migra-
tion or operating point switching (e.g. migrationpoint() or switchpoint()). These
primitives actually interface to the resource manager and the quality manager

respectively ((2) in Figure 2.6(a)).
A
primitive API
\ transfer(...)
\send(...)

Application,
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Figure 2.6: Run-Time Library roles. (a) Primitives to abstract the hardware service™) and primi-

tives that provide an interface to the system manager®. (b) Both the send() and transfer() RTLib
data management primitives rely on the DMA hardware service.

The run-time RTLib cost will depend on its implementation: ranging from a software
implementation executing on the processor that also executes the application tasks
to a separate hardware engine next to the application processor. For example, Paulin
et al. [175,176] use a hardware message passing engine to reduce the inter-task commu-
nication cost. In the Eclipse hardware template, Rutten et al. [192] use a hardware
interface block, denoted hardware shell between the compute engines and the com-
munication hardware. This shell is instantiated at every compute engine and acts as
arun-time library. The shell provides its computation engines with five generic inter-
face primitives for task management and data management. Section 2.3.2 discusses
the trade-offs between hardware and software in more detail.

In Chapter 4 we show how our RTLib plays an important role during the execution
of the task migration mechanism. In our case, heterogeneous task migration happens
in a cooperative way: the system management signals the RTLib that a certain task
needs to migrate. Consequently, the RTLib waits until the application task signals it
is ready to be migrated, i.e. calls the migrationpoint() function. When that happens
the RTLib, in turn, informs the system management and performs a series of actions
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to proceed with the actual migration. In Chapter 6, we show that our RTLib is im-
plemented as a separate 16-bit processor instantiated alongside every application
processor.

2.3 Run-Time Management Implementation Space

Section 2.1 explains the boundary conditions the MPSoC run-time manager has to
operate in. Section 2.2 details what functions a run-time manager needs to perform.
However, there still is an implementation design space where run-time management
implementation trade-offs can be made.

Adaptive

Sw

Centralized Distributed

HW
Non

Adaptive

Figure 2.7: Run-time manager design space: the run-time manager can be implemented in hard-
ware or software, distributed or centralized, generic of tuned towards the application.

In general, one can identify three run-time management implementation space axis
(Figure 2.7). The first axis deals with the amount of distribution of the run-time
manager. The second axis details the spectrum between a hardware and a software
implementation. The third axis makes a trade-off between a generic or a flexible
or domain specific implementation. By choosing the right implementation point, it
should be possible to design an efficient run-time manager that meets the applica-
tion needs and that satisfies the key MPSoC requirements. The rest of this section
describes the run-time management implementation space and illustrates the trade-
offs that can be made with research and industrial examples.

2.3.1 Centralized versus Distributed

As we are dealing with multiprocessor systems, one can distinguish a design space
that deals with the amount and type of distribution of run-time management func-
tionality. Figure 2.8 details the classic multiprocessor run-time management cate-
gories [76,204] based on how the processing elements share run-time management
responsibilities.

- Master-Slave configuration. In a master-slave configuration, there is a single
master processor that executes the run-time manager, i.e. that monitors and
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Figure 2.8: Design space for multiprocessor systems with respect to distribution of run-time

management responsibilities.

assigns work to the slave processors. In addition, the master is responsible both
for part of the computation and the I/O jobs. The slave processors only execute
user applications code. This means that a run-time library is instantiated on the
master and on every slave processor. The slave processors have to wait while
the master is handling their calls to the system manager. The benefits of this
type of run-time management implementation are its simplicity and efficiency
when the slaves are mainly used for compute intensive jobs. As there is only
one processor executing the system manager, synchronization with respect to
shared resources can be implemented in a straightforward way. The single
master is also the main disadvantage: it risks becoming a single point of failure
or a bottleneck that fails to serve the slaves with enough work.

Separate Supervisor configuration. In this case, every processor executes its
own run-time management functionality and has its associated run-time li-
brary and data structures. Hence, each processor acts as an independent sys-
tem. Special structures and mechanisms exist to achieve global system man-
agement, i.e. collaboration across the processor boundary. This type of sys-
tem is scalable, gracefully degrades in case of processor failure, and a single
processor cannot become a management bottleneck. Unfortunately, due to du-
plication of data structures there is a memory penalty. In addition, there is a
management overhead in optimally controlling and using the system resources
with respect to the user application.

Symmetric configuration. There is a single run-time manager executed by all
processors concurrently. Access to shared data structures needs to be handled
by critical sections. Although the symmetric configuration is the most flexible
of all configurations, it also has some downsides. First, in contrast to the other
configurations, this configuration requires a homogeneous set of processing el-
ements with a shared memory. Second, it is the most difficult one to implement
in an efficient way. Similar to the Master-Slave configuration, the execution of
the run-time manager can become a bottleneck. This can be solved by allowing
multiple processors to have concurrent access to disjoint run-time management
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components. Hence, the scalability of this system lies between a Master-Slave
configuration and the Separate Supervisor configuration.

Furthermore, it is easy to envision an MPSoC system that uses a mix of configura-
tions. As Section 2.4 details, the next generation ST Nomadik platforms, for example,
will combine a Symmetric configuration with a Master-Slave configuration [175].

The taxonomy presented by Casavant et al. [221] (Figure 2.5) also handles the dis-
tribution of resource management policies. In the realm of dynamic algorithms one
can distinguish distributed and non-distributed algorithms, based on whether the
resource assignment is done by a single processor (i.e. the Master-Slave configura-
tion) or is distributed among multiple processors (i.e. Symmetric or Separate Super-
visor configuration). Depending on the existence of interaction between the different
processors, distributed resource management can be split into cooperative and non-
cooperative. Non-cooperative resource management means individual processors
make assignment decisions independent of the actions of the other processors. Coop-
erative resource management still means that processors make their own decisions,
but they collaborate to reach a common system-wide goal. For example, one of the
distributed processor management algorithms in the Cosy operating system [37] is
based on the principle of leaking water. From an application entry point, an amount
of water (workload) leaks and flows into the direction where the resistance is lowest
(lowest processor load).

In this thesis, we focus on a Master-Slave configuration.The main motivation for
choosing the Master-Slave configuration is the fact that we use a relatively small
number of powerful heterogeneous slave (between 4 and 16) processors for compu-
tationally intensive tasks. In addition, the slaves only perform a very limited amount
of run-time manager calls and they can communicate data with each other without
master processor intervention. As Chapter 6 explains, this configuration is achieved
by extending an existing single processor real-time operating system to handle a set
of heterogeneous slave processing elements.

2.3.2 Hardware versus Software

System management functionality or a run-time library is typically implemented in
software (e.g. software scheduler) by building on the low-level hardware services
provided by the platform (e.g. timer interrupt service). In recent years, also fueled
by the MPSoC revolution, quite some run-time management functions have been
implemented in additional hardware.* Hence, one can identify a hardware versus
software design axis that is applicable to both the system management and the run-
time library. The main motivation for implementing part of the run-time manager in
hardware or a separate accelerator is to avoid the overhead caused by executing the
run-time management functionality on the application processor [174-176,219].

Furthermore, a (more) dedicated implementation of run-time management func-
tionality should satisfy the MPSoC run-time manager environment constraints (see
Section 2.1). First, besides being significantly faster than its software counterpart

4This often means an additional processor or programmable IP block that provides run-time manage-
ment services.
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[148,175,176,195,219], a hardware implementation holds the promise of being more
energy efficient [94]. Secondly, both the maximum response time and its variance
decrease, which improves the real-time behavior of the system [174]. This is partly
caused by the fact that there is significantly less cache space needed for the run-
time management functionality. In addition, the memory footprint of the run-time
manager decreases [98]. Finally, by implementing this functionality in a separate
block, the run-time management complexity caused by the heterogeneity of multiple
platform processing resources is mitigated [115]. Indeed, one can combine heteroge-
neous application processing with homogeneous run-time management. As Rutten et
al. [192] explain, their hardware shell takes care of all system-level run-time manage-
ment issues, while the compute engine designers focus on application functionality.

Example 2.1: Scheduling in hardware or in software (Figure 2.9).
Consider two tasks executing on a single application processor. In case of
software scheduling, the scheduler is invoked at regular intervals by a plat-
form timer interrupt (action (1) and (2)) or it is called when an event occurs
(e.g. (3) when semaphore changes or a message arrives). This causes over-
head because the scheduler needs to be executed on the application proces-
sor even when the newly selected task ends up being the same task (action
(2)). When moving this functionality to a platform hardware service (Fig-
ure 2.9(b)), the run-time overhead is kept to a minimum. Instead of inter-
rupting the executing task to attend to the management functionality, the
decision making is done in parallel. This means that valuable application
processor cycles are not wasted while taking management decisions. When
a decision is made by the platform hardware service, the processor specific
actions, like the task context switch, still need to be performed by the proces-
sor itself. In addition, decreasing the management time granularity in case
of a software scheduler (i.e. time between clock interrupts) creates a pro-
portional increasing overhead. In contrast, a platform hardware service can
work at a fine granularity without causing additional application processor
overhead.

In general, most of the state-of-the art [174-176, 191, 192, 219] focuses on imple-
menting run-time library functionality in hardware. This mainly includes making
scheduling decisions for the (local) application processor or hardware accelerator,
providing support for memory management and handling inter-task communica-
tion and synchronization. However, one can also rely on a hardware block to per-
form task to processor assignment in a multiprocessor environment [98,147]. Finally,
hardware support is also used for collecting run-time information. This involves
non-intrusive monitoring of what is happening on the platform. In real-time sys-
tems, it is important to minimize the intrusiveness of the monitoring, i.e. it should
not alter the system behavior. This can be achieved by adding the monitoring func-
tionality in hardware [201].

There is indeed a spectrum with a full hardware implementation on the one hand,
like e.g. the Real-Time Unit (RTU) [115], and a software implementation on the other
hand. In between, one finds configurable run-time management accelerators or com-
bined HW /SW solutions. These platform run-time management services attempt to
find the sweet-spot between acceleration and the flexibility to change the policies
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Figure 2.9: Hardware or Software? (a) A hardware timer service periodically invokes a software
scheduler, which causes fewer processor cycles to be available for the actual user application. (b)
The scheduler is implemented in additional hardware and only interrupts the application processor
when a context switch is needed.

or to adapt to existing software run-time managers. A downside of pure hardware
acceleration is the limited application scalability. For example, the RTU is limited
to handling 16 tasks at 8 priority levels, 16 semaphores and 8 external interrupts.
Similarly, the Task Control Unit (TCU), described by Theelen et al. [219], is limited to
supporting 63 independent tasks and 128 communication resources (i.e. semaphore,
mailbox or pipe). However, as Paulin et al. [176] point out, one has to make a
trade-off between speed and deterministic execution on the one hand and flexibil-
ity /scalability on the other. Furthermore, existing software operating systems also
can have limitations on the number of simultaneous user processes or file descrip-
tors. Limitations are acceptable if tuned to the application domain.

Another way of dealing with the inflexibility of hardware is to use reconfigurable
hardware (explained in-depth in Chapter 3). Depending on the application needs,
one can reconfigure the number of supported tasks as well as the scheduling algo-
rithm [117] of the hardware run-time management block.

In our proof-of-concept platform (Chapter 6), every tile contains a small 16-bit pro-
cessor responsible for tile-local run-time library (RTLib) tasks next to the application
processor. Our main motivation is to facilitate the integration of heterogeneous pro-
cessing elements: combining heterogeneous processing with homogeneous run-time
management. This also ensures an uniform, predictable timing for the RTLib func-
tion calls (i.e. independent of the associated application processor). In addition, it
facilitates the use of FPGA fabric processor tiles as these tiles are not suited for run-
ning a traditional software run-time library.

2.3.3 Adaptive versus Non-Adaptive

A general purpose operating system for the desktop PC or workstation attempts to
provide fast response time for interactive applications, high throughput for batch ap-
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plications and an amount of fairness between applications [185]. It relies on generic
application-independent heuristics to achieve this [29].

Dealing with the MPSoC run-time management requirements and constraints in an
efficient way can also be achieved (1) by tuning the run-time manager with respect
to the application or by exploiting application knowledge that is either gathered at
run-time or received by the application design flow, and (2) by tuning the run-time
manager as to take into account the platform properties and the offered hardware
services. One can consider two categories of adaptation of the run-time manager to
the application: design-time adaptation, i.e. designing the run-time manager in such
a way that it suits the needs of the application and platform, and run-time adapta-
tion, i.e. changing the behavior of the run-time manager according to the current
application(s) or even deferring some system management responsibility towards
the application.

As Figure 2.10 illustrates, design-time adaptation of the run-time manager relies on
a library of parameterizable and configurable run-time management components
[77,78]. A run-time manager generation tool is responsible for creating the run-
time manager with the right functionality. This tool takes as input, for example,
a specification of the architecture, the memory and resource allocation map and a
high-level (i.e. configurable) description of the application tasks. By analyzing the
needs of the application tasks, like e.g. communication and synchronization needs,
and by looking at the available platform services, the needed run-time management
functionalities are instantiated for every processing element.

Architecture Memory map and Application: high-level
Description allocation table task descriptions

OS/RTM Library

APIS —  OS/RTM generator

Comm/System services

Device Drivers
Generated OS/RTM  System Makefiles Application: targeted
task descriptions

Figure 2.10: high-level flow for automatic generation of application-specific run-time manage-
ment and automatic application software targeting [77,78].

Run-time adaptation exploits a closer relationship between the run-time manager
and the executing application(s). This has typically been the focus of run-time man-
agers included in adaptive multimedia systems [112, 154, 184, 185] and of adaptive
operating systems such as the Exokernel [72,106]. Three types of negotiation and
adaptation between run-time manager and application can be identified (Figure 2.11).

The first type (type 1) occurs when the run-time manager supports adaptive appli-
cations (Figure 2.11(a)). Adaptive applications can be defined as applications that
support multiple modes of operation along one or more resource and/or quality
dimensions [30, 48, 51, 52, 105, 112, 185]. Each application operating mode has its
own resource requirements and offers some degree of value towards the user. This
way, the run-time manager is able to select the most appropriate operating mode for
each executing application. This approach promises higher user value than a simple
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Figure 2.11: Three types of run-time adaptation: (a) run-time manager support for adaptive
applications (type 1), (b) the application also configures parts of the run-time manager policies
(type 2), (c) the application takes over part of the run-time manager responsibilities (type 3).

application accept/reject policy, but requires communication of application design-
time analysis information to the run-time manager as well as a run-time manager
capable of handling this information.

The second type (type 2) involves the application configuring parts of the run-time
manager policies (Figure 2.11(b)). This way, generic policies can be tuned specifically
towards the needs of a certain application. This results in better decision-making
and a more optimal usage of platform resources. Mamagkakis et al. [129] describe a
technique in which the dynamic memory allocator is configured depending on the
requesting application. This does not only require the communication of application
design-time analysis information towards the run-time manager (as in the first type),
this also requires a run-time manager with configurable management policies.

The third type (type 3) occurs when the application takes over part of the run-time
manager responsibilities (Figure 2.11(c)). This means that application-specific man-
agement is handled within the application itself. The run-time manager is responsi-
ble for allocation or multiplexing of the hardware resources. Noble et al. [154] detail
a set of extensions to the NetBSD operating system. In their setup, the application
requests a set of platform resources and essentially manages these resources to pro-
vide a certain quality level with respect to the user. At the extreme end resides the
MIT Exokernel [72,106]. The Exokernel’s sole function is to allocate, deallocate and
multiplex the physical platform resources. The application (or application library
developer) is responsible for building the necessary hardware abstractions and for
managing the allocated resources in an efficient way.

As Chapter 7 explains, we focus on a run-time manager of the first type. This means
that the run-time manager accepts the design-time application analysis information,
but the system management policies or mechanisms are not getting (re)configured
according to the application. This decision is motivated by the fact that it is the solu-
tion with the largest industrial relevance® for three reasons. First, the application de-
sign flow does not need fundamental changes. If needed, the designer can continue
with the traditional design flow and provide the application analysis information

SIndustrial adoption is one of the key performance indicators within IMEC.
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afterwards. The more innovative application design flows (see Appendix C) will
help the designer in creating this information. Second, platform run-time manager
functionality is complex. Hence, the industrial providers are more likely to be per-
suaded into putting an additional component or into tuning a component for a spe-
cific application domain and/or platform than into allowing an application change
the behavior of the run-time manager. This distinction is critical especially when
considering the need for ensuring real-time and deterministic behavior. Third, this
approach does not require any platform specific knowledge from the application de-
signer.

2.4 Multiprocessor Run-Time Management Examples

To substantiate our MPSoC run-time management design space, this section pro-
vides a selection of run-time management examples® for industrial and academic,
large-scale, board-level and SoC multiprocessor platforms (Table 2.1 and Table 2.2).

Texas Instruments

Cumming et al. [54] detail the run-time management approach used by Texas In-
struments (TI) to support its OMAP MPSoC platforms (Figure 2.12(a)). In essence,
the run-time manager is a software implementation of a Master-Slave configuration.
TI created a small, real-time embedded RTOS, denoted DSP/BIOS, as to provide a
dedicated run-time library (RTLib) for its DSP processing elements. The DSP/BIOS
kernel provides basic communication primitives and task scheduling functionality
on top of the DSP hardware; so application developers can build modern multi-
threaded applications in an easy way.

TI developed the DSP/BIOS Link software to support the e.g. OMAP SoC platform,
where a general purpose master RISC processor is combined with one or more slave
DSP processing elements on a single die. The DSP/BIOS Link software links a stan-
dard, independent operating system executing on the general purpose master to the
DSP/BIOS kernel executing on the slave DSP. The purpose of the DSP/BIOS Link is
to provide a control and communication API between the general purpose tasks and
the DSP/BIOS tasks. In addition, it allows the master to boot the slave DSP(s) and
to control which algorithms they execute for a specific application.

As Figure 2.12(a) illustrates, there is a system resource management component,
linked to the operating system and executing on the general purpose RISC proces-
sor. This master resource manager communicates with its counterpart(s), denoted
as RM server,” executing on top of the BIOS kernel. The resource manager is respon-
sible for selecting and allocating the slave DSP, for task creation and for setting up
the communication structures, for starting and stopping the tasks and, finally, for
deallocating the resources.

The comparison is based on publicly/freely available information.

7In the microkernel world, only the most basic functionality (BIOS) is incorporated into the RTOS
kernel. The run-time management or operating system functionality responsible for more high level tasks,
such as resource management, execute outside the RTOS kernel and are commonly denoted as servers.
Hence the name RM server for the resource management functionality.
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TI provides a porting kit that allows easy porting of their MPSoC run-time manager
to other general purpose operating systems. Quite some (real-time) operating sys-
tem vendors have also used this option: e.g. QNX Neutrino RTOS (QNX Software
Systems), INTEGRITY RTOS (Green Hills Software) and Linux (MontaVista).

Resource Manager RM Server

oS kernel | MCU Bridge Kernel || DSP/BIOS Kernel \
& drivers | o5 Adapter Other drivers
General Purpose Processor TMS320 DSP
(a)
McRT Stub | |

Operating |
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Figure 2.12: Run-time management approach for (a) today’s TI OMAP MPSoCs [54] and (b) for
tomorrow’s Intel Tera-scale platforms [193].

Enea Systems

Similar to TI, Enea Systems presents a Master-Slave configuration solution for hetero-
geneous multiprocessors systems by combining the feature-rich OSE RTOS execut-
ing on the master with a compact DSP kernel, denoted OSEck, for the slaves. A link
handler provides message passing inter-processor communication primitives.

Quadros

The Quadros RTXC RTOS provides its own solution for multiprocessor platforms
(e.g. OMAP platform). This RTOS can handle MPSoCs as well as a set of DSPs on a
board or a loose collection of PEs (either heterogeneous or homogeneous). Their ap-
proach is to duplicate the RTOS kernel services on every PE. A link manager provides
an easy way for tasks on different PEs to communicate. The link manager relies on
an high-level message-passing inter-processor communication service. This commu-
nication service abstracts the underlying platform hardware communication service.
In that sense, the Quadros solution can be classified as a more Separate Supervisor
approach. However, the provided solution mainly focuses on providing RTLib func-
tionality for the application designer. The designer is responsible for deciding on
the resource allocation, so there are no actual run-time resource manager policies
present. Quadros allows design-time adaptation towards the needs of the applica-
tion. The RTXCGen tool allows the designer to easily configure the kernel to fit the
processing requirements of your application and to only include the required kernel
services. There is no support for run-time adaptation.

ARM MPCore & Linux SMP

The ARM MPCore is a homogeneous embedded multiprocessor platform that re-
lies on a general purpose operating system, like Linux, that supports a Symmetric
configuration. This way, the operating system actually hides the fact that multiple
processing engines are available which enables an easy speed-up of the applications:
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either because the application is composed of multiple tasks that execute on different
processing elements or because multiple single-task applications no longer have to
share a single processing element. Linux includes a scheduler with a load balancing
policy [29]. The Native Posix Thread Library and the C library act as RTLib [83].

RTOS vendors, like e.g. Express Logic with their ThreadX RTOS, focus on provid-
ing SMP support for the MPCore to increase performance [38]. In contrast to Linux,
such an RTOS is faster and more deterministic. Indeed, the RTOS does not have a
user-kernel space boundary, it has some simple, yet efficient and fast ways for deter-
mining the task schedule, and it provides plenty of scheduling opportunity [234]. In
addition, it has a smaller memory footprint. While ThreadX also provides some de-
gree of automatic load balancing (i.e. resource management functionality), the RTOS
mainly focuses on providing RTLib functionality. ThreadX does not provide any
design-time RTOS tuning tool (like the Quadros RTXC), but it does provide the full
RTOS source code. This equally enables the designer to only include the required
components.

NetBSD & Odyssey

Odyssey [154] extends the NetBSD operating system and, hence, supports a Symmet-
ric configuration. Odyssey provides a collaborative partnership between the system
manager and the application. The system manager is responsible for resource arbi-
tration, i.e. for making resource allocation decisions, for enforcing these decisions,
and for notifying the applications about these decisions. Then, every application in-
dependently decides on how to best adapt its provided quality given the resource
constraints. Hence, the Odyssey extensions enable type 1 application adaptivity: the
different application quality levels are first provided to the system manager which
takes them into account when deciding on the resource allocation.

RealFast AB

RealFast AB developed a Real-Time Unit (RTU) [115]. The RTU is a commercial
hardware IP block that provides RTLib functionality for the (heterogeneous) on-chip
processors. Communication with the application and the system management hap-
pens with memory mapped registers and interrupts. The RTU is linked to a general
purpose OS and manages the application processors. The Silicon TRON project [148]
and the Task Control Unit (TCU) of the MuP architecture [219] provide a similar
hardware solution.

Coprocessor Coprocessor Relelnlelietile]sl
task-levely interface

Shell-SW generic RTLib
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‘ Communication network ‘
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Figure 2.13: The Eclipse architecture template [191,192] combines a general purpose processot,
denoted as CPU, with application-specific coprocessors. The hardware shell provides RTLib
functionality and it represents the interface between computation and communication.
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Eclipse

The Eclipse architecture template (Figure 2.13) defines a heterogeneous multiproces-
sor to be used as a flexible and scalable subsystem for MPSoC platforms [191,192].
Its target application domain is stream processing (e.g. video processing). Eclipse
combines the application flexibility of a general purpose processing element (i.e. the
CPU) with the efficiency of application-specific hardware processing, denoted as co-
processors. The hardware shell acts as an interface between processing and communi-
cation. As it provides RTLib functionality, it alleviates the coprocessor designer from
having to worry about system-level issues like synchronization, data transport and
scheduling. The entire system is conceived as a Master-Slave configuration: a gen-
eral purpose processor is responsible for configuring the coprocessors and handling
their reported events.

STMicroelectronics MultiFlex

For its next generation Nomadik platforms, ST Microelectronics has developed a
dedicated approach for designing applications and performing run-time manage-
ment [175,176] denoted as MultiFlex. These new Nomadik platforms contain multi-
ple general purpose processing elements executing e.g. Linux, Symbian or WinCE in
a Symmetric configuration. In addition, the platforms contain multiple specialized
DSPs and ASIPs for handling video, audio and 3D algorithms. These processors
act as slave processing elements and receive their tasks from the general purpose
processing element cluster. The DSPs and ASIPs rely on hardware schedulers and
hardware message passing engines for efficient scheduling and inter-task commu-
nication respectively. This approach combines a Symmetric configuration with a
Master-Slave configuration. In addition, the platform contains hardware services for
providing the most critical run-time library functions. Except for the close relation
between the MultiFlex design flow and the MultiFlex run-time management compo-
nents, there is no adaptivity with respect to the application.

Cosy

The Cosy microkernel operating system was designed and optimized for board-level
multiprocessor and multicomputer platforms [36,37]. Cosy has a strong focus on
providing the right platform abstractions to ease application development. This in-
cludes providing primitives for starting tasks (i.e. components of a parallel applica-
tion) at run-time and for inter-task communication. Run-time resource assignment
can be performed manually by the designer or automatically by Cosy. In this context,
Cosy expects an application task graph that can then be mapped by several run-time
mapping functions. Cosy implements a Separate Supervisor configuration and inter-
acts with the application in a sense that it takes the task graph into account to allocate
platform resources. Cosy is too heavyweight for SoC platforms. Other similar mi-
crokernel operating systems are Amoeba [64,216], Sprite [63,64] and Mach [26,216].

AsyMOS

The AsyMOS run-time manager [146] assigns specific functionality to specific proces-
sors in a symmetric, shared memory multiprocessor system. This means that some
processors are assigned to handle the application code, while others perform system
management functionality. This solution is located between a Symmetric configura-
tion and a Master-Slave configuration. It simplifies run-time management and re-
duces the amount of interrupts and cache contention on the application processors,
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which increases performance and predictability. AsyMOS also allows an application
to insert its specific resource management components (i.e. type 3 adaptivity).

K42

K42, an IBM research run-time manager for 64-bit cache-coherent multiprocessor
platforms, focuses on high performance, platform scalability and application adap-
tivity [13]. Although K42 implements a Symmetric configuration on the surface,
every run-time manager resource object and associated data structures can be dis-
tributed in an efficient way over the multiprocessor in order to exploit the use of
local memory and to avoid global data structures, global data locks and global man-
agement policies. Just like a Separate Supervisor approach, this approach provides
near-linear scalability [13]. The system management can also be adapted to the appli-
cation needs by allowing the application (designer) to select the right combination of
provided system management building blocks (i.e. type 2 adaptivity). K42 provides
a scheduling infrastructure that supports real-time behavior, resource time-sharing,
gang scheduling, and synchronized locks.

MIT Exokernel

Although similar to K42, the MIT Exokernel [71,72] takes application adaptivity to
the extreme: it simply allocates, deallocates and multiplexes physical resources like
e.g. memory and processor time-slices. All quality and resource management are
pushed into the application-level software: either into user-level libraries or into the
application itself. This is type 3 adaptivity.

Intel McRT

Intel recently published its view on the runtime environment for Tera-scale platforms
[193]. Their Many-Core RunTime (McRT) environment supports heterogeneous plat-
forms as they see future platforms containing high performance scalar cores as well
as an array of high throughput cores and accelerators. The McRT essentially controls
the platform resources in a more distributed and cooperative way, while it is linked
to a traditional (Master) Operating System that provides all non-core functionality.
The McRT RTLib functionality provides the application designer with parallelism
primitives like e.g. threading and synchronization services. In addition, it provides
primitives to support fine-grain atomic memory transactions (also denoted as trans-
actional memory support). The fine-grain synchronization and scheduling services are
partly implemented in hardware. Finally, the McRT RTLib is able to translate pop-
ular APIs like e.g. the OpenMP API and the PThreads API into the core McRT APL
In order to accommodate the various application requirements, the McRT supports
both design-time and run-time adaptivity. The design-time adaptivity is achieved
by only including those McRT modules that are required, while run-time adaptiv-
ity is achieved by providing configurable scheduling policies that allow it to flexibly
adapt to specific application needs (i.e. type 2 adaptivity). The scheduling scalability
bottleneck is addressed by using cooperative scheduling.

Table 2.1 and Table 2.2 provide an overview of the discussed run-time management
solutions. Table 2.1 details their available functionality, while Table 2.2 describes
their implementation solution. An asterisk (*) indicates the run-time management
solutions for embedded platforms.
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Table 2.1: Run-time Manager implementation space. Multiprocessor run-time manager solu-
tions for embedded™ platforms and large-scale parallel systems.

RTM
Functionality

Resource
Manager

Quality
Manager

Resource Management
Mechanisms/RTLib

TI OMAP* -

Linux* -

ThreadX* -

<=

Quadros RTXC* -

ST MultiFlex* -

<L

RealFAST RTU* -

Eclipse* -

Odyssey” Vv

Cosy -

AsyMOS -

K42 -

MIT Exokernel -

Intel McRT -

IMEC RTM v

NS &

SNAENAN AN AN A AN AN

Table 2.2: Run-time Manager implementation space. Multiprocessor run-time manager solu-
tions for embedded™ platforms and large-scale parallel systems.

RTM Distribution Adaptivity HW/SW
Implement.
TI OMAP* Master-Slave None SW
Linux* Symmetric None SW
ThreadX* Symmetric Design-Time SW
Quadros RTXC" Separate Supervisor Design-Time SW
ST MultiFlex* Master-Slave & Symmetric None HW RTLib
RealFAST RTU" Master-Slave None HW RTLib
Eclipse”* Master-Slave None HW RTLib
Odyssey”* Symmetric Run-Time, type 1 SW
Cosy Separate Supervisor None SW
AsyMOS Master-Slave Run-Time, type 3 SW
K42 Symmetric with Run-Time, type 2 SW
Separate Supervisor properties
MIT Exokernel Symmetric with Run-Time, type 3 SW
Separate Supervisor properties
Intel McRT Master-Slave with Design-Time and | SW with HW
Separate Supervisor properties | Run-Time, type 2 | RTLib support
IMEC RTM Master-Slave Run-Time, type 1 HW RTLib
support
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Concluding Remarks

It is clear that, with respect to heterogeneous multiprocessor platforms, the con-
temporary industrial run-time management functionality is mainly focused on pro-
viding resource management mechanisms, e.g. support for starting and terminating
an application, and RTLib functionality, i.e. on providing the application designers
with an abstraction layer on top of the hardware. More academic approaches, like
Odyssey and Cosy, provide a resource manager. Quality management still appears
to be a research topic. With respect to the implementation space, we see a trend for
moderate distribution of resource management functionality although the amount
of distribution really depends on the MPSoC platform and the application domain.
Hardware support for run-time management is also on the rise, with RealFAST al-
ready providing a commercial solution today. The ST MultiFlex approach also relies
on hardware RTLib support to reach high performance combined with a low power
and deterministic operation. Adaptivity is still in its infancy: academic embedded
solutions like Odyssey provide run-time adaptivity, while the Quadros provides a
commercial tool to tune their run-time manager, at design-time, to the needs of the
application. Except for the ST MultiFlex approach, all current commercial solutions
have not been designed for the emerging MPSoC environment, but are based on ex-
tending or linking together existing technology. Finally, the Intel view on run-time
management for Many-core platforms provides a peek into the future, where distri-
bution of run-time management, configurability and hardware support are predicted
to be mainstream.

2.5 Conclusion

After describing the boundary conditions for MPSoC run-time management solu-
tions, this chapter details the different components of the run-time manager together
with the functionality they provide. At a high level, the run-time manager contains a
system management component and a run-time library. In turn, the system manage-
ment component contains a quality manager and a resource manager. The quality
manager negotiates quality levels with the applications according to the run-time
needs of the user. The resource manager makes the resource allocation decisions
according to a certain policy and it orchestrates the execution of these decisions
through the associated mechanisms. Through the run-time library, the run-time
manager provides hardware abstraction services that are used by the application
designer and called by the application at run-time.

This chapter also provides the first description of the MPSoC run-time management
implementation design space. This design space contains three axes: the first axis
deals with the amount of distribution, the second axis depicts the hardware ver-
sus software trade-off space and the third axis deals with the amount of run-time
management adaptivity towards the application and the platform. This chapter also
puts the remainder of this thesis into perspective with respect to the selected run-
time management functionality and the design decisions for our proof-of-concept
implementation. We provide a system manager containing a quality manager and
a resource manager with an associated RTLib. The separation of quality manager
and resource manager enables their re-use and better supports the platform-based
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design paradigm. As we consider platforms with a relatively small number of pow-
erful heterogeneous processing elements, we selected a Master-Slave configuration.
The RTLib is implemented as a separate programmable processor instantiated next
to every application processor as it enables heterogeneous processing with homo-
geneous management. We selected type 1 adaptivity, as this form of adaptivity is
(1) supported by the IMEC mapping tools and (2) most likely to be adopted by the
industry.

Finally, this chapter briefly details some contemporary industrial and academic mul-
tiprocessor run-time management solutions and takes a peek into the future. It is
clear that, with respect to MPSoC platforms, the industrial run-time management
is mainly focused on providing RTLib functionality, i.e. on providing the applica-
tion designers with a hardware abstraction layer. Although currently, industry does
not provide any real resource or quality management functionality, the ST MultiFlex
effort shows that this will be present for future platforms. Academia have devel-
oped experimental multiprocessor operating systems that provide advanced run-
time management capabilities and that explore the run-time management design
space for more optimal solutions with respect to resource management and adaptiv-
ity. However, these solutions often need re-targeting towards embedded platforms.

However, the (research) trend for MPSoC run-time managers is clear: moderate dis-
tribution of the run-time manager over the platform resources, more platform ser-
vices to support the run-time manager and more configurability towards the applica-
tion. Hardware run-time management components and distribution of the run-time
management functionality is likely to arrive first as this can be provided by MPSoC
platform and run-time management vendors. Adaptivity requires a close collabora-
tion between run-time manager and developer and/or design tools. Such solutions
probably require more effort to deploy on an industrial scale.
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CHAPTER 3

Task Assignment in an MPSoC containing
FPGA Tiles

flexibility, SoCs contain multiple heterogeneous processing elements. This means

that besides general-purpose processing elements, there will be some specialized
processing elements (e.g. a DSP) that only perform a limited number of tasks (e.g.
signal processing tasks), but do so in a more efficient way. This is called the flexibility-
performance trade-off.

In order to meet the ever-rising compute requirements while retaining platform

Fine-grain reconfigurable hardware (FPGA fabric) has the ambition to deliver the
same amount of flexibility as an instruction set processor (ISP) while providing a
performance level close to that of an ASIC. Obviously, these reconfigurable hardware
devices operate in a completely different way and, hence, exhibit radically different
properties with respect to an instruction set processor architecture.

When combining ISP tiles with FPGA fabric tiles into a System-on-Chip, the run-time
manager could abstract the differences between the tiles and just consider every tile
as a processing element that can execute a task with a certain performance for a certain
cost. However, by neglecting (i.e. abstracting) the specific properties of the fine grain
reconfigurable hardware tiles, the performance of the task assignment algorithm is
likely to be sub-optimal. This results in less efficient usage of platform resource.

In addition, FPGAs have become large enough to accommodate a large amount of
soft IP cores. This enables the creation of a so-called configuration hierarchy. Instead
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of executing a dedicated hardware task, the FPGA fabric hosts a programmable soft-
core IP block that, in turn, executes the task functionality.

The rest of this chapter is organized as follows. Section 3.1 and Section 3.2 respec-
tively detail the rationale of reconfigurable systems and briefly introduce fine-grain
reconfigurable hardware. Section 3.3 provides the problem definition. Section 3.4 till
Section 3.7 details a fast and efficient run-time resource assignment heuristic. In ad-
dition, we show that by exposing this heuristic to the specific properties of the fine
grain reconfigurable hardware tiles, one can significantly improve the assignment
performance. Section 3.8 and Section 3.9 introduce a novel run-time task assignment
algorithm that exploits a configuration hierarchy. Hierarchical configuration enables
easy time-multiplexing of FPGA fabric and it improves the spatial task assignment
freedom resulting in a more efficient usage of platform resources. Section 3.10 de-
scribes the related work. Finally, Section 3.11 presents the conclusions.

3.1 The Rationale of Reconfigurable Systems

There are a number of reason for using fine-grain reconfigurable hardware instead of
an ASIC or for integrating reconfigurable fabric into a System-on-Chip. Most of these
reasons relate to the issues that triggered the SoC revolution and to the requirements
imposed on MPSoC systems (Section 1.1).

Figure 3.1 details the computational efficiency of reconfigurable hardware with re-
spect to ASICs and ISPs [43]. However, Field Programmable Gate Arrays (FPGAs) com-
pete with ASICs and ISPs on several fronts: design cost, unit price, time-to-market,
performance, flexibility, etc.

Computational
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10 Application-
D specific IC's
(ASICs)
. / D Reconfigurable

hardware

10 Instruction Set
| Processors (ISP)
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Figure 3.1: Computational efficiency (MOPS/W) of reconfigurable hardware with respect to
ASICs and general purpose ISPs.

First of all, since FPGAs are an off-the-shelf product, they don’t really have an NRE
cost associated with them. This means that, for low-volume products, ASICs can
no longer compete with FPGAs. Furthermore, Moore’s law is favorable for FPGAs
[222]. Figure 3.2 shows how the volume trade-off point between reconfigurable hard-
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ware (also denoted as Programmable Logic Devices) and ASICs shifts over time. Al-
though both reconfigurable hardware as well as ASICs get cheaper per component
(decreasing slopes), the fixed costs for ASICs are rising. Hence, the volume versus
costs trade-off point rapidly evolves in favor of the reconfigurable systems. Further-
more, the cost of the basic EDA tools for FPGA design is a lot lower than what is
needed for designing an ASIC.

4
Total PLD-Cost
Cost ’ :

1997 1999 2001

ASIC Cost

- 2005

Number of Systems Built "

Figure 3.2: Evolution of the volume versus cost trade-off point between ASICs and programmable
logic devices (PLDs, i.e. reconfigurable hardware) [222].

Secondly, reconfigurable hardware represents the middle ground between ASICs
and ISPs. Just like ISPs, FPGAs provide (run-time) programmability and flexibil-
ity, while providing far superior performance as the ASIC does. In a world where
the rate of innovation is ever-increasing and where standards are evolving fast, pro-
grammability is a key asset. This flexibility will also reduce a products time-to-
market.

Finally, the applications requirements become more and more demanding. Hence,
The performance-flexibility trade-off provides an excellent opportunity for using re-
configurable fabric.

Recently, the industry starts to acknowledge the virtues of using reconfigurable fab-
ric in their SoCs. STMicroelectronics, for example, released the SPEArTMproduct
line. The SPEAr™Lite is composed of an ARM9 RISC PE combined with 400K cus-
tomizable equivalent ASIC gates with 123 dedicated general purpose I/Os. Xilinx’
latest Virtex FPGAs contain one or two hardcore PowerPC microprocessor(s) that
allow a designer to create a customized (multiprocessor) platform.

3.2 Fine-Grain Reconfigurable Hardware in a Nutshell

In its broadest sense, a Field Programmable Gate Array (FPGA) is an integrated circuit
where the functionality can be configured after the chip production process. They
can be considered as general purpose ICs applicable in a wide range of application
domains.
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Four different technologies are widely used for commercially available FPGAs. FPGAs
based on SRAM cells (i.e. static memory to hold the FPGA configuration), on anti-
fuse technology, on EPROM or EEPROM transistors. Depending on the application
domain, some technologies are better suited than others. The anti-fuse technology,
for example, is faster and cheaper than the SRAM technology, but can only be pro-
grammed once. Logic elements based on SRAM technology can be reconfigured rel-
atively fast, but they require a lot of chip area. In contrast to PROM devices, SRAM
based technology has unlimited reconfigurability (it is after all a memory).

In this chapter, the considered FPGA fabric tiles are based on SRAM technology. The
proof-of-concept MPSoC system, presented in Chapter 6, is based on Xilinx SRAM
based FPGA technology. Today, this technology is mature enough to be used as
software-like processing elements in a tile-based multiprocessor system.

The basic Xilinx FPGA consists of 3 major programmable components: the Config-
urable Logic Blocks (CLBs), the Input/Output Blocks (IOBs) and the configurable routing
resources. In addition, it contains a clock distribution tree, configuration circuitry, and
RAM components. More advanced FPGAs also contain multipliers and processors.

The CLBs are the programmable elements in charge of providing the desired func-
tional behavior. The IOBs take care on the connections between package pins and
the chip internals. Finally, the configurable routing resources (also denoted as inter-
connect resources) are composed of so-called switch matrices that are responsible for
interconnecting CLBs and IOBs. In that sense, an FPGA can be considered as a 2D
matrix of interconnected CLBs. Every CLB consists of two identical slices. In turn,
every slice consists of 2 independent 4-input function generators based on Look-Up
Tables (LUTs). In addition, there is some slice-internal routing functionality.

The design-flow for configuring an FPGA consists of several steps. In the design-
entry step, the digital design is created by using a schematic entry tool or just by us-
ing a Hardware Description Language (HDL). The output of this step produces a netlist.
This is a description of the connectivity of gates and flip-flops. The second step is
the design implementation or mapping step. Here, the netlist is transformed into a
bitstream that contains all the FPGA configuration bits for the required functional-
ity. Coming to a bitstream requires (1) a mapping phase, where the functionality is
mapped to the FPGA-dependent configurable elements, (2) a place & route phase,
where the functionality is assigned to specific configurable resources.

Today, FPGA devices provide the equivalent of several millions of ASIC gates. and
also enable partial configuration. Partial configuration allows us to (re)configure
part of the available hardware while the remainder of the design is still operational.
Thus, more parts of an application, or different applications, can be assigned to the
hardware in sharing fashion with parallel processing. This feature is useful for appli-
cations that require the loading of different designs into the same area of the device
or for applications that need the flexibility to change a portion of the design without
having to completely reconfigure or reset the device.

A fine-grain reconfigurable hardware processor has some properties that cannot be
found on a regular instruction set processor. The most prominent properties that
directly affect run-time management are:
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1. High FPGA task setup time. Configuring the FPGA fabric, which effectively
means setting up a task on a fine grain reconfigurable hardware processor takes
at least one order of magnitude more time than on a regular ISP. This is mainly
due to the large amount of configuration bits.

2. Inseparability of task setup and task execution. In contrast to setting up a
task on an instruction set processor (i.e. creating an execution stack), setting up
a task in single-context fine-grain reconfigurable hardware always implies that
(1) the target FPGA area is available (i.e. no other task occupies the area) and
(2) the task immediately starts executing after configuration.

3. Efficient use of reconfigurable area. As the fine-grain reconfigurable hard-
ware that we consider acts as a memory, it can also get fragmented. Two types
of fragmentation are considered. Internal fragmentation can be defined as the
wasted FPGA fabric when the tile is bigger than the task size. External fragmen-
tation occurs after placing multiple tasks within a single FPGA fabric space in
such a way that the remaining free area is not usable for additional tasks.

A more elaborate description and a taxonomy of existing fine-grain reconfigurable
hardware platforms with their respective properties was created within the context
of the AMDREL project [47].

3.3 Problem Definition

Every platform architecture is described by an Architecture Graph AG(P, L), con-
taining a set of processor tiles p; € P, interconnected by a set of NoC links /;; € L,
where [;; represents the link between tile ¢ and tile j. The load of link /;; is denoted
as lﬁ?“d. The communication path path;; between tile i and tile j contains a set of
H;; links, where H;; denotes the number of hops between tile i and tile j. The type
of processor p; is denoted by 7;. The set of FPGA fabric tiles is denoted by R C P.
If p; € R, then the size of its FPGA fabric is denoted by p$**°. The number of tiles
adjacent to processor j is denoted as p§°"" .

Every application is described by a directed graph, further denoted as Task Graph
TG(T,C), where each vertex represents an application task ¢,, € T and every edge
cuv € C represents the communication link between task ¢,, and ¢,,. The communica-
tion load of link ¢,, describes the amount of bandwidth task ¢, requires. This load
is denoted as /224 (clo?? = ( when there is no communication). The load task ¢,
imposes on tile p; is denoted by ¢!, It is defined as the ratio of the task execution
time and the task deadline. A single task can have support for multiple processing
element types: 7,(t,) = 1 denotes that task ¢,, support processor type 7;. The size of
the FPGA task implementation of task ¢, (if supported) is denoted by ¢5¢.

Figure 3.3 illustrates the problem definition of mapping a task graph TG(T, C) onto
an architecture graph AG(P, L). The mapping of TG(T, C) onto AG(P, L) is further
denoted as TG(T,C) — AG(P, L). To evaluate a certain mapping, we need a map-
ping cost function that considers the mapping cost from both a communication and
computation point of view.
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Figure 3.3: Mapping a Task Graph TG (T, C) onto an Architecture Graph AG(P, L).

The communication cost has two different angles: time and energy. The time needed
to send a message (also denoted a message latency) between two tiles is depen-
dent on a lot of parameters like the network topology (e.g. ring network, mesh net-
work, torus network, etc), the switching technique (e.g. store-and-forward switch-
ing, wormhole switching, virtual cut-through switching), the type and the amount
of buffers in the routers, the type of arbitration in the routers, the congestion in the
network, etc.

In case of congestion-free virtual cut-through switching, Equation 3.1 describes the
latency Ltuncongested for sending a packet M, consisting of N flits! between tile i and
tile j [21]. In this equation, T;;; denotes the time needed for a single flit to pass a
single router. For the Gecko? best-effort NoC implementation (detailed in Chapter
6), one has to consider the possibility of congestion. Hence, the latency Lt"ncongested
is augmented with a bufferingdelay component, coupled to a congestion probability
P, i.e. the probability of temporarily being buffered at router n (Equation 3.2). This
probability obviously relates to the amount of traffic that passes through this router.

Ltuncongested(Mij) = Tflit X Hij + (N - 1) X Tflit (31)
Hé,j

Ltcongested(Mij) _ Ltunco’ngested(Mij) + Z Pn X bufferingdelay (32)
n=1

Similarly, the energy required to send a message from tile ¢ to tile j depends on the
switching technique, the length of the physical wires, the buffer allocation, the NoC
topology, etc. [19]. In case of wormhole switching, the average energy E;; required
to send one bit of information from p; to p; is a function of the energy consumed by
a router E,,yter, the energy consumed by a link Ej;,; and the number of hops the
information needs to travel H;; (Equation 3.3) [100,236].

Eij = Hij X Erouter + (Hij — 1) X Ejjni, (3.3)

1A packet is composed of a number of flow control units (flits). These are the packet units on which flow
control operates.
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Hence, both the time component, as well as the energy component are strongly influ-
enced by the number of hops packets need to take when traveling from sender task
to receiver task and by the size of the packets. Therefore, the mapping algorithm
has to take these variables into account. This can be done by minimizing the hop-
bandwidth product (further denoted as ¢) of the assignment TG(T,C') — AG(P, L),
i.e. the product of the application communication load and the hop-distance (Equa-
tion 3.4).

dra(r,c)—AG(P,L) = Z Hij X cu (3.4)

Vtu—pi,Vt,—p;

Furthermore, as equation 3.2 describes, in a best-effort NoC, the packet latency heav-
ily depends on the load of the communication path (i.e. congestion probability). In
order to ensure a common latency throughout the platform, it makes sense to spread
the load over the available communication resources. In a guaranteed-throughput
NoC, the path finding algorithm performs better in terms of resource usage effi-
ciency (i.e. path length) in case of a balanced network load [126]. The communication
load variance, further denoted as o7, can be used as a measure for link load balancing.

From a computation point of view, one should also distribute the load over the dif-
ferent processing elements. This will avoid so-called hot spots which will decrease
the leakage current (leakage current rises exponentially with die temperature). The
processor load variance, further denoted as 0%, can be used as a measure for processor
load distribution.

The performance of the task assignment algorithm is determined by (1) its speed,
i.e. how fast a solution is found, (2) its assignment success rate, i.e. its ability to find
a solution when one exists and (3) the assignment quality, i.e. minimal ¢, minimal
0? and minimal ¢%. Note that the 07 and minimal 0% are platform related, i.e.
take into account all previously assigned applications, while ¢ is only related to the

assignment of the current task graph.

3.4 Generic MPSoC Task Mapping Heuristic

At design-time, it is often unknown which applications will run simultaneously.
Only at run-time the resource usage of the platform as well as the application user
quality requirements are known. Hence, one needs a run-time application resource
assignment algorithm. A fast, lightweight heuristic that comes up with a reasonably
good solution is preferred over an algorithm that comes up with an optimal solu-
tion requiring a lot of computation time. Hence, a so-called greedy heuristic is used.
A heuristic is denoted as greedy when it makes locally optimal solutions for every
decision variable, hoping that the global solution will also be optimal. The power of
a greedy heuristic lies in its simplicity [142].

In order to assign a new application TG(P, C) to a platform AG(P, L) the heuristic
requires a specification of the application, the quality requirements with respect to
the application and, finally, the current resource usage of the platform as input. The
three steps of the complete heuristic (Algorithm 3) to come to a complete resource
assignment of an application are as follows.
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Symbol Definition
P Set of processors
R Set of FPGA processors, subset of P
< | L Set of communication links
8 | p Processor of tile 4
O | ppaz Maximum processor load of tile 4, equal to 100% load
§ lij Communication link between tile ¢ and adjacent tile j
"53 e Maximum communication load of link /;;, equal to 100% tile
E path;; Communication path between tile 7 and tile j
g | Hij Number of hops between tile ¢ and tile j
< T; Processor type of processor p;
psEe Size of FPGA tile j
psonnect Number of tiles adjacent to processor j
T Set of tasks, i.e. vertexes in the task graph
= | C Set of communication links, i.e. edges in the task graph
S|ty Task graph task
3 | thond Processor load of task t,,
2| e Size of t,, FPGA implementation
& | mi(t) If equal to 1, denotes that ¢,, supports processor type j
Cuv Communication edge between ¢, and ¢,
cload Communication load imposed by edge c,,
oo | AG(P, L) | Architecture Graph with processors set P and link set L
.5 | TG(T,C) | Task Graph with task set " and edge set C
&0 Hop-bandwidth product
§ % Processor load variance
o2 Communication link load variance

Table 3.1: Symbols for the architecture graph, the task graph and the mapping process.

The first step (Algorithm 1) prioritizes the tasks as follows. For every task t,, € T, we
first determine the load variance with respect to the different supported tiles (line 3,
first factor). Intuitively it is easy to understand that tasks with a high processing load
variance are very sensitive to which processing element they are assigned to. We also
determine the tasks communication importance with respect to the total inter-task
communication of the application (line 3, second factor). The tasks mapping priority
Prio(t,) is the product of the load variance and the communication importance. In
addition, tasks that can only be assigned to one specific tile should be mapped before
all other tasks. This way, the heuristic avoids a mapping failure, that would occur
if this specific tile would be occupied by previously assigned task of the same task
graph T'G. Finally, tasks are sorted by descending priority.

The second step (Algorithm 2) prioritizes the tiles for the most important unmapped
task t,,. To this end, the cost Cost(p;) of a tile p; € P with respect to the most impor-
tant unmapped task t,, is determined based on the product of its current processing
load (pl°??), the already used communication resources to its neighboring tiles and
the hop-bandwidth product (¢) to its already assigned communication peers (,).
The path path,, between task t,, and ¢, is either predetermined (e.g. XY routing) or
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Algorithm 1: Determining task assignment priority.
Input: TG(T,C), P
Output: Prioritized task assignment list
PRIORITIZETASKS(T'G(T, C), P)
(1) foreacht, €T
2)  if (nr supported tiles j > 1)

(

load _j4loadyy2 Jload
3 Prio(ty) = G Bl U DD DY) e
(
(

Jj nr supported tiles j D v €o2d
4) else

. Z Cload .
Prio(t;) = &¥—2r— + Priomas

T v, O

U1
~

should be interpreted as a function that determines the path. Notice that the platform
assignment quality measures, o7 and 0%, do not appear in the algorithm. Indeed,
recalculating the % and o? for every possible assignment is time consuming. In
order to ensure an equal spread of processing load and communication load, the tile
cost factor includes the processor load and the load on its attached communication
links. Taking the hop-bandwidth into account ensures that heavily communicating
tasks are mapped close together. Tiles that lack the required resources have their cost
set to infinity, indicating that the tile is not fit to accommodate ¢,,. Tiles are sorted by
ascending cost.

Algorithm 2: Determining tile priorities for a task t.,.
Input: ¢, TG(T,C), AG(P, L)
Output: Number of suitable tiles and their respective Cost for ¢,,.
PrIORITIZETILES(t,,, TG(T,C), AG(P, L))
(1) foreach tile p; € P supported by ¢,

@) (@l tle > ey or (177 > ppiee))
3) p; not suited for ¢,
(4) else
() ¢=0
(6) foreach t, € T assigned to p;
) if (cuv # 0)
(8) foreach [, € path;;
©) if (Ilo0 + clogd > e
(10) p; not suited for t,,
(11) if (cpu #0)
(12) foreach [, € path;;
(13) if (Iload 4 cload > [max
(14) p; not suited for ¢,
(15) ¢ = ¢+ (Hij x cipf?) + (Hyi x i)
(16) if (p; not suited for ¢,,)
(17) Cost(p;) = o0
(18) else
load load
(19)  Cost(p) = plood x ¢ x Zralg L")
(20) N(t,) = amount of tiles with Cost #+ 00
(21) return N(t,)
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In the third step, the most important unmapped task ¢, is assigned to the tile with
the lowest cost. Steps two and three are repeated until all tasks are mapped (Algo-
rithm 3).

Algorithm 3: Mapping a task graph onto an architecture graph using the Generic Heuristic.
Input: TG(T,C), AG(P, L), bt
Output: Assignment TG(T,C) — AG(P, L)
GENERICHEURISTIC(TG(T, C), AG(P, L), bt)
(1) PrioritizeTasks(TG(T,C), P)

(2) foreach unmapped ¢, with highest Prio(t,,)

(3)  N(ty) = PrioritizeTiles(t,, TG(T,C), AG(P, L))
) if (N(t,) > 0)

(5) Assign t,, to p; with lowest Cost(p;)

(6) else

(7) if ((bt > 0) and (¢,, # first task))

(8) repeat

9) Undo allocation of previous task ¢,

(10) bt =bt —1

(17) until (N (¢,) > 1) or (bt = 0) or (first assignment)
(12) if (((bt = 0) or (first assignment)) and (N (¢,) < 1))
(13) Exit. //No solution found.

(14) else

(15) Assign t,, to p; with second lowest Cost(p;)

(16)  N(t,)=1

Occasionally the greedy heuristic is unable to find a suitable assignment for a certain
task (Algorithm 3, line 4). This usually occurs when mapping a resource-hungry
application on an already heavily loaded platform. Backtracking is the classic solution
for this issue: it changes one or more previous task assignments (of the same task
graph) in order to solve the mapping problem of the current task ¢,,.

The backtracking algorithm (Algorithm 3, lines 7-16) starts by finding a previously
assigned task ¢, with multiple assignment options (i.e. more than one suitable tile
for assignment). Consequently, all resource allocations up until this task are undone.
Then, task t, is assigned to the second best tile. From then on, the heuristic starts
all over assigning the most important unmapped task. If the assignment would fail
again at the same task, backtracking will first consider other previous tasks than ¢,
for re-assignment. That is why N (¢,,) is set to 1 after its re-assignment (line 16). Back-
tracking stops when either the number of allowed backtracking steps is exhausted
(bt = 0) or when backtracking reaches the first task assignment of the application
(i.e. no previous tasks).

When that happens (line 13), the algorithm can (a) use run-time task migration
(Chapter 4) to relocate a task of another application in order to free some resources
or (b) restart the heuristic with reduced quality requirements (Chapter 7). Further-
more, the assignment success rate and the quality of the assignment solution can be
improved by using hierarchical configuration (Section 3.8).
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3.5 Reconfigurable Hardware Correction Factors

Incorporating FPGA fabric tiles requires some additions to the generic heuristic in
order to take the following FPGA properties into account.

First, the internal fragmentation of reconfigurable area is considered, i.e. the FPGA fabric
that is wasted because the tile size is larger than the task size. In case both the first
and second priority tile, p; and p;, are both FPGA tiles, the heuristic will re-evaluate
their priority (Cost(p;) and Cost(p;)) by using a fragmentation ratio (Equation 3.5)
in order to minimize the reconfigurable area fragmentation when placing a task ¢,,.
Intuitively it is easy to understand that if placing the task on the best tile causes 80%
area fragmentation while the second best tile only causes 5% area fragmentation, it
might be better to place the task on the latter.

size size
(pi — tu )
size
%

COSt(pi)new = COSt(pi)old X (35)

Secondly, the binary state (i.e. either 0% or 100% perceived load) and the computational
performance of reconfigurable tiles are considered. Due to the attempt at load-sharing
of the heuristic, unused FPGA tiles are often selected as best mapping candidates.
In view of additional new applications, it would not be wise to sacrifice a recon-
figurable hardware tile when an ISP could do a similar job. Therefore, if the first
priority tile p; for a certain task is a FPGA tile, while the second priority tile p; is an
ISP, the heuristic will use a load ratio (Equation 3.6) to re-evaluate their priority to
avoid wasting FPGA fabric computing power. This way, the FPGA fabric tile can be
saved for later use.

maxr __ tlo(ad
ul

COSt(pi)new = COSt(pi)old X pi (36)

load
tloa
The tile priority correction factors are applied after step two of the generic heuristic
(Algorithm 3, line 4), i.e. after sorting all suitable tiles according to their priority.

The motivation for using the correction factors is to avoid wasting reconfigurable
hardware fabric, either by placing the task on a smaller tile with similar performance
or by placing the task on an ISP tile. This way, the reconfigurable hardware fabric
will be more available for large tasks or for more compute intensive tasks. This not
only improves the task assignment success rate of the current application, it is par-
ticularly important for the assignment success rate of future incoming applications.

3.6 Experimental Setup

As target platforms we consider heterogeneous multiprocessor systems, each con-
taining different processing element types. The different tiles are interconnected by
a Network-on-Chip (NoC). In this case?, we assume a 3 by 3 mesh network with deter-
ministic XY routing (Figure 3.4). Nevertheless, the proposed solutions are applicable

2This size and topology were selected to match the real-life Gecko? demonstrator, detailed in Chap-
ter 6.
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on a wide set of platform architectures with different size, topology and routing
scheme. We consider four processing element types: GPP, DSP, FPGA and a flexible
accelerator, denoted as Accel.

The differences between these processor types will be reflected in (1) their task sup-
port, i.e. what percentage of tasks have support for a particular processing element,
and (2) their load, meaning that a task will, on average, impose a higher load on a
general purpose processor than on e.g. an accelerator. We also vary the number of
FPGA fabric tiles and their size (i.e. small and large) in order to determine its influ-
ence on the performance of the mapping algorithm and, more specifically, the use of
the FPGA correction factors. While a large tile can accommodate any reconfigurable
hardware task, the small tile can only accommodate a subset of tasks (i.e. the ones
that fit the tile).

[ Big FPGA tile [C] small FPGA tile
» » » » »

DSP [E—2] GPP DSP [ psP [E—21 PP FPGA [@—=| DSP [E—2] app
fi* f° B N R

accel accel |q—2 accel accel 4__> accel
3 Tl 5 Al 3 4 Al 5 Al 3 4 Al 5

app || psp app [ psp > cep aopp 2| psp P! FPGA
6 7 8 6 7 8 6 7 8

Platform 1 Platform 2 Platform 3

Figure 3.4: Considered MPSoC platform architectures. Every architecture contains 4 different
PE types: general purpose processors (GPP), Specialized processors (DSPs and Accelerators) and
reconfigurable hardware tiles of potentially different sizes.

To evaluate the performance of the resource assignment heuristic, a large set of task
graphs is required. We used a software tool called Task Graphs For Free (TGFF) [60] to
create 1000 random task graphs, each containing between 3 and 10 tasks and where
every task contains up to three communication links. Every task potentially has
multiple implementations in order to support up to four processing element types.

Depending on the quality requirements (high or low), every application task im-
plementation as well as every application communication link is assigned a certain
random load. Table 3.2 details the average load a task imposes on a processing ele-
ment type with respect to the quality requirements. In addition, Table 3.2 also details
the task support rate, indicating that e.g. 6 out of 10 tasks have support for executing
on the GPP. A random load value is also assigned to every application communica-
tion link: on average 25% (spread 15%) and 50% (spread 25%) load for respectively
low and high quality requirements.

The load figure averages are chosen in such a way that, for a given user requirement,
multiple processing element types are eligible for hosting a certain task. Having
load figure averages far apart, simplifies the solution search space. Nevertheless, the
proposed algorithms remain valid.
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Table 3.2 details the load a task imposes on the different processing element types.
The actual values for every task are determined randomly by TGFE.

Table 3.2: Application load and support factor for different processor types.

Load Low Load High
PE type | average | spread | average | spread | support factor
GPP 25% 15% 50% 15% 60%
DSP 20% 10% 45% 10% 40%
FPGA 18% 10% 30% 10% 20%
Accel 15% 10% 30% 10% 20%

The platform resources are pre-loaded to indicate the presence of previously as-
signed applications. The low and the high platform load parameter indicate that no
platform resource (both computation and communication) is used for more than re-
spectively 25% and 50%. A random function determines the actual resource usage
for every resource. Due to the binary load state of FPGA tiles (i.e. either 0% or 100%
load), they are always pre-set as free. This way, we can clearly determine the effect
of changing the amount of FPGA tiles or their size.

The main goal of TGFF is to enable other researchers to reproduce the experimental
input data simply by sharing the input parameter settings. Appendix B details the
TGFF input settings for the following experiments.

In order to verify the performance of the heuristic algorithm, we also created a full
search (fs) algorithm (Algorithm 4). This algorithm exhaustively searches all possible
solutions for assigning an application task graph to a multiprocessor platform with
a certain load state.

By using the full search algorithm one can verify if an assignment is at all possible
in case the heuristic does not find a suitable assignment. Furthermore, it allows us
to assess the quality of the assignment solution provided by the heuristic. The full
search algorithm determines the quality @ of a total task graph assignment based on
the product of the processor load variance 0%, the communication load variance o
and the hop-bandwidth product ¢. While traversing the assignment solution space
when mapping an application, the full search algorithm retains the extrema (further
denoted fs-min and fs-max) found for each of these parameters. These values put the
selected solutions into perspective.

3.7 Heuristic Performance Evaluation

First, this section evaluates the performance of the generic heuristic with respect to
the assignment success rate and the quality of the solution. Here, the full search
algorithm serves as a benchmark. Secondly, we evaluate the impact of the correction
factors detailed in Section 3.5.
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Algorithm 4: Task graph mapping by searching the full solution space.
Input: TG(T,C), AG(P, L)
Output: Optimal Resource assignment: TG(T,C) — AG(P, L)
FULLSEARCH(AG(P, L), TG(T,C))
(1) U%},min = U%,min = ¢’min =0
(2) UIQD,ma:v = U%,mam = (bmaw =0
(3) while (TG — AG) = NextMappingSolution(TG(T,C), AG(P, L)))
4) {0%,02,¢} = EvaluateMapping()
B5) Q=o0%tx02x¢
(6) if Q < Qbest
(7) Qbest = Q
(8) Remember Best M apping(TG — AG)
(9)  foreach parameter p € {0%,0%, ¢}
(10) ifp < Dfs—min

(12) lfp > Pfs—max
(13) Pfs—max =P
(14) AssignBestMapping(TG — AQG)

3.7.1 Generic Heuristic

Figure 3.5(a) and Figure 3.5(b) detail the assignment success rate (y axis) of the
heuristic and the full search algorithm for platform 1 and platform 2 respectively
(Figure 3.4) as a function of the application load (x axis, first letter) and the platform
load (x-axis, second letter). The amount of allowed backtracking steps is indicated
between brackets.
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Success Rate
Success Rate

Figure 3.5: Generic heuristic assignment success rate for various application and platform load
[Application - PE Link] on (a) platform 1 and (b) platform 2.

The success rate results show that the heuristic nearly always finds a solution for
low application load irrespective of the platform load. In case of high application
load the heuristic does not perform as good as the full search algorithm. In the worst
case (i.e. platform 2 with a high application load and high platform load), it scores
about 16% lower than the full search algorithm. Backtracking clearly improves the
heuristic performance. Having more than nine backtracking steps does not make
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sense for three reasons: the system only has nine tiles, task graphs have maximally
ten tasks, and the heuristic currently only considers the two best assignment options.

For high application load, the differences in success rate between platform 1 and
platform 2 can be explained by the difference in amount of reconfigurable hardware
tiles. Platform 2 can capitalize on having more ISPs that can accommodate multiple
tasks and have a higher support factor. This results in a higher success rate. In case
of a high platform PE load (i.e. HH), the success rate difference between the heuristic
and the full search algorithm is 3% smaller for platform 1 than for platform 2. This
effect is caused by platform 1 exploiting its multiple free reconfigurable hardware
tiles.

Figure 3.6(a) indicates the speed of both the heuristic and the full search algorithm
measured on the SimlIt Strong ARM ISS with a clock speed of 206 MHz. The speed of
the heuristic lies well within acceptable run-time boundaries. As a reference, the time
required to start a new application (i.e. creating a new application process) in the
Linux operating system is in the order of magnitude of 1 ms to 10 ms [138] depending
on the hardware platform.

For platform 1 and platform 2, the heuristic requires on average (depending on the
platform load) between 141 ps and 169 us (stdev about 100 us) to reach an assign-
ment using at most 9 backtracking steps. In contrast, the full search algorithm re-
quires on average between 2.7 ms and 15.9 ms with peaks reaching up to 4 seconds
when faced with a low platform load and a small task graph where each task sup-
ports multiple PEs. These figures clearly indicate the speed benefits of using a greedy
heuristic. The main reason for the difference between the high and the low platform
load is that for high platform load, the number of assighment options is more lim-
ited.

Besides success rate and calculation speed, the quality of the results produced by the
algorithm is equally important. Figure 3.6(b), Figure 3.6(c) and Figure 3.6(d) detail,
respectively, the hop-bandwidth product, the communication load variance and the
processor load variance (always the average over all experiments) for a high appli-
cation load. We notice that the hop-bandwidth product of the heuristic solution is
lower, while both the communication load variance and the processor load variance
are higher.

We do not only compare the result of the heuristic with the chosen result of the full
search algorithm (denoted fs-selected), we also provide the maximum (denoted fs-
max) and minimum value (denoted fs-min) of every individual performance variable.
These values are obtained during the exploration of the full solution space and put
the quality of the results into perspective (Section 3.6). This comparison shows that,
although the heuristic does not directly evaluate 0% and o?, it still provides good
solutions (i.e. close to fs-selected and belonging in the lower part of the solution
spectrum). As the hop-bandwidth product ¢ is a factor in the heuristic cost function,
the ¢ of the provided mapping solutions comes quite close to the minimal value.

Overall, we can conclude that the quality of the results produced by the heuristic
are quite close to those of the full search algorithm. On average, the solutions se-
lected by the heuristic yield a lower hop-bandwidth product, but a slightly higher

communication load variance o7 .
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Figure 3.6: Experimental results for Platform 1 and high application load. (a) Average execution
time of the heuristic and the full search algorithm. (b) Heuristic hop-bandwidth product ¢. (c)

Heuristic communication load variance o%,. (d) Heuristic processor load variance o%.

3.7.2 Heuristic with Correction Factors

Introducing the correction factors should have an effect on both intra-application
and inter-application mapping effect. This means that, when starting two new ap-
plications, these factors improve both the mapping performance of both the first task
graph (i.e. intra-application effect) and of the second task graph (i.e. inter-application
effect).

In order to evaluate the performance of the heuristic with FPGA correction factors,
we randomly selected 20000 task graph pairs (I'G;, T'G;) using the 1000 task graphs
generated by TGFFE. The rationale here is to evaluate the effect on the assignment
success rate of both the first task graph (1/2) as well as the second task graph (2/2)
(after the first task graph was successfully assigned).

In all of the experiments, platform resources are pre-loaded with a low load. The
application load of the first task graph is always low, while the load of the second
task graph varies. This setup allows to compare results with the evaluation of the
generic heuristic. The improvement values do not significantly differ with respect
to the initial platform load (low or high), so the presented figures show the average
improvement with respect to the platform load.
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Figure 3.7: Correction factor assignment success rate improvement on platform 3. The application
load represents the load of the second application. Tasks support up to four PEs (multi-PE) or tasks
with FPGA support do not support other PEs (FPGA-only).

We conduct two experiments using platform 3, i.e. with different FPGA tile sizes
(Figure 3.7). In this case, the small tile can only accommodate 35% of the tasks. In
the first experiment, we assume that tasks can support up to four PEs according
to the distribution given by Table 3.2. In the second experiment, we make the as-
sumption that a task that supports an FPGA tile does not have support for any other
processing element. This assumption can be justified by the fact that the design flow
for a hardware implementation is significantly different than for a software imple-
mentation.

We conclude that the FPGA correction factors are important for improving the as-
signment success rate of new incoming applications i.e. the second task graph (2/2).
The effect on the first task graph is negligible. The impact of using FPGA correction
factors is even larger when tasks can only execute on an FPGA tile.

3.8 Exploiting a Configuration Hierarchy

This section deals with the ability of fine-grain reconfigurable hardware to create a
configuration hierarchy and the way to manage it at run-time. First, Section 3.8.1 ex-
plains the concept and rationale of hierarchical configuration. Secondly, Section 3.8.2
details an algorithm to prioritize and instantiate softcores. Finally, we propose two
ways of adding hierarchical configuration support into the generic heuristic. Sec-
tion 3.8.3 details a hierarchical configuration correction factor. while Section 3.8.4
adds hierarchical configuration components into the main flow of the heuristic.

3.8.1 Rationale of Hierarchical Configuration

Historically, FPGA fabric allowed to separate the design from the actual physical
hardware. In recent years, FPGAs have become large and fast enough to accom-
modate programmable IP cores (i.e. microprocessor). Hence, the boundary between
software, executing on the IP core, and soft hardware, instantiated in the FPGA is
fading. Essentially, this redefines the boundaries between hardware and software.
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Figure 3.8: Configuration hierarchy concept: the FPGA fabric runs a programmable soft IP core
that, in turn, executes some user program.

In order to understand the ability of fine-grain reconfigurable hardware (i.e. FPGA
fabric) to create a configuration hierarchy, consider an FPGA that runs a programmable
soft IP core (Figure 3.8). In turn this soft IP core executes some user program. While
the soft IP core acts as program code for the FPGA fabric, it also acts as hardware
for the user program. Consequently, the user program defines the actions for the
programmable IP core, while from an FPGA point of view it is merely data being
processed by the soft IP core circuit. This setup forms a configuration hierarchy.

In recent years, most FPGA vendors provide soft IP components ranging from data
encryption to signal processing and communication. Furthermore, every FPGA ven-
dor provides its own flavor of a soft general purpose microprocessor. Xilinx, for ex-
ample, provides the PicoBlaze and the MicroBlaze, while Altera provides the NIOS
embedded processor. Actel, on the other hand, promotes an ARM7TDMI core. Lat-
tice Semiconductor introduced an 8-bit soft microcontroller for its family of FPGAs.
ARM promotes its ARM Cortex-M1 as the first ARM processor designed specifically
for implementation in FPGAs. The Cortex-M1 processor targets major FPGA de-
vices from Xilinx, Actel and Altera. This, again, highlights the benefits of using a
soft processing element as all traditional ARM development tools can be used in
this context. ARC International provides user-customizable, high-performance 32-
bit processor IP cores with DSP functionality and their associated software devel-
opment tools. Finally, a whole collection of freely available, open source IP cores
can be found at OpenCores (www.opencores.org), which represents a community of
people interested in developing digital open source hardware. The OpenCores col-
lection includes microcontrollers, DSPs, arithmetic, and cryptography soft IP cores.

Using a soft IP core (also denoted as a software decelerator [108]) often results in a
speed/performance penalty with respect to instantiating a hardware circuit with the
same functionality. However, there are both design-time and run-time benefits asso-
ciated to using a soft IP core.

From a design-time point of view, there is a trade-off between performance and other
costs such as chip area needs, ease and speed of implementation [108, 158]. Mean-
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ing that creating a software implementation of a task is far easier than creating a
dedicated hardware implementation.

From a run-time point of view, using a soft IP core can result in more efficient usage
of the platform FPGA resources. First, it enables time-multiplexing of the FPGA fabric,
i.e. having multiple tasks using the FPGA resources in a concurrent way. Secondly,
it greatly improves spatial task assignment freedom, meaning that tasks can be placed
more freely and communication resource bottlenecks can be circumvented.

Chapter 2 is concerned with adapting the run-time manager to the application in
order to improve performance. By using an FPGA fabric in combination with soft-
core architectural components (processing elements and on-chip interconnect) one
can imagine also adapting the platform hardware to the needs of the executing ap-
plications. Already today, the Xilinx Virtex II Pro FPGA 2VP50 can accommodate
up to 20 MicroBlaze processing elements. This means that flexible MPSoC platforms
adapted to the specific application needs are well within reach.

Hence, the ability to use a configuration hierarchy creates significant design-time
and run-time opportunities. However, these opportunities require a run-time man-
ager capable of controlling such a hierarchy.
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Figure 3.9: Two ways to add hierarchical configuration (gray) into the generic heuristic (white):
(a) as a correction factor and (b) into the main flow.
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3.8.2 Prioritizing Softcores

Both approaches to adding hierarchical configuration support into the generic heuris-
tic (Figure 3.9) require a way to prioritize and instantiate the softcores onto FPGA
fabric tiles. Algorithm 5 details in two steps how to prioritize the softcores s; € S
with respect to task t,, and how to instantiate them on the available FPGA fabric tiles
pi € R.

Symbol Definition
S Set of softcore processing elements
2| sk Softcore processing element, s, € S
§ 2 Instantiation of softcore s, onto FPGA tile p;
_§ P Modified set of processors P, where (some)
an

FPGA tiles are hosting softcores
AG'(P',L) | Architecture Graph AG with softcores instantiated.

Table 3.3: Additional symbols used for hierarchical configuration.

In the first step (lines 1-9), the softcores are sorted for a specific task ¢;. The cost of
every softcore is determined by its future reusability. Since physically instantiating
a softcore (just like for a hardware task) is very time consuming, reusing an existing
softcore is beneficial. Hence, a softcore with high support factor is preferred.

If the softcore supports multitasking, one also needs to consider the re-usability of
the softcore when combining task ¢; with a potential future task. This effectively
means considering the load that the task ¢; already imposes (i.e. how much can be
re-used by a future task). Obviously, all softcores that cannot deliver the required
performance with respect to ¢; are neglected. Finally, we end up with a sorted list of
softcores.

In the second step (lines 10-15), we logically® instantiate a softcore on every available
reconfigurable hardware tile if the task has no FPGA tile support. In case the task
does have FPGA tile support, a softcore is only instantiated on the tiles that are too
small to fit the FPGA task (i.e. the tiles that would otherwise be unusable). The
softcores are chosen based on the cost priority list. Before instantiating the softcore,
we need to make sure that (1) the softcore fits on the tile and (2) the softcore will
provide the required performance for the task. This evaluation is especially needed
when softcores have a different performance depending on the host FPGA tile (not
considered in this algorithm).

3.8.3 Hierarchical Correction Factor

The simplest way to use hierarchical configuration to improve the performance of
the generic heuristic algorithm is to introduce a hierarchical correction factor (Fig-
ure 3.9(a)). Indeed, by using a softcore on an FPGA fabric tile, one can (potentially)
use this tile for executing multiple tasks. This hierarchical correction factor assumes
softcores capable of multi-tasking.

3We do not physically instantiate (i.e. configure) the softcores on the FPGA fabric tile in this phase.
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Algorithm 5: Assigning SoftCore IPs to FPGA fabric tiles.
Input: ¢, P, S
Output: Softcore Assignment for ¢,,: P’ = (S — R)|J(P \ R)
INSTANTIATESOFTCORES(%,,, P, S)
(1) foreach s; € S supported by ¢,
2) if tffjad > S;_naxload
3) Cost(sj) = o0
4) continue
5)  if s; supports multi-tasking

load ot Factor( s
6) Cost(sj) _ tuy *x(100—SupportFactor(s;))
7) else

(
(
(
(
(
(
(8) Cost(s;) = (100 — SupportFactor(s;))
(
(
(
(
(
(
(

S}n,azload

9) Sort by ascending Cost(s;), V supported s; € S

10) foreach unused p; € R

11) if (r;(t,) = 1) and (57 < p;i=*)

12) continue

13) else

14)  Find s; with lowest Cost(sy) # oo such that s;72¢ < p5ize

15) Instantiate s; onto p;

Consider the following example. A task ¢, with FPGA support can only be assigned
to a certain FPGA tile p;, € R, due to communication load issues. However, the
task uses only little computation power due to the low application requirements.
In this case, the classic correction factors (Section 3.5) are of no use when it comes
to making the best use of the scarce FPGA tiles. However, if task ¢,, supports one or
more softcores, one could instantiate a softcore s, € S onto p; € R and, consequently,
assign t,, to this instantiated softcore p;. In case of a lightweight task, the remaining
compute power for that tile can then be reused by another task.

From an implementation point of view, adding a hierarchical configuration correc-
tion factor means replacing line 5 of the generic heuristic (Algorithm 3) with the
following code snippet. This code states that if the tile with the lowest cost for task
t, is a FPGA fabric tile and if the load this task imposes (i.e. the active use of the
FPGA tile) is below a specified load threshold, then we resort to using a softcore.
This means we instantiate the most suitable softcore for task ¢, that fits onto FPGA
tile p,. Consequently, we assign task ¢,, to that newly created processing element p}.

(1) Consider for t,, that p; € P has lowest Cost(p;)
(2) if (p; € R) and (t!2?? < load-threshold))

(
(

3)  p; = InstantiateSoftCores(ty,pi, S)
4)  Assignt, top

Note that this approach to hierarchical configuration does not enlarge the solution
space with respect to spatial task assignment freedom. This correction factor only
optimizes the use of the FPGA fabric tile originally found by the generic heuristic. In
essence, this means that if the generic heuristic cannot find an assignment solution,
the hierarchical correction factor is not used. In order to really exploit the improved
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spatial task assignment freedom, one needs to add hierarchical configuration into
the main flow of the generic heuristic (Figure 3.9(b)).

3.8.4 Hierarchical Support into the Generic Heuristic

Before deciding on how to add hierarchical configuration support into the main flow
of the generic heuristic, one needs to determine if it makes sense and, if so, in what
occasions hierarchical configuration is useful. To this end, we add hierarchical con-
figuration support to the full search algorithm.

Experiments using platform 1 and a high application load reveal that between 57%
and 75% of the solutions selected as best by the full search algorithm use hierarchi-
cal configuration. Consequently, we analyze the properties of the tasks assigned to a
softcore and we perform a qualitative analysis of the task graphs using a configura-
tion hierarchy.

We notice that on average 86% of all tasks that are assigned to a softcore, support
only one non-FPGA processor type (i.e. GPP, DSP or accelerator). When the FPGA
task does not fit on a small FPGA tile, it might be possible to assign this task to a
softcore that, in turn, does fit the small tile. When analyzing the effects of hierarchical
configuration using platform 3 (i.e. containing two small FPGA tiles), we notice that
several such situations do occur.

Further qualitative analysis shows that hierarchical configuration is mainly used in
case of communication constraints. First of all, this occurs when a task has a lot of
communication peers, but does not have reconfigurable hardware support. Ideally,
this task is assigned to the center tile (i.e. tile four). This becomes a possibility us-
ing hierarchical configuration. This assignment should, on average, also reduce the
hop-bandwidth product. Secondly, using hierarchical configuration occurs when an
assignment to a non-FPGA tile cannot be done because of a communication load
constraint to a certain communication peer.
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Figure 3.10: Hierarchical configuration rationale example.
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Example 3.1: Hierarchical configuration to solve a communication load
problem (Figure 3.10).

Consider the task graph containing tasks 7, T3, and T,.. Assume that task
T still needs to be assigned, that 7, has no FPGA support (tile four) and
all other tiles are occupied or unsupported. This means task 7. can only
be assigned to either tile five or tile seven. Although both tiles can provide
the required computing resources, they lack the required communication
resources to support the communication between 73, and 7. Without hier-
archical configuration, the heuristic has no other option but to reconsider the
assignment of T,, and/or T}, (i.e. perform backtracking) or to migrate tasks
of previously assigned applications in order to free up resources. However,
by means of hierarchical configuration, 7. can be mapped on a softcore in-
stantiated on FPGA tile four. Also from a hop-bandwidth point of view (i.e.
assignment quality), it is better to map 7. on a softcore on FPGA tile four.

Now that the benefits of using a configuration hierarchy are clear, we still need to
introduce it into the generic heuristic. The initial idea of handling it as an alternative
to backtracking [157] (i.e. only using hierarchical configuration when backtracking
fails), did not yield the expected performance increase. Consequently, we add the
hierarchical configuration concept into the main flow just before prioritizing the tiles.
This is illustrated by Figure 3.9(b) and detailed in Algorithm 6.

The main difference of Algorithm 6 with respect to the generic heuristic (Algorithm 3)
is that before determining the cost of the tiles, we determine if using a softcore is
required. In case task t¢; supports only one processor p; (line 3), we prioritize its
supported softcores s; € S and instantiate them on the available FPGA fabric tiles
p; € R (line 4). Algorithm 5 details the process of prioritizing softcores and instanti-
ating them onto the FPGA tiles.

After instantiating the softcores (line 4), we determine the assignment cost for every
tile and consequently sort them according to ascending cost (Algorithm 3, lines 2-
4). In Algorithm 6 this is denoted by PrioritizeTiles. Notice that the instantiated
softcores are treated just as if they were normal processors. The underlying FPGA
fabric tiles are no longer visible, meaning that the set of available processor tiles is
now P’ instead of P. Hence the difference between the AG’(P’, L) and the AG(P, L)
parameter of PrioritizeT'iles (line 5 and line 7 respectively).

After the task is assigned we need to introduce an extra step with respect to the
generic heuristic, namely to remove all unused softcores in order to expose the FPGA
fabric again (line 10).

This approach to handling a configuration hierarchy allows to combine backtrack-
ing and hierarchical configuration. If, during backtracking, a task is removed from a
softcore and if no other task still uses that softcore (which is possible in case of multi-
tasking softcores), the softcore itself is also removed. This way, the heuristic can opt
for a different solution that does not make use of a softcore or that uses a different
softcore.
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Algorithm 6: Mapping a task graph onto an architecture graph with a hierarchical configuration
enabled heuristic.

Input: TG(T,C), AG(P,L,S)

Output: TG(T,C) — AG(S,P, L)

HIERARCHYHEURISTIC(AG(S, P, L), TG(T, C))

(1) PrioritizeTasks(TG(T,C), P)

(2) foreach unmapped ¢, with highest Prio(t,,)

(3)  if 3l7; such that 7;(t,) =1

4) P’ = InstantiateSoftCores(t,, P, S)

5) N(t,) = PrioritizeTiles(t,, TG(T,C), AG'(P', L))
(6) else

(7) N(t,) = PrioritizeTiles(t,, TG(T,C), AG(P, L))
8 ifN(t,) >0

) Assign t,, to p; with lowest Cost(p;)

(10) Remove unused softcores

(11) else

(12) if (bt > 0) and (¢, # first task)

(13) repeat

(14) Undo allocation of previous task ¢,

(15) Remove unused softcores

(16) bt =bt —1

(17) until (N (¢,) > 1) or (bt = 0) or (first assignment)
(18) if ((bt = 0) or (first assignment)) and (N (¢,) < 1))
(19) No solution found. Exit.

(20) else

(21) Assign t,, to p; with second lowest Cost(p;)

(22)  N(t,) =1

3.9 Hierarchical Task Assignment Evaluation

This section contains two parts. First, we have a look at the impact of using a hier-
archical correction factor. Secondly, we evaluate the performance of the hierarchical
configuration heuristic with respect to the generic heuristic and the full search algo-
rithm.

In order to assess the performance of the heuristic when using a configuration hier-
archy, we use the same set of task graphs as for evaluating the generic heuristic (Sec-
tion 3.7.1). However, we added a collection of seven softcore processing elements.
Given the current availability of softcore processing elements (see Section 3.8.1), this
should be the order of magnitude of softcores available to the run-time manager.
Still, every task has support for at least one non-soft processor p; € P, also denoted
as a hardcore processor, and, in total (i.e. softcore and hardcore), for no more than
four PEs.

Each softcore has a task support rate between 5% and 15%. In case of a low or a
high task load, a softcore is loaded for 35% and 80% respectively. Except for the
hierarchical correction factor, we assume only one task per softcore.

Compared with the properties of the hardcore processor types (Table 3.2), these soft-
core assumptions are quite conservative. Indeed, within a specific application do-
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main, a specialized softcore would outperform a hardcore general purpose process-
ing element (resulting in less or similar load). In case of a more general purpose
softcore (e.g. ARM Cortex-M1 or Xilinx MicroBlaze), the support rate could be as
high as for a hardcore general purpose processing element. This means that the re-
sults are also on the conservative side.

3.9.1 Hierarchical FPGA Correction Factor

In order to determine the performance of the hierarchical correction factor, we use
the same randomly selected task graph pairs as for evaluating the previous FPGA
correction factors. We evaluate the assignment success rate of the second task graph
after the first task graph was successfully mapped. In all of the experiments, both
the communication and processor load of the platform is set to high, while the appli-
cation load of the first task graph is always set to low.

Table 3.4 details the success rate improvement for the assignment of the second task
graph (after the first task graph was successfully assigned) when adding a hierarchi-
cal correction factor into the generic heuristic.

Table 3.4: Hierarchy correction factor success rate improvement (%).
Improvement with respect to heuristic(9)
TG(2/2) Load | Platform 1 | Platform 2 | Platform 3
L +4.8 +1.9 +2.0
H +8.7 +2.3 +6.1

First of all, we notice that using the hierarchical correction factor yields significant
improvements for platform 1 and platform 3. Reuse of a previously assigned soft-
core is important, especially in case of a high load for the second task graph. The
improvement for platform 2 is less noticeable due to the fact that it has only one
FPGA tile.

Note that, in case of a softcore with higher support rate or a more specialized soft-
core, the improvements would be higher.

3.9.2 Hierarchical Configuration Heuristic

Figure 3.11(a), Figure 3.11(b) and Figure 3.11(c) detail the (absolute) success rate for
both the heuristic and the full search algorithm, both without and with configuration
hierarchy support (denoted with -ch) for platform 1, platform 2 and platform 3 re-
spectively.

For Figure 3.11(a) we first notice that using a configuration hierarchy clearly im-
proves the task assignment success rate for both the full search algorithm (up to
27% better) and the heuristic (up to 20% better). Secondly, we see that the heuristic
with hierarchical configuration support performs better than the full search algo-
rithm without configuration support in three occasions. This means that, no matter



72 Task Assignment in an MPSoC containing FPGA Tiles

how one would improve the generic heuristic, it could never outperform the success
rate of the heuristic with hierarchical configuration support. This clearly illustrates
the need for run-time managed softcore processors on MPSoC platforms with FPGA
fabric tiles.
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Figure 3.11: Hierarchical configuration experimental results. Assignment success rate for a high
load application on (a) platform 1, (b) platform 2 and (c) platform 3. (d) Execution speed for
platform 1 and high application load using a StrongARM ISS (206 MHz)

Platform 2 only contains one reconfigurable hardware tile. Obviously this limits
the potential of using hierarchical configuration. Although we notice a significant
performance improvement for both the full search algorithm and the heuristic, but
the heuristic with with hierarchical configuration never outperforms the full search
algorithm without configuration hierarchy.

Platform 3 contains three FPGA fabric tiles, although two of them are small. This
implies that some FPGA tasks as well as three out of seven softcores will not fit on
these reconfigurable hardware tiles. Nevertheless, we notice that the success rate for
platform 3 is almost as good as for platform 1. This is due to the fact that if the FPGA
tile is not big enough to accommodate the (FPGA) task, in some cases (for about 16
to 22 task graphs) this can be solved by assigning that task to a softcore that does fit
the FPGA tile.

Figure 3.11(d) details the speed of the hierarchical configuration algorithm. For plat-
form 1 and platform 2, the hierarchical configuration heuristic requires on average
(depending on the platform type and load) between 179 us and 248 ps (stdev about
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180 us). Depending on the platform type, platform load and the task graph proper-
ties, exploring the full hierarchical search space can take up to several minutes.

How does using a configuration hierarchy influence the task assignment quality?
As predicted (Section 3.8.4), using a configuration hierarchy reduces the overall av-
erage hop-bandwidth product due to the fact that, for some task graphs, tasks can
be mapped closer together. As a consequence the communication load variance is
higher (i.e. communication is more concentrated on fewer links). On the one hand,
this is an artifact caused by assigning a single task graph to a balanced platform.
On the other hand, the resulting overall platform communication load and the inter-
application communication interference (Chapter 5) will reduce!

Table 3.5 details the average reduction in hop-bandwidth product for both platform
1 and platform 2 with respect to the hop-bandwidth product of the successfully as-
signed task graphs of the generic heuristic. Hence, the heuristic with hierarchical
configuration support combines a higher success rate with a lower average hop-
bandwidth. Furthermore, the fact that the reduction is higher for platform 2 than
for platform 1 is due to the communication load spreading which results in a signif-
icantly lower communication load variance. In addition, one should bear in mind
that the success rate for platform 2 is lower with respect to platform 1.

Table 3.5: Average hop-bandwidth reduction of the heuristic with hierarchical configuration with
respect to the generic heuristic.

Hop-Bandwidth reduction (%) - Application Load High
Platform load | Platform 1 Platform 2

L 0% 6%

H 4% 10%

3.10 Related Work

The related work is split into three parts. The first part (Section 3.10.1) focuses on
run-time management of FPGA fabric with respect to placing dedicated hardware
tasks. We show how our algorithms fit into this context and how hierarchical config-
uration can be a solution for some issues. The second part (Section 3.10.2) focuses on
the state-of-the-art with respect to using a configuration hierarchy. As this chapter
only used synthetic examples, it illustrates the practical usefulness of a configuration
hierarchy. The third part (Section 3.10.3) focuses on resource assignment in hetero-
geneous MPSoC systems and should put the presented algorithms into perspective.

3.10.1 Run-Time Management of an FPGA Fabric Tile

Almost a decade ago, researchers [35,62,92] started realizing that FPGA fabric should
not be considered as a peripheral device, but as a regular computing resource. This
means that the management of the FPGA fabric should be up to the operating system
(also denoted as run-time manager) that acts as an arbiter for the resource requests of
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different applications. This also means that a designer can no longer directly control
the FPGA resource. Instead, the designer should focus on the application function-
ality.

Adding the reconfigurable hardware into the overall computational pool also means
taking into account the radically different properties of FPGA fabric with respect
to an instruction set processor. Hence, the run-time services that should be pro-
vided to the applications are very different. These services include, for example,
task footprint transformation and task placement, managing fragmentation of recon-
figurable fabric, dealing with platform security and integrity issues (like e.g. FPGA
viruses [124] and preventing so-called forbidden configurations [93]), enabling FPGA
multi-tasking and pre-emptive task switching, handling the reconfiguration over-
head/time, etc.

When considering that multiple tasks have to share the same FPGA fabric computing
resource, the run-time manager has to optimize the usage of this resource. However,
there are several ways to model the FPGA resource [230].

First, one could consider the FPGA fabric as one large space, where tasks can be
placed freely. Task placement is the problem of positioning a task with irregular
footprint somewhere in the reconfigurable hardware fabric. This means that the run-
time manager needs to optimize the usage of the available space by e.g. relocating,
transforming and reshaping the tasks in order to fit as much tasks as possible into
the space, while minimizing the external fragmentation [233]. Over the years, quite
some effort has been put into developing such (complex) task fitting algorithms [35,
229,231]. In addition, FPGA vendors like Xilinx provided tools like JBits [86] that
facilitate those transformations for specific FPGA types.

These task placement algorithms induce a considerable run-time overhead. Conse-
quently, one could pre-partition the FPGA fabric (1D or 2D partitioning). Each par-
tition could then accommodate a single FPGA task. In addition, the communication
infrastructure that interconnects the different tasks and provides them a link with
the outside world could be fixed [144]. This way, the run-time overhead is seriously
reduced. However, the penalty for pre-partitioning is internal fragmentation [233], i.e.
the FPGA fabric that is wasted because the tile size is larger than the task size. Our
work is based on using a pre-partitioned model.

Spatial and temporal task assignment goes hand in hand with fragmentation. Hence,
most task placement and scheduling algorithms, especially when considering free
placement models, take fragmentation into account [41,81,230]. Walder et al. [230],
for example, use a 1D FPGA model with fixed partitions of various sizes to achieve a
better match between resource size and task size. When a task needs to be executed,
it is configured onto the smallest idle partition that can accommodate the task. Tasks
are selected on a First-Come-First-Serve (FCFS) or Earliest-Deadline-First (EDF) ba-
sis. The authors only consider non-communicating tasks. We also consider internal
fragmentation when choosing a tile and, in addition, we consider inter-task commu-
nication.

Also a lot of effort was spent in developing techniques for hiding or reducing the
task setup latency. A large task setup time could mitigate the performance benefits
of using an FPGA. Surely, task setup latency has a close relation with the used FPGA
model, but even when using a pre-partitioned model, the task setup time cannot
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be neglected. This is mainly due to the large amount of configuration bits that de-
fine a task. These bits need to be transferred and configured into the FPGA. Several
solutions have been proposed: configuration caching, prefetching, partial reconfig-
uration, bitstream compression, difference configuration, multi-context FPGAs, etc.
Compton et al. [46] provides a brief overview of these solutions. Resano et al. [186,
187] proposes a prefetching technique in order to have the FPGA task ready for ex-
ecution when needed. Similar to our FPGA correction factors, the authors extended
an existing scheduler in order to incorporate the task setup overhead scheduling ef-
fects. Compression of the amount of configuration data that needs to be transferred
and configured is another approach. This can be achieved by either only config-
uring the parts that are different between two tasks [41, 110, 212] and/or by only
configuring a small part of the FPGA denoted as partial reconfiguration. By using a
configuration hierarchy, it is possible to mitigate the task setup latency for tasks that
share or re-use a soft IP core [140, 158]. In a sense, this is similar to re-using part of
the configuration of previously executing tasks except that the reuse exploitation is
not at bitstream configuration level but at a higher abstraction level.

Enabling FPGA preemptive multi-tasking has been another focus of the reconfig-
urable computing community. The main idea is that FPGA fabric is a scarce resource
and should be time-multiplexed. Meaning that the FPGA fabric is used by more
tasks than it can accommodate at a single moment in time. This requires a reduced
the task setup time. It also requires retrieving and restoring the state of the FPGA
task. Classically it is done by reading back the FPGA configuration bits and extract-
ing the relevant state bits [86,107,122,203]. We have shown that time-multiplexing
the FPGA resources can be done by raising the abstraction level, i.e. by introducing
a soft IP core that handles the preemption in a correct way.

3.10.2 Hierarchical Configuration

Recently, FPGAs have become large enough to accommodate a significant amount
of soft IP cores. In addition, most FPGA vendors already provide a set IP of cores to
ease FPGA task development. Hence, the next challenge for run-time management
of reconfigurable hardware is the ability to efficiently handle a configuration hierar-
chy, i.e. to use soft IP cores besides handling FPGA fabric with respect to dedicated
hardware tasks.

Schaumont et al. [198] coined the term hierarchical configuration and described the
configuration design space by means of three axis (Figure 3.12). The vertical axis de-
scribes the level of abstraction. From a hardware point of view it relates to gates and
registers at the low level and to instruction set processors and complete systems at
the high level. From a software point of view, it corresponds to having a virtual ma-
chine executing instructions using the functionality and primitives provided by the
underlying abstraction layer. The horizontal axis describes the reconfigurable feature
diversity. This axis is typically associated with terms as coarse-grained and fine-
grained reconfigurability with respect to communication, computation and storage
elements. The time axis denotes the binding time, i.e. the time when configuration
data is send to the processing part. On one end of the spectrum there is design-time
binding, i.e. configuration together with the soft IP core instantiation, on the other
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Figure 3.12: Configuration hierarchy design space.

end of the spectrum there is run-time binding, i.e. configuration when the processing
is actually needed.

In addition, Schaumont et al. describe a design-time technique to determine the right
point in the configuration design space. This can be achieved by profiling a set of ap-
plications from a certain application domain. This way, one can determine a set of
commonly used, computationally intensive kernels. Parameterizable implementa-
tions of these kernels form the building blocks of the reconfigurable platform. Con-
sequently, these blocks are pre-instantiated into the fully reconfigurable fabric. At
run-time these soft IP blocks can be programmed with a minimal amount of configura-
tion input. The authors demonstrate this concept with an image processing example.
Consider a Filter Operations Block, where the filter coefficients can be provided as pro-
gramming input. This way, it is possible to use the same block for a wide variety of
filtering operations (e.g. edge detection, noise reduction, sharpening, etc.). The au-
thors suggest to use compiler techniques to map an application onto a given set of
parameterizable IP blocks.

The ThumbPod, an embedded fingerprint authentication system, illustrates the use-
fulness of a configuration hierarchy [197]. Due to the high design complexity, it is
next to impossible to capture everything in one abstraction level. Instead, the sys-
tem is composed as a stack of three machines: the bottom layer consists of a Virtex-1I
XC2V1000 FPGA. A LEON?2 softcore processor with two co-processor components
is instantiated on top of the FPGA. On top of the LEON2 processor executes an em-
bedded Java virtual machine. Using a configuration hierarchy not only enables easy
programming of the embedded system, it also allows the programmer to fully ex-
ploit the Java security architecture.

Keller et al. [108] describe the use of so-called software decelerators. By using freely
available soft IP cores, the designer can take advantage of an easier application design
process (i.e. a software design process instead of a hardware design process). In
addition, certain algorithms use fewer hardware resources when implemented on a
soft IP core (i.e. a sequential machine), while still meeting the necessary performance
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requirements. In addition to describing the desirable conditions for using a soft IP
core, the authors describe a case study based on a finite state machine.

Memik et al. [140] describe a system architecture, denoted as Strategically Programmable
System (SPS), that contains a set of Versatile Programmable Blocks (VPB) that are pre-
placed within the fully reconfigurable logic. When implementing an application,
functionality will be mapped as much as possible onto those VPBs. This way, not
only the amount of configuration bits required to represent an application can be
drastically reduced, it also results in a diminished configuration time (i.e. application
setup time). The generation of the VPBs and an SPS instance is automated. Given
a set of applications, a design-time tool determines the amount and the types of the
VPBs that will be instantiated. An image processing application is used as a proof-
of-concept. This results in three VPBs: a parameterizable filter block, a thresholding
block for simple pixel operations and a pixel modification block.

Jin et al. [104] detail a design-time exploration framework for designing FPGA-based
multiprocessors using soft IP cores. The goal is to come up with an architecture
(processing elements, interconnect and memory) that minimizes the makespan of a
given task graph. As a proof-of-concept, the authors have mapped an IPv4 packet
forwarding application onto a Virtex II Pro using the MicroBlaze soft general pur-
pose microprocessor [167]. This is the configuration hierarchy equivalent of freely
placing dedicated hardware tasks into FPGA fabric.

All the presented related work considers using a configuration hierarchy from a
design-time point of view. This way, the design can be done (a) in a more efficient
way by separating complex issues, (b) in a faster way by using a software design pro-
cess and (c) in a more resource-efficient way. Although task assignment is typically
part of the run-time resource manager, none of the authors considered having a run-
time manager controlling the configuration hierarchy. However, the work of Memik
et al. [140] could prove very useful when determining a suitable set of softcores for
a certain application domain. To the best of our knowledge, our work [158, 161]
presents the first run-time manager for reconfigurable systems capable of handling
softcores and exploiting a configuration hierarchy.

3.10.3 Heterogeneous MPSoCs Resource Assignment

The generic resource assignment algorithm should be put into perspective with exist-
ing MPSoC resource assignment algorithms, both static (i.e. design-time assignment)
and dynamic (run-time assignment).

Smit et al. [206,207] describe a run-time task assignment algorithm based on the
MinWeight algorithm [33]. The algorithm was designed to map a task graph at
run-time to a tiled heterogeneous platform containing general-purpose processing
elements, DSPs, Domain Specific Reconfigurable Hardware (DSRH) tiles and FPGA
fabric tiles. The MinWeight algorithm takes only a few milliseconds to come up with
an assignment solution. The algorithm takes the scarcity of resources into account.
This means that, quite similar to our approach, the algorithm should map the tasks
that need a scarce resource before all other tasks. In essence, this basic mapping tech-
nique bears some resemblance with our generic heuristic. Although the algorithm
clearly targets architectures containing reconfigurable hardware and although the
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authors acknowledge that scarcity of resources can be problematic for the perfor-
mance of the algorithm, they do not propose to adjust the algorithm with respect to
the specific reconfigurable hardware tile properties.

Hu et al. [100] present a design-time mapping heuristic that statically schedules both
communication transactions and computation tasks onto a heterogeneous MPSoC.
The goal of the heuristic is to minimize energy consumption. The heuristic operates
in three steps. In the first step the slack for each task is budgeted based on its mean
execution time on the different PEs and a weight factor. The result of the first step
is for every task a budgeted deadline. In the second step, the communication is taken
into account. This is done by calculating the earliest finish time of tasks, based on
the execution time and the data ready time. Then, a ready task list (i.e. a list of tasks
whose precedent tasks have already been scheduled) is composed and sorted based
on the earliest finish time. For each task in the ready task list, a list of PEs is created
that ensure that the deadline will be met for that task. Finally, the task with the
highest energy sensitivity with respect to the PE list is scheduled on its lowest energy
PE. Step two is repeated until all tasks are assigned and scheduled. The third step is
concerned with fixing missed deadlines in the schedule by local task swapping and
global task migration. Local task swapping will change the execution order of tasks
on the same PE, while global task migration swaps tasks between PEs. The authors
created several benchmarks with TGFF, each containing 500 tasks with about 1000
communication transactions and mapped them onto a heterogeneous 4x4 NoC. In
contrast to our algorithm, this static algorithm also takes resource scheduling into
account. As a result, the algorithm requires a large computation time.

Recently, Stuijk et al. [215] detail a design-time heuristic that maps an Synchronous
Dataflow Graph (SDF) onto an architecture graph. The heuristic operates in three
steps. The first step is responsible for resource binding, i.e. assigning an SDF task, also
denoted as actor, to a tile in the architecture graph. Similar to our approach, the
heuristic first sort the tasks based on their relative importance with respect to the
throughput of the application. Secondly, the heuristic sorts the tiles in order to bal-
ance the load of the application over all tiles. Consequently, each task is assigned to
a tile. Finally, after all tasks have been assigned, the heuristic revisits the allocation
of each task in order to balance the load of the tiles. The second step involves con-
structing, for each tile, a static schedule for its assigned tasks. The third step involves
allocating the processor time-slices for each tile. The authors used the SDF' tool
to generate a synthetic application benchmark and they considered three different
architecture graphs, each with a 3-by-3 mesh architecture containing three different
processor types. Their experiments also reveal a difference in mapping success rate
based on the load of the platform and the applications. As a real-life example, the
authors are mapping three H.263 video decoders (4 tasks each) and an MP3 decoder
(13 tasks) onto a 2-by-2 mesh with 2 GPP and 2 accelerators, the algorithm requires,
on 3.4GHz Pentium 4 processor, 8 minutes of run-time of which 90% is consumed by
the time-slice allocation. In contrast to our approach, Stuijk et al. [215] also provide
a task schedule for each tile with multiple tasks.

The generic heuristic (Algorithm 2) currently assumes a pre-existing path between
tiles. However, as Section 3.4 briefly explains, one could extend this algorithm with a
dynamic path finding heuristic, i.e. a heuristic that finds a path between a candidate
tile for a certain task and its already assigned communication peers. In this context,
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Marescaux et al. [131] detail a fast run-time path finding heuristic. The heuristic
operates on a TDMA guaranteed throughput NoC and is responsible for both path
finding and time-slot allocation. This is achieved by walking a space-time graph by
means of an Iterative Deepening AlgorithmIDA. In their experiments, the time required
to allocate a single path is dependent on the communication load and the number of
hops: the heuristic requires, on average, 5 us per hop per time-slot.

3.11 Conclusion

First, this chapter details a fast generic run-time resource assignment heuristic for a
heterogeneous MPSoC platform. This generic heuristic produces very good results
in terms of assignment success rate, quality of the assignment and speed of the algo-
rithm when compared to an algorithm that explores the full solution space.

By incorporating specific FPGA fabric support that considers FPGA tile fragmen-
tation and the fact that such a tile can only accommodate one task the assignment
success rate can be further improved up to 8%.

Secondly, we show that handling soft IP cores is the next challenge for run-time
management of reconfigurable systems. This is generally denoted as managing a
configuration hierarchy. The rationale for using such a configuration hierarchy is that
it provides both design-time (e.g. easier development) and run-time (e.g. spatial task
assignment freedom) benefits.

Hence, we detail how to integrate support for managing such a configuration hi-
erarchy into the generic heuristic. We show that exploiting a configuration hierar-
chy, can significantly improve the performance of the run-time task assignment al-
gorithm. This entails increasing its assignment success rate (up to 27% for full search
and up to 20% for the heuristic) and improving the task assignment quality (up to
10%, depending on the platform). In some cases, the average heuristic success rate
improvements even exceed searching the full solution space without hierarchical
configuration, while using only a fraction of the execution time.
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CHAPTER 4

Task Migration in the MPSoC Environment

nicating tasks. These application tasks are assigned by a run-time man-

ager onto the heterogeneous platform tiles. During the resource assignment
phase, just after starting the application, the run-time manager takes the availability
and suitability of the platform resources into account. However, varying run-time
conditions (e.g. new user requirements, new incoming applications, etc.) can create
the need to revise, in a flexible way, the initial resource assignment of one or more
already executing tasks.

ﬁ pplications targeted at MPSoC systems are typically composed of commu-

Hence, the run-time manager requires run-time task migration capabilities, i.e. a way
to move tasks to a different tile without the need to completely stop and restart the
application. The run-time task (or application) migration concept has been widely
explored in the Networks-Of-Workstations (NOWSs) environment. Besides the concep-
tual similarities between a NoC and a NOW (e.g. multiple processing elements,
packet-switching, routing), there are some non-negligible differences like e.g. the
available memory and the inter-task communication protocols. So there is a need for
task migration techniques tailored to the NoC environment.

Besides introducing the run-time task migration concept, benefits and issues,this
chapter contains four parts. The first part (Section 4.2) introduces a run-time task
migration policy linked to the run-time task assighment heuristic. The second part
(Section 4.3) tackles the HW /SW task migration issue. It shows how to migrate tasks
between an FPGA tile and an ISP tile (and vice versa). This involves providing the
right design-time and run-time infrastructure. The third part (Section 4.4) introduces
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and characterizes two novel task migration mechanisms targeted at the Networks-
on-Chip environment. These mechanisms allow a global run-time manager with
tile-local support functions to move one or more tasks at run-time between (hetero-
geneous) tiles. The final part (Section 4.5) deals with the migration initiation issue,
i.e. how a cooperative migration request from the run-time manager will be detected
and handled by the application. In addition, Section 4.6 discusses the related work
and Section 4.7 presents the conclusions.

4.1 Run-Time Task Migration Introduction

Run-time task migration is a pretty broad topic. This section first introduces the
run-time task migration concept. Consequently, it argues why it is beneficial to have
support for run-time task migration both for classic multicomputer systems and for
MPSoC platforms. Finally, this section provides an overview of the issues tackled by
this chapter.

4.1.1 Concept

Run-time task migration can be defined as the relocation of an executing task from
its current location, the source tile, to a new location, the destination tile (Figure 4.1).

o Q G o Time Source  Destination

Tile Tile
\\ — _ |- — — _ | Executing
- Reaction} task T,
Time
!. ‘{ Y suspend T,
[ ] Freeze
Time
u 4 resume T,
] .
Executing
[ task T,
] A\ \j
(@) (b)

Figure 4.1: (a) After re-evaluating the task mapping on a tiled architecture, task T, is migrated
from its source tile to a destination tile. (b) A sequence chart view of the migration mechanism
employed to migrate Tj.

Run-time task migration is not a new topic and has been studied extensively for
multicomputer systems since the beginning of the 1980s. Section 4.6 provides an
overview of the current state-of-the-art run-time task migration mechanisms. How-
ever, most of these algorithms are not suitable for the MPSoC environment. In con-
trast to the components of a multicomputer system, the MPSoC tiles only have a
limited amount of memory. Furthermore, the on-chip communication protocol sig-
nificantly differs from the general protocols used for computer communication. The
latter protocols provide a lot of flexibility, but have very low performance. Due to
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the specific characteristics of an on-chip network, such as a very low error rate and
higher bandwidth, an on-chip (e.g. NoC) communication protocol will provide a dif-
ferent trade-off between performance and flexibility [119].

In addition, the granularity of the application tasks and their mapping will be dif-
ferent. Instead of containing a full-blown application, a tile only contains a single
or a few tasks belonging to that application. In contrast to the multicomputer en-
vironment, this does not pose a problem, since the extremely tight coupling of the
processing elements allows heavily communicating tasks to be mapped on different
computing resources.

4.1.2 Benefits

One can distinguish two types of benefits of having task migration capabilities that
a tile based system can exploit. On the one hand, there are the traditional benefits
that also hold for classic multicomputer or multiprocessor systems. The traditional
benefits are improved system utilization and the ability to adapt to run-time QoS changes.
On the other hand, there are a few benefits that are specific to the MPSoC tile-based
environment.

With respect to improved system utilization, task migration allows the run-time
manager to implement a load-sharing mechanism. This avoids having some idle
computing resources, while others are overloaded. This helps in improving the per-
formance of the system as a whole. However, previous research [63,67] has shown
that due to the migration cost, task migration for load-sharing purposes is only ben-
eficial for tasks that require a large amount of processing time with respect to the
migration time. By minimizing the task migration cost, load sharing becomes more
feasible and can be handled more effectively.

Adapting to QoS changes often involves task migration. Suppose the processing re-
quirements of an application rise during the course of its execution, for example due
to user interaction, the run-time manager can react by migrating critical application
tasks on parallel processing elements in the NoC.

Specifically for a tile-based MPSoC system, task migration allows the run-time man-
ager to maximize energy savings. As Lu et al. explain [242], task migration po-
tentially increases the effectiveness of the Dynamic Voltage and Frequency Scaling
(DVEFS) algorithms.

In addition, task migration could enable OS controlled dynamic thermal chip man-
agement. It is well-known that controlling power density will be crucial in future
(deep sub-micron) SoCs, since elevated die temperatures reduce device reliability,
reduce transistor speed and increase leakage current exponentially. One potential
solution presented by Heo et al. [95], denoted as activity migration, proposes to move
computation from one processor core to another one in order to keep die tempera-
ture under control.

Finally, task migration can enable the run-time manager to manage the NoC com-
munication by clustering tasks (i.e. placing them on the same tile or on adjacent
tiles) that have a high inter-task communication bandwidth. This technique can
also be used to minimize communication interference between parallel applications
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[162]. Figure 4.2a illustrates an inter-application interference situation between two
producer-consumer pairs (11,72) and (1,7,). The run-time manager can decide
to dynamically migrate the consumer task 75 from tile 8 to tile 7 in the NoC (Fig-
ure 4.2b) and hence avoid communication interference.
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Figure 4.2: Migrating task T> from tile 8 to tile 7 removes the inter-application communication
interference.

4.1.3 Issues

One should make a distinction between the migration mechanism and the migration
policy. The policy is responsible for deciding on the migration of tasks in reaction to
varying run-time conditions. Section 4.2 discusses our migration policy. The task mi-
gration mechanism is responsible for performing the actual task migration according
to the decisions made by the policy.

Essentially, the migration mechanism needs to address three issues. First of all, it
needs to capture and transfer the state of the migrating task in order to seamlessly
continue task execution on the destination tile. Section 4.3 discusses this issue in
the context of run-time HW/SW migration. Secondly, it needs to efficiently manage
the continuing communication between the migrating task and the other tasks of
the application. This is denoted as message consistency. Section 4.4 details two novel
migration mechanisms that ensure message consistency. Finally, task migration in
a heterogeneous environment is a cooperative process. This means that a good col-
laboration between the task or the application and the run-time manager is essential
to create a fast and efficient migration mechanism that avoids overhead during reg-
ular task execution. In that context, Section 4.5 details a novel migration initiation
mechanism.

4.1.4 Migration Mechanism Benchmarking

This section details the benchmark properties of a task migration mechanism. These
properties will allow us to compare the performance of different mechanisms. A
good task migration mechanism should exhibit:
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- Minimal reaction time. As Figure 4.1(b) illustrates, the reaction time is de-
fined as the time elapsed between selecting a task for migration until the task
is actually ready to migrate (i.e. it reached its switchpoint).

- Minimal freeze time. The migration mechanism should cause as little inter-
ruption as possible to the execution of the migrating task (and hence to the en-
tire application). This means that the freeze time, illustrated by Figure 4.1(b),
needs to be minimized. This can be achieved on one hand by minimizing the
time needed to capture and transfer the task state, on the other hand by mini-
mizing the effort required to maintain message consistency.

- Minimal residual dependencies. Once a migrated task has started executing
on its new tile, it should no longer depend in any way on its previous tile.
These residual dependencies are undesirable because they waste both commu-
nication and computing resources.

- Minimal system interference. Besides causing minimal interference to the ex-
ecution of the migrating task, the migration mechanism should avoid inter-
ference with other applications executing in the NoC or with the system as a
whole.

- Maximum scalability. This property determines how the migration mecha-
nism copes with an increasing number of tasks and tiles in the NoC.

- Minimal steady-state run-time overhead. Most of the task migration mecha-
nisms introduce some run-time overhead by adding statements and function
calls into the original source code in order to enable task migration. Obviously
this overhead should be minimized during the regular execution. One way
to reduce this overhead is to minimize the amount of time needed to detect a
migration request.

4.2 Task Migration Policy

Task migration is useful in two distinct situations. First, in case the generic mapping
heuristic (Chapter 3) is unable to assign all tasks of a newly started application. Sec-
ondly, when the quality requirements of an already running application change due
to user interaction.

We distinguish two ways of adding task migration capabilities to the generic task
assignment heuristic (detailed in Section 3.4 of Chapter 3). First, one can add task
migration functionality when backtracking is impossible or fails (Figure 4.3(a)). Sec-
ondly, task migration could be a result of using the heuristic to co-assign an already
assigned application with a newly arrived application (Figure 4.3(b)). These tech-
niques are discussed in Section 4.2.1 and Section 4.2.2 respectively.

In addition to the symbols introduced in Table 3.1 (Chapter 3, page 54), this section
defines a few new symbols used in the description of the task migration algorithms.
They are briefly summarized in Table 4.1.
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Figure 4.3: Two ways to add task migration functionality (gray) into the generic task assign-
ment heuristic (white): (a) after backtracking failed and (b) as add-on before and after the generic
heuristic.

421 Migration After Mapping Failure

Integrating the task migration concept into the task assignment heuristic is not triv-
ial. The task migration policy should not interfere with the backtracking and vice
versa. Since task migration is a costly operation and interferes with an already ex-
ecuting application, one should primarily rely on backtracking when no suitable
processing elements are available for a specific task. Only when backtracking is no
longer possible or fails, task migration should be considered.

Algorithm 7 details the generic task assignment heuristic (Algorithm 3, Chapter 3)
augmented with task migration capabilities. The overall idea of the generic task
assignment heuristic is to (1) prioritize the application tasks based on their relative
importance, (2) for every task prioritize the tiles and (3) to assign the task to the best
tile. Backtracking is used in case of a task assignment failure. This entails changing
one or more previous assignments to solve a later assignment problem.

However, Algorithm 7 has three important differences with respect to Algorithm 3.
First, the algorithm keeps track of the best partial application assignment so far.
This means that the latest partial application assignment with most tasks assigned
is stored (line 6) for later retrieval. Secondly, backtracking cannot be used in case
the assignment of the first task fails. When that happens (lines 8-11), task migra-
tion can potentially solve the issue. Third, when the amount of backtracking steps
is exhausted or when backtracking fails (line 22), task migration can be used’®. This

1This is just the migration policy. The actual migration will only be performed after the assignment
heuristic is finished.
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Symbol Definition
M Set of suitable migration candidate tasks
¢mig migration candidate task 79 € S
TG(T, C)prew Previously assigned task graph
prev Previously assigned task 2"V € TG(T, C)prev
_5 TG(T, C)pew Newly started, unassigned task graph
" | e Unassigned task t7¢" € TG(T, C)new
B | TG(T, C)lead Resource load of TG(T, C)
= | AG(P, L)load Load of platform AG(P, L)
& | TG(T,C)superset | Sum of multiple TG(T, C);
E | AG (P, L) prev State of the platform after deallocating TG (T, C) prev
J Number of (remaining) unassigned tasks
Psre Migration source tile, current location of 7%
Ddst Migration destination tile, future location of tmig
Dtarget Target (desired) tile for unassigned task ¢,°*

Table 4.1: Additional symbols used for task migration.

means retrieving the best partial assignment and then finding a assignment for the
remaining unmapped tasks.

This algorithm checks if the number of unassigned tasks in the stored partial as-
signment is below a certain threshold ¢. If too many unmapped tasks remain, task
migration could become too time consuming and too disruptive for other applica-
tions. This implicitly assumes that most application assignment failures are caused
by not being able to map the last task(s). In this case (line 18), we expect maximally
0 remaining unmapped tasks. These unmapped tasks can either be directly assigned
(i.e. N(t,) > 1) or a task migration needs to be performed. In the rare case that
some backtracking steps still remain after reaching the first assigned task during
backtracking, the number of remaining backtracking steps is set to zero. This avoids
mixing backtracking with task migration. The actual algorithm to handle the task
migration is detailed by Algorithm 8.

The goal of Algorithm 8 is to migrate a single task ¢7"*9 of a previously assigned
application from its current (source) tile p,.. to a destination tile p4s; in order to
create a suitable location piqrge: for a task ¢, of a new incoming application.

After determining the set of suitable migration candidates M, the algorithm has to
optimally decide on (1) where to place the unmapped task ¢;** and (2) which previ-
ously assigned migration candidate task ¢ to migrate.

The first decision can be made using the hop-bandwidth product ¢™¢* of task ¢7“*.
As Section 3.4 explains, considering the hop-bandwidth product ¢™** (defined in
Algorithm 3) ensures that heavily communicating tasks are mapped closely together.
In this case, it helps determining to which tile the unmapped task should ideally be
assigned to.

Determining which previously assigned task is the best migration candidate can be
done using the mapping priority MapPrio(t]**9). As Section 3.4 explains, the map-
ping priority of a task determines its assigning importance both with respect to com-
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Example 4.1: Finding a suitable task migration candidate (Figure 4.4.)

In this example, task 7'z is the only remaining unassigned task after all back-
tracking steps are exhausted. Task 7'p is capable of running on tiles 2, 5 and
6 (i.e. the candidate tiles). For every candidate tile, the FindMigrationCandi-
dateTnsks function (line 1 of Algorithm 8) determines the reason why task 7'z
cannot be assigned to these tiles. The assignment failure of task 7'z on tile 6
is due to the fact that task 7 consumes too much compute power. Assigning
Tp to tile 6 will require task 7 to be migrated. In this case, psr. and prarges
are the same. In contrast, tile 2 has plenty of compute power. In this case,
however, there is a communication resource problem when using a XY rout-
ing scheme. As task 7 communicates with both 7, and 73, the link between
tile 1 and tile 2 cannot provide enough communication resources to accom-
modate the communication between 74 and 7. This means that placing
T on tile 2 will require to migrate 7} to for example tile 3. This example
illustrates that the source tile p,,. for migration and the target tile p;q,ge+ for
the unmapped task can be different. Finally, tile 5 cannot accommodate 7'z
because of a combination of problems. First, 75 consumes too much com-
pute power and would have to be migrated. Secondly, 71 would have to
be migrated as well in order to enable communication between T4 and T'z.
This case is not supported by Algorithm 8 as it only supports migrating a
single task.
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Figure 4.4: Task migration candidates of a previously assigned application with respect to an
unmapped task of a newly incoming application.



Task Migration Policy 89

Algorithm 7: Resource assignment with migration after mapping failure (Figure 4.3(a)).
Input: TG(T,C), AG(P, L)
Output: TG(T,C) — AG(P, L)
MIGRATIONHEURISTIC(AG(P, L), TG(T, C))
(1) PrioritizeTasks(TG(T,C), P)

(2) foreach unmapped t, with highest Prio(t,,)

(3)  N(ty) = PrioritizeTiles(t,, TG(T,C), AG(P, L))

4) if(N(t,) >0)

(5) Assign t,, to p; with lowest Cost(p;)

(6) Remember Partial Assignment({t, — ps,...})

(7) else

(8) if (t,, = first task)

) MigrateForTask(t,, AG(P, L))

(10) if (Migration not successful)

(11) Exit. //No solution found.

(12) if (bt > 0)

(13) repeat

(14) Undo allocation of previous task ¢,

(15) bt =0bt —1

(16) until (N (¢,) > 1) or (bt = 0) or (first assignment)
(17) if ((bt = 0) or (first assignment)) and (N (¢,) < 1))
(18) if Partial Assignment(Total NumberO fTasks — 0)
(19) RestoreBestPartial Assignment({t, — pj,...})
(20) MigrateForTask(t,, AG(P, L))

(21) if (Migration not successful)

(22) Exit. //No solution found.

(23) else

(24) Exit. //No solution found.

(25) else

(26) Assign t,, to p; with second lowest Cost(p;)

(27) N(ty) =1

putation and communication load requirements. A low mapping priority indicates
that (1) the task location is not very important and that (2) the task could relatively
easily be assigned to another tile.

A priority list of migration candidates MigPrio(t*'9) is created based on the product
of the mapping priority of ¢7"*9 and the hop-bandwidth product ¢™* of task ¢7“* if
it were assigned to the targeted destination tile (line 3). The rationale of determining
the priority in such a way is that it finds a balance between finding the best tile for the
unmapped task and finding the most appropriate task to migrate. In addition, one
could consider adding a migration cost factor MigCost(psyc, past). This application-
independent cost factor could represent the system cost for migration tasks between
heterogeneous tiles. This MigCost would include components like cost of managing
heterogeneous task state (Section 4.3) or ensuring message consistency (Section 4.4).

Consequently, the actual migration possibility is evaluated according to ascending
MigPrio(t!"9) values. First, this includes finding a new location for the migrating
task ¢7%. This is done by prioritizing all supported and available tiles (details, see
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Algorithm 8: Task migration (Figure 4.3(a)).
Input: t7°", AG(P, L)
Output: Assignment of t7°* by migrating %)
MIGRATEFORTASK (7", AG(P, L))
(1) foreach p; € P supported by ¢7.°%

(2) M+ = FindMigrationCandidateT asks(p;, t7°")
(3) foreach t"9 ¢ M

(4)  MigPrio(t™9) = MapPrio(t™9) x ¢ x MigCost(psre, Pdst)
(5) foreach t9 € M with lowest MigPrio(t™9) value
(6)  PrioritizeTiles(t™ 9, AG(P \ psre, L))

7) if (N(£719) > 0)

8) Migrate 7% to pgs with lowest Cost(pgst)

(9) else

(10) continue

(11)  if (CheckAssignment(tl", Diarget))

(12) Assign 7 t0 Prarget

(13)  Exit.

(14) else

(15) Undo migration of 7% to pgs:

(16) continue

Section 3.4) excluding its currently assigned tile. Secondly, in case such a tile exists,
the validity of assigning task ¢]°" to the target tile p;qr4e¢ should still be checked
(line 11) as new conflicts might arise (migrating because of computation load prob-
lems could e.g. result in new communication resource conflicts). If either step fails,
the algorithm will try the next migration candidate with lowest MigPrio(t}"9).

4.2.2 Migration After Co-Assignment of Applications

Another way of tackling task assignment in combination with task migration is to
perform application co-assignment. This means that prior to performing task assign-
ment for a newly incoming application, the algorithm selects a set of previously as-
signed tasks and mixes them with the newly arrived tasks before starting the assign-
ment algorithm (Figure 4.3b). In addition, the communication and the computation
load imposed by the already assigned tasks are de-allocated, i.e. they are considered
to be free for allocation. From then on, the GenericHeuristic task mapping heuristic
applies (Algorithm 3 in Section 3.4).

So in the first step of Algorithm 9, i.e. in the task prioritization step, the newly arrived
unassigned tasks are mixed with the previously assigned tasks. This means that e.g.
an assignment failure of the most important unmapped task can be amortized by
performing backtracking in order to move a previously assigned task.

After the heuristic has found an assignment for all tasks, it has to compare the old tile
assignment p;,. of previously assigned tasks to the new assigned tile pgs;. If those
differ, the task has to migrate.

In order to reduce the number of required migrations, tile prioritization with respect
to a specific task of the generic heuristic (Algorithm 3) can be biased to e.g. prefer the
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Algorithm 9: Task migration by application co-assignment (Figure 4.3(b)).
Input: TG(T, C)pew, AG(P, L)
Output: TG(T, C)pey assignment and migration of TG(T, C) pre, tasks.
APPLICATIONCOASSIGN(TG(T, C) pew, AG(P, L))
(1) Select previously assigned task set TG(T, C') prev
(2) AG(P,L)pet = AG(P, L)"** — TG(T, C)s,
(3) TG(T? C)SUPCT‘SGt - TG(Tﬂ C)pT’G’U U TG(Tﬂ C)TLGU}
(4) GenericHeuristic(AG(P, L) prev, TG(T, C) superset)
(5) foreach t?"" € TG(T,C)prev
(6) if Psre 7é Ddst
(7) Mark t£7¢" for migration

tile it is currently assigned to hence avoiding a migration down the road. This bias-
ing can be achieved by modifying the calculation of the tile priority (line 19 of Algo-
rithm 3) with a migration cost factor (Equation 4.1). The cost factor f(T'Gprer — AG)
could be a simple constant like e.g. 1/4 when p; = ps... This would favor the pre-
viously assigned tile. The cost function could be more complex like e.g. f(psrc, Pdst)
when taking into account the effort required to retrieve and restore task state in case
of a heterogeneous migration.

Cost(p;)viasea = Cost(pj) x MigCostFactor 4.1

In contrast to Algorithm 7, migration after co-assignment can move multiple previously
assigned tasks to solve an assignment problem of a single new task. With respect to
the example of Figure 4.4, this would mean that both task T and task T3 could be
migrated in order to assign task T’z to tile 5.

This technique could be used for switching resources between two simultaneously
executing applications. This means e.g. one currently executing application moving
from foreground execution to background execution, while another (newly started)
application is brought to the foreground. This corresponds to one of our envisioned
application user scenarios detailed in Section 6.2.1.

Selecting the right set of previously assigned tasks to be co-assigned is a separate re-
maining issue. Obviously, one needs to select the right amount of tasks with similar
properties in order to properly enlarge the heuristic assignment search space. How-
ever, selecting too many previously assigned tasks will unnecessarily prolong the
algorithm execution time, while selecting too few might result in an assignment fail-
ure. Furthermore, one needs to decide whether all selected previously assigned tasks
should belong to a single application or to multiple applications. This decision will
affect the enlargement of the search space as well as the overall system interference
caused by the migration.

4.2.3 Experimental Setup

As the task migration policy builds on top of the generic task assignment heuristic of
Chapter 3, we use a nearly identical experimental setup (see Section 3.6). In order to
evaluate the performance of the migration policies, we use 20000 randomly selected
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task graph pairs (I'G;, TG;) (the same pairs as in Section 3.7.2) based on 1000 task
graphs generated by TGFFE. Every task supports up to four PE types and, depend-
ing on user requirements, exhibits a PE-type specific processing and communication
load. As experimental platform, we use Platform 1 detailed in Figure 3.4.

The rationale here is to evaluate the effect on the assignment failure rate of the second
task graph (T'G ;) after the first task graph (I'G;) was successfully assigned. In all of
the experiments the application load of the first task graph is always low, while the
load of the second task graph varies. However, in order to successfully complete
the assignment of (T'G), some tasks of the already assigned task graph (I'G;) can be
migrated.

In order to evaluate the usefulness of both task migration policies, we assign the
second task graph (7'G;) with the generic assignment heuristic (Algorithm 3), the full
search algorithm (Algorithm 4, i.e. without migration capabilities), the heuristic with
migration after mapping failure (Algorithm 7) and the heuristic with application co-
assignment, i.e. co-assigning 7'G; and T'G; (Algorithm 9) .

4.2.4 Experimental Results

Before evaluating the migration after mapping failure algorithm (Algorithm 7), we need
to determine a suitable ¢, i.e. the maximum number of unassigned tasks for using
task migration. Figure 4.5 shows the failure distribution for assigning the second task
graph when using the generic assignment heuristic. A distinction is made between
failure of the first task, i.e. the task with the highest assignment priority, the failure of
the second last task and failure of assigning the last task. The figure shows the variation
of assignment failure with respect to the user defined application load (first letter)
and the platform load (second letter).
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Figure 4.5: Assignment failure distribution for different application (first letter) and platform
(second letter) load. This indicates that assignment failures are mainly caused by the last and the
second last task. In case of a high platform load, failing to assign the first task also accounts for
up to 5% of the assignment failures.

The mapping failure distribution shows that, for low application load, over 60% of
all failure can be attributed to failure of either the first task, the second last task or the
last task. Especially for the second last and the last task, it makes sense to perform a
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task-specific migration action. After all, these tasks have the lowest assignment pri-
ority, which either means that they do not have high platform resource requirements
or that they e.g. support a variety of processor types. This makes it very likely to find
an assignment solution by migrating one or more previously assigned tasks. Hence,
it makes sense to set J equal to two.

The rationale for performing migration in case the assignment of the first task fails is
as follows. The first task represents the task which is most sensitive to mapping fail-
ure. This means (see Algorithm 1 on page 55) that this task requires a lot of platform
resources and/or there is only one tile this task can be mapped onto. Intuitively it
is easy to understand that, as there are no communication peers assigned yet, the
reason for mapping failure is the unavailability of processing resources. Notice that
assignment failure of the first task is most prominent in case of high platform load.
Furthermore, if the first task fails there is no room for backtracking, in contrast to all
other tasks.

Figure 4.6 details the assignment success rate of the second task graph with re-
spect to the generic heuristic (heuristic(9)), the full search algorithm (fs), the generic
heuristic with migration after mapping failure (heuristic-mig) and the migration after co-
assignment (heuristic-duo) with 15 backtracking steps. In this case, the migration after
mapping failure only migrates in case of assignment failure due to the first task, the
second last task or the last task.
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Figure 4.6: Assignment rate of the migration enabled heuristic algorithms versus the full search
algorithm (fs) and the generic heuristic (heuristic(9)). The migration after mapping failure is
denoted as heuristic-mig, while the migration after co-assignment is denoted as heuristic-duo.

We first notice the difference between the two task migration approaches. The mi-
gration after mapping failure performs better given a low application and platform
load, while the migration after co-assignment performs better for high application and
platform load. For low application load, the migration after mapping failure algorithm
outperforms the full search (without migration) algorithm. The migration after co-
assignment algorithm should be used in case of high application and high platform
load, as this algorithm is not limited to only migrating for the first, the second last
and the last task.

In general, the difference in performance between the algorithms can be explained
by considering the size of their respective assignment solution search spaces and the
way these algorithms respectively explore this search space.
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The full search algorithm can traverse the entire solution space, however, without
migrating tasks from previously assigned task graphs. This means that its search
space is limited to the currently available resources, but any assignment within that
search space can be reached.

The migration after mapping failure algorithm can use the available resources for task
assignment. However, the heuristic assigns resources sequentially according to task
priority and, for a given task, only the two best available computing resources are
considered for assignment. This corresponds to searching a more limited space. For
the first task, the second last task and the last task, the algorithm can use resources
that are assigned to previously assigned tasks. However, the algorithm is limited to
migrating a single previously assigned task to accommodate a failing newly arrived
task. This explains the performance difference with the full search algorithm for low
application load. As Section 3.7.1 explains, the performance of the generic heuristic
already comes close to the performance of the full search algorithm for low applica-
tion load. By enabling migration for the most failure-prone tasks, the heuristic can
outperform the full search algorithm. In case of high application load and high PE
load, the search space of the full search algorithm is very limited thus favoring the
heuristic with migration capabilities.

The migration after co-assignment heuristic can use all available resources as well as
the resources occupied by the previously assigned tasks that have been selected for
co-assignment. However, this heuristic also assigns tasks sequentially according to
their assignment priority and only considers the best two available computing re-
sources for a given task. In contrast to the migration after mapping failure task, this
algorithm can perform multiple task migrations for assigning a single newly arrived
task. In addition, task migration is possible for all tasks and not just for the first
or last and second last task. This explains why this algorithm outperforms the full
search algorithm when computing resources are scarce (i.e. LH and HH). Scarceness
of computing resources heavily limits the search space of the full search algorithm,
but does not limit the co-assignment algorithm.

The reason for limiting the available search space is (1) to limit the execution time of
the algorithm and (2) to limit the amount of task migrations. Limiting the execution
time is needed because the algorithm will be executed at run-time. Limiting the
amount of required task migrations is necessary because every migration will cause
interference to another executing application.

The co-assignment algorithm with 15 backtracking steps requires on average about
670 us when executing on a StrongARM (206MHz) general purpose processor. Sim-
ilarly, Algorithm 8 requires on average® 395 us for solving an assignment problem
while migrating a single task. Considering that completing the generic heuristic re-
quires up to 159 us (Section 3.7.1), it does not make sense from a execution time
perspective to consider performing more than two migrations using the migration
after mapping failure algorithm.

The number of migrations resulting from the migration after mapping failure algorithm
is limited by the design of the algorithm. In contrast, the amount of migrations re-
quired by the co-assignment algorithm can be quite large. In the worst-case sce-
nario, all previously assigned tasks will have to migrate. In addition, it might be

2Non-optimized code with respect to data transfer optimizations.
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that the co-assignment algorithm proposes a migration, while another, maybe less
optimal, solution without migration would have been feasible. Without any pre-
cautionary measures, every successful assignment of the second task graph using
the co-assignment algorithm will require on average 1.93 task migration actions. By
using the constant migration cost factor of 1/4 in Equation 4.1 to bias the tile prior-
ity calculation, it is possible to reduce the average needed task migrations to 1.36
without significant impact on the assignment success rate.

4.3 Heterogeneous Task Migration Infrastructure

This section will focus on the global infrastructure required to migrate tasks between
a general purpose ISP and fine grain reconfigurable hardware tiles [143,144]. From
that perspective, the problem of designing and managing relocatable tasks also fits
into the more general research topic of hardware/software multitasking. However,
the presented techniques can be used for heterogeneous processing elements in gen-
eral.

As Chapter 3 explains, the run-time manager is responsible for deciding on the as-
signment of tasks based on the user requirements and the current platform resource
usage. In that sense, the run-time manager abstracts the total heterogeneous com-
putational pool in such a way that the application designer should not be aware on
which computing resource the different tasks of the application will run.

The designer is, however, expected to create both a hardware and a software im-
plementation of a single task in such a way that it is possible to move at run-time
from one implementation to another at specific execution points. At these migration
points or switchpoints, the tasks state representation should be transferable.

For the experiments described in this section, we used the OCAPI-xl design envi-
ronment [227]. OCAPI-xl is a C++ library that enables unified hardware/software
system design. Through the use of the set of OCAPI-x] objects, a designer can rep-
resent the application as a set of communicating tasks. Once the objects have been
designed and simulated, automatic code generation for both hardware (HDL) and
software (C code) is available. This ensures a uniform behavior for both the hard-
ware and the software implementation of a single task.

From a run-time management point of view, there are two critical application in-
terface components that need to be provided. First, a uniform communication API,
which allows tasks to send/receive messages, regardless of their execution location,
is required. Secondly, a mechanism to seamlessly transfer task execution at run-time
from one implementation to another needs to be in place. These components are
discussed in Section 4.3.1 and Section 4.3.2 respectively.

4.3.1 Uniform Communication Infrastructure

Migrating a task from hardware (an FPGA tile) to software (an ISP tile) should not
affect the way other tasks are communicating with the migrated task.
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By providing a uniform communication scheme for hardware and software tasks,
the run-time manager hides this complexity. In our approach [144], inter-task com-
munication is based on message passing.

Messages are transferred from one task to another in a common format for both hard-
ware and software tasks. Both the run-time manager and the hardware architecture
should therefore support this kind of communication.

During application mapping, the master run-time manager assigns a system-wide
unique logical address to every task. Whenever a task is assigned to a certain tile, the
master updates a Destination Lookup Table (DLT) residing within the local manager
of its communication peers. This DLT is in fact an address translation table that
enables the local run-time manager to translate a logical destination address to a
physical address. The physical address of the destination task denotes the tile it
is assigned to. The message passing API provided by the run-time management
layers transparently performs this translation. Tile-local communication is handled
by using only the logical address.

On the hardware side, the communication infrastructure provides the necessary sup-
port for message passing. In our specific case (see Chapter 6), the routing tables
inside the switches actually translate the physical destination to a route.

4.3.2 HW/SW Migration Issues

It is possible for the programmer to know at design time on which of the heteroge-
neous processors the tasks preferably should run. However, the run-time manager
does not guarantee availability of hardware tiles. Furthermore, the context switch la-
tency of a typical hardware tile is in the range of 10ms [107,144], which severely lim-
its the use of time-based hardware multiplexing (i.e. context switching). We therefore
prefer spatial multitasking in hardware.

In order to achieve the desired user performance while consider a limited number of
FPGA tiles, the run-time manager is forced to decide at run-time on the allocation of
resources. Consequently, it should be possible for the run-time manager to pre-empt
and migrate a task from the reconfigurable hardware logic to the ISP and vice versa.

The ISP registers and the task memory completely describe the state of any task
running on the ISP. Consequently, the state of a preempted task can be fully saved by
pushing all the ISP registers on the task stack. Whenever the task gets rescheduled at
the ISP, simply popping the register values from its stack and initializing the registers
with these values restores its state. This approach is not usable for a hardware task,
since it depicts its state in a completely different way: state information is held in
several registers, latches and internal memory, in a way that is very specific for a
given task implementation. There is no simple, universal state representation, as for
tasks executing on the ISP.

Nevertheless, the run-time manager will need a way to extract and restore the state of
a task executing in hardware, since this is a key issue of enabling heterogeneous task
migration. We propose to use a high level abstraction of the task state information.
This way the run-time manager is able to dynamically reassign a task from the ISP
to the reconfigurable logic and vice versa.
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Figure 4.7a represents a migratable task, containing several states. This task contains
two migration point states, at which the run-time manager can migrate the task. The
entire migration process is described in detail by Figure 4.7b.

In order to migrate a task, the run-time manager can signal that task at any time (V).
Whenever the signaled task reaches a migration point, it goes into the interrupted
state (2. In this interrupted state all the relevant state information of the migration
point is transferred to the run-time manager (*). Consequently, the run-time manager
will re-initiate the task on the other tile by using the received state information (4).
The task resumes by continuing to execute in the corresponding migration point (*.

The task described in Figure 4.7a contains multiple migration points (M), which
makes it possible that the state information that needs to be transferred to the run-
time manager can be different for each migration point. Furthermore, the unified
design of both the ISP and FPGA implementation of a task ensures that the position
of the migration points and their respective state information are identical.

‘ Master Run-Time Manager

ll migrate A
\ request1

\
ISP A ( ) l ‘m_ ___________
tile : >

Reaction | Freeze _|
Time i Time
FPGA __ _ __ oo - O
tile

(a) (b)

Figure 4.7: (a) Description of a migratable task containing two migration points M and an
interrupted state I and (b) the HW/SW task migration process.

A design-time tool could be used to automatically insert these HW /SW migration
points when the target architecture and the reaction and freeze time are given. The
run-time manager will then use these migration points to perform the migration
hidden from the designer.

4.3.3 A HW/SW Migration Case Study

The HW/SW migration experiment [144, 156] is performed on a platform® contain-
ing three tiles: a StrongARM tile, physically residing inside a Compaq iPAQ PDA)
and two partially reconfigurable FPGA tiles inside a Virtex2 XC2V6000 device (speed
grade -4). The tiles are interconnected by means of a packet-switched on-chip net-

3The platform used for the HW/SW migration experiment is actually the first Gecko platform. It is
slightly different from the Gecko? discussed in Chapter 6.



98 Task Migration in the MPSoC Environment

work. The master run-time manager executes on the StrongARM, while the local
run-time manager is implemented in hardware [144,156].

The case study consists of a motion JPEG video decoder application. The applica-
tion contains three communicating tasks: a send thread, responsible for reading the
encoded stream from disk and sends it to the decode thread, one macroblock at a time.
The decode thread decodes the stream. Finally, the receive thread reconstructs the
images and displays the video.

The send thread and the receive thread both execute in software on the iPAQ. The
decode thread has both a hardware and a software implementation both derived
from a single OCAPI-xI model. The migration point has been inserted at the end
of the frame decoding pass because, at this point, no state information has to be
transferred from HW to SW or vice-versa.

Two implementations of the JPEG decoder have been designed. The first one is qual-
ity factor and run-length encoding specific (referred as specific hereafter), meaning
that the quantization tables and the Huffman tables are fixed, while the second one
can accept any of these tables (referred as general hereafter). Both implementations
target the 4:2:0 sampling ratio.

The results of the implementation of the decoders in hardware are 9570 LUTs for
the specific implementation and 15901 LUTs for the general one. (These results are
given by the report file from the Synplicity Synplify Pro advanced FPGA synthesis
tool, targeting the Virtex2 XC2V6000 device, speed grade -4, and for a required clock
frequency of 40 MHz).

The frame rate of the decode thread is 6 frames per second (fps) for the software
implementation (executing on the StrongARM) and 23 fps for the hardware imple-
mentation. These results are the same for both general and specific implementation.
The FPGA clock runs at 40 MHz, which is the maximum frequency that can be used.

When achieving 6 fps in software, the CPU load is about 95%. Moving the task to
hardware reduces the computational load of the CPU, but increases the load gener-
ated by the communication. Indeed, the communication between the send thread
and the decode thread on the one side, and between the decode thread and the re-
ceive thread on the other side, is heavily loading the Strong ARM.

The communication between the iPAQ and the FPGA is performed using internal
dual port BlockRAMs (DPRAMSs) of the Xilinx Virtex FPGA. While the DPRAM can
be accessed at about 20 MHz, the CPU memory access clock runs at 103 MHz. Since
the CPU is using a synchronous RAM scheme to access these DPRAMs, wait-states
have to be inserted. During these wait-states, the CPU is prevented from doing
anything else, which increases the CPU load. Therefore, the hardware performance
is mainly limited by the speed of the CPU-FPGA interface. This results in the fact
that for a performance of 23 fps in hardware, the CPU is also at 95% load.

Although the run-time manager overhead for migrating the decoder from software
to hardware is only about 100us the total migration latency is about 108ms. The low
run-time manager overhead can be explained by the absence of a complex task place-
ment algorithm due to using a pre-partitioned FPGA model. Most of the migration
latency is caused by the actual partial reconfiguration through the (slow) CPU-FPGA
interface. In theory, the total software to hardware migration latency can be reduced
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to about 11ms, when performing the partial reconfiguration at full speed. When
moving a task from hardware to software, the total migration latency is equal to the
run-time manager overhead, since, in this case, no partial reconfiguration is required.

4.4 Handling Message Consistency in a NoC

Whenever a task is migrated from source tile to destination tile there might be some
unprocessed messages in the tile input buffers or in the communication path be-
tween the migrating task and its producer tiles. Ideally, these messages have to ar-
rive at the destination tile without requiring extra on-chip memory or functionality
like e.g. a message re-ordering block. Furthermore, one has to take into account
that dropping and re-transmitting messages requires extra work from the designer
or requires a more complex on-chip communication protocol.

So the unprocessed messages have to be forwarded in the same order as they would
arrive on the source tile of the migrating task. Furthermore, it is easy to imagine that
the destination tile is closer (i.e. smaller hop-distance) to one or more producer tiles.
This means that one has to make sure that newly produced messages do not arrive
before the forwarded messages.

This section presents two task migration mechanism that consider message consis-
tency while considering the limitations of the Network-on-Chip environment.

4.4.1 Generic Task Migration Mechanism

The different steps that need to be performed by the general NoC migration mecha-
nism to actually migrate a task are described in detail by Figure 4.8.

When the run-time manager sends a migration signal to the source tile (1), the task
running on that tile may be in a state that requires more input data (i.e. more mes-
sages) before it is able to reach the next migration point. This input data originates
from other tasks further denoted as producer tasks instantiated on so-called producer
tiles. Neither the run-time manager, nor the producer tasks know how many input
messages are still required for the task on the source tile to reach a migration point.

When the task on the source tile finally reaches a migration point, it signals this
event to the run-time manager (1 to 2). In turn, the run-time manager instructs the
producer tasks to send one last tagged message to the source tile and then stop sending
further messages (2). The run-time manager then sets up, initializes and starts the
migrating task on the destination tile (3).

The next step is to forward all buffered and unprocessed messages to the new lo-
cation of the migrated task. To this end, the run-time manager initializes a new
message destination lookup table* (the so-called forward-DLT) on the source tile and
instructs to orderly forward all incoming messages (4) (Figure 4.9).

*As Section 4.3.1 explains, a Destination Lookup Table or DLT is a translation table that helps the
local run-time manager to resolve the destination tile of the messages. This avoids having to resolve
the location of a communication peer every time a message is sent. A forward-DLT instructs the local
run-time manager to forward all incoming messages to a specific tile.
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Figure 4.8: Flow of the generic task migration mechanism

Free Source Tile

The destination tile informs the run-time manager whenever it receives a tagged
message. In that event, the run-time manager updates the DLT of the source tile
to reflect the new location of the migrated task and the producer tiles can resume
sending messages (5).

The arrival of all tagged messages in the destination tile indicates the end of the
migration process. Hence the run-time manager can free the origin tile (6).

Here, the application designer is responsible for introducing suitable migration points
into the application tasks. In that respect, the designer should find an optimal bal-
ance between minimizing reaction time and limiting the amount of task state that
needs to be transferred.

This mechanism can also be classified as a receiver-initiated. Meaning that the receiver
of the migration request is responsible for determining a suitable migration point.

4.4.2 Pipeline Migration Mechanism

The pipeline migration mechanism is based on two basic assumptions.

The first assumption is that multimedia algorithms are often pipelined (e.g. MP3 de-
coding, image/video decompression, etc.). Meaning that they are composed of com-
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Figure 4.9: Forwarding buffered and unprocessed message to the destination tile. All last mes-
sages coming from the producer tiles are tagged.

municating tasks organized in a pipeline fashion. Consequently, different pipeline
components are assigned by the run-time manager to different processing elements
depending on e.g. their computational requirements. Figure 4.10a illustrates the
MPEG-4 simple-profile decoding pipeline [59], while Figure 4.10b details the MP3
decoding pipeline [40].
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Figure 4.10: Pipelined multimedia algorithms: (a) MPEG-4 simple profile decoding pipeline [59]
and (b) MP3 audio decoding pipeline [40].

The second assumption is that most of these multimedia algorithms have stateless
points. This means that, at certain points in time, a producer task puts new and
independent information into an application processing pipeline. This producer task
is also denoted as the pipeline source task.
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Example 4.2: Pipeline migration

Consider an MPEG stream is composed of I, B and P frames (Figure 4.11).
The P-frames depend on the previous I-frame, while the B-frames depend
on the enclosing I-frames and P-frames. Periodically, the pipeline receives
a new I-frame to decode. This I-frame does not depend, in any way, on
previously processed information. Hence, this I-frame and the following
frames could be decoded by a newly instantiated MPEG decoding pipeline.
Similarly, an MP3 stream is composed of frames, each containing a header
and audio data.

Encoded image frames

Stateless
Point

Figure 4.11: Organization of I, B and P frames in an MPEG stream. Both groups (before and
after the stateless point) could be processed by a separate decoding pipeline.

Based on these two assumptions, a migration mechanism with the ability to move
an entire pipeline at once can be created. In contrast to the generic task migration
mechanism, pipeline migration is sender-initiated. Meaning that a producer task is
responsible for determining a suitable migration point for one or more tasks in the
pipeline. The different steps that need to be performed by such a mechanism are
detailed by Figure 4.12.
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Figure 4.12: Flow of the pipeline migration mechanism.
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Whenever the run-time manager wants to move one or more pipelined tasks, it in-
structs the pipeline source task (Figure 4.10), to continue feeding data into the pipeline
until a stateless point is reached.

At that point, the pipeline source task should issue a pipeline flush by sending a
special message either through the pipeline or directly to the pipeline sink task. As
soon as the pipeline is flushed, the pipeline sink task notifies the run-time manager
(1to 2).

In contrast to the generic task migration mechanism, there are no unprocessed or
buffered messages in the path between pipeline source and pipeline sink. At this
time, the run-time manager can re-instantiate every task of the pipeline on a dif-
ferent location (2). This includes updating the DLTs of every new task. The only
thing that remains before resuming normal operation is to update the DLT of the
pipeline source task in order to reflect the new location of the first task in the (new)
pipeline (3). Finally, the run-time manager frees the resources occupied by the origi-
nal pipeline.

In this case, the application designer is responsible for enabling the pipeline migra-
tion by introducing knowledge about the stateless application point into the pipeline
source task.

4.4.3 Migration Mechanism Analysis

This section analyzes the performance of both mechanisms. In this context, we as-
sume that the communication link between the local run-time manager(s) and the
master run-time manager provides a guaranteed, real-time communication service.
The key issue for every mechanism is being able to determine the worst-case total
migration time for migrating one or more tasks. This section compares both mecha-
nisms in that respect.

Generic Migration Mechanism

The reaction time T; ycqc¢ for migrating a single task using the generic migration mech-
anism is dependent on the task implementation, i.e. the positioning on the migration
points. Obviously, the position of the migration points will be strongly influenced
by the relevant task state at these (potential) points.

The freeze time T freeze entails (1) sending the tag & stop command from the master
run-time manager to the local run-time manager of every involved communication
peer, (2) instantiating the migrating task on the destination tile and (3) forwarding
the messages after setting-up a forward-DLT.

As this is a distributed environment, the time needed to send a tag & stop message to
multiple peers can typically overlap. In the worst case, it amounts to the time needed
for one tag & stop message T 15 multiplied by the number of communication peers
C; for the migrating task ¢;.

The time T; ¢yeqte Needed to instantiate the new task T creqie the new task is the sum
of (1) the time needed for transferring the task binary 7 sctup, (2) the time needed
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for initializing the task with task state 7} ;»;: and, finally, the time needed for setting
up the task DLT Ty;. The task setup time 7Tj setup is PE and task dependent. For
example, setting up a task on a FPGA fabric tile typically requires more time than
setting up the same task functionality on an instruction set processor. Again, as we
are in a distributed environment, T} creqte could overlap with sending the tag & stop
messages.

The time T4 needed for setting up a forward-dlt and instructing the migrating
task T; to orderly forward unprocessed data is task independent. At this point, the
unprocessed messages can be forwarded and the application can restart.

Finally, the time needed to clear the residual dependencies is composed of the time
needed to forward the unprocessed data and to reset the DLT of the communication
peers of the migrated task. However, the time needed for all messages to be for-
warded T, 4 is dependent on (1) the allocated bandwidth or (in case of a best effort
service) the available bandwidth and (2) the amount of unprocessed messages that
need to be transferred.

The total (worst case) time required to migrate a single task is given by Equation 4.2.

T, freeze

T‘i,react + (Tt&s X Cz) + (Ti,setup + ﬂ,init + let) + delt + Tfmsg + (let X Cz) (42)

As a consequence, making an accurate estimate about the total migration time re-
quires platform data communication service guarantees. This involves guarantees
with respect to communication flow control, on the one hand, and communication
bandwidth and latency, on the other hand. These guarantees will enable estimating
an upper bound of T,,s4. The time needed by the run-time manager for setting up
a guaranteed communication service [131] could be considered part of T'¢4;:.

The Gecko? demonstrator, detailed in Chapter 6, does not provide hard guarantees
with respect to communication bandwidth nor with respect to flow control. This
means that reasonable migration time estimates can only be given in case of an un-
congested network (see Equation 3.2 on page 52).

Similarly, the absence of hard end-to-end flow control requires precautions with re-
spect to the generic task migration mechanism. Consider the situation depicted by
Figure 4.13. Migrating task T to tile 6 will require sending a fag & stop command to
task Tz. However, as there is no platform flow control mechanism between 7'y and
T, the link between tile 0 and tile 3 might be congested. This will, at least, seriously
delay or stall the flow of unprocessed messages that are forwarded between T and
Tcr, which will either prolong the migration or cause a deadlock situation. In this
case, the run-time manager has to consider these situations and avoid that the for-
warded stream aligns with a blocked stream or, in general, a congested part of the
NoC.

A way to optimize the generic migration mechanism, is to let the local run-time
manager of the migrating task handle the entire mechanism instead of reporting back
to the master run-time manager. This would mean that the master run-time manager
not only indicates to the local run-time manager that a task needs to migrate, but
also indicates what communication peers to stop and the new location (through the
forward-DLT) of the task. The local run-time manager of the newly instantiated
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Figure 4.13: Using the generic task migration mechanism requires hard platform communication
services in order to avoid e.g. deadlocks. In this case, a link is blocked due to a tag & stop.
Unfortunately, this blocking also affects the forwarding of messages resulting in a deadlock.

task would then inform its communication peers to resume sending messages after
receiving all tagged messages. In essence, this would result in a more distributed
algorithm, imposing less load on the master run-time manager.

Pipeline Migration Mechanism

The reaction time Ty pp reqct for migrating an application pipeline is dependent on the
application characteristics and, potentially, dependent on the data it processes. For
example, the I-frame frequency in a MPEG stream can vary. The pipeline flush time
T't1ush depends on the size of the pipeline and the platform communication service
guarantees.

In the worst case, the freeze time is equal to the time required for setting up the
application. This involves the time needed to instantiate T creqte €very task ¢; of
the migrating pipeline. This involves the time needed for transferring the task bi-
nary T; setup and the time required for setting up the task DLT Ty;;. Again, the task
setup time T; setyp is PE and task dependent. In contrast to the generic task migra-
tion mechanism, a pipeline task does not need to be initialized (i.e. no 7 ;i) with
a previously saved state. Finally, after setting up all the pipeline tasks, the DLT of
the pipeline source needs to be updated. There are no residual dependencies when
using the pipeline migration mechanism.

The total (worst case) time required to migrate a pipeline of N tasks is given by
Equation 4.3.

Tapp, freeze

N

Tappﬂ‘eact + Tflush + Z(Ti,setup + let) + let (43)
=0
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In some circumstances, optimizations can be performed. First, in case flushing the
entire pipeline takes a long time, the run-time manager could already remove a task
(i.e. free platform resources) whenever the tagged message has passed a certain task.
Secondly, in case enough platform resources are available, the run-time manager
could instantiate a new pipeline during the reaction time. This would effectively hide
the application freeze time Ty,pp, freeze by the application reaction time Topp reqct- When
Topp, freeze < Tapp react, the only thing the run-time manager still needs to do when
reaching the application migration point is resetting the DLT of the pipeline source
task (i.e. requiring Ty, time).

Migration Mechanism Comparison

The main difference between both mechanisms is that the generic mechanism is de-
veloped for migrating a single task, while the pipeline mechanism assumes that a
complete pipeline will be moved at once. With respect to the migration policies
defined in Section 4.2, the generic migration mechanism would be preferred when
using migration after mapping failure, while the pipeline migration mechanism should
be more appropriate for migration after co-assignment.

When migrating a complete pipeline, the generic migration mechanism has to find
a migration point for every single task instead of using a application generic mi-
gration point. Although this surely is an advantage for migrating a single task, the
global reaction time of all pipeline tasks could outgrow the application reaction time.
Especially if there exists a task ¢; where the T yeqc: is equal to Typp react-

With respect to freeze time, the generic migration mechanism has to reset the same
DLT multiple times. Consider the example pipeline of Figure 4.14. When moving
task Tz, a DLT will be initialized on its new location. The same holds for 7. How-
ever, when migrating Tp, the DLT of both Tz and T will have to be altered to reflect
the new location of Tp.

Furthermore, forwarding data is in fact a disturbing with respect to the rest of the
system. When forwarding is done using a guaranteed communication service, this
service needs to be negotiated and set up (i.e. the guaranteed communication chan-
nel needs to be established. This can include path finding and/or allocating com-
munication bandwidth). Experiments [131] have shown that creating such a com-
munication service is quite costly for a short-lived communication channel. Using a
best-effort communication service for forwarding the unprocessed data does not re-
quire setting up such a service, but it is impossible to guarantee real-time deadlines.
These effects accumulate when moving an entire pipeline in a task by task manner.
These issues do not arise in case of using the pipeline migration mechanism as it
does not require message forwarding.

Finally, when using the pipeline migration mechanism, task state does not need to
be transferred and tasks do not need to be initialized. This means that when enough
platform resources are available, a new pipeline could be created while waiting for
the application to reach its migration point (i.e. during Topp react)-
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Figure 4.14: Example task graph containing a pipeline of tasks to be migrated.

4.5 Low Cost Task Migration Initiation

One of the main issues in heterogeneous task migration is the overhead incurred by
checking for a pending migration request during normal execution (i.e. when there
is no pending migration request).

Especially since a task requires to frequently pass a migration point in order to re-
duce the reaction time. The reaction time is the time elapsed between selecting a
task for migration and the selected task reaching the next migration point (Figure
4.7b). Adding more migration points thus reduces the reaction time, but increases
the checking overhead.

4.5.1 Migration Initiation Taxonomy

As Section 4.6.4 details, there are currently two main techniques to check for a pend-
ing migration request:

- Polling. In this case, polling points are introduced into the execution code (into
the source code by the programmer or into the object code by the compiler),
where the task has a migration point. This technique is completely machine-
independent, since the architectural differences will be taken care of by the
compiler in one way or another. However, this technique potentially intro-
duces a substantial performance cost during normal execution due to the con-
tinuous polling.

- Dynamic code modification. Here the execution code is altered at run-time to
introduce the migration-initiation code upon a migration request. This way,
these techniques can avoid the polling overhead. These techniques have their
own downsides. Besides the fact that changing the code at run-time will most
likely require a flush of the instruction cache, changing an instruction sequence
the processor is currently executing can result in non-deterministic effects.

In order to minimize the checking overhead during normal execution, further de-
noted as migration initiation, we propose a novel technique [155] targeted at embed-
ded systems, that uses the debug registers present on most modern PEs as migration
initiation registers.



108 Task Migration in the MPSoC Environment

4.5.2 Hardware Supported Migration Initiation

Most contemporary microprocessors (PowerPC, ARM, i386, etc.) contain a set of
debug registers. The PowerPC 405, present in the Xilinx VirtexII-Pro FPGA, contains
four 32-bit Instruction Address Compare (IAC) registers.

Whenever the program counter (PC) register reaches a value (i.e. a certain instruc-
tion) present in one of the activated IAC registers, an exception is generated. In
normal conditions, this exception is caught and handled by the debugger.

However, this mechanism could also be used as a poll-free migration initiation tech-
nique that does not require any copying or insertion of code to enable migration
points. The setup of our proof-of-concept implementation is illustrated by Figure
4.15.

After starting the task (1), a migration handler is registered with the local run-time
manager (2). This handler will be responsible for collecting the logical task state
after the task reaches a migration point. In addition, all migration point addresses
(denoted as mp) are registered with the local run-time manager (3). Then, the task
starts executing. In the absence of a migration request, there is no run-time overhead
(4).

The run-time manager maintains the migration point addresses in a task-specific
data structure. With every (potential) context switch to another task the local run-
time manager updates the IAC registers. When the resource manager decides to
migrate a task, it activates the IAC registers (i.e. simply setting some register flags)
(5)(6)-

As soon as the task reaches the instruction on a migration point address (denotes
as mp), a hardware interrupt is generated (7), which activates the migration signal
handler (8). After gathering the logical task state, the task is ready for migration to
the destination PE.

1

Signal - 2[ register migration

I e o
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Interrupt | | Resource [
RTM Handler Manager

while(true) { .
=« do("stuff");
{mp;) do("stuff"); </
N do("'stuff");
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D Platform Hardware 2 6

PE Debug Registers & register flags

Figure 4.15: Migrating initiation by reusing the microprocessor’s debug registers.
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4.6 Related Work

When it comes to run-time task migration in a heterogeneous environment, there is
also quite some related work mostly coming from the parallel & distributed systems
domain. This section provides an overview of different techniques with respect to
task migration policies (Section 4.6.1) managing task state in a heterogeneous system
(Section 4.6.2), maintaining message consistency (Section 4.6.3) and, finally, migra-
tion initiation (Section 4.6.4).

4.6.1 Task Migration Policies

The task migration policy is responsible for determining if a task migration is needed
and, if so, for selecting the task-to-be-migrated and the destination processor.

Bishop et al. [24] detail a single process migration policy for performing load bal-
ancing in heterogeneous multicomputer systems. They define a graph model for
calculating the costs associated with migrating a process. Each vertex of the graph
represents a computing host, while each directed edge represents the inter-host con-
nectivity. Edges and vertices have associated weights. Vertex weights represent the
execution cost per time unit of a particular host. Edge weights represent the costs of
moving a process and are calculated by taking the several costs into account: transfer
negotiation cost, transfer of state cost, the cost of the state translation and the cost of
(possible) residual dependencies. Vertex weights change when the system evaluates
the load and selects the candidate migration processes. A good time to evaluate is,
for example, at task creation or when the task moves to a different phase with new
resource (QoS) requirements.

Within the context of an MPSoC platform or a Chip Multi-Processor (CMP)®, task
migration is still a fairly young subject. Just like for large-scale multiprocessor and
multicomputer systems, most authors employ task migration as a load balancing
technique.

Bertozzi et al. [23] describe an on-chip task migration mechanism to perform load
balancing on a homogeneous multiprocessor platform. In their setup, every process-
ing element (ARM) has a local private memory containing the task state (stack, heap,
open I/0O resources). Inter-processor communication is implemented by means of a
shared memory. All system components are interconnected by means of a shared
bus. It is clear that, in this way, message consistency is not an issue. Despite the
homogeneous environment, the authors base their technique on designer-specified
migration points similar to our approach. Their main motivation is to only migrate
a task when the task state information is minimal. This avoids having to copy too
much state information between the private memory of source and destination PE.
The authors determine the break-even point between leaving a task in an unbal-
anced situation (i.e. getting only limited access to CPU time) and migrating with
respect to the amount of task state information that needs to be transferred and the
frequency of the migration points. They show that the size of the task state has a

5The CMP community is slightly different than the MPSoC community. The CMP community is more
focused on general purpose computing and is, as a result, less interested in the relation between multi-
processor platform and application or application domain.
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non-negligible effect on the task freeze-time. They propose to have a migration pol-
icy that is tailored to the migration mechanism and the task freeze time. However,
their proof-of-concept example application based on DES encryption uses a stateless
migration point, since moving it otherwise does not make sense: a stateless migra-
tion point is visited often, while migrating otherwise would incur a significant task
state (i.e. large task freeze time).

Kumar et al. [119] state that task migration can reduce energy dissipation and keep
die temperature under control. They show, by means of a simple example, that by
combining Dynamic Voltage and Frequency Scaling (DVFS) with task migration, it is
possible to increase the efficiency of the dynamic power management by 25%. How-
ever, as the authors acknowledge, the inter-task communication is not taken into
account.

Shaw et al. [200] describe a task migration based load balancing policy for homoge-
neous CMPs organized in a mesh. The actual inter-tile communication infrastruc-
ture is abstracted. The operating system gathers run-time information about inter-
tile communication and about the load of the tiles. The migration policy is based
on a combination of forces. Attraction forces pull interacting data and tasks closer to-
gether in order to improve locality, i.e. to reduce the hopbandwidth. Repulsion forces
push threads away from highly loaded tiles. The resulting combined force migrates
tasks to simultaneously reduce hopbandwidth and distribute the resource load. The
migration forces are recalculated either at fixed intervals or e.g. after a number of
communication operations of a certain task. As the authors rely on run-time infor-
mation gathering, they make a distinction between tasks with a clear communica-
tion pattern and tasks with an unclear communication patterns. They conclude that
task migration improves the application performance in case of clear communica-
tion patterns. Furthermore, the locality improvements and distribution of resource
load reduces the contention of the on-chip communication network. This approach
obviously only works in a homogeneous environment where message consistency
can be ignored. We also consider the hopbandwidth and the load distribution in our
migration policy. However, our policy is not triggered by a platform load unbalance.

Ozturk et al. [166] consider selective code (i.e. the task) and/or data migration in
the MPSoC environment in order to reduce energy consumption. The rationale of
their approach is to either move the code to the processing element where the data
resides or to transfer the data to the processor where the executing task resides. In
addition , the authors take into account where the resulting data (i.e. the output data
of the task) should be located. The proposed method involves analyzing the task
graph of a given parallel application and performing application profiling at design-
time. Consequently, the application code is annotated with statements describing
the correlation between the code and the current and future data that it requires.
At run-time, the migration policy algorithm decides (on an abstract level) whether
to migrate the task or the data. Unfortunately, the authors have abstracted away
the architectural constraints that have an impact on migration cost. In addition, the
authors do not specify any mechanism to go with their policy.

Pittau et al. [180] focuses on task migration for homogeneous multiprocessor plat-
forms with a single non-cacheable shared memory. This shared memory is used for
inter-task communication by means of message passing. Similar to our approach,
the authors only allow tasks to migrate at designer-provided migration points. They
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propose two task migration mechanisms. The first mechanism, denoted task recre-
ation, deletes the task on the source processing element and recreates it on the des-
tination processing element. In the second mechanism, denoted task replication, a
replica of every task is present on every local processing element. This second ap-
proach is introduced for deeply embedded platforms with run-time managers that
are not capable of dynamically creating new tasks. The authors avoid the message
consistency problem by only considering a bus as on-chip interconnect. Although
the authors do not link the provided mechanisms to an actual task migration policy,
they list the task migration options by means of a set of Pareto optimal configura-
tions. In the end, this Pareto information could be used by a migration policy to limit
its search space.

4.6.2 Managing Task State in a Heterogeneous System

When it comes to managing task state with respect to HW/SW task migration, one
can distinguish two kinds of related work. First, we will briefly detail ways to re-
trieve and restore FPGA fabric state. Secondly, we will have a look at how task state
is retrieved and translated in conventional heterogeneous parallel & distributed sys-
tems.

The most widely adopted way [107,122,203] to handle FPGA task state extraction
(and consequent restoration) is to read back the bitstream representing the task.
Consequently, all status bits are retrieved or filtered out of this bitstream. Restor-
ing state is done by manipulating the original (empty state) configuration bitstream
of a task to include the previously retrieved state. Adopting this methodology to en-
able heterogeneous task migration would require a translation layer in the run-time
manager, allowing it to translate an ISP type task state into FPGA task state bits and
vice versa. In order for this approach to succeed in general, one would also require
some unified task description like the OCAPI-xI task description. Furthermore, this
technique is very FPGA technology dependent since the exact position of all the con-
figuration bits in the bitstream must be known. It is clear that this kind of approach
does not produce a universally applicable solution for saving and restoring HW/SW
task state.

Another technology independent idea [107] is to automatically add additional hard-
ware structures that can read/write to all relevant task state registers. In order to
reduce the amount of registers that need to be handled, one could imagine having
a shutdown process that reduces the amount of relevant state information. This ap-
proach bears some similarity with our technique. First, it is also (FPGA) technology
independent since the additional hardware structures are part of the design descrip-
tion. Secondly, the proposed shutdown process resembles our task interrupted state.
However, the extra hardware structures and the task shutdown process both require
additional hardware and design effort.

Attardi et al. [16] show that two distinct migration mechanism classes can be iden-
tified: the interpretation and the translation mechanism. The interpretation-based
mechanism requires running the same interpreter on both the source and the tar-
get computing resource. This approach effectively reduces the problem to homoge-
neous migration since the same universal machine is emulated on both computing
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resources. In case of a translation-based mechanism, the task or process to be mi-
grated is kept and executed in a machine-dependent form. Before migration the
task/process state needs to be translated into a machine-independent form. After
transferring the captured state to the destination machine, it needs to be translated
into the local format in order to continue task/process execution. When the run-time
manager supports hierarchical configuration (Chapter 3), it is possible to migrate a
task from one FPGA tile to another FPGA tile in an interpretation-based way;, i.e. by
re-instantiating the same softcore.

Quite some authors have addressed the issue of tool-assisted code modification to
e.g. insert migration points or to keep track of task state.

The Tui Heterogeneous Process Migration System, described by Smith et al. [179],
is able to migrate type-safe ANSI-C programs between a set of heterogeneous ISP
architectures. These ANSI-C programs need to be compiled for every single target
architecture with a modified version of the Amsterdam Compiler Kit (ACK).

A different technique based on compile-time transformations combined with a run-
time library (Ythreads library) is described by Sang et al. [101]. This technique allows
migrating threads (i.e. lightweight processes) across computing resource boundaries.
Again the issue of creating machine-independent task state information in order to
allow heterogeneous migration needs to be addressed. In this case, the C program-
ming language was extended with a thread construct in order to create the logical
state of a thread.

The heterogeneous thread migration mechanism, described by Jiang et al. [90], is
also created by combining compile-time and run-time support. At compile-time, the
pre-processor scans the application, automatically adds migration points and inserts
suitable thread migration primitives.

4.6.3 Ensuring Message Consistency

The second issue when dealing with heterogeneous task migration in a network en-
vironment is assuring inter-task communication consistency during the migration
process. The main problem is that it is generally not known in advance when a
certain task will reach its migration point. This means that when the task actually
reaches its migration point, there might be a number of messages buffered in the
communication path between other (sending) tasks and the migrating task. Obvi-
ously, these unprocessed messages need to be transferred or redirected to the new
location of the migrating task.

Russ et al. [190] describe a dynamic communication switching mechanism. This
mechanism not only ensures communication consistency during task migration, it
also allows to switch between different types of communication (e.g. from a mes-
sage passing model to a shared memory model ) at run-time. The mechanism can
be summarized as follows. After receiving a migration signal, the task sends out an
end-of-channel message to all its communication peers. As an acknowledgment, the
communication peers in turn reply with an end-of-channel message. These special
messages serve two functions. First of all, they mark the end of communication be-
tween the migrating task and its peers. In addition they force all the messages still
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stored in the kernel buffers to be copied to an unexpected message queue. Once all
end-of-channel messages have been received, the task is able to migrate (together
with the unexpected message queue). After migration, all communication peers are
notified, while their task table (sort of destination lookup table) is updated. How-
ever, the migrated task can resume execution even before all communication is re-
stored. Communication consistency is preserved by emptying the unexpected mes-
sage queue before receiving any messages send after completion of the migration
process.

A similar technique to preserve communication consistency is described in [210,211].
The migrating process sends a special synchronization message to the other pro-
cesses of the application. In turn, these processes send a ready message to each
other. After receiving such a message from all other processes, it is safe to migrate.
Messages that arrive before the last ready message has received are buffered. After
the migrated process has been restarted, it is served with the buffered messages first.
CoCheck, described by [211], is a migration environment that uses this technique
and that resides on top of the message-passing library.

Both mechanisms are not applicable in a NoC environment. Due to the extremely
limited amount of message tile buffer space it is impossible to store all incoming
messages after a task reached its migration point. This implies that messages might
remain buffered in the communication path. Adding more buffer space to accommo-
date these messages is not an option, because on-chip memory is expensive and the
maximum amount of required storage is highly dependent on the application and
its run-time mapping.

The Amoeba distributed operating system offers a different way of dealing with the
task migration communication consistency issue [209]. Instead of queuing the in-
coming messages during the task freeze time, they are rejected, while the message
sender receives a process is migrating response. Then it is up to the message sender to
retry after a suitable delay. After migration, any task that sends a message to the pre-
vious location of the migrated task will receive a not here reply. This response triggers
a mechanism to find the new location of the destination task. In contrast to the pre-
viously described techniques, this technique does not require buffer space to queue
the incoming messages, which for example avoids a certain memory penalty in case
of an upfront-unknown amount of messages. The drawback of this technique is that
the migration mechanism loses some transparency with respect to the communica-
tion peers. Meaning that it is up to the application, either up to the communication
protocol transport layer to retransmit messages.

From a Network-on-Chip point of view, this technique is also not suited. Drop-
ping and re-transmitting messages reduces network performance [87] and increases
power dissipation [57]. To ensure reliable communication in a task-transparent way,
this technique requires (costly) additional on-chip functionality [12]. Furthermore,
dropping messages will lead to out-of-order message delivery. Special message re-
order functionality combined with a large amount of extra buffer space is needed to
get messages back in-order in a task-transparent way.

Rutten et al. [191] face a similar problem: they wish to (re)configure different tasks
of an application pipeline without causing data inconsistency. To this end, they re-
configure the application tasks at a specific point in the streaming data (e.g. before
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an I-frame). This is achieved by inserting a special location ID packet into the stream.
This packet passes through the pipeline and triggers its receiving tasks to get re-
configured by a control processor. This approach resembles the packet flushing of the
pipeline migration mechanism. In addition, the Eclipse hardware shell (see page 40),
acting as a run-time library between the control processor (i.e. master) and the appli-
cation task, provides support for this application reconfiguration mechanism.

4.6.4 Task Migration Initiation

Two distinctive migration initiation approaches can be identified.

The first approach is based on polling [8,89], i.e. introducing statements that check
whether a migration is requested.

It introduces initiation polling points into the execution code at the location of the
migration point. The amount of poll points and their placement in the code is critical
for performance: too many poll points introduce a large run-time overhead, while
not enough poll points increase the reaction time. The amount of work required for
the OS to enable the migration request can be as little as setting a global variable.

The second approach [179,183] is based on dynamic modification of code. In this
case, the execution code is altered at run-time to introduce the migration-initiation
code after receiving a migration request.

The Tui System [179] stops the concerning task and places a breakpoint instruction at
every migration point. Then the task continues until a breakpoint trap occurs. In or-
der to avoid overwriting other instructions when inserting these breakpoint instruc-
tions, extra space needs to be reserved. This can be done using dummy instructions,
which introduce some performance overhead during normal execution.

Prashanth et al. [183] introduce a technique that detects the fragment of code contain-
ing the next migration point and places migration initiation instructions in a copy of
that code. Hence, this technique does not require any placeholder instructions. The
amount of work to enable a migration point (for the second approach) is quite large
in contrast to the first approach, which prolongs the reaction time.

4.7 Conclusion

This chapter introduces the concept of run-time task migration in the MPSoC con-
text. The benefits of having run-time task migration capabilities are briefly discussed
and the issues that arise are explained. These issues entail: providing a suitable run-
time task migration policy, taking care of the task state when migrating between hetero-
geneous PEs, ensuring NoC message consistency during task migration and having a
low-overhead migration initiation mechanism. Consequently, the presented issues are
tackled.

First, we detail two novel run-time task migration policies linked to the run-time
task assignment heuristic. The choice of the migration heuristic depends on the sit-
uation (i.e. how many tasks need to be migrated) and on the platform properties
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at migration time. We show that adding task migration capabilities to the run-time
assignment heuristic clearly improves the assignment success. For low application
load, the application assignment failure rate drops by up to 34% using the migration
after mapping failure extension, while for high application load the failure rate drops
by up to 14% using the migration after co-assignment extension. In most cases, the
success rate of a migration-enabled task assignment heuristic exceeds searching the
full solution space without considering migration, while using only a fraction of the
execution time.

Second, we detail a novel method of handling task migration between an ISP and a
FPGA fabric tile [144]. This method uses an application-specific task state instead of
translating the state from source PE type to the destination PE type. We show that the
run-time environment needs to be adapted for handling HW /SW task migration. A
MJPEG video HW /SW migration case study shows how this technique can be used
by the run-time manager to speed up execution of a specific task at a specific moment
in time.

Third, we detail two novel task migration mechanisms adapted to the NoC envi-
ronment [157]. Both mechanisms ensure low-cost message consistency during task
migration. The first mechanism is a generic task migration mechanism, while the sec-
ond mechanism, denoted as pipeline migration mechanism, makes certain assumptions
concerning the target applications.

Fourth, we detail a novel poll-free task migration initiation technique [155]. The pre-
sented mechanism re-uses the debug registers, commonly found on contemporary
embedded PEs, to initiate the migration.
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CHAPTER D

Reactive Communication Management of a
Network-on-Chip

mable MPSoC platforms. As a consequence, several applications can be run

concurrently on the platform, raising the problem of application compos-
ability. Indeed, as the NoC is a shared medium, how are communications of different
applications impacting one another? In fact, two questions are raised, the first one
relates to the matching between application and platform resources and the second
one to imperfect platform virtualization.

P l etworks-on-Chip are reconfigurable and thus bring flexibility to program-

Because applications can be developed independently of the MPSoC platform (and
possibly downloaded onto it), there can be potential mismatches between platform
communication resources and their use by an application. There are several types
of mismatches. For instance, applications can have been developed for another plat-
form under the assumption no resource sharing would occur. Another cause of mis-
matches are misbehaving applications that generate more traffic than authorized,
either because of a bug or intentionally (security threat). Can mismatches between
expected and actual application communication behavior be detected at run-time?
How can application communication be controlled at run-time? How can a run-time
manager dynamically decide to give more priority to the communication of one (al-
ready executing) application over another (for instance giving priority to an audio
decoding task over a file downloading task)?

A possible answer to the previous questions is to provide perfect virtualization of
platform communication resources, so that applications execute independently of
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one another (virtual resources are private to an application). By characterizing a
static application at design-time, one can often determine both the communication
and computation requirements of every task with respect to the user requirements.
This characterization information can be included in an application’s task graph to
be used at run-time in order to statically reserve sufficient computation and com-
munication resources. This guarantees correct operation and expected application
performance. Moreover a run-time manager can exploit the design-time application
characterization and steer the available platform hardware components to achieve
composability of several applications. However, the dynamism inherent to many
applications makes them difficult to accurately analyze. In these situations the sys-
tem has to operate with estimations of application requirements and must therefore
dynamically adapt the platform resource usage to the needs, making perfect virtu-
alization difficult to exploit. Another reason for dynamic adaptation of platform
resource usage is the high cost of perfect platform virtualization support.

To either match application behavior to platform resources or to deal with partial (or
no) virtualization of platform communication!, the run-time manager needs to detect
changes to its environment and reactively tune platform parameters to maintain the
projected operating point. To create such a feedback loop, the run-time manager
needs (hardware) support to monitor changes in the usage of platform resources,
algorithms to react to unexpected changes and (hardware) actuators to act upon the
environment.

This chapter, which is also part of the PhD thesis of Théodore Marescaux [132], dis-
cusses reactive communication control of a NoC steered globally by a run-time man-
ager. Section 5.1 introduces the 3 components of reactive run-time NoC congestion
management: monitoring, decision-making and actuating. The section furthermore dis-
cusses the differences of congestion-control and flow-control. Then, Section 5.2 de-
scribes the actuator used to perform communication traffic shaping. It also discusses
the concepts, theoretical aspects and presents a proof-of-concept demonstration of
traffic shaping on an emulated MPSoC platform. Section 5.3 presents the monitor-
ing and decision-making options. We choose to implement a globally controlled
communication management scheme, while Marescaux [132] deployed a distributed
communication management scheme using the same platform monitors and actua-
tors. Section 5.4 details the selected global connection-level management scheme.
Finally, Section 5.5 presents the related work and Section 5.6 presents the conclu-
sions.

51 NoC Communication Management Concepts

This section deals with important concepts of NoC communication management. It
starts with a definition of the components of reactive communication-control mech-
anisms. We then discuss the differences between flow-control and of congestion-
control.

IReactive communication control is also relevant to NoCs with more virtualization capacity, such as
a guaranteed throughput NoC, for instance to regulate the traffic of lower priority QoS classes. The
interaction of reactive and proactive communication management systems is out of the scope of this thesis.
It is an interesting and relevant topic for future work.
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5.1.1 Components of Reactive Communication Control

Reactive communication control is a control mechanism so it can be decomposed
into three key components (Figure 5.1):

1. Monitoring,
2. Decision-Making,
3. Actuating.

Actuator — — Monitoring

System
Under Control

Decision
Making

Figure 5.1: Control Loop. A system under control is monitored (for instance a given network
interface in a NoC). Statistics of the NI are passed to the decision-making module that given an
algorithm and an objective function generates the inputs of the actuator. The actuator in turn
modifies a parameter of the system under control (it shapes traffic for instance).

As its name indicates, the monitoring mechanism measures NoC parameters at run-
time and provides statistics over the communication. Monitoring of NoC commu-
nication can be performed at each layer of the NoC protocol stack. For instance, at
the link layer, the link throughput can be measured at the individual local links. At
the network layer, measures are local to a router and relevant parameters are aver-
age throughput, packet service time, buffer occupancy, etc. At the network interface
layer (i.e. transport layer) we can measure end-to-end latency of packets, through-
put, jitter, NI buffer occupancy, etc. Monitoring at the level of the network interface
gives information about a connection and abstracts away details of the links and
routers used by this connection. At the system level, statistics give latency (and jit-
ter) of messages (or transactions) as well as data throughput.

To capture accurate statistics about the ongoing NoC communication, the monitor-
ing mechanisms need to function at least at the speed of the considered NoC layer.
Monitoring is thus often implemented in hardware.

Actuators are systems that, given an input control signal, act to regulate a particu-
lar parameter. In our case, the actuators regulate the communication properties of
NoCs.

Differing by the manner in which they reduce the amount of data communicated per
unit of time, actuators fall into two categories, they are either work-conserving or
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non-work-conserving. In presence of data to be communicated, a work-conserving
actuator always outputs data albeit at a lower rate (for instance by serializing it). On
the contrary, a non-work-conserving actuator, may decide to delay the sending of
data currently available. So far, for reactive communication control on NoCs only
non-work-conserving actuators have been used. There are at least two reasons to
prefer them over work-conserving ones. On the one hand they do not require com-
plex bit serialization/deserialization hardware and on the other hand non-work-
conserving mechanisms allow to centrally schedule the traffic in the NoC (work-
conserving actuators independently distort the traffic in the NoC making it much
more complex for a predictable global schedule).

Naturally, as monitoring, actuators can be defined at each of the network layers.
For instance, at the link layer an actuator can enforce the moment when a flit can
be sent (or received to be buffered). At the network-layer, actuators can delay the
service of given packets to regulate the traffic. At the network-interface layer, an
actuator can control when a packet is to be injected into the network. Finally at the
system-layer, actuators can decide when to issue a certain message or transaction. By
delaying certain packets (or flits) by given amounts, the actuators shape the traffic at
the various layers of the NoC.

The decision-making components have as inputs the statistics from the monitoring
modules and produce as outputs the control signals to feed to the actuators. Given a
certain objective and control algorithms, these components try to regulate NoCs by
creating a feedback-loop (or control loop) between the actuators that shape the traffic
and the monitoring mechanisms that report measured communication properties
(Figure 5.1). Because monitoring mechanisms and actuators can be defined at all
layers of the network stack, so can the decisions-making mechanisms.

Decision-making mechanisms can not only be implemented at one or more layers of
the stack, but they can also decide to integrate monitoring information from several
layers. Moreover, within a layer, decision-making mechanisms can be central (they
integrate information from all monitoring modules in the layer), fully distributed
(one decision-making system for every monitoring and actuator in the layer) or all
possible hybrid combinations.

5.1.2 Flow-Control versus Congestion-Control

Flow control is defined by Tanenbaum as a point-to-point data-link or transport layer
issue that deals with one data producer task outrunning a single data consumer
task [218]. Flow control is employed to ensure that the producer (temporarily) does
not send out more data than the consumer is able to receive and process. For an
NoC flow-control can be defined at every layer of the network stack (Figure 5.2).
For instance, at the data-link layer, handshaking controls the exchange of flits be-
tween the two end points of a link. Flow-control is used here for instance to avoid
buffer overflow at the receiving router and/or to ensure integrity of the transmitted
flit. Another example of flow-control at the data-link layer is virtual channel flow-
control, or the flit-level interleaving of packets from different sources onto the same
physical link [178]. At the network-layer the flow-control is in charge of scheduling
packets for output as a function of several parameters such as: presence of backpres-
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sure?, internal congestion, or packet priorities. At the network-interface layer flow
control can for instance be used on a connection base. Mechanisms such as end-to-
end credit-based flow control ensure that the receiver end has sufficient buffering
space to receive all packets sent. At the system level, flow-control deals for instance
with the level of occupancy of the buffers within the network layer and transactions
can be blocking if the latter are full.

N End-to-end N

P1 Flow-Control C1

A 4 W
| 4
\ / E
i Congestion

Network Interface (Hot-Spot) Network Interface

—
=
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<ip =0
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Figure 5.2: Flow Control and Congestion. Flow control can be defined at all network layers. At
the network interface layer it pertains to a single connection. Congestion occurs, at the network
layer, when multiple connections interact. Congestion can be controlled by synchronizing the
flow-control between several connections.

Congestion control is usually defined only at the network-layer. Whereas flow-control
deals with data flowing onto a single point-to-point connection, congestion-control
addresses the impact multiple point-to-point connections (sharing network or data
layer resources) have on each other. At the network layer, when congestion builds
up, packet transmission latencies as well as jitter (latency variations) increase tremen-
dously and throughput plummets possibly resulting in unacceptable degradations
for multi-media applications. Figure 5.3 illustrates the evolution of latency when
congestion builds up in an NoC that does not allow packet dropping. When no
packet dropping can occur the latency is bound by the worst case delay a packet
would incur by loosing arbitration at all hops. Let A be the routing time for one
packet once arbitration has been won and assume a connection going over n hops,
where p; is the number of input ports at hop i. Assuming a buffer of size one, the
worst case end-to-end latency (A(n)) for a packet occurs when loosing (round robin)
arbitration at every hop is A(n) = XY (p; — 1). Congestion control covers tech-
niques to monitor network utilization (to detect early signs of congestion building-
up) and to modify data transmission to keep traffic levels from overwhelming the
network medium.

Though distinct, the concepts of flow and congestion control are nevertheless con-
nected. One could use the flow control mechanisms to control the amount of traffic
that is put onto the network hereby reducing the network congestion. For instance
at the data-link layer, virtual channel flow-control reduces the effect of head-of-line
blocking and thereby globally decreases congestion. At the network layer, packet

2The amount of backpressure regulates the number of packets injected into the network.
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Figure 5.3: Congestion build-up as function of the offered load [223]. Congestion is characterized
as a dramatic increase in latency with increasing offered network load. In an NoC that does not
allow packet-dropping, the latency saturates. The saturation level corresponds to the worst case
delay a packet would incur by loosing (fair) arbitration at all hops.

dropping is a common congestion control technique in classic networking, though it
is not generally desirable in NoCs because retransmission requires extra buffer space
for packet re-ordering.

5.2 Actuator - Injection Rate Control

This section discusses the non-work-conserving actuator (injection rate control) used
throughout this chapter. This actuator performs traffic shaping at the network-
interface layer. Restricting ourselves to actuators at this layer has been a deliber-
ate choice because the network-interface layer controls the initial injection of traf-
fic into the network layer, so it has a major impact on congestion. At the network
layer, actuators typically discard packets or deflect packets from their optimal path.
Both packet-dropping and adaptive routing are often undesirable for industrial-
grade NoCs because of high implementation costs (re-transmission and re-ordering
buffers are required). Only very recently have actuators at the data-link layer been
addressed in related work (Section 5.5).

This section first gives an overview of the conceptual mechanism of injection rate
control actuators. We then discuss theoretical aspects of algorithms to perform injec-
tion rate control. Finally, we show the effects of a proof-of-concept implementation
of this actuator in the Gecko? MPSoC platform emulator (Gecko? is further discussed
in Chapter 6).
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5.2.1 Mechanism Concept

The amount of traffic that is injected into the network layer can be limited by pro-
viding an injection rate control mechanism at the level of the network interface (NI).
Traffic is shaped at the sender NI by controlling three parameters of the packets sent:
their priority-level, their length and the time they are injected in the NoC. Adapting
traffic shapes to the current quality requirements allows to control the communica-
tion in the NoC and is a pre-requisite to providing soft real-time guarantees.

The time wherein an NI is allowed to inject packets into the network is denoted as the
send window. The shape of the send window is defined in the injection rate control
actuator thanks to one running counter giving a global timing and three registers.
The first shape register, Low (L) specifies when the window starts and the second
shape register High (H) when it ends. By setting the low and high value, a controller
is able to describe a single send window within the whole period of length T (Figure
5.4(a)). The third register Spread (S) specifies how often the window appears over
time within the period of a running counter wrap-around time. So by increasing the
spread S, a single send window can be spread over the whole period T (Figure 5.4(b)
and Figure 5.4(c)).
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Figure 5.4: It is possible to specify the size, the location and the amount of spreading of the ‘send
window’ by adjusting the low (L), high (H) and spread (S) value, with t perioa = T/ S.

The concept of window spreading over a maximum period T is related to the imple-
mentation of injection rate control in the Gecko? MPSoC platform emulator (Chap-
ter 6). The maximum period T is defined by a running counter (19 bits wide®). The
spreading* S is a unit-less value that allows to reduce the maximum period T to
the actual period used tperioa = T/S. Hereafter when we speak about window
spreading over the maximum period T, we really mean a smaller window, but re-
peating more often as t,crioq is smaller. We define 2 to be the fraction of the window
w=H — L over tperiod:

H-L w

tperiod tperiod

By adjusting the send windows for the different network interfaces in such a way
that they do not overlap, it is possible for a central run-time controller to ensure that
two tiles never inject packets at the same time.

3The most significant 16-bits are exported as a time-stamp to the run-time manager. Gecko? is clocked
at 33MHz so that the counter wraps around after 16 ms (219 - % -1079), roughly matching the scheduling
time of the run-time manager.

45 is really implemented as a bit-mask and is used to set tperioq = T/2™ (n € [1,19]).
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5.2.2 Theoretical Aspects of Injection Rate Control

The traffic shaping actuator in our system is based on a sliding window mecha-
nism. Packets are only injected in the network during the time a window of size 2 is
opened. The purpose of defining a control algorithm is to answer two questions. (1)
How should the size of this window be modified in time to quickly reduce through-
put? (2) How should the window be modified in time once throughput has been
reduced? The size of the window is based on binomial congestion avoidance [20]:

Window Increase : new(t) = Q) + SF (a>1) (5.1)

Q
Window Decrease : Qnew(t) = Q@) - 81 (0<B<1) (5.2)

While no congestion is notified, the window size is gradually increased every time-
interval R (Figure 5.5(a)).In the general case, the increase amount is proportional
to Q~* (Equation 5.1). When congestion has been notified, the window size is de-
creased (Equation 5.2), usually by a larger amount than it is increased (Figure 5.5(a,b)).
The parameters k and [ in Equations 5.1 and 5.2 define the aggressiveness at which
the windows are opened and closed and therefore their impact on response to con-
gestion. To ensure a good trade-off between probing aggressiveness and congestion
responsiveness, we use the k + [ rule® defined in [20]: £+ = 1 and | < 1. Fig-
ure 5.5 shows the effect of two different sets of (k, ) values that follow the k + [ rule.
Additive Increase Multiplicative Decrease (AIMD) uses (k,1) = (0,1) and yields a
windowing mechanism that is both efficient and simple to implement (Figure 5.5(a)).
The square root algorithm (SQRT) uses (k,!) = (0.5,0.5) and thus changes the win-
dow size proportionally to v/ which yields a smoother traffic shaping but is more
computationally intensive (Figure 5.5(b)).

5.2.3 Traffic Shaping - Proof-of-Concept

In order to demonstrate the effects of the injection rate control actuator, we created
on our emulation platform the setup detailed in Figure 5.6 (further detailed in Chap-
ter 6). We use the traffic generated by a Motion-JPEG video decoder running on
the emulator. It is composed of four tasks running concurrently on the computa-
tion resources of the platform (Figure 5.6). Two of these tasks, the sender and the
receiver, run in software on the StrongARM processor (tile 3). The two other tasks,
are hardware blocks: a task that performs the Huffman decoding and the dequantiza-
tion, further denoted as Huffiman block, and a task that performs a 2D-IDCT and a
YUV to RGB conversion, further denoted IDCT block. These tasks are mapped on tiles
1 and 8 respectively. The sender task sends an encoded video data-stream to the Huff-
man block. The Huffman block sends the decoded data stream to the IDCT block.
The output of the IDCT is sent back to the StrongARM to be displayed by the receiver
task.

The purpose of the experiment is to show the effects of the actuator (varying win-
dow sizes and spreading) has on real NoC traffic. In this example monitoring is

5The k + [ rule ensures that the system responds quickly and remains in a stability region. See [20] for
a thorough analysis.



Actuator - Injection Rate Control 125

Q
1 | =08
Congestion Notified £ AIMD (k=0;1=1)
R
' ' Time
t1 t2
(a) Window increase/decrease illustrated on AIMD.
Q
Congestion
Avoidance SQRT (k=0.5;1=0.5)
\
Warm Up <
AIMD (k=0;1=1)
: :
Time

t1 t2

(b) SQRT gives a smoother window variation compared to AIMD (AIMD steps
from previous figure are here smoothed-out due to a coarser time-scale).

Figure 5.5: Traffic shaping is based on a sliding-window mechanism.

performed at the network-interface layer. Statistics are gathered locally by dedi-
cated hardware in the NIs and are centrally collected by the run-time manager. They
include, for every task in the application, the number of messages effectively sent, re-
ceived and blocked at a given NI. In this experiment, the run-time manager samples
the relevant NIs every 20 ms®.

Figure 5.8 shows a combination of the message statistics captured at NIs 8 and 3
as they are communicated to the run-time manager (Figure 5.7). It is a stack plot
composed of the number of packets sent at NI 8 and at NI 3, of the number packets
received and among them how many have been blocked (input buffer overflow at
NI 3). This figure shows two experiments ran one after the other. The same video
sequence has been played twice with different windowing techniques: spread (i.e.
S > 1) and a single continuous send window (S = 1). During both experiments
the send window size is gradually diminished from a size T (window completely
opened during the send period of T) down to the smallest possible (non-zero) value,
corresponding to the sending of a single packet over the period T. Experiment 1
in Figure 5.8) has been obtained by applying a window spreading technique and
gradually diminishing the size of the window (Figure 5.4(b,c)). Experiment 2, uses
the same diminishing window sizes, but shows the effect of having the window
composed of continuous blocks of bandwidth (Figure 5.4(a)).

®The regular sampling rate on the emulator is of 50ms, but to capture more details in the graphs
displayed in here we have increased the sampling rate.
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Figure 5.6: Mapping of the Motion-]PEG application on the platform. We monitor the connection
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Figure 5.7: Data and control networks on the path 8 — (7 — 6) — 3. The control network
interface in the sender NI (Tile 8) enforces the window size to shape traffic and collects the number
of messages sent. The control network interface in the receiver NI (Tile 3) collects the number of
messages received and the number of messages blocked in the NI upon receiving. The run-time
manager in the StrongARM (Tile 3) collects message statistics and varies the window size in the
sender NI.

Experiment 1 in Figure 5.8 shows how, for a spread window technique, a good win-
dow size value can be found to match the application to the platform and reduce the
network congestion. Indeed, around ¢ = 3.3 (10% OS ticks), the number of blocked
messages drastically diminishes without impacting the number of sent/received
messages). Further diminishing window size throttles the IDCT sender and the
number of sent and received messages goes below the application requirements (but
can be used to give priority to another application sharing one of the links on the
connection 8 — 3). Experiment 2 shows that, for this application, the block alloca-
tion technique very rapidly throttles the IDCT sender without actually diminishing
the level of (instant) blocking at the network interface layer. Because windows are
allocated in a complete block, when the window is closed the IDCT quickly fills up
its send buffers and then its computation stalls. Only when the window is opened
again (in a single block) and its send buffers are emptied can the computation be
resumed. As the granularity of the send period T is much larger than the computing
time of the IDCT block it is impossible to find a good window size to match appli-
cation and resources. This experiment outlines the importance of using the spread
value S in addition to the send window size w.
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Figure 5.8: Traffic shaping of the MJPEG on connection 8 — 3. Two experiments using the same
video sequence are ran one after the other. In both experiments the window size is diminished from
completely opened down to almost closed. The first experiment spreads the window opening over
the maximum period T by increasing the value of S and decreasing w = H — L, the second one
keeps S = 1 and only decreases w.

5.3 Monitoring and Decision-Making

The design space of reactive communication control can be naturally decomposed
along three axis that correspond to the three components previously mentioned:
monitoring, decision-making and actuator. In our exploration, we have chosen to fix
the actuator at the network-interface layer, because it is the layer that injects packets
into the network, thus the one that has most impact on congestion and on end-to-end
flow control. This injection rate control actuator has been implemented in Gecko?
emulator.

This section discusses the options with respect to monitoring and decision-making.
So, given an actuator, how to explore the decision-making and monitoring axis of
reactive communication control? What should be the granularity of communication
control? This section also positions our approach with respect to the work performed
by Marescaux [132]. Tables 5.1 summarizes the differences.

5.3.1 Decision-Making Axis

The role of the decision-making algorithms is to control the actuators in order to
regulate traffic.

Types of Decision-Making

We have seen in Section 5.2.2 that the window size is one of the control parameters
of an actuator. It is up to the decision-making algorithm to choose an appropriate
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value for these parameters. Nevertheless, there are actually two different types of
decision making:

1. Need to act at all? The very first question a decision-making algorithm has to
make is if it is needed to trigger an actuator at all. Indeed it is desirable to
maintain a stable system, avoiding to permanently be in a transient mode. A
certain level of hysteresis is thus desirable.

2. How to regulate the actuator? The second level of decision-making is how to
modify the input parameters of the actuator. In the example of injection rate
control of section 5.2.2, parameters are window size, window spread and val-
ues for k and [ (Equations 5.1 and 5.2).

Levels of Decision-Making

Decision-making, whether pertaining to flow-control or to congestion-control can be
made by integrating information from one or more layers of the network protocol
stack. Moreover, at each of these layers, information can be considered locally or
globally.

At one extreme of the decision-making spectrum, decisions can be done indepen-
dently of each other, locally at the data-link layer. There are as many indepen-
dent decision points as there are links in the system. At this decision-level, called
Localpc, only (data-link) flow-control decisions can be taken because information
for congestion-control is not available.

In terms of congestion-control, the extreme of the spectrum of decision making is
localized in the routers at the network layer. The most localized decision making
mechanism can independently run in every router by taking into account any subset
of the links entering the router. The local congestion-control decision-making can
take into account any combination of the links into the local router.

At the other extreme of the decision-making spectrum, information about all layers
of the network protocol stack is globally integrated for a (single) central congestion-
control decision-making mechanism, called Globalcc. Globalcc (global congestion-
control) considers all connections globally so as to control congestion in the system.

Decision-Making Options

Remember that the decision making algorithms can be defined at all layers of the
NoC protocol stack. We have also seen that there is a spectrum of locality of the deci-
sion making process. At one extreme it can be fully distributed to make decisions on
every individual link and at the other extreme it can be completely centralized and
integrate information from all NoC monitoring modules throughout the platform.

It is interesting to note that the two types of decision making (if and how) are or-
thogonal to whether decisions are made locally or globally. As all combinations of
decision types and levels are possible, the resulting design space, illustrated in Table
5.1, and explained next is quite large.
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GH
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(Global-If) At the network-interface layer, it is relevant to consider a global co-
scheduling of all connections in the system (GIcc). The assumption here is
that the run-time manager manages all connections and can for instance as-
sign them priorities. Based on these priorities and monitoring information, the
run-time manager can decide whether certain actuators have to be reconfig-
ured or not. A global view of the system, pertaining to flow-control (G1r¢), is
explored in the central communication control management system discussed
in Section 5.4.

(Local-If) It is also possible to locally decide on the activation of an actuator
only based on local monitoring information. For instance monitoring informa-
tion from the local router can be used by a local decision-making mechanism
(situated in the router or associated network-interface).

(Global-How) At a global level, more information can be taken into account to
optimize the control parameters of the actuators. One particular example ex-
ploiting a global view of the system (for flow-control) is the pipelined window
allocation addressed in Section 5.4.5. In essence, the start times of the windows
are set as to minimize the waiting send times for a pipeline of tasks. Setting the
window start time only based on local information would fail to capture this
pipelining.

(Local-How) A simple algorithm such as AIMD can be locally applied to decide
on the window size variations. This local view of the first level of decision-
making is addressed in the distributed congestion control mechanism, detailed
by Marescaux [132].

Decision Level

Flow-Control

Congestion-Control

Decision Type | Localpc <  Globalpc | Localce < Globalce
If Llipc Glpc Llce Glee
How LHFC GHFC LHCC GHCC

Table 5.1: Design-Space of Decision-Making. For both flow-control (FC) and congestion-control
(CC), between the Local and Global decision-level extremes, there is an ensemble of solutions
(denoted by . . .).

5.3.2 Monitoring Axis

Monitoring modules measure NoC communication parameters at all layers of the
network protocol stack. This section mainly focuses on monitoring at the network
interface layer and at the data-link layer, because they are the two layers that inject

data into the network layer so that they have an important impact on congestion

7

7 Additionally, at the network layer the parameters with high impact in board-level multi-processor
systems, such as the packets dropping rates are irrelevant to the NoCs we consider.
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Connection-Level Monitoring

At the network interface layer, monitoring is performed inside the network interface
and measures parameters pertaining to end-to-end connections. Figure 5.9 shows
the network interfaces of a connection between a producer and a consumer. At the
producer network interface we measure the amount of packets sent per unit of time,
whereas at the consumer network interface we measure the total amount of packets
received and the fraction of these packets that got blocked due to buffer overflow.
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Figure 5.9: Monitoring at the network-interface layer. The connections P1 — C'1and P2 — C2
share a link. Monitoring at the NI layer measures parameters such as number of packets received
and sent and end-to-end packet latency. Congestion can only be indirectly detected.

Congestion occurs at the network layer, when several connections compete for access
to a shared link (saturation occurs when requirements are above link capacity). On a
connection it is possible to detect congestion by observing the variations of the com-
munication properties (increased packet latency for instance). However, determin-
ing which link on the connection is congested (hot-spot detection) is only possible
indirectly. Indeed, one needs the statistics (and information about the placement) of
all connections that share links with the congested connection to locate the hot spot.
When using only network-interface layer monitoring, a global view of the connec-
tions is thus required to determine how they interact with one another. Section 5.4
discusses reactive communication control in a system where only connection-level
monitoring is available.

Data-Link-Level Monitoring

The other extreme of monitoring is measuring the properties of individual links.
Figure 5.10 shows an example containing two producer, consumer pairs that share
the output link of router R1. For instance, by measuring the levels of the input buffers
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of router R1, we get an indication of the level of congestion a particular data-link (one
data link is associated to one input buffer).

P1 Link-Level C1
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Figure 5.10: Data-link monitoring. The connections P1 — C1 and P2 — C2 share a link.
Monitoring at the data-link layer measures parameters such as throughput or buffer occupancy
and permits to directly detect congestion.

However, note that though the measure of buffer occupancy of a particular data-link
directly locates a hot-spot, it is not sufficient to determine which particular connec-
tions are responsible for creating congestion. Network interface layer information
such as the source of congesting packets needs to be associated.® This implies that
data-link monitoring requires higher network layers to transmit information about
the source of the packet and in many NoCs this information is optimized away to re-
duce packet header size. Marescaux [132] uses data-link monitoring. This, however,
required to modify our emulator platforms specifically to change the packet header
in order to add a packet source field.

5.3.3 Design-Space Choices

We have seen that both axis of monitoring and decision-making permit wide varia-
tions in the design-space. What granularity of control is relevant for reactive com-
munication control of NoCs? Table 5.2 gives an overview of the reactive congestion-
control design-space.

As the described design-space is fairly large, we fix the actuator to be the injection
rate controller at the network interface layer and study two points at the extremes of
the design space (one associated to flow-control, the other to congestion control). The
Connection-level monitoring + Global pc (GI pc,GH pc,) decision-making is discussed in
this thesis, while the Link-level monitoring + Localcc (LI oo, LH ¢¢) decision-making is
detailed by Marescaux [132].

The configuration of monitoring at the connection level and of global decision mak-
ing for flow-control is studied in detail in Section 5.4. Because monitoring is per-
formed at the network-interface layer, we need to assume that connections are co-

81f connections are to be individually identified, both source and destination of the packet are required.
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Parameter Valuespc Valuesco
Monitoring Layer Link  Net. NI* Link™ Net. NI
o | If Llrc & Glpe | LI, & Glce
Decision-Making | 1y, LHpe <& GHup | LHLY. &  GHee
Actuating Layer Link Net. NI* Link Net. NI

Table 5.2: Design-Space of Reactive Communication Control. The asterisk symbol (*) indicates
the design point used in this thesis. The plus symbol () indicates the design point used by
Marescaux [132].

scheduled and co-placed globally (at the system level) so that hot-spots in connec-
tions can be detected. As a consequence, the decision-making process also needs to
assume a global system-level view, taking into account which connections have pri-
ority over others. Both levels of decision-making (when to react, how to modify the
parameters) are assumed to be global.

The configuration of monitoring at the link-level and local (hence distributed) deci-
sion making for congestion-control is discussed by Marescaux [132]. Marescaux de-
tails router extensions with link-level monitoring mechanisms that detect hot-spots
at a fine granularity. In terms of decision-making, the first-level (i.e. the if decision)
is based on connection priorities and assumes a global system-level placement of
connections (and priority assignment). The distributed part of the decision-making
process is actually the adaptation of actuator parameters (window sizes).

5.4 Global Connection-Level Management

In our NoC communication management scheme, the run-time manager is able to
monitor the traffic at every network interface. Based on this information the run-
time manager can manage traffic by limiting and/or shaping the amount of packets
a tile is allowed to inject into the NoC. This way, the packet rate of the data producer
can be matched with the consumption rate of the data consumer in order to handle
network blocking conditions.

5.4.1 Setting and Problem Definition

Consider the assignment of two task graphs, TG, and T'G5, depicted in Figure 5.11.
The run-time manager’s resource assignment algorithm (Section 3.4), attempts to
cluster communicating tasks as much as possible in order to optimize resource usage
and minimize inter-application interference. However, it still occurs that a commu-
nication link is shared between two applications. In this example case, the link I34 is
shared between T'G; and T'G>.

Every task graph edge is associated with a load estimate, i.e. a number that denotes
a worst case estimate of the amount of communication throughput required by this
edge. This number is provided by the application designer either by design-time
analysis or by application profiling. During the assignment, the run-time manager
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Figure 5.11: Assignment of two application task graphs, T'G1 and T'G3, to an architecture graph
AG (graph representation of the MPSoC communication resources). The link 34 is a shared link
between the two applications. The run-time manager ensures that the total assigned communica-
tion load does not exceed the link capabilities.

ensures that the cumulated communication load of all connections sharing a certain
link does not exceed the maximum load of the link.
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Figure 5.12: Although producer and consumer can be matched on average with respect to pro-
duction and consumption of messages, there is still a need for buffer space to handle temporary
differences due to e.g. message bursts. The amount of required buffer space depends on the differ-
ence in production/consumption rate: small variations require, small buffers (1) while very bursty
traffic requires a large amount of buffer space (2).

Although both producer and consumer can be well matched on average when it
comes to production and consumption of messages, there might be transient dif-
ferences. For example, the production of messages can happen in bursts, while the
consumption happens at a steady rate. To overcome these transient differences, mes-
sage buffers are inserted in the network interface both for sending and receiving
messages. Figure 5.12 illustrates a producer-consumer pair that is, on average per-
fectly matched. However, due to the burstiness of the producer, temporary buffer
space is required. For small bursts or variations in the sending pattern (1), a small
amount of buffer space is sufficient, for very bursty traffic (2), a larger amount of
buffer space is required.
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Figure 5.13: Blocking conditions in a router. Congestion builds up at the network layer because of
buffer overflow at the network interface layer (mismatch between consumer and producer tasks).
Unrelated applications, sharing the congested link, are impacted.

As the amount of message buffers is platform dependent, a buffer overflow is still
possible even when producer and consumer are well matched (assuming the absence
of end-to-end flow control at the network-interface layer). Figure 5.13 zooms-in on
the situation of the shared link at tile P4. Due to bursty communication of task ¢,
combined with steady consumption of task ¢3, the buffer in the network interface is
still full, while a new message is already lining up on link /34. As l34 is a shared link,
a message coming from ¢4 is waiting on the same link to be routed to its destina-
tion. The router has two options in this case. The first option is to drop the packet.
This option assumes a mechanism that (1) detects packet loss and that retransmits
messages at the sender side and that (2) re-orders messages at the receiver side. The
second option is to temporarily queue the packet inside the network router buffers
(rely on the flow control at the network layer to block communications). This second
option assumes that such situations occur very rarely as producer and consumer are
well matched. However, queuing the packet in the network router can create block-
ing conditions. This means that the message coming from ¢4 cannot be routed until
the message from t, has been routed.

Example 5.1: Solving blocking conditions (Figure 5.14).

Producer t, sends messages to Consumer t3, while Producer t4 communicates
with Consumer t5. Both communications share a common link (between R2
and R3) (a). Suppose that Producer ¢, temporarily produces more messages
than Consumer t¢3 can handle. In our approach, incoming messages for Con-
sumer ¢3 that cannot be stored in the NI input buffer are stored in the router
until the required buffer space becomes available (b). However, this creates
communication interference between Producer ¢4, and Consumer t5 result-
ing in more jitter and a decreased throughput. This kind of interference is
further denoted as (network-layer) blocking. As soon as the run-time man-
ager is informed of the blocking issue, it limits and/or shapes the output of
the offending Producer ¢ (c). This is achieved by using the injection rate
controller to apply a send window. This will result in fluent traffic for all
communications (d).
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Figure 5.14: (a) Two communicating producer consumer pairs: to communicates with t3 and t4
communicates with ts. (b) Blocking occurs due to a mismatch between t2 and ts with respect to
production and consumption. This causes interference with producer-consumer pair t4 and ts.
(c) The run-time manager monitors traffic, collects statistics information and reshapes producer
traffic to reduce blocking. (d) The end result is fluent traffic and a reduction of inter-application
interference.
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Intuitively, it is clear that the amount of buffer space inside the network interface will
influence if and when such a router blocking condition occurs. In this case, one extra
buffer space would avoid the message coming from ¢4 being blocked. Hence, it is up
to the run-time manager to match the communication speed between producer and
consumer given the amount of buffer space available. Furthermore, if blocking oc-
curs due to the fact that producer and consumer are (temporarily) not well matched,
the run-time manager is responsible for minimizing any potential inter-application
interference. This scenario is illustrated by Figure 5.14.

The experiments of Section 5.2.3 have shown that this mechanism is able to effec-
tively limit the amount of communication interference caused by blocking. Further-
more, the same mechanism (traffic re-shaping) can be used to provide a soft form of

QosS.

It is important to realize that, with the presented approach, the run-time manager
only needs to react in case there is disturbing interference on a shared link between
two or more communication pairs. A temporary usage of network buffer space on
an unshared link will not cause any interference to other communications and hence
does not require immediate action. Furthermore, it might be that no action is needed
because the blocking (e.g. multimedia) application has a higher priority than the
affected (e.g. batch) application. In addition, when producer and consumer are well-
matched, there is equally no need to take any controlling action and hence no re-
sources are wasted for actively managing the communication.

5.4.2 Base Window Management Algorithm

As Figure 5.15 illustrates, one can model an application task graph as a combination
of a set of producer-consumer pairs. Hence, the base algorithm focuses on window
management for a single producer-consumer pair that needs to be matched. The
run-time manager receives input from the statistics collection component of the con-
sumer network interface and, if necessary, adjusts the send window values of the
injection rate controller of the producer.

When confronted with blocking conditions, the first goal of the run-time manager is
to minimize inter-application interference as fast as possible. This effectively means
reducing the send window of the producer that causes blocking, even if that tem-
porarily reduces the throughput of the offending producer-consumer pair. Secondly,
the run-time manager is responsible for matching producer and consumer given the
platform properties and the assignment of producer and consumer. This is done by
reshaping the send window in such a way that blocking is eliminated, while opti-
mizing throughput. Algorithm 10 details this procedure.

This window management algorithm, starts by calculating an initial window size
(w = H — L) for an initial ", , (line 3). w is defined as the time the window is
opened during tperioqd (i-e. w = Q X tperioa). In this case, w is a multiple of a minimum
send window slot wy,;,. The run-time manager calculates these initial values based
on the application task graph communication details, the user requirements with
respect to the application (e.g. required video throughput) and the available buffer

space in the network interface.
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Figure 5.15: Modeling an application task graph as a combination of producer-consumer pairs.
The run-time manager is modeled as a (central) algorithm capturing statistics and handling the
injection rate controller.

Equation 5.3 and Equation 5.4 detail the relation between production rate P, con-
sumption rate C, the network interface buffer space NV and the time w that the pro-
ducer is allowed to inject messages into the network. Equation 5.3 states that initially
(during the first window opening) the difference between producer and consumer
rates can be completely absorbed by the buffering space available. To avoid over-
flows during steady state, it is sufficient to impose that the difference between pro-
ducer and consumer rates (window opened) is smaller than the consumption rate
while the producer window is closed (Equation 5.4).

(P-C)xw<N (5.3)
(P—C) xw < C X (tperiod —w) (5.4)

After setting the initial (or new) window values (line 6), the run-time manager peri-
odically collects traffic statistics (line 7) from the relevant network interfaces. These
statistics include the amount of sent, received and blocked messages together with
the maximum message blocking time. After acquiring the statistics, the run-time
manager checks if the reported amount of blocked messages exceeds a certain thresh-
old value (line 8). If so, the algorithm has to (re)calculate and update the currently
used window values: w and tperiog. This primarily involves reducing the size of
the send window w of the producer until blocking drops below the threshold. The
reduction of the send window size (in amount of slots) depends on the ratio of the
amount of blocked messages versus total amount of received messages. Two cases
can be distinguished: LargeReduction (line 16) and SmallReduction (line 18), depend-
ing on whether the amount of blocked messages is larger or smaller than half the
amount of received messages (Table 5.3).

If the amount of blocking does not exceed the threshold value and the throughput
is lower than required (line 21), then the send window size will be increased by a
single window-slot (e.g. 100us) for as long as the new window size wy,,, remains
smaller than the blocking window size wejocking (line 22).
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Algorithm 10: Run-Time communication window management.
Input: TG, AG, TG(T,C) — AG(P, L)tk trin
Output: w,tperiod
COMMUNICATIONMANAGEMENT/()
(1) WindowStable=false

) t;ﬁ%oft;’éiiod

(3) wing=CalcInitialWindow()

(4) Wnew=Winit

(5) while (WindowManagement is active)

6)  (@eurrent, t5r<r")=SetWindow(wneuw, 115%,)

(7)  CurrentStats=GetStats()

(8)  if (CurrentStats.Blocking > BlockingThresholdLow)

) if (WindowStable)

(10) Wnew=Winit

(11) tperiod=tperiod

(12) ResetValues(wbest,wblockmg,tgfj"iod)

(13) WindowStable=false

(14) else

(15) if (CurrentStats.Blocking > BlockingThresholdHigh)
(16) Wnew = ReduceWindow(LargeReduction, weyrrent)
(17) else

(18) Wnew = ReduceWindow(SmallReduction, weyrrent)
(19) Whlocking=Wcurrent

(20) else

(21) if (CurrentStats. Throughput < RequiredThroughput)
(22) Wnew = IncreaseWindow(wcurrent/Wblocking)

(23)  if (Wnew==Wecurrent) fOr p consecutive times)

(24) if (CurrentStats > BestStats)

(25) Whest = Weurrent

(26) bt =t

(27) BestStats = CurrentStats

(28) faguent > g

(29) (Wnew, tyerioa) = SpreadWindow()

(30) else

(31) Wnew = Whest

(32) t;lg:f;od = tgc;a%od

(33) WindowStable=true

As soon as the window values converge (i.e. are stable for p sampling times) (lines 28-
33), the algorithm will spread the send window by decreasing tperioq- Spreading
the window over the send spectrum has two effects. First, it reduces the impact of
bursty communication by spreading it over the send spectrum. Secondly, it enables
a more effective use of the send window for non-bursty communication, meaning
that a number of contiguous timeslots in a single block provide less throughput than
the same number of timeslots spread over the send spectrum. However, the down-
side of send window spreading is that it makes communication less controllable by
the run-time manager with respect to minimizing inter-application interference (see
Section 5.4.5). Table 5.3 details how window size w and period ¢perioq are modified.
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Table 5.3: Window size w and period tperioqa changes.
SmallReduction w = w — wmin
LargeReduction w =w/2

Throughput < 80% w = w + Wmin

{ w=w/2

Spreadin
P 8 tperi,od = tperiod/2

For each tcrioq, the algorithm determines the send window size wyocking at which
blocking starts. This way, the algorithm searches to reduce the impact of bursty com-
munication, while keeping throughput as high as possible. After maximally spread-
ing the send window over the send spectrum, the window values wy.s; and 255t
that deliver the best communication performance in terms of throughput and block-
ing are selected and instantiated. Note that, to keep the base windowing algorithm
simple, send window low value (L) is always kept at zero, i.e. the window high value

(H) equals the window size w.

If a significant amount of blocking (re)appears in future (line 9: blocking occurs for a
stable window), for example due to a change in burst characteristics, the send spec-
trum is again searched in order to eliminate blocking as quickly as possible.

5.4.3 Base Algorithm Experimental Results

The efficiency of this algorithm is measured in terms of two key factors: one regard-
ing blocking and throughput with respect to the NoC communication and the second
one regarding the computational resources that the algorithm requires.

As Chapter 6 explains, the maximum period T of the final demonstrator platform
spans 16ms. In the following experiments, we have divided the send spectrum into
time-slots of 100us wide. Hence, the window size w denotes the amount of 100us
slots.

In our experiments, we found that a ¢} ; value of 16 is a good starting point for

the window-spreading in absence of detailed burst characteristics. The higher ¢,
the more iterations are needed to reach the optimum window values. Typically one
higher order? of /2, will result in four to five additional iterations before reach-
ing the optimum. Hence, the practical upper bound for #72%

presented results is 64.

, with respect to the

In order to simulate changing application characteristics due to e.g. altered user set-
tings, all experiments contain two experiment phases, denoted Experiment 1 and Ex-
periment 2. When transitioning to Experiment 2 (i.e. after five seconds), the producer
generates the same number of messages in only half the amount of time. This results
in more bursty traffic causing more NoC communication blocking.

9A factor of two in case of our algorithm since it uses a window-spreading factor of two as shown in
Figure 5.4)
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Figure 5.16: Window management experimental results. In Experiment 2 (t € [5, 10]) twice as
much data is sent as in Experiment 1 (t € [0, 5]). (a) Blocking traffic comparison with and without
communication management. Without communication management, message blocking at the
receiver is proportional to the producer output. With communication management, blocking only
occurs during the transient period. Once the run-time manager has found good window values,
matching sender and receiver rates, all blocking is removed. (b) Finding optimal send window
values. Upon change of the communication characteristics (at the beginning of each experiment),
one can observe a transient period of under one second where the run-time manager adapts the
window sizes. (c) Comparison of maximum blocking time with and without window management.
Displaying the maximum blocking time, shows more clearly that after the transient times, all
blocking is removed when using communication management. (d) Throughput comparison with
and without communication management. Using communication management only marginally
degrades the application throughput.

Figures 5.16(b), 5.16(d), 5.16(a) and 5.16(c) show different performance aspects of the
algorithm. Figure 5.16(a) shows that, when the application starts, there is a signifi-
cant amount of blocking. This causes a large reduction of the high value (H) and thus
the size of the window w. Due to this action, the next message statistics samples do
not show any blocking (Figure 5.16(a)). In turn, this results in a few minor increases
of the send window size. However, the following message statistics collected by the
run-time manager again indicate blocking. This means the run-time manager will
continue decreasing the send window size.

Whenever the window size remains stable for three consecutive sampling periods
(ie. p = 3), tinil , is decreased (Figure 5.16(b)) in order to spread the window.
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Spreading the window should alleviate blocking caused by bursty message pro-
duction behavior and increase the overall throughput for non-bursty traffic. How-
ever, spreading the window can also cause blocking to re-occur. Although the send
window fraction () remains equal, there is a new distribution of computation and
communication. This means that due to spreading, messages will be produced and
stored in the network interface output buffers when the send window is closed.
Hence, the actual communication utilization of the send window will rise, which
again increases the blocking risk. In order to decrease blocking for the newly set

tinit 4, the send window w is decreased again.

After maximally spreading the send window (i.e. after reaching the minimal modulo
value 7)), the window values wycor and t0¢5% , with the best throughput with
minimal blocking are selected and reinstated. For Experiment 1, this takes about 16
iterations. This corresponds to about 800 ms when the run-time manager samples

the communication values every 50 ms.

In Experiment 2 (i.e. after 5 seconds), the production of messages gets more bursty:
the producer creates the same number of messages, but transmits them in only half
the amount of time. The previously stable send window values are now reset and
new stable values are determined using the same procedure: decreasing the send
window size until blocking is removed. Decreasing the send window also decreases
the throughput. In order to find the optimal throughput without blocking, the mod-
ulo value is decreased. Finally, the most optimal window values are selected (around
the 5.8s timestamp).

Figure 5.16(d) shows that the throughput with windowing is at most 6.7% lower
than the throughput without applying a send window (i.e. best effort), while, at the
same time, blocking (and hence inter-application interference) is almost completely
eliminated (Figure 5.16(a) and Figure 5.16(c)).

The communication management functionality is obviously a load on the processing
element executing the run-time manager. Figure 5.17 details the load of the commu-
nication management scheme when executing on a Strong ARM processor. It shows
that statistics collection requires a small constant load, even in absence of blocking.
In the future, this statistics polling could be replaced by an interrupt driven mecha-
nism that only informs the run-time manager in case of blocking at a certain node.
The time required for executing the heuristic is mostly stable, but depends on the
collected statistics. The total time for traffic management includes the mechanism
for collecting traffic statistics, executing the heuristic and the mechanism for setting
the new window values.

5.4.4 Case Study on the Gecko? Emulator

In order to support the case study, we first briefly detail the used emulation platform.
An in-depth discussion of the MPSoC architecture of our emulation platform and the
capabilities of the NoC it contains, including the run-time management controlled
traffic monitoring mechanisms [162], is presented in Chapter 6.

Our emulated packet-switched multiprocessor MPSoC is implemented using a 3x3
bidirectional mesh NoC linking the StrongARM SA1110 processor (206 MHz) of a
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Figure 5.17: Algorithm execution time measured on a StrongARM ISS (processor load < 1%).

handheld device to an FPGA containing eight slave processing elements and the
NoC (33 MHz clock).

Our packet-switched NoC actually consists of two independent NoCs. The data NoC
is responsible for delivering data packets, while the control NoC is used for transfer-
ring run-time management control messages. This separation is vital to our commu-
nication management scheme since the control NoC provides a way to control the
traffic even in case of data NoC congestion.

We measured on our NoC emulation platform (running at 33 MHz clock-speed) that
at every sampling time, the run-time manager takes about 60us to gather commu-
nication statistics from a tile network interface. In total, incorporating such a traffic
management inside our NoC platform operating system takes on average 182:s per
tile at every sample time (set to 50ms in our system).

Our case study application is an MJPEG video decoder, detailed in Figure 6.17 of
Section 6.4.2. Initially, the setup is run without any traffic management. However,
the MJPEG decoder throughput can be significantly reduced due to heavy blocking
on the shared link caused by a perturbing application (between tiles 6 and 7 in Figure
6.17).

When starting the window management, we first notice a negligible additional load
caused by activating the algorithm on the Strong ARM of less than 1%. We also notice
that the algorithm converges to optimal window values, i.e. values that allow the
application to reach the required throughput for the message generator, and that
effectively reduce the interference with the MJPEG application.

The simple producer-consumer communication management model used to develop
the windowing algorithm converges within about 16 iterations (i.e. 800 ms). The case
study takes about 20 iterations (i.e. about 1 second) to find good window values for
the IDCT and the generator task that share a communication link. This minor in-
crease can be attributed to the (more than expected) bursty nature of the MJPEG
communication. The number of iterations can be reduced by providing more de-
tailed application communication characteristics, like e.g. burst periodicity, burst
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width and burst magnitude. Another solution would be to extend the tperioq size
range. This would allow to control burst at a finer granularity. However, one should
avoid increasing the run-time of the algorithm.

Concluding Remarks

The presented run-time communication management algorithm is suited to handle
user-induced changes, like e.g. user changes in the application quality settings or
inter-application interference caused by starting a new application.

5.4.5 Algorithm Improvements

This section details a set of improvements for the windowing algorithm. The first
improvement deals with algorithm convergence speed and accuracy. The second
improvement deals with window placement in the send spectrum. The final im-
provement considers the concept of task pipelines (previously introduced in Chap-
ter 4), which extends the simple producer-consumer communication management
model.

Improving Algorithm Convergence and Granularity

The base algorithm typically uses a tperioq Of 16 timeslots in order to find new win-
dow values in a timely manner. This restricts the granularity at which bursts can be
spread over the send window. However, decreasing the time-slot size and increas-
ing the )04 range to find better window values also dramatically increases the
run-time of the algorithm.

This section changes the t,erioq range to 219 — 1 and reduces the timeslot size w,y,, to
30ns. In order to ensure the algorithm execution time does not explode, we replaced
the convergence of window size w and tperi0q (Table 5.3) by a variable step size 6,
as detailed by Table 5.4. This exponential convergence assumes a relatively stable
optimal window size, i.e. one that only changes due to, for example, user interaction.

Table 5.4: Variable changes (5) to window size (w) and tperiod.

. w=w-—9_
SmallReduction 5=5/2
. w=w/2
LargeReduction 5=5/2
w=w+946
Throughput < 80% { 5=6/2
w=w/2
Spreading tperiod = tperiod/2

0= tpe'r‘iod/2

Assume that during the first iteration (¢ = 0), the algorithm takes an initial window
wy that is completely opened during the modulo ¢*%. . thatis wy = 2L . Assume

period’ period*

. _ y t . . . .
for now we keep tperioa CcONstant, 1.e. tperioq = t;’;;iod. At iteration n, w,, writes as:
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n 6

Wn = Wy — —
22
i=0

(5.5)

How can we determine the initial value of § (called dg) so that all window values
from wg down to 0 are covered? This means that for n — 400, w,, = 0, in other
words:

+oo
wo = % (56)
=0

The geometric series of 5.6 converges absolutely to the value 26. Hence, if we want
to exploit the maximum window range and reach every possible window value,
then initially d is 6o = t}21%,,/2 (remember wy = ¢721 ;). When at iteration i, tperiod
changes, the value of J is reset (Spreading in Table 5.4). One could equally consider
a smaller &y value, like e.g. dy = ti2i /4. The larger &y, the more aggressively the
algorithm will react to close the window upon blocking conditions.

Window Co-Placement

The base algorithm essentially changes the send window size w = (H — L) by keep-
ing the window low value (L) at zero and by altering the window high value (H).
This essentially means that, in order to minimize interference, we have to make the
windows of two producers that share a communication link as disjoint as possible.
Although it might seem trivial, one has to consider that communication paths shared
by several producer-consumer pairs can be quite complex.

Let’s first deal with the issue of placing two windows. In case both ¢ p¢,i0q are equal,
one can place the second window after the first one (Figure 5.18(a)). If this would
result in crossing the tp¢,i0,q boundary, the window is shifted until this is no longer
the case (Figure 5.18(b)). As the tperioq are equal, the first send window will be rep-
resentative for all consecutive periods.

In case of different ¢pcri0q this is no longer the case. So, there are essentially two
options. First, if the t,¢,i04 values are prime numbers with respect to one another,
then the windows will continuously shift with respect to each other. This means
that all window placements are equivalent (Figure 5.18(c)). Second, if the tp¢rioq are
confined to being a power of two, we can again find an optimal configuration. In
the setup of Figure 5.18(d), we can minimize the overlap by stating that L, = H;
modulo tperiod—2. Note that, if ¢perioq Values are orders of magnitude apart, window
placement will have little effect (Figure 5.18(e)).

For handling multiple windows in an efficient way, we make some assumptions.
First, we rely on the fact that the run-time manager will attempt to cluster appli-
cations and by consequence minimize inter-application communication interference
during task assignment. Second, the remaining dependencies will be for a relatively
small amount of producer-consumer pairs. Consider the following experiment: ex-
ploring all possible assignments for two to four producer-consumer pairs in a 3-by-3
mesh network and examining the amount of shared links. As Table 5.5 illustrates,
most cases will have to deal with combining two or three windows when placing
4 producer-consumer pairs. Hence, the suggested approach for multiple windows
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Figure 5.18: Relative placement for two windows. (a) Equal tperioa, non-overlapping windows.
(b) Equal tperioa, window shift minimizing overlap. (c) tperiod values are prime numbers with
respect to each other, overlapping always occurs. (d) tperioq values are powers of two, windows
of comparable sizes can be placed to reduce overlapping. (e) tperioa values are powers of two,
windows sizes differ too much for placement to significantly reduce overlap.
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is to choose a reference window that is relevant to every window that needs to be

placed in the pipeline of producer-consumer pairs.

2 pairs 3 pairs 4 pairs
# Pairs | share a link | share a link | share a link
2 41% - -
3 80% 8% -
4 96% 28% 1%

Table 5.5: Percentage of pairs that share a link for every possible assignment in a 3x3 mesh

network.

Dealing with Task Communication Pipelines

Up till now, the algorithm considered an application as a set of producer-consumer
pairs (Figure 5.15). This, however, is a simplification of reality. Consider a pipeline
of tasks like the one depicted in Figure 5.15. If the pipeline stalls at the last task Tp,
messages will be blocked. As a result, the send window of Tc will be decreased.
This might cause T¢ to slow down and, hence, consume fewer messages. In turn,



146 Reactive Communication Management of a NoC

blocking will appear for task T¢. This will affect the send window of Tz, and so
on. Eventually, the send window of T4 could be reduced. It is clear that during this
type of transient periods the throughput is strongly impacted in other stages of the
pipeline, like e.g. for T¢. This example shows that the algorithm requires support
for handling communication pipelines. However, considering that calculating new
window values happens at run-time, we require a lightweight approach for handling
window sizes of pipelines.
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Figure 5.19: Task graph of a pipelined application and its platform mapping.

The proposed solution is to consider the two end points of the pipeline in order
to converge faster'?. Still, a new window value is determined for every producer-
consumer pair (if necessary). However, instead of communicating this new win-
dow to the window-setting mechanism, the new window values are stored until all
producer-consumer pairs have been covered. For every producer that is about to re-
ceive new window values, the run-time manager checks whether there is a producer
earlier in the pipeline that is also going to receive new window values. If so, only
the earlier producer(s) will receive a window update. This solution only works for
directed task graphs. In cyclic task graphs, one cannot determine which task is first.

Example 5.2: Updating window values for a task pipeline (Figure 5.20)

In case of a pipelined application, not all producers receive a window up-
date in case of message blocking conditions. Only the message producers
without updated predecessor producer tasks receive new window values.
As the example shows, 15, T3, T4 and 75 all require updated window val-
ues. As Ty and 75 have T3 and 75 as predecessors, their window values will
not change.

In order to verify this improved algorithm, consider the set-up depicted in Fig-
ure 5.19. Initially, this setup is completely balanced with respect to the producer-
consumer pairs, i.e. there is no blocking and there is no significant slack-time. When
cutting the consumption of task Tp by half after 100 ms, blocking will occur and the
effect should propagate down to task T'4.

10Because of the sampling period of the monitoring, it is not possible to guarantee that for multiple
stages in the pipeline the assignment algorithm would not get into an oscillation loop. By considering only
the two end points in the task communication pipeline we also ensure that the algorithm will converge.
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. Requires and receives new window

O Requires a new window, but has a prior producer

Figure 5.20: Setting windows for task pipelines: only the first pipeline producers receive an
update.

The base windowing algorithm reacts by altering the send window sizes of tasks T'4,
Tp and T¢ (Figure 5.21(a)). However, due to the window interaction, the blocking
with respect to Tp is not at all resolved (Figure 5.21(b)).

By analyzing the task-graph of the application, only the send window of a T4 is
altered (Figure 5.21(c)). Because this window change ripples through the pipeline,
blocking of task Tp can be handled (Figure 5.21(d)).

5.5 Related Work

Advanced NoCs such as Zthereal provide hardware support for end-to-end credit-
based flow-control at the level of network interfaces [189]. The purpose of this end-
to-end flow control is to ensure that guaranteed packets can be timely removed from
the network layer. Failing this, the flow-control mechanisms at the network and
data-link layers would be used to block packets and congestion would potentially
build-up disrupting guarantees. Our approach to global connection-level manage-
ment provides a similar flow-control but at coarse granularity. On the one hand the
coarse granularity of flow-control cannot guarantee that individual packets do not
get blocked at the network interface layer, so this flow-control should not be used
to provide hard real-time guarantees. But, on the other hand the same mechanisms
(monitoring, actuating and part of decision making) can be reused to also perform
congestion-control (this requires enhancing the decision-making mechanism to cor-
relate statistics of several connections).

Congestion control is a topic that has been extensively studied for computer net-
works, but it is only very recently that is has started to be addressed in networks-
on-chip. In the Internet, one of the most known congestion-control mechanisms is
the sliding-window algorithm implemented in TCP [11]. In terms of traffic shaping,
two very known algorithms extensively used in computer networks are leaky bucket
and token bucket [218]. These two algorithms correspond to classes of actuators in
our definition.

The token bucket is a non-work-conserving algorithm and as such allows a certain
level of traffic burstiness. The algorithm simply controls when packets can be in-
jected in the network. At a rate of 1/ a token is added to a bucket (a simple counter
of maximum size b). Before sending a packet of size n < b, there must be at least
n tokens available in the bucket (and they are consumed when the packet is sent).
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Figure 5.21: Pipeline window management experimental results. (a) Setting windows for all
tasks in the pipeline and (b) the resulting throughput and blocking for task Tp. (c) Only setting
the window for task T'a. and (d) the respective resulting throughput and blocking for task Tp.

When not enough tokens are available, the packet is either buffered or discarded,
depending on the policy implemented.

The leaky bucket algorithm is a related traffic-shaping algorithm, that is typically
used to smooth traffic bursts. The algorithm can be understood as a bucket (of size
B bytes) in which different streams converge. The bottom of the bucket has a hole
that permits a constant flow rate to get out of the bucket (thereby smoothing traffic
bursts). Leaky bucket belongs to the work-conserving class of algorithms because it
always serves packets when there are any available.

In network-on-chips, most related work pertains to congestion avoidance rather than
to congestion control. To avoid congestion, packets either take different routes (adap-
tive routing) to spread the traffic and reduce the creation of hot-spots, or they may
even be dropped. The Nostrum NoC implements a form of adaptive routing, called
hot-potato routing [145] and allows packets to be dropped [153]. In hot-potato rout-
ing, packets can be deflected (onto random output ports) from the optimal path if it
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is deemed congested. To avoid creation of hot-spots, routers send backpressure sig-
nals to notify their neighbors of congestion ahead of sending packets. This technique
is called Proximity Congestion Awareness [152]. The creation of hot-spots is thus di-
minished, but some packets take longer paths than the deterministic shortest-path
and thus arrive out-of-order at destination. The DyAD algorithm is another known
form of congestion avoidance algorithm [100]. An NoC implementing the DyAD
routing algorithm performs deterministic shortest-path routing. Upon detection of
congestion, the routing switches to an adaptive form to take less congested paths.
Though congestion avoidance algorithms, do reduce congestion on an average, they
cannot guarantee it is removed. Moreover out-of-order delivery or packet dropping
are expensive congestion control techniques for NoCs because they require large re-
ordering or re-transmission buffers.

In terms of monitoring mechanisms for NoC, Ciordas has recently proposed to ex-
tend the Zthereal NoC with an event-based monitoring service [42]. The original
purpose of this mechanism is to offer run-time observability of NoC behavior mainly
to support system-level debugging, but can also be used for performance analysis.
Hardware probes are attached to NoC components with a target area overhead for
monitoring and control of 15 to 20%. The monitoring system requires an increase in
the arity of the router as monitoring signals are sent to an additional port onto the
local network interface. The router area is accordingly increased from 0.11mm? to
0.13mm? (0.13um standard cell technology). Monitoring packets can be sent onto the
NoC either as BE or as GT packets. The GT QoS class is preferred for this purpose as
it permits a deterministic rate of monitoring information, but it may require increas-
ing the number of time-slots of the NoC for the additional GT connections and thus
create an additional area penalty.

Only very recently have other researchers addressed congestion-control in NoCs.
Ogras and Marculescu propose a novel data-link level flow-control technique to re-
duce congestion in NoCs [164]. The authors build a model of the neighboring routers
to predict whether congestion could occur. When congestion is predicted, the flow-
control is used to limit the injection of packets into the next router and thereby re-
duce its congestion. Another very interesting approach is described by Van den
Brand in [223]. Building on top of the link-level monitoring mechanism proposed by
Ciordas [42], the authors build a model predictive control of the NoC as a decision-
making process. Though the actuators in the system are not explicitly mentioned in
the article, we presume that the network interfaces are reconfigured to control how
much traffic is injected into the network layer. The latency of the congestion-control
system is reported to be in the order of magnitude of microseconds. Monitoring in-
formation uses GT connections and is reported to have a low bandwidth usage (0.3
MBytes/s) when sampling at 1000 ns.

5.6 Conclusions and Future Work

This chapter covers techniques for reactive communication control so as to answer
two questions. On the one hand the communication of applications designed in-
dependently of the platform may have to be dynamically matched to the platform
resources. On the other hand, platform virtualization that perfectly isolates appli-
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cations from one another can be ineffective. It can be too expensive to implement,
and/or the requirements of the application are only imperfect worst-case estimates
resulting into over-allocated (and thus wasted) communication resources.

To perform reactive communication control, three components are required: moni-
toring of NoC usage, actuators to shape the traffic and decision-making processes to
control the actuators. A control loop is built feeding the output of the monitoring
into the decision-making process and using its output to control the traffic shaping.
All three components can be defined at either of the layers in the network protocol
stack, creating a large design space. Using the Gecko? MPSoC platform emulator as
an experimental platform, we fix an actuator (injection rate control) at the network
interface layer because it is the source of network traffic.

In this chapter, we study monitoring at the connection-level combined to a global
decision making under the control of a run-time manager. We show how a global
decision making algorithm implemented on a StrongARM processor can efficiently
manage the injection rate controller actuators in order to re-shape traffic at run-time
to reduce congestion on an NoC. Taking a global decision-making approach permits
an efficient reactive control of communication of a pipeline of tasks. In contrast, Ma-
rescaux [132] studies a system, based on the same experimental setup, where moni-
toring is performed at the link-level, combined with distributed decision making.

We show that reactive communication management is a beneficial addition to MP-
SoC platforms and demonstrate how it can be used by exploring two extreme points
of the design space (i.e. one point is detailed in this thesis, another point is studied
by Marescaux [132]). The centralized algorithm should be used to optimally adapt
the parameters of the actuators for slowly changing traffic characteristics, whereas
the distributed control of traffic shaping should be used to cope with fast transient
changes in traffic. Nevertheless, as many combinations and trade-offs are possible,
the design space of reactive communication control is very large and worth explor-
ing. Future work could start by combining both central and distributed approaches.
For instance it would be very interesting to have the global controller fine-tune the
parameters of the window size algorithm (such as the values of k and [ controlling
the aggressiveness of the window) and let the distributed mechanism control the
actuators for faster reaction time.



CHAPTER 6

Gecko Proof-of-Concept Platforms

an ambitious engineering project to explore, in real-time, NoC-enabled multi-

processor SoCs with heterogeneous, run-time reconfigurable, computing re-
sources. It was only natural to include run-time management of the platform, with
a particular focus on the NoC, on dynamic partial reconfiguration of the computing
resources, and on task migration between heterogeneous computing resources.

The work on the Gecko series of platform emulators started at IMEC in 2001 as

The first demonstrator, later denoted as Gecko I , has been first publicly shown at
the 2002 Design Automation Conference (DAC). By October 2003, the second (and
final) generation of Gecko emulators, dubbed Gecko? (read: Gecko square) has been
publicly introduced at the IMEC Annual Research Review Meeting (ARRM) and
later demonstrated at the occasion of major international conferences. Gecko? is
an elaborate NoC-enabled MPSoC platform emulator, with hierarchically reconfig-
urable computing resources, under the control of a run-time manager.

This chapter describes the hardware of the Gecko platform, with the main focus on
the Gecko? instantiation. It brings a concrete demonstration of the reactive commu-
nication control concepts developed in Chapter 5 and extends them with a proof-
of-concept of a centrally controlled congestion-control and of dynamic re-routing. It
furthermore introduces the exotic concept of hierarchical hardware reconfiguration
(Chapter 3) and demonstrates it on a realistic emulation platform. Though, the main
contribution of Gecko is maybe to have served as an initiatory journey through tech-
nical and sometimes less technical matters, earning it a warm place in the middle of
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the other chapters, rather than in an appendix. This chapter is also part of the PhD
thesis of Théodore Marescaux [132].

Finally, the reconfigurable computing demonstrator developed within the IWT RE-
SUME project is briefly detailed, especially focusing on run-time resource manage-
ment aspect. It shows how the developed run-time resource management concepts
incorporated into the Gecko demonstrator series are easily portable onto another
embedded platform and base operating system.

The chapter is organized as follows. Section 6.1 describes the emulator platform and
details the Gecko I and the Gecko® hardware instantiation. Section 6.2 discusses the
driver applications and the envisaged usage-scenario of a run-time reconfigurable
MPSoC platform. Section 6.3 discusses the run-time manager controlling the MPSoC
platform and briefly refreshes the hierarchical reconfiguration concept. Section 6.4 is
a textual transcript of the proof-of-concept demonstrations running on the Gecko I
and the Gecko? emulator. It explains the demonstration of heterogeneous task mi-
gration, hierarchical reconfiguration, and management of inter-task communication
interferences (including reactive communication control of the data NoC). We also
briefly discuss the RESUME demonstrator run-time manager and its differences with
respect to the Gecko run-time manager (Section 6.4.3). Finally section 6.5 concludes.

6.1 (ecko Platform Hardware

The Gecko series of platforms are based on the same hardware that connects a Strong-
ARM processor, present inside a Compaq iPAQ PDA, to an FPGA (Xilinx Virtex-II
6000) by means of the iPAQ expansion port (direct access to the Strong ARM proces-
sor bus). The FPGA is clocked at 33 MHz, and the StrongARM SA-1110 processor,
present in the PDA, is clocked at 206 MHz. This setup is illustrated by Figure 6.1.

Figure 6.1: Gecko is built by linking a Compaq iPAQ PDA to an IMEC in-house FPGA board
containing a Virtex-II 6000 FPGA.
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For Gecko I, this setup represents a MPSoC platform containing a StrongARM tile
and two large run-time reconfigurable FPGA fabric tiles interconnected by a sim-
ple NoC in a torus topology (Figure 6.2). The routers of this NoC support source
routing and wormhole packet switching. Marescaux et al. [134] provide an in-depth
description of the Gecko hardware concepts.

Master ISP
SA-1110

Figure 6.2: The Gecko I MPSoC contains a StrongARM tile and two large FPGA tiles inter-
connected by a wormhole-switched, input buffered, unidirectional torus NoC.

The Gecko? multiprocessor system is a more elaborate MPSoC emulated on the same
hardware setup (Figure 6.3(a)). In this configuration, the FPGA is divided into eight
slave processor tiles. It furthermore contains a master ISP tile that interfaces to the
external StrongARM processor. All nine tiles are interconnected by two networks-
on-chip also emulated on the FPGA. One NoC is used for application data and the
other for platform monitoring and control. Slave tiles 1 and 5 are fine-grain reconfig-
urable hardware slave processors, meaning that they expose the FPGA fabric. The
other slave tiles either contain an accelerator or a simple 16-bit RISC processor (see
Figure 6.9 and Table 6.1).

Data NoC

Control NoC
-

RTM
Control
Router
SA-1110
Processing
Element (PE)
(a) (b)

Figure 6.3: (a) Our heterogeneous MPSoC is emulated by coupling an ISP (master) through an
interface (I/F) with the slave processors (S), instantiated inside an FPGA. (b) One Tile: the Data
NI and the Control NI connect the computing resource to the data NoC router and the control
NoC router respectively.

Our packet-switched NoC, called data NoC, is instantiated as a 3x3 bidirectional mesh
and is responsible for delivering data packets for tasks executing on the PEs. A
second NoC, the control NoC, is used for run-time control messages1 [135] (Figure

IThe control NoC is implemented as a single-master central shared bus. There are two reasons to this
technical choice. On the one hand we needed visibility in the platform while debugging the data NoC
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6.3(b)). Separation of data and control NoCs ensures that application data circulating
on the data NoC does not interfere with run-time control messages. Some commercial
NoCs have since taken a similar approach. For instance, the configuration bus of the
Arteris NoC has a very similar purpose as our control network.

The following sections describe in more detail the most important platform hard-
ware components of the Gecko? architecture, i.e. the NoC data router, the data NI
and the control NI (Figure 6.3(b)).

6.1.1 NoC Data Router Design

The data NoC [21] is a packet-switched network. The data routers in the network
use virtual cut-through (VCT) switching and output buffering.

Virtual cut-through switching ensures a low communication latency: pieces of pack-
ets, called flits, are forwarded as soon as the output channel is free, as happens in
wormbhole switching. Upon congestion, VCT, unlike wormhole switching, allows
the buffering of complete packets inside the routers and thus ensures a low latency
by leaving the crossbar free for other packets.

Virtual cut-through achieves, at low traffic, the same low latency as wormhole switch-
ing, paired with the same high throughput at high loads as store and forward.Because
in our system the size of the payload is relatively large (limited to 544 bytes for run-
time management efficiency reasons [144]) a wormhole switching network would
saturate much faster than the virtual cut-through one. The drawback is the large
buffer size required to store the packets. On an FPGA implementation, buffer size is
less of a problem thanks to the richness of the device in embedded Block RAMs.

Packets need to be stored (i.e. buffered) in case of blocking. There are several dif-
ferent buffering strategies. The buffers can be placed before the crossbar switch, de-
noted as input queuing, centrally, or after the switch, denoted as output queuing. Our
routers use output queuing and there is one buffer per output block (Figure 6.4).
Thanks to output queuing, we avoid the head of line blocking effect which occurs in
input queued routers [66]. As our routers are output buffered, packets are stored on
the outputs, leaving (upon blocking) the input port free to serve other packets with
different output destinations and hence reduce overall NoC latency.

N Input N Output
Routing| Arbiter Output
Table —l— Crossbar J_ Queue
S InputJ_ switch _|_ S Output
Routing| Arbiter Output
Table Queue

Figure 6.4: Structure of a 2-input, 2-output Gecko® router.

(probably one of the very first complete NoC implementations ever) and on the other hand it fitted the
low-latency requirements of the short control messages of the run-time manager running on the Strong-
ARM. Nevertheless, the communication scheme on this bus is packet-based message-passing, making it
easy to change to a packet-switched fabric with only minor changes to the Control NI.



Gecko Platform Hardware 155

We implement a deterministic routing algorithm based on a run-time management
configurable lookup table. The table has an entry for every tile in the network, offer-
ing the possibility to customize the routing for each tile at the network level. Deter-
ministic routing on the Gecko? platform guarantees in-order packet delivery, hence
avoiding the packet reordering overhead required by adaptive routing NoCs.

The design is optimized for performance: every input block (buffer and link con-
troller) has a routing table (Figure 6.4), and every output block an arbiter and a
buffer. This solution provides the shortest possible latency at the cost of silicon area
(minimally 3 cycles are required to transmit the first flit of a packet across a hop). A
packet traveling 5 hops has a base latency of 15 cycles plus a number of cycles equal
to the number of packet flits. For a large packet the delay to receive the first flit is
only a small fraction of the time needed to receive the entire packet. Once the first flit
arrives the IP can start processing the data right away, the next flits will follow every
clock cycle (assuming no waiting in the network). The overhead delay incurred by
the routing through the network is kept to a minimum.

To save area the routing table and the arbiter could be shared by introducing a
mechanism to serialize the input or output accesses to them. However, for routers
with a small number of ports, duplicating the routing table provides a better per-
formance/area trade-off. On Virtex FPGAs this table is very efficiently implemented
using distributed dual-port selectRAMs. A router requires 2% N0y, ports * N 0OutPorts
LUTs (every input-block requires an entry for every output port; and two LUTs per
entry).

6.1.2 Data Network Interfaces

The computing resources of our MPSoC are interfaced to the packet-switched data
NoC by means of a data Network Interface (NI). From the computing resource view-
point the main role of the data NI is to buffer input and output messages and to
provide a high-level interface to the data router (Figure 6.5). From a run-time man-
agement viewpoint, the data NI is responsible for collecting message statistics (i.e.
number of messages received, sent and blocked) and for enforcing the injection rate
window. All this information is passed to the run-time manager through the control
NI (explained in Section 6.1.3).

Processing Element

Write Router { forward ; Read Router

=] Injection Rate
Controller

#
Input Stats

Output Stats Collector 4 nsq

# Msg out Collector Blocked

Data Router

Figure 6.5: Gecko? data NI.
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At the system layer, inter-task communication is done by message passing on a
socket input/output port basis. Figure 6.6 shows an example of an application task
graph with the input/output port connections between tasks. Each application reg-
isters its task graph with the run-time manager upon initialization [134,156].

For each task in the application, the run-time manager assigns a system-wide unique
logic address and places the task on the platform, which determines its physical
address (Figure 6.7). For every output port of a task the run-time manager defines
a triplet (destination input port, destination logic address, destination physical address).
The destination physical address denotes the tile of the communication peer for this
output port. The destination logic address enables the destination tile to determine the
destination task in case multiple tasks are present on that tile. Finally, the destination
input port denotes the input port at which the message should be stored.

For instance, task C in Figure 6.6 communicates with task D on output port 0 and
with task E on output port 1. Hence task C is assigned two triplets, which compose
its Destination Lookup Table (DLT) (Figure 6.7). In our system a task may have up to
16 output ports, thus there are 16 entries in a DLT. The run-time manager can change
the DLT at run-time, by sending a control message on the Control Network.

O»O 4»0 0 0 0 Task | src_out_port | dst_in_port | dst_logic_addr | dst_phys_addr
| | | | A 0 0 logic(B) physical(B)
H AI H B I H C 1 H D I B 0 0 Togic(C) physical(C)

0 0 logic(D) physical(D)
0 0 ¢ 1 0 logic(E) physical(E)
E Output port B 12 2 @ @
O Il’lpllt pOl‘t - E 0 1 logic(B) physical(B)
Figure 6.6: Application Task Graph Figure 6.7: Destination Look-up Tables for
showing Input-Output port connec- every task in the graph.
tions.

The data NI is also responsible for collecting the local computing resource message
statistics. This involves keeping track of the number of messages sent, received and
blocked. The blocked message count denotes the number of received messages, that
were blocked in the data router buffer while waiting for the computing resource
input buffer to be released. Moreover, as chapter 5 details the data NI implements
an injection rate control mechanism to perform traffic shaping by allowing control
of the amount of messages the attached computing resource injects in the data NoC
per unit of time [135,162].

6.1.3 Control Network Interfaces

The control network is used by the operating system to control the behavior of the
complete system. It allows data monitoring, debugging, control of the IP block, ex-
ception handling, etc. Run-time management control messages are short, but must
be delivered fast. We therefore need a low bandwidth, low latency control network.

To limit resource usage and minimize latency we decided to implement the control
network as a shared bus, where the run-time manager running on the ISP is the only
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master and all control network NIs of tiles are slaves. The communication on this
bus is message-based and can therefore be replaced by any type of NoC.

The control NI of every tile is memory-mapped in the ISP. To send a control message
to a tile, the run-time manager first writes the payload data, such as the contents of
a DLT (Figure 6.7) and finishes by writing a command code on the control network,
in this case an UPDATE_DLT command. The control NI reads the command opcode
and processes it. When done, it writes a status opcode in the NI to NoC memory, to
indicate whether the command was successfully processed and posts an interrupt.
The run-time manager retrieves this data and clears the interrupt to acknowledge
the end of command processing.

It is in the control NI, that statistics and exceptions originating in the data NI are
processed and communicated to the run-time manager. It is also through the con-
trol NI that the run-time manager sends destination look-up tables or injection-rate
windows to the data NI. The control NI is also responsible for handling the data
synchronization mechanism used for e.g. task migration.

clock 4> __:D »output
reset > 16 16-bit _ port
input— registers > ‘:,‘;z‘;t
| ALU
Flags
addrb1—>]
dinb —> Program —>» PC
doutb +— Memory Pr:?:vm s PC
web > 1024 words stack
enb 1> < n y
zar

Figure 6.8: The Lezard16 processor is at the heart of the Gecko® NI.

The heart of the control NI contains a Lezard16 ISP (Figure 6.8). This in-house de-
veloped softcore ISP is based on the instruction set of the Xilinx PicoBlaze 8-bit
processor [97]. The Lezard16 is a 16-bit processor with 18-bit instruction words.
The Lezard16 instruction set is similar to the one of the PicoBlaze, except that the
Lezard16 is not able to handle interrupts. Furthermore, it features a 1024 instruc-
tion word deep program memory, as opposed to the 256 instruction word memory
of the PicoBlaze. The program memory is implemented as a dual-port memory, al-
lowing the program code to be updated through the second access port. The size
of the 18-bit instructions perfectly match the width of the Virtex2’s Block RAMs. By
extending the Picoblaze’s data-path of 8-bits to 16-bits while only adding 2 more bits
for instructions, the loading of immediate constants is limited to 10-bit numbers. An
in-house assembler, developed using the GNU Bison and GNU Flex tools, facilitates
software development. The Lezard16 firmware provided with the FPGA configura-
tion bitstream contains bootstrap code to load the code to run in the control NI at
platform boot-time. This way, the control NI functionality can easily be updated.



158 Gecko Proof-of-Concept Platforms

6.1.4 Hardware Implementation Results
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Figure 6.9: Gecko® emulation floorplan on a Xilinx XC2V6000 FPGA.

The second generation of Gecko demonstrators (Gecko?) emulates a control bus and
a 3x3 data bidirectional mesh network that connects 9 heterogeneous processors. The
Strong ARM processor on the iPaq is used as the master CPU of our system, whereas
the 8 slave processors and the data and control NoCs are emulated on the FPGA (Fig.
6.9). Various configurations have been generated; the one typically demonstrated
contains: a simple 16-bit RISC processor (denoted Lezard16) on tiles S, S3, S4, S¢ and
S7; fine-grain reconfigurable processors on tiles S; and S5, a 2p I DCT accelerator on
tile Sg. As Table 6.1 explains, various tasks have been implemented to run on one
or more of these heterogeneous processors. Some task implementations, such as the
Lezard16 and the convolution filter are programmable machines. They are therefore
also considered as processors when instantiated in reconfigurable hardware. These
processors support demonstrating the hierarchical configuration concept [158,161].

The driver applications (Section 6.2.2) can concurrently run on the platform and
HW/SW trade-offs can be explored at run-time by dynamically changing task lo-
cations on the heterogeneous processor system.

Task Implementations
Huffman | 2pIDCT | 3D Text. | Lezard16 | Conv. | Edge
Processors | Decoder Mapper | Processor | Filter | Detect
SA-1110 v v N v v
Reconf. S5, 55 v v A A A A
Lezard16 v vV
Cono. Filter Vv Vv
Fixed HW vV vV

Table 6.1: Implementations of various HW/SW tasks on Gecko® heterogeneous processors
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The floorplanning of the Gecko? system follows Xilinx’ Modular Design [125] tech-
nique to isolate reconfigurable computing modules from communication modules
through NoC interfaces [134] so as to enable dynamic partial reconfiguration. The
FPGA is divided into 3 independently reconfigurable modules (Figure 6.9).

Fixed Module contains the data and control NoCs, their interfaces, as well as all
fixed slave processors (S1, S3, S4, S6, S7, Ss) and the fixed interface to the exter-
nal Master processor.

Reconfigurable Module 1 contains raw Virtex 2 logic, block-RAMs and multipliers.
It connects to the Fixed Module on data and control NoCs as slave processor S
and contains route-through wires to connect the Fixed Node to Reconfigurable
Module 2.

Reconfigurable Module 2 contains raw Virtex 2 logic, block-RAMs and multipliers.
It connects to the Fixed Module on data and control NoCs as slave processor
Ss.

6.2 Gecko Applications

This section details the envisioned Gecko application scenario and details the appli-
cations that have driven Gecko research and development.

6.2.1 Envisioned Application Scenario

Run-time task migration can be exploited to optimize resource usage on an heteroge-
neous reconfigurable platform. The following use case scenario, depicted in Figure
6.10 demonstrates the need of task migration in the case of mobile multimedia ter-
minals.

A user is watching a movie on the handheld multimedia terminal (1). As the movie
originates e.g. from a broadcast public TV stream [177], it is occasionally interrupted
for commercials. When this occurs, the user wants to take advantage of that time to
execute another application, while keeping an eye on the video window in order to
resume watching the movie whenever the advertisements are finished. The video
window is thus downsized in the corner of the screen (2), while another application
(e.g. a 3D game) is started on the terminal. Figure 6.10 also shows the behavior of
the platform corresponding to the use case scenario. The platform is composed of
a set of flexible computing resources (ISPs, reconfigurable hardware, etc.). Initially,
the movie player is the only application requiring the platform resources. Hence
the video decoder can use all needed resources, effectively enabling it to run at full
resolution and at full frame rate (1). When the user downsizes the video window,
both resolution and frame rate can be reduced. Consequently, the video decoder
tasks can be migrated to fewer (cheaper) computing resources? (2). The resources

2The computing resources for scenario (2) can differ from those used in scenario (1). For instance in
a full resolution, full frame-rate scenario, hardware acceleration such as IDCT could be performed on a
specialized module running on FPGA fabric. Whereas in scenario (2) the IDCT functionality could be
migrated to a software block running on an ISP.
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Figure 6.10: Multimedia applications scenario. 1. The user is watching a movie - the video
decoder (M) executes using as much hardware resources as it can; 2. During advertisements, the
user downsizes the video window - the decoder is therefore relocated on fewer resources; 3. The
user starts a 3D game (3D) - the 3D engine uses the hardware resources made available.

that are no longer used can be made available to the 3D engine (3) that is required
by the game.

The user interaction on the terminal thus creates dynamism that affects the mapping
of the applications on the available resources. This dynamism is one of the reasons
for having flexible, yet computing intensive (multimedia application are computa-
tion hungry) resources on the platform, i.e. reconfigurable hardware. It also clearly
justifies the opportunities of run-time task migration capabilities.

6.2.2 Driver Applications

This section details the three Gecko driver applications: an edge detection applica-
tion, an MJPEG video decoding application and a 3D game.

Edge Detection

The Laplace edge detection application is a simple, but compute-intensive filtering
application. The algorithm applied is a 2D Laplace edge detector that is based on
the convolution sum with a (4-neighborhood) 3 x 3 convolution kernel with the fol-
lowing coefficients:
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The application is composed of three tasks. The first one cuts the image into smaller
10 by 10 pixel blocks and sends them to the second task for a 2D filtering operation.
Consequently, the second task returns the filtered blocks for the third task to insert
into the completed filtered image.

Several pure hardware, pure software or hardware/software versions of the appli-
cation have been implemented (Table 6.1) and serve both as test applications and as
a proof-of-concept for the hierarchical configuration concept [158,161].

MJPEG Video

The Motion JPEG (MJPEG) video decoder [144, 162] is composed of four pipelined
tasks (Figure 6.11(a)). Task 77 is responsible for reading the video-stream from disk
and to send it to task T5. T, performs Huffman decoding and dequantization. Con-
sequently, T3 performs a 2D IDCT function and a YUV to RGB color conversion.
Finally, task T constructs and displays the output images. T} and T, are software
only tasks, while T, and T35 are HW/SW tasks designed using the OCAPI-XL de-
sign flow [144,169,196,199,227]. These HW/SW tasks can be migrated from a high
performance FPGA tile to an ISP tile and vice versa.

sw

@ Hwisw task A

Figure 6.11: Driver application task graphs containing both HW and HW/SW tasks. (a) Task
graph of the MJPEG video application. (b) Task graph of the 3D Game application.

Shoot’em Up 3D Game

The 3D game is a simplified first-person shoot ‘em up game [151]. The aim of the game
is to shoot the targets on the walls that compose the 3D scene. The wet bottom of
the 3D scene contains a water rippling effect. This rippling effect increases the scene
realism and increases computational requirements.

The application task graph contains four tasks (Figure 6.11(b)). Task T, is responsible
for 3D scene transformations, while task 7} and task 7T are responsible for the texture
mapping and water rippling effect respectively. Finally, task T is responsible for
displaying the 3D scene. Task T, and task Ty are software only tasks implemented in
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C, while task T}, and task T, are HW /SW tasks. Similar to the MJPEG HW /SW tasks,
these tasks have both a C and a VHDL implementation. Both implementations are
generated from a unified OCAPI-XL application representation [150].

6.3 Run-Time Resource Management

This section covers all run-time management components of the Gecko I and Gecko?
demonstrator and illustrates how the run-time management algorithms are function-
ing inside real-life proof-of-concept demonstrators. In that sense, Section 6.3.1 details
how the run-time resource manager extends an existing RTOS and how this fits into
the run-time management implementation space. Section 6.3.2 details the different
steps the Gecko run-time manager takes when the user starts an application. This
includes showing the role of the quality manager and the resource manager. Sec-
tion 6.3.3 details the mechanism responsible for handling a configuration hierarchy.

6.3.1 Extending an Existing RTOS

Instead of starting from scratch, we decided to extend an existing RTOS. For Gecko I
we used RTLinux as base RTOS, while for Gecko?, we used its GNU General Public
License (GPL) counterpart RTAL® The main reasons for this approach is that support
for regular software tasks is already present and that it enables finalizing the demon-
strator in a short amount of time with only limited resources. It also illustrates how
to extend an existing operating system, which improves portability of run-time man-
ager components to other platforms/operating systems.

According to the run-time management implementation space, detailed in Chap-
ter 2, the created operating system can be classified as a Master-Slave configuration
(Figure 6.12). This implies that one processor unit (the master) is responsible for
monitoring the status of the system and for assigning work to all the other proces-
sor units (the slaves). The run-time library functionality is provided by a Lezard16
processor (Section 6.1.3) instantiated in every tile control NL In order to avoid the
master becoming a bottleneck, the platform monitoring and the enforcement of de-
cisions are handled by the run-time libraries.

The operating system keeps track of the applications by maintaining a list of task
graphs. For every task, the operating system creates a task information structure. The
task information structure retains all information needed for the run-time manager
to make its decisions.

The operating system manages its computing resources by using a processor informa-
tion structure for every PE in the system. In addition, the operating system keeps
track of the interconnection between these PEs, as this will be important information
when making resource assignment decisions. In addition to hard (i.e. fixed) PEs, the
operating system also employs a processor information structure for every softcore.

The operating system also maintains a communication structure to keep track of the
platform communication information. This includes the topology of the on-chip in-

3RTAI stands for Real-Time Application Interface.
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MPSoC OS

Extended
RTOS

Master PE

B Run-Time Management (Master)
B Local RTM/RTLib functionality (Slave)

Figure 6.12: The overall MPSoC operating system can be classified as a master-slave operating
system. The MPSoC operating system is created by extending an existing RTOS that executes on
the master PE. Every slave PE has run-time library functionality.

terconnect, the routing tables of every router, the destination lookup table of every
tile as well as the state of the tile injection rate controllers. The close interaction
between the master run-time manager and the (slave) run-time management, i.e. the
run-time library functionality, resembles classic remote procedure calling (RPC). The
master maintains for each control NI a structure that describes its functionality and
that allows the master to remotely execute a function on a slave node. So the control
NI structure in the master run-time manager can be seen as the RPC stub.

Figure 6.13 illustrates how the slave run-time library functionality is used. First of
all, the master makes a function call to the respective control network interface com-
ponent (control NI) stub (1). This stub translates the call into a control message
containing the desired function number and its required parameters. Consequently,
this message is sent to the slave node (2). Once the message is received on the slave
node (3), its function number and parameters are unwrapped and the respective lo-
cal run-time manager executes the required function at the slave node (4). The return
value (5) is packed into a message (6), sent over the control network to the control
NI stub, where it is unpacked (7). Finally, the original master run-time management
function call returns with the respective return value (8).

Certain network events (such as synchronization upon flushing the buffers in the
network layer) require action from the master run-time manager. In such a case, the
slave node triggers an interrupt to initiate a function call to the master using the
same mechanism.

6.3.2 Flow for Starting an Application

Figure 6.14 details the operating system flow used for starting an application on the
Gecko? platform. The flow contains three distinct parts: application registration (1),
the actual run-time management (2) and the management mechanisms (3).

When the user starts an application (1), the operating system parses the application
binary and extracts the application task graph and its properties. Consequently, a
set of task structures is created and the binaries for every task’s supported PEs are
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Figure 6.13: Communication between master run-time manager and the RTLib (i.e. tile-local
run-time manager) functionality.

registered. The next step is to start the run-time manager in order to find and allocate
the required resources to execute this application.

The run-time management components of the second part (2) represents the situa-
tion where an application consists of a single task graph, i.e. contains only a single
application operating point. This means that the quality management is, in this case,
not responsible for selecting the right operating point, but merely for determining
the required PE and communication resources with respect to the task graph and the
user requirements. After determining the load properties of the task graph, the re-
source manager can start assigning resources taking the current resource usage of the
platform (i.e. the already executing application) into account. Once resources assign-
ment decisions have been taken, they need to be enforced. This is the responsibility
of the resource management mechanisms.

The resource management mechanism (3) is responsible for setting up the task on its
assigned processing element and for setting up and initializing the inter-task com-
munication structures. In that sense, the resource assignment mechanism starts by
loading the task binaries to their assigned processing elements and, consequently,
initializes the tasks with e.g. initial parameter values. Then, the communication
structures are initialized. This involves setting up a DLT on every tile according to
the task graph and the location of the communication peers. This also entails setting
up the right task send windows. As Chapter 5 details, these send windows enable
bandwidth management to reduce inter-task communication interference. Finally,
all tasks belonging to the application are started (i.e. set as runnable).

6.3.3 Supporting a Configuration Hierarchy

When setting up a task on a softcore, allocating resources to the assigned task in-
volves a little more work. First, the PE management structures of the softcore(s)
and the respective host PE(s) need to be linked. This linking allows a softcore PE
to use the services provided by the lower layer, like message-passing over the NoC.
This successive linking associated with allocate PE is detailed in Figure 6.15(a). This
results in a configuration hierarchy (Figure 6.15(b)).



Proof-of-Concept Demos 165

User starts
application

Retrieve Register task

o Create Task =
@ application = Structures —® binaries for
task graph various PEs

Start
Application

Quality Management Resource Management Mechanism Management

@ Calculate application Assign platform Execute starting
resource needs resources to tasks mechanism

Allocate Setup tasks Init Setup comm.
@ PEs [™| (load binary) ™ tasks [T structures

Figure 6.14: Operating System flow with run-time management components for starting an
application on the Gecko® platform. (1) The application task-graph is loaded from the application
binary, task structures are created to represent the application threads and the representations
of the various binaries for one given task. (2) The run-time manager assigns communication,
computation and storage resources and executes the application starting mechanism. (3) Binaries
are loaded on their respective tasks (hardware binaries are sent through the FPGA reconfiguration
bus and software binaries are sent over the data NoC), tasks are initialized with eventual data, the
communication infrastructure is reconfigured and the application is started.

When setting up a task on a soft PE, one first needs to set up the underlying soft-
core PE. Only after setting up the configuration hierarchy, the task can be setup on
top of the softcore. If the softcore is already instantiated, it does not need to be re-
instantiated. In that sense, a soft IP core is just a task to the underlying host. A similar
approach is taken when initializing the task.

6.4 Proof-of-Concept Demos

This section first details the demonstrations running on the Gecko I and the Gecko?
emulator. It shows the heterogeneous task migration concept (Section 6.4.1). It also
illustrates the hierarchical reconfiguration and the management of inter-task com-
munication interferences (Section 6.4.2). Secondly, this section briefly introduces the
RESUME demonstrator.

6.4.1 Geckol

The Gecko I demonstrator illustrates the feasibility of the envisioned application sce-
nario detailed in Section 6.2.1. Both the MJPEG Video application and the 3D game
are simultaneously executing on the MPSoC platform and, depending on the needs
of the user, it is possible to reconfigure the FPGA tiles to accelerate one or the other
application (Figure 6.16). Tasks are seamlessly migrated from the FPGA tile (i.e. the
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Figure 6.15: Flow (a) for linking the softcores to their host, which results (b) in a configuration
hierarchy. Setting up a task on a softcore hierarchy (c).

hardware implementation) to the ARM processor (i.e. the software implementation).
During the migration process, one has to ensure that inter-task communication is
kept consistent.

6.4.2 Gecko?

The Gecko? demonstration contains two distinct parts. The first part illustrates the
dynamic creation and use of a configuration hierarchy. The use of a configuration
hierarchy is also demonstrated in combination with task migration. The second part
illustrates how the run-time manager can manage the communication of a NoC en-
abled MPSoC platform. Inter-task communication interference is handled in three
different ways: by using the injection rate control mechanism described in Chapter
5, by rerouting communication and, finally, by migrating interfering tasks to another
tile. Note that in this demonstration, though the decision mechanism is a simple
script, the injection rate control actuator is used to perform congestion-control. In
Chapter 5 the same actuating mechanism is used to perform flow-control under the
supervision of a decision-making algorithm in the run-time manager.

Handling a Configuration Hierarchy

Using the edge detection application, we illustrate the use of hierarchical configura-
tion*. First, we assign all edge detection tasks to execute in software on the Strong-
ARM processor. An animated sequence of images (320x240 pixels, 16-bit colors) is
edge-detected and displayed on the screen of the iPaq PDA.

4In our experience, the speed of hierarchical reconfiguration is constrained by the FPGA reconfigu-
ration (proportional to the area to reconfigure). We expect to use hierarchical reconfiguration upon user
interaction (application start-up or upon a change in quality requirements)
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Figure 6.16: Gecko I demonstration. This illustrates the envisioned application scenario. De-
pending on the user preference, the 3D game or the video application is put in the foreground.
This affects the assignment of the HW/SW tasks.

The software implementation of edge detection is very compute intensive and does
not meet real-time constraints. Upon user request the run-time manager can migrate
the edge-detect task to a hardware accelerator on the FPGA. As table 6.1 shows, the
edge-detect application has registered four binaries targeting different architectures:
a StrongARM binary, the FPGA bitstream for a dedicated reconfigurable hardware
module, a binary for the Lezard16 and coefficients for a generic hardware convo-
lution filter. Whereas the dedicated reconfigurable hardware task only requires the
run-time manager to partially reconfigure the FPGA with its bitstream, the Lezard16
and convolution filter implementations illustrate hierarchical configuration. Indeed,
if the (virtual) machines that execute these binaries are not currently instantiated
on the platform, the run-time manager first reconfigures an FPGA module with the
hardware to run the virtual machine and then configures it with the registered bi-
nary. Finally, it redirects messages to decode to the newly created task.

Managing Inter-task Communication Interference

After assigning the MJPEG video application tasks to tiles 1,3 and 8, we have pur-
posely mapped a message generator task and a message sink task as a perturbing appli-
cation on tiles 7 and 6 respectively (Figure 6.17). This way, the perturbing application
will congest the communication channel (7 — 6) it shares with the video decoding
application (Figure 6.17). Measurements have been performed for both bandwidth
allocation techniques detailed in Chapter 5: window-spreading and block-allocation
windows (Figure 6.18).

The effect of diminishing window size is clear on the message sink task in the case
of the continuous-window allocation: the amount of messages sent (Figure 6.18(a)-
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Figure 6.17: Assignment of the video application and the perturbing application. Tiles 1,3 and 8
run the video decoder application and tiles 6 and 7 run a synthetic application to create congestion
on the link 7 — 6.

bottom). Optimal Video Decoder performance is obtained when less than 1% of
the total bandwidth is allocated to the message generator (Figure 6.18(a)-top, time
interval [3.91€9;3.95€9]). The run-time manager can trade-off performance between
both applications by changing their respective injection rates.

When using the window-spreading technique, the effect of diminishing the total
window size is not directly proportional to the bandwidth allocated and the trade-
offs obtained in the previous case are not possible (Figure 6.18(b)-bottom). How-
ever, using window-spreading has other advantages: jitter is greatly reduced be-
cause communications are evenly spread over time. Moreover, a proper window
setting can hide the latency of the receiver side and completely suppress message
blocking. In Figure 6.18(b)-bottom at the time-stamp 2.41¢?, the message sink task no
longer causes message blocking in the NoC. This happens when the window of the
message generator is less than 0.02% of the total bandwidth. Note that the message
sink, is not disturbed by this window reduction: it still consumes 40000 messages
per second. The run-time manager has simply matched the window size to the op-
timal sending rate in the perturbing application. As a consequence, thanks to the
bandwidth saved by the run-time manager, the video decoder reaches its optimal
frame-rate.

Besides exploiting the injection rate control mechanism, the run-time manager can
also solve interference issues between applications in other ways. First of all, as Sec-
tion 6.1.1 explains, it is possible to avoid the congested link by rerouting the video
application stream around the hotspot, providing a form of operating-system con-
trolled adaptive routing on the NoC. This technique allows maintaining the in-order
packet delivery guarantee.

This concept is illustrated by Figure 6.19. Rerouting communication involves a few
steps. First, the communication link between tile 8 and tile 3 (Figure 6.17) needs to be
flushed in order to avoid out-of-order delivery of messages. The flushing is achieved
by interaction between the run-time manager and the control NI. Upon request from
the run-time manager, the initiator NI tags the last message it sends. Upon reception
of a tagged message, the target NI notifies the run-time manager thereby acknowl-
edging the virtual path between imitator and target network interfaces is empty.
Once the link is flushed, it is safe for the run-time manager to alter the routing table
of tile 7 (Figure 6.19(b)). This change ensures that messages for tile 3 are no longer
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Figure 6.18: Messages sent by Tile 8 (top) and messages received by Tile 6 (bottom). Time axis
indicates the clock timestamp. The send windows of Tiles 8 and 7 are non-overlapping; their
sum equals the send period. (a) Communication management experiment 1: Traffic shaping with
continuous window allocation reduces blocking on messages received at Tile 6 (perturbing appli-
cation) but also accordingly decreases the throughput. (b) Communication management exper-
iment 2: Traffic shaping with window spreading better matches the perturbing traffic source.

When blocking is removed, the throughput of the perturbing application is not diminished.
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Figure 6.19: (a) Rerouting the video application stream between tile 8 and tile 3. (b) This is
achieved by changing an entry in the routing table of the tile 7 router.

routed through tile 6, but through tile 4 (Figure 6.19(a)). This route avoids the con-
gested link. Based on our platform configuration from [135] (NoC clock at 22MHz
and StrongARM access to control bus at 50MHz), we estimate the reconfiguration of
a routing table entry to take about 450 NoC cycles and a link flush to take between
750 and 2800 NoC cycles depending on the amount of data to flush (and neglecting

congestion).
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Figure 6.20: Using task migration to resolve inter-application interference.

The third possibility to avoid creation of a hotspot is for the run-time manager to
dynamically migrate the message generator task to another node in the NoC. It is
moved from tile 7 (in Figure 6.17) to tile 4 (in Figure 6.20). Messages between the
generator task and the sink task are now routed through tile 3. This technique avoids
the traffic generator to interfere with the video decoding application.

6.4.3 RESUME Run-Time Manager

The aim of the RESUME project® was to illustrate scalability in the context of mul-
timedia terminals. This includes both content scalability (i.e. adapting the video
stream according to the capabilities of the receiver) and multimedia processing scal-
ability [68-70].

SIWT project funded by the Flemish Government (GBOU-RESUME project IWT-020174-RESUME).
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Consequently, a heterogeneous multiprocessor platform containing an ISP and mul-
tiple FPGA fabric PEs was created®. Our contribution to the project was to provide a
suitable operating system. This means an operating system that provides scalability
support. As Section 6.3.1 details, the Gecko? run-time manager was embedded into
an existing RTOS (i.e. RTAI). For the RESUME project, we created a set of extensions
containing the same run-time management components, further denoted as Hetero-
geneous System Extensions (HSE), for the Linux 2.4 kernel. This illustrates that the
run-time management components and their algorithms can also be integrated into
general purpose operating systems.

In contrast to an RTOS, Linux maintains a boundary between the kernel (i.e. kernel-
space) and the applications (i.e. user space). Moving the HSE applications to user-
space is the most important difference with respect to the Gecko? demonstrators. This
means that HSE tasks no longer pose a (potential) threat to the stability of the entire
system and that more standard software libraries are available. Hence, the Gecko?
run-time manager functionality is split into a user-space run-time library (RTLib)
and a set of kernel-space HSE run-time management components. The HSE run-time
library is in fact the interface between the application developer and the HSE kernel.
This happens much in the same way that the C library sits in between the application
programmer and the Linux kernel. The application programmer, for example, rarely
uses a kernel system call, instead a library function call is used that acts as a wrapper
for the system call.

The purpose of the HSE kernel-space components is to allow the HSE core a way
to control the hardware components and enable communication with the tasks as-
signed to different PEs. Obviously, these HSE drivers need to provide HSE with a
fixed interface. The inverse communication (i.e. from hardware driver to HSE core)
also happens through a fixed interface. The most important functions that need to
be addressed in a PE driver are: creating and removing a task from the PE, starting
a task, retrieving or restoring a certain task state (i.e. for task migration), suspending
or resuming a task and providing communication functionality (i.e. sending mes-
sages, receiving messages, specifying communication parameters, blocking commu-
nication). Finally, HSE PE drivers can be registered or deregistered on the fly.

6.5 Conclusion

The Gecko series of demonstrators are emulators of NoC-enabled MPSoC platforms
that execute real-life applications. They feature a complete MPSoC stack that spans
from the real-time operating system layer down to the network link layer. The appli-
cation programming model is message passing, so the system layer is very thin as
it simply provides direct access to the message passing API of the network interface
layer. In addition to being a convincing proof-of-concept of MPSoC architectures
controlled by advanced real-time operating-systems, they are platforms that allow
exploration of the design-space of (multi-processor) reconfigurable computing, of
network-on-chip and of MPSoC run-time management.

6This platform was created by inserting multiple FPGA boards in the PCI slot of a host PC.
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To the best of our knowledge, the Gecko platform series were the first to demon-
strate NoCs emulated in a realistic real-time MPSoC environment. Quite ahead of
their time, they were also the first world demonstration of (realistic) partial reconfig-
uration of Xilinx FPGAs, and later on introduced the (exotic) concept of hierarchical
reconfiguration. Finally, they demonstrate the concept of reactive communication
control of an NoC, both in terms of flow-control (Chapter 5) and congestion-control.
They open the way to exploring close interaction between a run-time manager and
the underlying MPSoC platform architecture.

Many lessons have been drawn from the Gecko experience. Some exotic concepts,
such as HW/SW migration, dynamic partial reconfiguration and hierarchical recon-
figuration versions thereof, are still ahead of their time. We expect partial recon-
figuration to remain exotic” or to remain confined to some niche markets, such as
network-processing. Though it is not impossible that FPGA fabric may be embed-
ded into MPSoC ASICs on a larger scale, opening a possibility for hierarchical re-
configuration. Other concepts such as NoCs have since made their way into more
mainstream MPSoCs (though they are still on the bleeding edge of technology).

Other lessons concern the message-passing programming model that directly uses
the API offered by the network interfaces. Though usable (and natural to hard-
ware designers and engineers), software designers often prefer the shared-memory
paradigm, so the system-layer is required to extend the network stack to provide
bus-like load/stores (or DMA-like) support. It is interesting to note that the com-
mercial NoCs (like e.g. Arteris and Sonics) that have appeared since are marketed as
bus-replacements, confirming this conclusion.

The lesson learned concerning emulators, is that they are convincing, fun to use
and are great for software exploration at the system-level, but they also cost blood,
sweat and tears to design and they are more difficult to exploit for research pur-
poses, where high-level simulators are to be preferred. We have also found that it
is sometimes uneasy to be too ahead of time and that it is important to have one
particular component to sell. Finally, we also concluded that though daring engi-
neering is a step to technical success, recognized achievements require the engineers
to furthermore qualify in the art of marketing. At the same time we have found that
being naive and over-optimistic about the complexity of some engineering projects
can sometimes be a way of solving problems.

7Until a killer application is discovered that forces FPGA vendors to provide more hardware and
design-tool support for this concept than they are doing today.
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CHAPTER 7

Run-Time Quality Management

ate applications that are easily deployable over multiple MPSoC platform gener-

ations (e.g. with increasing resource capabilities). The designer could provide the
run-time manager with only a single application implementation and expect the run-
time manager to deal with contention of critical platform resources or with chang-
ing user requirements through e.g. run-time task migration. However, the designer
could choose to provide a scalable version of the application. This means an appli-
cation with multiple operating points that each represent a trade-off between pro-
vided user quality and the required platform resources. Such applications can adapt
to varying user quality requirements.

In order to address the time-to-market issue, an application developer should cre-

Indeed, assisted by application design tools, the designer could provide a scalable
application implementation where each application operating point represents a trade-
off between quality and required resources. There would even be multiple operating
points when only considering a single application quality. Each such operating point
would use a different amount of platform resources to provide the same end-user
quality. In general, these applications are denoted as adaptive applications.

Such scalable adaptive applications allow the run-time manager, for example, to se-
lect the right operating point for every active application in order to optimize the
total user value, while considering the platform capabilities. In essence, run-time
management support for adaptive applications enables both platform scalability and
application scalability. The run-time management component that deals with the
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application quality levels, their associated user values, and their resource needs is
the quality manager.

The quality manager essentially relies on the application quality information, the
available platform resources and the user requirements to make its decisions. This
means the quality manager requires an efficient and fast algorithm to select the best
operating point for every active application given the platform resource constraints.
Furthermore, if an application needs to be deployable on multiple generations of an
MPSoC platform, this operating point information should be provided in a way that
is not platform specific. This means that the quality manager will have to reconcile
a platform independent description of resource needs with a platform specific de-
scription of available resources. Finally, as the quality manager relies on the resource
manager to assign the platform resources, both run-time management components
have to closely cooperate.

The rest of the chapter is organized as follows. Section 7.1 provides an overview
of quality management for adaptive applications. This includes a description of
the quality management concept and the quality manager components, an adap-
tive application case study with a motivation for having multiple implementations
for a single application quality level and, finally, a description of the quality manage-
ment issues. Section 7.2 details an efficient and fast algorithm to solving the quality
manager operating point selection problem. Section 7.3 proposes a quality man-
ager interface with both the application design-time analysis information and the
resource manager. This includes proposing a novel way for the quality manager to
make a high-level assessment of the mapping feasibility of an application operating
point. Section 7.4 details the interaction between the quality manager and the re-
source manager in the presence of multiple starting and stopping applications. In
addition, it proposes several new quality manager algorithm optimization alterna-
tives. Section 7.5 presents the related work with respect to quality management and
its algorithms. Finally, Section 7.6 presents the conclusions.

7.1 Adaptive Quality Management Overview

As Section 2.2 explains, our system manager accepts application quality and imple-
mentation information that is generated at design-time. This means the system man-
ager is aware about the capabilities and quality levels supported by the (adaptive)
application and their respective properties.

This section details the quality management concept (Section 7.1.1), provides an
adaptive application example (Section 7.1.2), motivates having multiple implemen-
tations for a single application quality level (Section 7.1.3) and, finally, provides an
overview of the issues tackled in the rest of this chapter (Section 7.1.4).

711 Concept

As Section 2.3.3 already explains, adaptive applications can be defined as applica-
tions that support multiple modes of operation along one or more resource and/or
quality dimensions [30,48,51,52,105,112,185]. At design-time, both the application
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quality required by the user and the available platform resources could be unknown
(e.g. other applications could be running). By providing the run-time manager with
the quality and resource trade-offs for every application, it can select the right qual-
ity and resource usage in order to (1) maximize the user application value and (2)
optimize the usage of the platform resources.

Figure 7.1(a) illustrates our quality management concept.! The system manager con-
tains a quality manager and a resource manager. The quality manager contains a
QoE manager and an operating point selection manager. Every application i comes
with a set of quality options ¢;; with their respective required platform resources r7;
and implementation details d;;. The QoE manager is responsible for assigning a user
value v;; to every application quality ¢;; according to a session utility function f,(---).
As Figure 7.1(b) shows, the highest quality (i.e. VGA, 30 frames/s) should not al-
ways provide the highest user value. Consequently, the operating point selection
manager is responsible for selecting an operating point (v;;,77;, d;;) for every appli-
cation 7 in order to maximize the value of a system utility function while ensuring that
the sum of every resource type k of the selected operating point j remains within the
boundary of what is available on the platform R*, i.e. ", , rj; < R*. Finally, for ev-
ery application i, the resource manager has to perform the actual platform resource
allocation based on the selected operating point.

The QoE manager is responsible for assigning, at run-time, a value to every appli-
cation quality level that reflects its user appreciation versus its cost. Figure 7.1(b)
shows an adaptive video application example featuring four different application
implementations providing three quality levels with a different resolution and fram-
erate. In Figure 7.1(b) the QoE manager assigns a user value (high, medium, low) to
the different application quality levels. In this case, the user prefers a lower framer-
ate or even a lower resolution rather than top quality, because (1) high quality video
is not needed (e.g. for video-conferencing) and (2) the cost (e.g. energy cost) of high
quality video is too high. As Jingwen et al. [105] describes, multimedia users need
a simple way to communicate with the QoE manager, i.e. to control and customize
the quality of their multimedia applications. A common way is to provide a graph-
ical user interface with a limited number of quality trade-off options. Two features
need to be present in such a user interface. First, users need a way to score a quality
perception (e.g. excellent, good, fair and bad) and to select other user related specifi-
cations such as e.g. window size. Secondly, users should be able to specify the price
or price range they want to pay for the desired service. Without notion of cost, users
have no reason to choose anything besides the highest quality. An in-depth look at
the QoE manager is out of the scope of this thesis. For more information, we refer to
related work like e.g. Jingwen et al. [105].

Consequently, the operating point selection manager uses the user values and the
resource vectors to select, for every active application, an operating point in order
to maximize the system utility function, while making sure that the total amount
of required platform resources (i.e. amount of PE, Mem and BW) does not exceed
the available platform resources. In essence, the operating point selection manager
has to solve a Knapsack Problem, more specifically a Multiple-choice Multi-dimensional
Knapsack Problem.

Here we assume type 1 run-time adaptivity according to the classification specified in Section 2.3.3
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Figure 7.1: Our quality management concept. (a) The quality manager consists of a QoE man-
ager, that captures the user preference, and an operating point selection manager, that selects the
best application operating point considering the current state of the platform. (b) Example video
decoding application. The QoE manager transforms the application qualities into application user
values. The operating point selection manager selects the best operating point given the user value
and the resource vectors, the resource manager assigns resources based on its implementation de-

tails.
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The classic 0-1 Knapsack Problem (KP) can be explained as a puzzle [120]: a hitchhiker
needs to fill his knapsack with various objects. Each object has a weight and pro-
vides a particular value. The knapsack itself can be filled up to a maximum weight.
How should the hitchhiker fill his knapsack in order to maximize value while stay-
ing within the maximum weight boundary? In more general terms: how to maxi-
mize value when picking a number of value items for a resource-constrained knap-
sack? The Multiple-Choice Knapsack Problem (MCKP) deals with groups of items. This
adds additional constraints as one has to choose one item from every group. In the
Multi-Dimensional Knapsack Problem (MDKP), the items have multiple value dimen-
sions, while the knapsack contains multiple constrained resource dimensions. The
Multiple-choice Multi-dimensional Knapsack Problem (MMKP) combines the above [9],
i.e. groups of multi-dimensional items, where one has to choose a single item for
every group to be added to the multi-dimensional knapsack. Again, the goal is to
optimize value, while remaining within the knapsack bounds. We consider applica-
tions with multiple, multi-dimensional operating points. The problem of choosing
a single multi-dimensional operating point for every active application in order to
optimize the usage of the multi-resource MPSoC platform (i.e. a multi-dimensional
knapsack) is, hence, a MMKP.

Application 1 Application2  Application 3

® #PE =4 #PE =2 #PE=3
£ BW = 150 Mb/s BW = 80 Mb/s BW = 150 Mb/s
? Mem = 256 kB Mem = 256 kB Mem = 300 kB
g Quality = High Quality = High Quality = High
c

K] #PE =2 #PE = 1 #PE -1

] BW=50 Mb/s BW=40 Mb/s BW = 50 Mb/s
8— Mem = 128 kB Mem = 256 kB Mem = 100 kB
s Quality = Medium Quality = Low Quality = Low
o

3 #PE =1

= BW = 25 Mb/s

o Mem = 100 kB

< 3 Quality = Low

NoC

Figure 7.2: The MMKP problem in the MPSoC context: selecting a application operating point
for every active application in order to reach an optimized value. However, the sum of all resources
used by the applications should not exceed the available MPSoC resources.

Example 7.1: Simple MPSoC MMKTP illustration (Figure 7.2).

In this simplified example, the MPSoC platform is a three-dimension knap-
sack of processing elements (5 PEs), an on-chip communication resource
(BW=200 Mb/s) and a main memory (Mem=512 kB). For a certain amount
of each of these three resources, an application provides several quality lev-
els. The goal is to choose an operating point for every application such that
the overall provided quality is maximized while the sum of used resources
never exceeds the available resources. The selected points fill the knapsack
almost completely as they require 5 PEs, 180Mb/s BW and 484 Kb Mem.
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The resource manager is responsible for communicating platform information to the
quality manager. The quality manager requires two types of information. First, the
resource manager has to provide the operating point selection manager with detailed
platform resource usage information. This allows the operating point selection man-
ager to verify if the selected operating points are respecting the platform resource
boundaries. Secondly, the resource manager has to indicate a priority for searching
and selecting feasible solutions. This means, for example, that the resource man-
ager could indicate that using a scarce or fragmented resource should be avoided.
In the end, the resource manager uses the resource vector and the respective imple-
mentation details (i.e. task graph and other designer specified details) of the selected
operating point to perform the actual resource assignment. This also means that the
resource manager can resort to task and/or data migration to make the assignment
a success.

Example 7.2: Interaction of resource assignment policy and operating
point selection (Figure 7.3).

In this example, the designer provides, for the same application, two im-
plementations with the same quality and value to the user. The first imple-
mentation uses a lot of memory but only requires two processors, while the
second uses four processors but only requires a small amount of memory.
Both implementation options can produce a valid resource assignment for
both platform 1 and platform 2. However, the first implementation would
be preferred for platform 2 (where processor tiles are a scarce resource),
while the second implementation would be preferred for platform 1 (where
memory is a scarce resource). Avoiding a scarce resource implies that the
resource manager expects that other applications might be started in the fu-
ture. The resource manager could employ a different policy that attempts
to shut down as many processors as possible in order to save energy. This
would mean that the first implementation would also be preferred in the
situation of platform 1.

The combination of a QoE manager, an operating point selection manager and a
resource manager corresponds to the three quality layers for adaptive applications
detailed by Jingwen et al. [105]. These levels include a user quality layer that details
what the user perceives (i.e. resolution and framerate) and the price or value that the
user attributes to the different qualities, an application quality layer, provided by the
designer, that is platform independent but that does detail the application specific
quality attributes and, finally, a resource quality layer that contains platform specific
resourcing details and allows a run-time manager to perform the resource assign-
ment

7.1.2 Application Adaptivity: QSDPCM Case Study

In this section, we illustrate application implementation trade-offs using the QSDPCM
real-life video encoding application. As Marescaux describes [132,133], the Quad-Tree
Structured Differential Pulse Code Modulation (QSDPCM) algorithm is an inter-frame
compression technique for video images [214]. It consists of a hierarchical motion
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Figure 7.3: Influence of resource assignment policy on selecting the operating point. (a) Two
operating points provide equal value to the user but have different implementation trade-offs. (b)
Two platforms with little memory and a lot of processing elements and vice versa. Depending
on the platform resource usage and the resource assignment policy, one of the implementations is
preferred.

estimation, quad-tree quantization, a Huffman encoder and image reconstruction
(Figure 7.4(a)).

The hierarchical motion estimation consists of 3 steps: first at quarter resolution
(ME4), then half resolution (ME2), and finally at full resolution (ME1) for every
macro-block (16x16 pixels) in the image. It determines the motion vector with which
the difference between the current and reconstructed previous image can be encoded
using the shortest code word. For this purpose the input image is sub-sampled (SS)
by a factor four and two. Quad-tree quantization (QC) works by recursively splitting
the motion compensated predicted error frame from the MEL1 step into four quad-
rants until, within a certain threshold, such a quadrant can be approximated by its
quantized mean value. The image reconstruction decodes the frame by dequantiza-
tion and motion compensation (MC). The output stream is compressed using a Huff-
man encoder. Brockmeyer et al. [32] provides an in-depth analysis of the QSDPCM
kernel optimization steps and the multiprocessor mapping options and trade-offs.

Figure 7.4(b) details the processing requirements of every kernel for encoding a QCIF
resolution image. In order to get a more balanced set of mapping kernels, the basic
QSDPCM kernels are combined. This means that the subsampling (SS) and the ME4
and ME2 kernels are merged into a single ME42 mapping kernel, while the QC and
MC kernel are combined to form the single QC mapping kernel. These mapping ker-
nels communicate through a shared memory and they are synchronized at the slice?
level. Consequently, one can use these mapping kernels to create application tasks
(Figure 7.5(a)). First, all mapping kernels are combined to create a single applica-
tion task. Then a functional split into two and three applications tasks is considered.
As ME1 requires far more cycles than ME42 and QC, a set of ME1 data-splits are
considered. In this case, each ME1(x) kernel processes parts of the image.

The task graphs of Figure 7.5(a) are mapped onto a multiprocessor virtual platform
(provided by [132]) containing seven TIC62 processing element tiles and an L2 mem-

2a set of macro-blocks that span the width of the image
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Figure 7.4: QSDPCM application. (a) Description of the algorithm. (b) Execution time (kcycles)
of the different kernels for QCIF resolution.

ory tile interconnected by a NoC. We measured the overall application execution
time as a function of the parallelization (one task per processor) and the assigned
L2 memory bandwidth (Figure 7.5(b)). A similar graph can be constructed for res-
olutions other than QCIF. This experiment shows that for a certain perceived user
quality, one can select different implementation trade-offs.

7.1.3 Exploiting Multiple Application Implementations

There are multiple ways to implement a single application (Figure 7.3(a)). A designer
can make various implementation decisions, like e.g. the number of parallel tasks
and their synchronization granularity, that affect the resource usage and their trade-
offs. This section motivates the use of multiple application implementations and
reflects on its benefits and drawbacks.
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Figure 7.5: QSDPCM mapping results. (1) QSDPCM implementation options ranging from a
single task to seven parallel tasks. (b) Performance of the QSDPCM application as a function of
the parallelization and the used L2 bandwidth.

Motivation

An application designer typically provides a single application implementation with
associated application quality properties. Indeed, it is often a single task graph with
different resource requirements depending on the quality needs. Such a designer
expects the run-time (resource) manager to flexibly allocate the required resources
according to the desired quality. In case of the QSDPCM example (Figure 7.5(a)),
the designer would most likely provide the seven-task implementation as this is the
most flexible and balanced implementation. The task graph will exhibit different
processing, memory and communication requirements depending on the requested
resolution and framerate.

In contrast, just like for the QSDPCM example, a designer could create multiple im-
plementations with different task graphs featuring e.g. different parallelizations (Fig-
ure 7.5(a)). In this case, the run-time manager could select the best implementation
given the quality requirements, the state of the platform and the current resource
allocation policy (e.g. shut down as many PEs as possible). However, there are other
benefits to having multiple implementations. In case of low user quality require-
ments, it is beneficial to have a single task instead of multiple communicating tasks.
Besides the fact that a single task has no synchronization overhead, it also avoids
scheduler overhead and the scheduling side-effects like e.g. cache trashing.

Brockmeyer et al. [32] has analyzed the QSDPCM implementation using six tasks for
both QCIF (Figure 7.6(a)) and VGA (Figure 7.6(b)) resolution. These figures show
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how much time is relatively spent in every task. In both cases, a significant amount
of time is spent in executing the kernels, while the time required for executing the
control code surrounding the kernels, further denoted as the task skeleton, is quite
small. But, for VGA resolution, the relative amount of kernel execution time is a
lot higher. As a consequence, for QCIF resolution, a significant larger share of time
being wasted in task synchronization and in the task preamble/postamble. This task
preamble/postamble represents the time needed to respectively initiate and termi-
nate a task run for a set of data. Furthermore, we notice that the data-split for VGA
resolution is a lot more balanced than for QCIF resolution. This is caused by the fact
that a QCIF frame has 11 columns that need to be (unevenly) split over four tasks.
In contrast, a VGA frame that has 40 columns that split nicely over four tasks. The
fact that, for VGA resolution, a task has larger chunks to process also explains the
smaller preamble, postamble and task synchronization
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Figure 7.6: QSDPCM mapping results for QCIF and VGA resolution using the six-task imple-
mentation. (a) QCIF resolution (b) VGA resolution.

The overall conclusion of this study [32] is that this six-task implementation becomes
more efficient with increasing frame resolution. This also means that, although this
implementation is perfectly capable of handling QCIF resolution, it would be more
appropriate to use another implementation with fewer tasks in order to reduce the
amount of wasted computing resources.

Feasibility?

Is it feasible to expect multiple implementations for a single application quality?
Indeed, creating multiple implementations obviously comes at a cost both at design-
time and at run-time.

The design-time cost is mainly caused by having the designer implement multiple
versions. However, by using an evolution of today’s application design and explo-
ration tools such as SPRINT [44], OpenMP [56] and the ATOMIUM tool suite (see
Appendix C), a future designer should be able to create multiple implementations
starting from a single sequential application code with minimal effort.

Having multiple implementations also requires managing them at run-time. In or-
der to avoid duplication of application code for every task graph, we have shown
that it is possible to integrate different operating points into a single code-base with
minimal overhead [51,159]. For the QSDPCM example, the code size overhead of the
integrated version with respect to the sequential stand-alone version is less than 5%.
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The additional configuration data needed to distinguish between different modes of
operation requires an additional 404 bytes. The per task performance penalty (QCIF
resolution) due to the introduction of additional control code is less than 0.17%.
These overhead figures allow us to be confident that having multiple implementa-
tions is feasible. Furthermore, in the future, we would expect the application design
tools to be able to provide integrated output code.

7.1.4 Quality Management Issues

Although the quality management concept is clear, there are a few issues that remain
to be solved when adding a quality manager to the system run-time manager. First,
the quality manager requires a flexible and fast way for solving the Multiple-choice
Multi-dimensional Knapsack Problem (MMKP) at run-time. Secondly, this means
determining the interaction between quality manager and resource manager.

These issues are addressed in the rest of this chapter. First, Section 7.2 describes a
generic way to solve the MMKRP in a fast and efficient way. Then, Section 7.3 analyzes
the quality manager interface with both the application and the resource manager.
Finally, Section 7.4 investigates the interaction between the quality manager and the
resource manager when a user starts and stops multiple applications. This also in-
volves switching between operating points.

7.2 Solving the MMKP

Having multiple active applications, each with their proper set of operating points,
requires a run-time manager to select for every application the most appropriate op-
erating point given the available platform resources and the user constraints. This
section details this operating point selection problem and proposes a fast heuristic
algorithm to solve it. In addition, the algorithm is characterized by a set of experi-
ments.

7.2.1 Problem Definition

Consider that every application i of a set of active applications .S, contains a set s; of
N; operating points (for the algorithm complexity analysis [V; is constant for every i,
i.e.is equal to IV).

The platform architecture contains a set of m resource types R= (Ro,-+ Ry -+, Rim),
where Ry, denotes the available resources of type k.

Every operating point j of set s;, further denoted as pt;;, is characterized by a cost ¢;;
and an execution time t;;. Furthermore, r;;;, denotes the amount of k-type platform
resources needed for operating point pt;;. Hence, ri; = (rijo, -, Tijk, > Tijm)
denotes the resource usage vector for pt;;.

To translate this MMKP into a mathematical formulation, let z;; denote whether the
point j of set s; is selected (z;; = 1) or not (z;; = 0). Equation 7.1 denotes that, for
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each active set, exactly one point must be selected. The total resource usage of all
active applications cannot exceed the available platform resources (Equation 7.2).

Vi, Y iy =1 (7.1)
J

Vk‘,z Z%‘jmjk < Ry (7.2)
i J

The goal of the operating point selection is to minimize the total cost, i.e. minimizing
>_; 2.jTijcij. This constrained minimization problem can be transformed into a
different form [139]. First, consider each set as an ordered set with respect to the
cost axis, i.e.: j < j' = ¢;; > ¢;5-. Then, one can substitute ¢;; by the value v;; as
follows: v;; = (cio — ¢i5), vi; > 0. Hence, the minimization problem becomes the
new maximization problem detailed by Equation 7.3.

Maximize(z injv,»j) (7.3)
i

This maximization problem is a classical MMKP. The MMKP goal is to create a solu-

tion f € F by picking exactly one operating point from each set in order to maximize

the total value of the pick, subject to the resource constraints. Hence, a solution f € F

of the MMKP is a combination of points, one per set, that satisfies all resource con-

straints. All additional symbols are summarized in Table 7.1.

7.2.2 Operating Point Selection Heuristic

Low algorithm complexity is crucial for a good and fast operating point selection al-
gorithm. A reasonably good and feasible solution with little computational run-time
effort is preferred over an exact solution with a longer computation time. Hence, a
fast and effective heuristic is needed.

Solving the MMKP with our heuristic [49, 50] involves an off-line and two on-line
steps. The first, (off-line) step filters out all non-Pareto operating points of every
set. This step that can be performed independently from the selected MMKP heuris-
tic. It allows us to reduce the number of points in each initial MMKP benchmark
set used to measure the heuristic performance, It also reduces the execution time
of the heuristic without sacrificing solution quality [79]. This Pareto filtering step
is performed by an implementation of the Simple Cull (SC) algorithm [241]. When
integrating this operating point selection algorithm into our run-time manager, the
Pareto filtering step will also play an important role. Indeed, only after the QoE man-
ager has assigned values to every quality level, one can derive the Pareto operating
points.

Algorithm 11 details the two on-line steps. The second step (lines 1-6) performs
multi-dimensional resource reduction. This reduction starts with finding an initial
solution that includes the lowest-value point® ptY; from each set s;. For the multi-

3Starting with the highest-value points can dramatically exceed some available resources and does not
perform well to find a feasible solution. Selecting the lowest value points to represent the penalty vector
holds two assumptions. First, it assumes that the lowest value point also consumes the least resources.
Secondly, it assumes that the resource usage of the lowest value points is indicative for the higher value
points of the same set.
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Symbol Definition
w | S Set of active applications
E S Operating point set of applic.ation i,5, €8
N; = N | Number of operating points in s;
Dtij Point j of set s;
ptY; Lowest-value point in the set s;
L | vy Value of the point pt;;
g f the poi
3| cij Cost of the point pt;;
B | iy 1 or 0, if pt;; is respectively selected or not
Tijk Amount of resource type k used by point pt;;
o Amount of resource type k used by point pt?;
m Number of resource types
o | R Resource vector for the m resource types
E Ry Available resources of type k, component of R
S| R} Type k resources used by the initial MMKP solution
£ |7 Resource penalty vector
Pk Penalty vector component for resource type k
R;; Single resource for the point pt;;
c F Set of all feasible solutions
Sl f Solution of the MMKP f = {pti;,...,pts;} € F
;5 Seurrent | Current feasible solution fey rent € F
& | frew New (potentially feasible) solution
fratue Total (system) value for a solution

Table 7.1: Additional symbols used for solving the MMKP.

choice knapsack problem, an initial feasible solution, if one exists, can always be
obtained by choosing the lowest-cost point of each set. This no longer holds for the
MMEKEP. So, in the worst case, every possible operating point combination must be
tested in order to find a feasible solution, which amounts to solving the MMKTP itself.
Hence, using a heuristic does not guarantee finding a feasible solution. The amount
of resources used by this initial solution is given by Equation 7.4

Yk, R) = 1l (7.4)

Vk,pi = R}/ Ry, (7.5)

Rij = ﬁ TZj = Zpk X Tijk (76)
k

Then, as in [10], the multi-dimensional resource vector r7; of every point pt;; is re-
duced into a single resource representing the price of the resource combination.

To that end, a penalty vector p' = (po,--- ,pk, - ,Pm) is defined (Equation 7.5) to
give a high penalty to any highly used resource. For any resource type k, the more
resources are used by the initial solution, the larger the penalty component py,.

The single resource R;; of any point pt;; is then derived as defined by Equation 7.6.
It is the projection of the resource usage vector r7; of pt;; with the penalty vector
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iq1

A

Figure 7.7: The single resource is obtained by projecting the resource vectors ri; onto the penalty
vector p.

p. This is illustrated by Figure 7.7. It can be obtained by making the sum of all
resources used by the point weighted by their respective penalty vector component.
The complexity of this step is O(m + sN).

Where Akbar et al. [10] use a reduction to construct a convex hull of each set sepa-
rately, we use this reduction to be able to sort all points of all sets together in a single
two-dimension search space.

Consequently, all points of all sets in the previously derived two-dimension search
space are sorted according to the value v;; over single-resource R;; ratio. Sorting
is done in descending order according to this angular coefficient (i.e. v;;/R;;). This
means that points with a high value combined with a small resource usage are pre-
ferred. The worst-case complexity of this step is O(sNlog(sN)).

Algorithm 11: MMKP solver.
Input: &, S
Output: f € F
MMKPSOLVE(R, S)
(1) feurrent = FindInitial Solution(S)
(2) :'Lfrl;fgnt = E Vig, vptij Z.’n‘.]cc’u,?"re’rLt
(8) p = DeterminePenaltyV ector(feurrent)
(4) foreachpt;; € S
(5)  Rij = DeriveSingleResource(pt;;, p)
(6) foreach Unused pt;; with highest v;;/R;;
) fnew = Exchange(feurrent, ptij)
(8) if ((Feasible(frew)and (vi; > vi))
(9) EXChangePOint(fcurrent/ ptij)
(10) fcurrent = fnew
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The third and final step solves the MMKEP, i.e. selects a point for every set while
maximizing the system utility function. In this case, this means maximizing the total
value. Starting from the initial solution, the algorithm visits every point in descend-
ing v;;/R;j. If replacing point pt;, with pt;; of set i produces a feasible solution
fnew € F and results in an increased overall value (i.e. fralue > fralue ) the new
solution is adopted.

The time complexity of the third step is O(sN). This implies that the overall worst-
case complexity of the heuristic is only O(m + 2sN + sNlog(sN)), in contrast to the
ones of [10,113].

After visiting all sorted points, one could consider updating the penalty vector and
perform another algorithm iteration in order to improve the found solution. This
step was omitted because experiments showed that the solution improvement is
marginal for the additional execution time.

7.2.3 Experimental Setup

The experiments provide results for all benchmark sets (denoted 101, 102, ..., I13) pro-
vided by [1]. These benchmarks are representative of adaptive multimedia systems
and are generally used to benchmark a MMKP heuristic. As Table 7.2 details, they
are of different sizes, with s < 400, N; < 10, and m < 10.

Table 7.2: MMKP Benchmark parameters

Benchmark s N | m
101 5 5 5
102 10 5 5
103 15 | 10 | 10
104 20 | 10 | 10
105 25 | 10 | 10
106 30 | 10 | 10
107 100 | 10 | 10
108 150 | 10 | 10
109 200 | 10 | 10
110 250 | 10 | 10
I11 300 | 10 | 10
112 350 | 10 | 10
113 400 | 10 | 10

In order to benchmark our solution, we have implemented the heuristics detailed
in [10,113] on the cycle-accurate SimlIt-ARM simulator [2] for the Strong ARM archi-
tecture running at 206 MHz.

We have similarly optimized the C code of these heuristics for StrongARM. Each
heuristic has been restricted to a single iteration to reduce the execution time as much
as possible, without relevant penalty on the solution quality.
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7.24 Experimental Results

Pareto Filtering

The off-line (i.e. design-time) filtering of points removes all non-Pareto points of the
multidimensional space. With respect to the used benchmarks sets, up to 26% of
all points are eliminated. This step increases the heuristic speed performance up to
25.8%, while the total value reduction is limited to maximally 3.7%.* However, it
also reduces the resource usage up to 4.4%. A similar trend is observed when other
algorithms [10,113] are used.

MMKEP Heuristic

The sorting of points in descending order according to this angular coefficient is illus-
trated by Figure 7.8a for s = 5, N = 5,m = 5, i.e. benchmark I01 [1]. Consequently,
Figure 7.8b shows both the initial and final solution.

The execution times for the considered benchmarks and heuristics are reported by
Figure 7.9(b). The results reflect the very low complexity of our heuristic (denoted
IMEC). The IMEC heuristic shows more than 97.5% gain for the execution time on
a Strong ARM processor, compared to two other candidate heuristics [10,113]. Our
heuristic is also the only one to run in less than 1ms on an embedded processor for
problems with s < 30, IV; < 10, m < 10, which represent realistic MPSoC MMKP
problem sizes.

Figure 7.9(a) shows that the total value obtained with our heuristic is comparable
with respect to the other candidate heuristics. The dramatically high execution time
of [10] for small problems is due to the trigonometric function usage (e.g. arc tan-
gent) which is expensive especially on embedded processors”.

As in [10,113], one can iterate the algorithm by updating the penalty vector after
each iteration and sorting Pareto points accordingly in order to further improve the
solution. But, as already mentioned this is not considered for performance reasons.

7.3 Quality Management Interfaces

Section 7.2 solves the MMKP problem for MPSoC sized problems in an isolated and
abstract way: the available platform resources and the application operating point
resource needs are expressed in a dimensionless way and the actual resource assign-
ment is neglected. This section investigates the interfacing (i.e. interaction) of the
quality manager with both the application (i.e. the operating point description) and
the resource manager. To this end, it incorporates the MMKP algorithm into the
quality manager and it assesses the impact of this interaction. This includes eval-
uating the performance in case of platform independent description of application
resource needs.

* At first glance, it seems odd that removing non-Pareto points results in a value reduction. However,
one has to bear in mind that (1) the removed operating points belong to the multi-dimensional resource
space and not to the single-resource space and that (2), in the end, the reduced operating points get sorted
according to their value over single-resource ratio. This means the heuristic could visit some non-Pareto
points earlier than some Pareto ones.

5Within SimIt-ARM, the arc tangent function is executed within 230us, whereas a integer division
(resp. multiplication) is executed within only 40 (respectively 10) us.



Quality Management Interfaces 189

60
50
A
40
S
< 30
>
20
10 o -
O al T T T T T
0 2 4 6 8 10 12
Single Resource
*set0 = set 1 aset?2 ®set3 x set 4
(a)
60 Initial Solut_ion
50 Final Solution O
@ m X IN
° 40 w ONET
% 30 — X % °
> (x ) ° *
20 = TN *
nnnnn -~ ‘~Aa’
10 \r\: 5] ./\ = &
O ~~~--\ T T T
5 6 7 8 9 10
Single Resource
+set0 = set 1 aset2 e set3 x set 4

(b)

Figure 7.8: MMKP 101 benchmark results. (a) Sorting the single-resource points by their angular
coefficient. (b) Initial and final solution.

7.3.1 Flexibility and Scalability Issues

Section 7.2.2 provides a fast and efficient solution for the MMKP problem for MPSoC
size problems. However, just applying this approach to a set of adaptive applications
that need to be mapped onto an MPSoC platform reveals some scalability and flexi-
bility issues.

Consider the MPSoC platform and its associated resource axis illustrated by Fig-
ure 7.10. An operating point described in the multidimensional space of Figure 7.10(b)
exactly details how much of every platform resource is used. This way, the operating
point selection manager (Algorithm 11) can easily check if a selected point is feasible
or not with respect to the already used platform resources. By selecting an operating
point, the quality manager also selects the mapping of the task graph onto the archi-
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Figure 7.9: MMKP benchmarking results: (a) total value of the solution and (b) algorithm exe-
cution time on StrongARM.
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Figure 7.10: Description of (a) a platform architecture and (b) its associated operating point
space. The architecture features multiple processing elements, each with their private level-1 (L1)
memory, interconnected with the NoC to the shared level-2 (L2) and level-3 (L3) memory. Every
application operating point in that space describes how much of each resource is needed to provide
its associated application quality.

tecture graph. Intuitively, it is easy to understand that if the resource usage for every
resource is described by the operating point, the resource assignment is, de-facto,
done. So the role of the resource manager is, in this case, reduced to executing the
platform dependent resource allocation mechanisms (i.e. executing the mapping).

As a consequence, the quality manager requires a large number of operating points
per implementation of every quality level in order to remain flexible, as other ap-
plications might already be executing on the platform. Besides the fact that such
operating point space representation is in itself not scalable, the scalability problem
also appears when moving to a different MPSoC platform instantiation. Even if this
other platform contains the same resource types, one requires a different operating
point space with, again, a large number of operating points per implementation of
every quality level. This approach also requires that all target platforms are known
at design-time or that the operating point space can be transformed on the fly to a
new target platform. In case all solutions must be provided at design-time, the total
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number of operating points N, for every application k is (in general) given by Equa-
tion 7.7, where @, denotes the number of application quality levels, I, denotes the
number of implementations per quality level, M; denotes the number of mappings
per implementation and P denotes the number of supported platform instances.

Ny =Qr x Iy x M; x P (7.7)

The number of design-time operating points can be reduced primarily by avoid-
ing the M; and P factor in Equation 7.7. This means avoiding additional operating
points for every mapping (flexibility challenge) and for every target platform (scala-
bility challenge). Such a solution requires three components: (1) a description of the
design-time operating points in a way which is not tied to a specific platform archi-
tecture instance, (2) a quality manager that still makes valid decisions based on this
new operating point description and (3) a matching run-time resource manager that
can assign the selected operating point in a flexible way to the available resources on
a specific platform instance.

The following sections describe the interface between our quality manager and our
resource manager (Section 7.3.2) and compare the issues and performance of plat-
form instance independent operating point descriptions (Section 7.3.3).

7.3.2 Interface between Quality Manager and Resource Manager

This section details the interface between the quality manager and the resource man-
ager. For simplicity, the quality manager is limited to just the operating point selec-
tion manager. This means that the transformation from operating point quality to
operating point user value is already done. Figure 7.11 details the run-time manage-
ment components and their interface. The quality manager receives as input a set of
application operating points for application 4, each characterized by their required
resources r; and their value v. The quality manager receives two types of input
from the resource manager. First, it receives a penalty vector to perform the multi-
dimensional resource reduction and sort the operating points. Secondly, it receives
a description of the available platform resources to verify the validity of the selected
operating point with respect to the described resources. After selecting an operating
point, its task graph T'G is forwarded to the resource manager for assignment. In
case the assignment fails, the selected point is discarded and the quality manager
should select a new operating point based on the, potentially updated, penalty vec-
tor and available platform resources.

The actual purpose of the penalty vector is to allow the quality manager to sort the
operating points based on their platform resource cost. In contrast to the penalty
vector described in Equation 7.5 (Section 7.2), this penalty vector has to reflect the
current platform resource cost. This means that a scarce resource should have a
high penalty. This can be achieved either by Equation 7.8 or by Equation 7.9. In-
tuitively, Equation 7.8 makes sense as every penalty vector component k represents
the percentage of used resource. This scheme works if resources are normalized with
respect to their importance and if they are converted into dimensionless values (as
was the case for the benchmarks used in Section 7.2). However, in case of an MPSoC
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Figure 7.11: Interface between the operating point selection manager (i.e. quality manager) and
the resource manager. The operating point selection manager selects an operating point. The
penalty vector i allows the quality manager to sort the operating points, while the vector of avail-
able platform resources R allows the quality manager to check the feasibility of the selected point.
The implementation details, including the task graph (T'G), of the selected point is forwarded to
the resource manager so platform resources can be assigned. In case the assignment fails, the
selected point is invalidated.

platform, there are e.g. many more processor tiles than memory tiles. This inherent
scarcity is not considered by this penalty vector. In addition, every penalty vector
component of a platform without applications would be zero. Hence, Equation 7.9
represents a more suitable penalty vector. Indeed, this penalty vector normalizes the
required resources with respect to the available resources.

Rused Ravailable
Vk,pp = —k - =1--k 7.8
Dk RZotal R}iotal ( )
1
Vk’pk = szailable (79)

The resource manager maps the task graph T'G(T, C, D) to the architecture graph
AG(P, L, M) according to the heuristic described in Algorithm 12. This is an ex-
tended version of the resource assignment algorithm (Algorithm 3) discussed in
Chapter 3 (page 56). The extension allows the resource manager to also handle mem-
ory blocks d,, € D (task graph data) and platform memory tiles m; € M. This means
that all task graph memory blocks are sorted based on their size (largest first) and the
total number of memory accesses (largest first). Consequently, we sort the memory
tiles based on their tile size (smallest first), their usage and on their already present
communication load (highest usage first). Finally, we assign the most important task
graph data to the memory tile with the smallest cost. If needed, the memory as-
signment component performs backtracking just like Algorithm 3 implements back-
tracking for assigning tasks to tiles. Once all memory blocks have been assigned, the
algorithm performs the resource assignment of tasks and communication links ac-
cording to Algorithm 3, with the memory assignment as a boundary condition. This
effectively means that memory blocks d,, € D are considered as pre-assigned tasks
and platform memory tiles are considered as a special type of processor tiles. This
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means the task graph TG(T, C, D) is transformed to T'G’(7", C') and the architecture
graph AG(P, L, M) is transformed to AG’(P’, L).

Algorithm 12: Extended Generic Heuristic for resource assignment.
Input: TG(T,C, D), AG(P,L, M)
Output: Assignment TG(T,C, D) — AG(P,L, M)
EXTENDEDGENERICHEURISTIC(AG(P, L, M), TG(T,C, D), bt)
(1) PrioritizeDataBlocks(TG(T,C,D), M)
(2) foreach unmapped d,, with highest Prio(d,)
(3)  N(t;) = PrioritizeMemoryTiles(d,,TG(T,C, D), AG(P, L, M))
(4) ifN(d,) >0
(5) Assign d,, to m; with lowest Cost(m;)
(6) else
(7) Per formBactracking(bt)
(8) if (All memory blocks assigned)
9 TG(T',C)=Transform(TG(T,C,D),D — M)
(10) AG'(P',L) =Transform(AG(P,L,M),D — M)
(11) GenericHeuristic(TG(T,C), AG( L),bt)
(
(

13) No solution found. Exit.

7.3.3 Design-Time/Run-Time Interface

This section addresses the issue of defining a scalable operating point space (design-
time) that does not already include the platform mapping, and that is not dependent
on a specific MPSoC platform instance. This operating point description should still
allow the quality manager to select an operating point that (1) represents a good
quality given the cost of the platform resources and (2) that can be assigned by a
resource manager to the actual available platform resources.

The most straightforward way to create such an operating point space is to describe
every operating point by its total amount of required processing element resources,
its total amount of required memory resources and the amount of required commu-
nication bandwidth to/from those memory resources. This holds the assumption
that (1) the shared memory tiles bandwidth is the most critical communication re-
source, while processor-to-processor communication is not a critical resource and
that (2) issues with this resource can easily be resolved by the resource manager.
Indeed, as there are many more processing element tiles than memory tiles and, in
case of a NoC with flexible communication paths, the resource manager could find
a different path.

When using this approach, one has to check the performance of two quality manage-
ment functions. First, can the multidimensional resource reduction be done based on
a penalty vector given by the cost of platform resources? Secondly, can the quality
manager verify, on a high level, the assignability of the selected point? This means
that, although the quality manager does not perform an actual mapping, it should
still be able to check that the selected operating point can be mapped by the resource
manager onto the platform. This ability should gain a considerable amount of time.
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The expected issue when using the sum of resources is taking fragmentation into ac-
count. Indeed, even if the sum of required resources is smaller than the available
platform resources, the mapping could be impossible due to resource fragmentation.
This fragmentation is (1) due to resources being split over multiple tiles and links
and (2) due to previously assigned applications. Furthermore, using the sum of re-
sources makes it hard in case of multiple implementations for a single quality. These
different implementations will require a similar amount of resources, but with a dif-
ferent distribution or fragmentation. For a single quality level, the more distributed
implementations will require more resources (due to additional overhead), resulting
in a higher value over single-resource ratio. Hence, the operating points with more
fragmented implementations will only be selected by the quality manager after the
assignment of the operating points with less fragmented implementation has failed.
This results in a series of quality manager/resource manager iterations. Although
the resource manager can steer the operating point selection by penalizing the most
critical resource, it currently cannot steer towards the right amount of fragmentation.
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Figure 7.12: Impact of using a resource histogram for determining operating point feasibility.
A certain operating point can seem feasible when only considering the sum of the available and
needed resources. Using a resource histogram can reveal that the selected point is, nevertheless,
infeasible.

Example 7.3: Fragmentation and resource assignment (Figure 7.12).

In this example, the application (on top) only requires 10 resource units
while 13 platform resource units are available (bottom). So the quality man-
ager might conclude that this application operating point is, obviously, fea-
sible. However, the feasibility actually depends on the fragmentation of the
available resources. In this case, the application operating point requires at
least two memory resources of size 4 to be feasible. Which means that the
more fragmented platform resource situation (bottom, left) is not capable of
hosting the operating point.
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As it neglects resource fragmentation, relying on the sum of resources obviously
creates verification problems for the quality manager. In order to overcome this
problem without resorting to analyzing the task graph associated with the oper-
ating point, we introduce, for every resource type, a resource histogram for every
operating point and for the platform. For every operating point, such a histogram is
included as additional design-time information. At run-time, the resource manager
can provide the quality manager with the platform resource availability histogram.

Algorithm 13: Checking feasibility by means of available and needed resource histograms
Input: NeededHisto, Avail Histo
Output: Feasibility
CHECKHISTOFEASIBILITY(Needed Histo, Avail Histo)
(1) foreach (bjcedeqa € [N7rBins,1] in decending order)

(2) Needed = NeededHisto[bneeded)

(3) if (Mode = Restrictive)

( ) b;ﬁ%l = bneeded +1

(5) else

( ) bzgﬁ;; - bneeded

(7)  bavair = b3

(8)  while (Needed # 0) and (bapair < NrBins)
9) if Avail Histolbgyai] # 0

(10) Needed = Needed — 1

(11) Reduce Avail Histo[bgyqir] by 1

(12) Increase Avail Histo[bgyait — bneeded] DY 1
(13) bavazl bgfffﬁ

(14) else

(15) bavail = bavair + 1

(16) if (Needed # 0)

(17) Feasibility = 0 (FALSE)

(18) else

(19) Feasibility =1 (TRUE)

Algorithm 13 details how the quality manager checks the feasibility of an operating

point by verifying the histogram of needed (N eeded Histo) and available (Avail Histo)
resources. The core of this algorithm resembles a bin packing algorithm using a first

fit decreasing strategy [45]. Indeed, the algorithm starts with the highest needed

resource bin and attempts to find a suitable element in the first fitting available

resource bin. Whenever such an available bin b,,.; is found, the size of both the

needed bin Needed and available bin b,,4:; is decreased by one, while the available

bin that represents the size difference (i.e. the leftover resource) between the avail-

able bin and the needed bin (i.e. byyqi1 — bneeded) is increased by one.

There are two ways of matching the required resource histogram with the avail-
able resource histogram. The first way, denoted as optimistic, compares a required
resource histogram bin with an available resource histogram bin of the same size
(line 6). However, due to the bin-width, it is still possible that the mapping fails.
Indeed, consider a bin b; with a certain minimum value b7*" and a maximum value
b7***. It will be impossible to make the assignment if the available resource value
is equal to b7"'™ and the required resource value is equal to b7**. To overcome this
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problem, we have to compare in a more conservative way, i.e. comparing the resource
needs histogram bin b; with the next histogram bin ;1 of the available resources
(line 4). Unfortunately, this means some valid solutions might not be considered as
feasible by the quality manager.

Example 7.4: Checking feasibility using a resource histogram (Fig-
ure 7.13).

This example covers the histogram feasibility checking algorithm for both
the conservative and the optimistic approach. In both cases, the example starts
out with the same available and needed resource histograms. The differ-
ence between conservative and optimistic is already clear in step 1: while
the optimistic approach matches an element of the needed size 4 bin with
an element of the available size 4 bin, the conservative approach requires
the element of the available histogram to be in a larger bin. In the optimistic
case, the matching reduces both the available and needed size 4 bin (step 2),
while in the conservative case, the matching results in an additional element
for the available size 1 bin. The algorithm continues until it can no longer
match the needed histogram elements (i.e. failure in case of the conservative
approach in step 5) or until all needed histogram elements are successfully
matched (success in case of the optimistic approach in step 6).

7.3.4 Experimental Setup

In order to assess the performance of the collaboration between the quality manager
and the resource manager, we use the PSFF tool (Appendix A) to randomly gen-
erate 100 sets that each contain between 10 and 40 Pareto operating points (22 on
average) distributed over a low, a medium and a high quality level with user values
of about 1000, 3000 and 9000 respectively. The input parameters for the PSFF ran-
dom kernel graph generator tool are given by Table A.2, while the parameters for
the PSFF operating point generator are detailed in Table A.3. These parameters have
to be considered in the context of the resources available on the evaluation platform
detailed in Figure 7.14.

The characteristics of the generated operating points and their associated task graphs
are detailed in Section A.4. The task graphs contain up to 7 tasks and up to 3 memory
blocks.

Figure 7.14 details the platform layout for the quality manager interface experiments.
It consists of a 16 tile MPSoC interconnected by a 4-by-4 mesh using XY routing.
Every NoC link has a capacity of 400MB/s. It contains 13 PE tiles, 2 small memory
tiles of size 1024kB and 1 large memory tile of size 2048 Kb. For the experiments, the
platform is randomly loaded prior to starting a new set. This means that for every
resource type a random load of 40%-80% for high load (H), 20%-60% for medium
load (M), and 10%-30% for low load (L) is generated.

The goal of the experiment is to assess the performance of adding a new applica-
tion with a set of operating points onto a loaded MPSoC platform. This involves
the quality manager for selecting the operating point with the highest value that can
still be assigned by the resource manager to the available platform resources. The
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Figure 7.13: Checking feasibility by means of a resource histogram. For the conservative approach
(left), the algorithm uses an available element of a larger bin to accommodate the element of the
required bin. For the optimistic approach (right), the algorithm starts matching the required and
available elements of the same bin-size. After bin-matching with different bin sizes, an additional
element appears in the difference bin that represents the leftover resource. For example, in step 1,
an element in bin 1 appears that represents the leftover of matching required bin 4 with available
bin 5. The algorithm stops after all required histogram elements have successfully been matched
(right) or when the remaining available elements can no longer be matched (left).
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Figure 7.14: Platform for design-time vs. run-time interface experiments. This platform contains
13 PE tiles, 2 small memory tiles (S) and 1 large memory tile (L).

performance will be measured by (1) the amount of quality manager/resource manager
(QM/RM) iterations i.e. how many times do we have to select an operating point
and assign its associated task graph until we reach an assignment, (2) the assign-
ment success rate of a selected operating point, (3) the user value of the selected and
assigned operating point and, finally, (4) the operating point selection and resource
assignment execution time.

7.3.5 Experimental Results

First we assess the impact of having a platform independent description of operating
point resource needs and its impact on the collaboration between quality manager
and resource manager. Figure 7.15 details the required amount of QM /RM iterations
(Figure 7.11) for selecting the best operating point and assigning the associated task
graph to an already loaded platform for 100 application sets.

We can clearly distinguish two performance categories. The first experiment (Fig-
ure 7.15(a)) only considers the sum of resource needs with respect to processing
power, memory needs and memory bandwidth needs. In case the resource manager
is only able to invalidate the previously selected point, it takes on average about eight
to nine iterations to reach an assignment for high (H) and medium (M) platform load
and more than four iterations for low (L) platform load. In case the resource man-
ager can provide feedback by means of the penalty vector, the situation improves.
Consequently, we consider the situation when an extra penalty for critical resources
(as seen by the resource manager) of respectively 10%, 20% and 30% is applied. This
means that every time the resource assignment fails, the critical resource type, i.e.
the resource type that causes the assignment failure, receives an extra penalty in the
next iteration. Although this improves the situation, it still requires, on average, a
little more than two QM /RM iterations.

The second experiment (Figure 7.15(b)) involves the usage of a resource histogram.
We investigate the usage of an 8-bin histogram (which fits nicely into a 32-bit word),
a 25-bin histogram and a 50-bin histogram in both an optimistic and a conservative
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way. As expected, introducing a resource histogram significantly increases the abil-
ity of the quality manager to assess the mapping feasibility of a selected operating
point, which translates into a large decrease of QM/RM iterations. While the opti-
mistic approach (first three bars of Figure 7.15(b)) still requires between 2.4 and 1.1
iterations (depending on the platform load and the number of histogram bins), the
conservative approach reduces the number of iterations for all histogram-based ap-
proached to less than 1.1 iterations. When investigating the reason why the quality
manager occasionally still assesses the feasibility in a wrong way, we notice that this
occurs in case a single large memory block with high bandwidth requirements is
present in the task graph. The quality manager checks the feasibility of bandwidth
and memory separately. However, in case of multiple memory tiles, it might be that
one memory tile can satisfy the memory needs, while another satisfies the band-
width needs. This then results in an assignment failure. Consequently, increasing
the number of bins will not further decrease the number of iterations.
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Figure 7.15: Number of quality manager/resource manager iterations. (a) The resource manager
feedback loop either just invalidates a non-assignable operating point or uses the penalty vector
to steer the next operating point selection. (b) Operating point feasibility checking by means of a
resource histogram.

Besides the number of QM/RM iterations, we also have to consider other param-
eters like the overall value attached to the operating points selected by the quality
manager, the assignment success rate of the resource manager, and the execution
time of both the quality manager and the resource manager. Indeed, the number of
iterations could easily be reduced by having the quality manager select low value
operating points that can be assigned without any problem by the resource manager
or by stating that no solution can be found without additional platform resources.

With respect to value, Figure 7.16(a) details the average value of the selected operat-
ing point for different platform load options. In case of high platform load (H), a low
quality operating point (value 1000) is selected. In case of medium platform load
(M), the quality manager selects a mixture of low quality (value 1000) and medium
quality (value 3000). Similarly, in case of low platform load (L), a mixture of medium
quality (value 3000) and high quality (value 9000) is selected. In addition, a few per-
formance observations can be made. First, we notice that the optimistic 25-bin and
the 50-bin perform best in terms of selected value. Going to a restricted mode mostly
reduces the average value in case of low platform load. This is caused by the fact that
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some high quality operating point solutions are seen as unfeasible because some of
their resource requirements are located in the largest histogram bin.

The assignment success rate is detailed in Figure 7.16(b). This shows how many
times the collaboration between the quality manager and the resource manager ended
up in a successful assignment. We see that all solutions, except the conservative his-
togram approaches, yield the same result: 100% success in case of low platform load
(L), 98% success in case of medium platform load (M) and 54% success in case of
high platform load (H). These figures have to be interpreted with respect to the as-
signment heuristic. As Section 3.7 of Chapter 3 explains (see also Figure 3.5), in
some cases the assignment heuristic does not find a valid assignment even when
the full search algorithm indicates that a valid assignment exists. Indeed, for high
platform load, the resource assignment heuristic finds a solution in on average 84%
of the cases with respect to a full search algorithm. The conservative histogram ap-
proaches result is fewer successful assignments, again, because the quality manager
sometimes discards valid operating points during the verification process in an at-
tempt to minimize the number of QM/RM iterations. However, we see that the
conservative 25-bin and the conservative 50-bin approach is as successful as all the
other approaches in case of low and medium platform load and is, respectively, 9%
and (only) 3% less successful in case of high platform load.
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Figure 7.16: Selected operating point value and assignment success rate. (a) Selected operating
point value. (b) Resource manager assignment success rate for the operating point provided by
the quality manager.

Finally, we consider the execution time of both the quality manager (Figure 7.17(a))
and the resource manager (Figure 7.17(b)), measured on a Simlt StrongARM ISS with
a clock speed of 206 MHz. With respect to the quality manager, we notice that the
histogram approaches requires more processing power. When using 50-bins, the
histogram approach requires twice as much time as the non-histogram approaches.
However, when considering that the conservative 50-bin approach often requires just
one execution iteration per operating point, while the non-histogram approaches re-
quire, on average, at least four QM/RM iterations. In this context, the conservative
50-bin approach is the best option. The resource manager is responsible for assign-
ing the task graph associated to the selected operating point. Figure 7.17(b) shows
that the resource manager execution time is a somewhat larger than the execution
time reported in Section 3.7. This is due to a larger platform (4-by-4 tile platform
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instead of a more heterogeneous 3-by-3 tile platform). We notice that the resource
manager execution time is quite independent of the selected quality manager ap-
proach. The minor difference is caused by the fact that, on average, the amount of
task graph items that need to be assigned is smaller in case of the non-histogram
approach. Indeed, in the non-histogram approaches, the operating points with the
least fragmented task graphs are selected first as they exhibit a better value over
single-resource ratio (i.e. same value, but more resources needed due to overhead).

c
k] 450
_ %o 3 400
= 8 700 — g 350
[T X
o 600 1 W _ 45 4
«© =0
§E 500 [ 33 250 —
S5 40 || 22 200 {—
£2 3001 SE 150 1
3§ 200+ e 8 100
& 100 + e 3 s0 |
0 4 ! ! H] 0 : .
'
H M L H M L
Platform Load Platform Load
@ Without histogram M 8-bin and 8-bin-c
[0 25-bin and 25-bin-c 050-bin and 50-bin-c @ Without histogram W 50-bin and 50-bin-c

(@) (b)

Figure 7.17: Execution time for selecting and assigning a single feasible operating point. (a)
Quality manager execution time for selecting a feasible operating point. (b) Resource manager
execution time for assigning the selected operating point.

Concluding Remarks

Adding resource histograms enables the platform independent quality manager to
check the assignment feasibility of a selected operating point in a more reliable way.
In turn, this seriously reduces the number of QM/RM iterations and, hence, the
elapsed time for selecting and assigning an operating point. Figure 7.18 illustrates
the difference between the explored options. Indeed, when determining the time ¢
for selecting and assigning a single point, one has to calculate the quality manager

operating point selection time oM and the resource manager assignment

single selection
time ¢ o qignment according to Equation 7.10. This equation shows that it is im-
portant to minimize the number of QM/RM iterations.

ttotal — # QM/RM iterations x (t% + M ) (7.10)

single point single selection single assignment

One has to consider that there are several cases where this gain will become even
more important. First, when the resource manager gets extended with e.g. NoC path
finding [131] or task scheduling (see future work in Chapter 8). This will increase the
execution time of the resource manager, which makes that the execution time penalty
for passing a nonassignable operating point becomes larger. Secondly, being able to
select a feasible operating point with a high degree of certainty becomes even more
critical when deciding on multiple operating points in a single quality manager run.
This occurs, for example, when a new application starts and, as a consequence, al-
ready executing applications have to switch. Nevertheless, a feedback-loop between
both management entities will always be needed because the proposed operating
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Figure 7.18: Total time for selecting and assigning an operating point. It is important to minimize
the number of QM/RM iterations. in order to minimize the total time.

point selection feasibility checking mechanism is not infallible, and because the re-
source assignment heuristic does not always find an assignment solution. This can
be caused when e.g. the feasibility checking algorithm verifies multiple operating
points at once, while the resource assignment heuristic assigns one set at a time.

The conservative approach sometimes prevents an assignable high value operating
point from being selected. One can avoid this by over-dimensioning the fragments
of the critical platform resources®. In case of using 50 bins, this corresponds to over-
dimensioning by 2%, while it amounts to 12.5% for the 8 bin approach (i.e. an extra
bin). This should bring the selected value of the conservative approach up to the
level of the optimistic approach without sacrificing on the number of QM/RM itera-
tions (Figure 7.16(a)).

In the rest of this chapter, we use a conservative 50-bin approach (50-bin-c) as it
provides the best trade-off with respect to the selected value, the assignment success
rate and the algorithm execution time.

7.4 Quality Manager and Resource Manager Integration

While Section 7.3 investigates the interfaces of the quality manager by selecting and
assigning an operating point of a single set (i.e. application), this section investigates
the integration and collaboration of the quality manager (using the 50-bin conserva-
tive histogram approach) and the resource manager in a more realistic situation, i.e.
a situation where one or more new applications are started or stopped over time.

The rest of this section is organized as follows. The integration of the quality man-
ager and the resource manager and the associated issues are discussed in Section 7.4.1.
Then, Section 7.4.2 details how the MMKP algorithm of Section 7.2 is integrated into
a quality manager that uses resource histograms for feasibility checking. Conse-
quently, Section 7.4.3 introduces a tuned operating point selection algorithm, aiming

6This means that adding an extra resource tile for the critical resource does not improve the operating
point assignability. One has to over-dimension the existing tiles in order to make sure that they end up in
a larger resource bin.
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to provide the same solution quality at a lower cost. Finally, Section 7.4.4 details the
experimental setup while Section 7.4.5 details the experimental results.

7.4.1 Integration and Collaboration Description

In case of an ever changing set of applications, each with their operating points and
associated user values, there are some additional issues that have to be addressed.
As Section 7.3 explains, both the quality manager feasibility checking and the re-
source manager task graph resource assignment are imperfect. This becomes more
complicated when performing operating point selection and resource assighment on
multiple points at once. Hence, one has to determine how the quality manager and
the resource manager will collaborate and handle such situations. In doing so, we
still have to (1) minimize the number of QM /RM iterations, (2) maximize the total
application value and (3) minimize the total execution time. In addition, this means
we have to consider operating point switching, i.e. selecting a new operating point
for an already assigned application. This obviously means that resources will have to
be reassigned after such a switch. As operating point switching is a costly operation,
one should only use it when necessary.

INIT & ASSIGNED

................ Quality Manager
s ACTIVE
H [N (Operating Point Selection) -

mno

feasible?

YES
SELECTED & RESELECTED

Resource Manager

Adjust Available
—1 Resources (R) and
Penalty Vector (H)

all
successful?

NO #QM/RM cycles
> MAX cycles?

Figure 7.19: High-Level collaboration between quality manager, performing operating point se-
lection, and the resource manager.

Figure 7.19 details how the quality manager and the resource manager collaborate.
Every application or set maintains a variable that describes its current state. Three
actors are involved in changing the state of any given set. First, the user is responsi-
ble for activating and terminating an application. Secondly, the quality manager is
responsible for selecting an operating point for every ACTIVE and INIT set. The dif-
ference between ACTIVE and INIT is that the latter has a previously selected point
where resource assignment failed. The quality manager can, if needed, also decide to
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select a new operating point for an already ASSIGNED set, resulting in an operating
point switch. Finally, the resource manager is responsible for assigning resources to
all sets of state SELECTED and RESELECTED. In case the assignment of an operating
point fails, its set state is moved to INIT. The resource manager is also responsible
for undoing the resource allocation and for deactivating all applications that were
terminated (EXIT) by the user.

As Figure 7.19 additionally shows, that if no feasible operating point(s) can be found
by the quality manager, the user again becomes responsible. Consequently, the user
can terminate other applications and/or restart the application with another user
preference. Similarly, the user becomes involved whenever the assignment fails and
the maximum number of QM/RM iterations have been reached. When an assign-
ment fails without reaching the maximum amount of attempts, the penalty vector p’
and the resource vector R (as perceived by the quality manager) are modified: with
respect to the resource that caused most resource assignment failures during the last
resource manager run, the penalty vector reflects an additional 10% penalty, while
the resource vector reflects a 10% decrease in availability. In turn, this prompts the
quality manager to select a better-assignable operating point.

7.4.2 Operating Point Selection From Scratch

The most straightforward way to implement the operating point selection function-
ality is to take the algorithm for solving the MMKP problem of Section 7.2.2 and to
extend it with the histogram feasibility checking approach of Section 7.3.3. In addi-
tion, we make minor changes to the algorithm: the multidimensional resource reduc-
tion is now based on the actual available platform resources and the initial solution
is composed on the points with the lowest single resource. These points exhibit the
lowest cost with respect to the available platform resources and, hence, have a high
probability of producing an initial feasible solution. All these changes will allow the
algorithm to find a feasible solution even when the user value is not proportional to
the needed resources.

The resulting operating point selection approach is denoted as the From Scratch (FS)
algorithm as it selects a point for all activated sets at once (i.e. also for the ASSIGNED
sets). This improved algorithm is described in Algorithm 14. The From Scratch algo-
rithm receives as input (1) the collection of operating points belonging to all ACTIVE,
INIT and ASSIGNED sets, (2) an aggregate and histogram-based description of the
available platform resources Rupai = {(Ro, RE°),- -, (Ri, RIF™s%) ...} and (3)
the penalty vector.

After performing a multidimensional resource reduction (line 1), the algorithm se-
lects for every set S; the point pt{; with the lowest single resource R;;. These points
provide the initial solution. Consequently, this initial solution is tested for its feasibil-
ity. This includes testing if the solution works from an aggregate resource viewpoint
and performing a histogram feasibility check (line 6; for CheckHistoFeasibility(...) see
Algorithm 13). In case the initial solution is feasible, we visit all points pt;; in de-
scending v;;/R;; order (line 9). For every point, we verify if we can exchange the
currently selected point pt;, for a new, feasible point of the same set pt;; with a
higher value (line 10). Just like the feasibility checking of the initial solution (line 6),
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this verification also involves checking the aggregate resource usage and perform-
ing a histogram matching. Finally, we end up with a collection of feasible operating
points, one point pt;; per set S;. Depending on the state of the specific set S;, these
points are denoted ptFLECTED or ptAESELECTED,

Algorithm 14: Operating point selection using the From Scratch (FS) approach.

Input: Royair, 0, Si € {Sacrive USivir U Sassianep}
SELECTED,RESELECTED

Output: pt;;
OPERATINGPOINTSELECTIONFROMSCRATCH(RaZm-l, ., .Si)

(1) foreach pt;; € S;

(2) Ry = DeriveSingleResource(pt;;, p)

(3) foreach S;

4)  ptd; = pti; with lowest R;;

(5) feurrent = {pt8j7 T apt(JJVj}

(6) if ( ir?jk > Ry;) or (CheckHistoFeasibility( ir?]?kHiSto, RHisto) = ()
(7)  F =0, Notify user.

(8) else

(9)  foreach Unused pt;; with highest v;;/R;;
(10) fnew = ExChange(fcurrentaptija Ra;ail)
(1) if (Feasible( frew, Ravai) and (vi; > vix))
(12) ExchangePoint( feurrent, Ptij)

(13) fcurrent = fnew
(14) if (pti; € (Sacrive USivir))
(15) pt?jELECTED = pti;
(16) else
(
(

17) ptRESELECTED _ .
1] ?
18) //Selection Succeeded.

Although this approach promises to deliver the highest value for the lowest plat-
form resource usage for all user activated applications, some downsides are to be
expected.

First, simply consider the case where the assigned operating points each represent
the highest value of their respective set and a new application is activated by the
user. In case enough platform resources are still available to accommodate this new
application’s highest value operating point, there is no need to revisit the already
assigned operating points. Depending on the ratio of assigned applications versus
newly activated applications, there could be a considerable gain in execution time.
This approach is explored further in the next section.

Secondly, revisiting previously assigned points in order to optimize the overall value
could also lead to a large amount of operating point switches for only minimal over-
all value gain.

Finally, we have to be aware that there is a difference in approach for checking fea-
sibility and for performing the assignment. Indeed, the quality manager checks the
feasibility for multiple operating points at once using the histogram approach, while
the resource manager assigns resources on a per set basis (i.e. one application at a
time). This phenomenon has been discussed earlier in Section 4.2.2 of Chapter 4.
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As Section 4.2.4 shows, assigning two task graphs simultaneously (i.e. denoted as
resource co-assignment) improves the assighment success rate for a fixed amount of
platform resources.

7.4.3 Single Set Selection with Failure Mechanism

Instead of considering all activated applications for operating point selection, this
section describes an approach that only considers selecting and assigning a single
ACTIVE or INIT set at a time.

Operating point selection for just a single set should be a lot faster because there
are fewer operating points to process and because the amount of feasibility failures
are minimized as the feasibility checking and the resource assignment both consider
only a single set at a time. In case there are plenty available platform resources, this
technique should produce a total value close to that of the from scratch approach.

ACTIVE & INIT sets

l

Select operating Ajust Penalty Vector
oint for a single set & decrease available
> S resources

Found
a feasible
point?

YES

NO

Select multiple
points at once, i.e
from scratch
or repair
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operating point(s)

Success?
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ASSIGNED

sets
YES ACTIVE or INIT
sets remaining?
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Figure 7.20: Flow for single set operating point selection with a failure mechanism. Instead of
considering all activated applications from the beginning, we first try to find a feasible operating
point for a single application. Only if that fails, we resort to a failure mechanism, which is either
selection from scratch (Algorithm 14) or using the repair selection (Algorithm 15).

Nevertheless, we still need a way to reconsider the operating point selection of the
already assigned applications when it is impossible to find a feasible operating point
for the given available platform resources. Here, we explore two options. The most
straightforward option is to resort to from scratch operating point selection after the
single set selection has failed. This option again reconsiders all assigned applica-
tions. The second option, denoted as repair selection, is to limit the number of already
assigned applications that are included in the combined selection process. This effec-
tively means performing a from scratch selection with only a limited, carefully chosen
number of already assigned applications. This repair selection is based on the fact
that switching only a few operating points of already assigned applications should
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be enough to provide the required resources for the newly activated application. In
addition, by concentrating on the subset of assigned applications that provide the
least value for their respective resource usage, one should still be able to obtain a
total value close to the from scratch approach. The entire flow is illustrated by Fig-
ure 7.20.

The repair selection algorithm is detailed in Algorithm 15. Repair selection first re-
duces all selected points of the ASSIGNED sets with the current penalty vector
(line 1). The algorithm also creates a set of operating points, denoted Srrparr, that
contains all unassigned sets (line 3). Then, the ASSIGNED set that provides lowest
value for the highest resource usage is included in Sreparr (line 6) and the avail-
able resources are recalculated to take the already assigned resources into account.
Meaning that repair selection only considers the free platform resources plus the re-
sources assigned to the sets of Sgpparr (line 7). Consequently, we perform a from
scratch selection with the sets included in Sgrparr. The entire process (line 5-line 8)
is repeated until the selection succeeds or all sets were included.

Algorithm 15: Single set selection with failure mechanism

Input: Roveit, P {Sacrive USivir U Sassienep}
Output: pt;SjELECTED,RESELECTED

REPAIRSELECTION(Ryvqit; P> {Sacrrve U Sinir U Sassianep})
1) foreach ptf}SSIGNED € SASSIGNED
2) R%SSIGNED = DeriveSingleResource(p
) Sreparr = {SacriveUSinir}
) repeat
) Getunused pt{;*$'¢NEP with highest (R;;55INED /v, ;)

3
4
5
6)  Sreparir = Sreparr\USYssiaNED
7
8
9

ASSIGNED
tij 717)

(
(
(
(
(
(
(7) Ajust Rgyqa for already assigned resources

(8) result= OperatingPointSelectionFromScratch(Ra;ail , Dy SREPAIR)

(9) until ((Selection Succeeded) or (all S4ss;¢nED included))

(10) if (Selection Succeeded)

(11) Perform Resource Assignment

(12) else

(13) Inform user

Single set selection with a repair failure mechanism should work fine in case the user
terminates a running application and starts a new one or when a new application
is started when plenty of platform resources are available. However, the single set
selection does not work in case of a disruptive event, i.e. when the user terminates
multiple applications or when the resource manager decides to e.g. shut down some
processing resources. In these cases, one needs to revisit all active applications in
order to maybe find a better operating point and to optimize the overall system value
for this new situation.

Hence, we continue to use the from scratch approach in case of disruptive events:
i.e. when the number of activated applications either rises or declines drastically or
when the amount of platform resources is reduced or increased (caused by a power
down or power up of platform resources by the resource manager).
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7.4.4 Experimental Setup

The goal of the experimental setup is to assess the collaboration and the integration
between the quality manager and the resource manager in a more real-life situation
where one or more applications get started and stopped by the user. To this end,
we perform three experiments. In all experiments, we take the same 100 randomly
generated sets as for the previous experiments (Section 7.3.4). So every set contains
between 10 and 40 operating points (22 on average) distributed over three quality
levels. For all experiments, we use the platform illustrated in Figure 7.21. This plat-
form contains 6 memory tiles and 10 PE tiles, interconnected by a 4-by-4 mesh NoC
using XY routing. The size of the small (S) and large (L) memory tiles is respectively
1024kB and 2048kB, while every NoC link has a capacity of 400MB/s. This platform
should contain enough resources so that the quality manager should always find a
feasible solution and the resource manager can find an assignment when fitting 15
generated applications. With this basic setup, we perform three experiments.

[] PETile B Memory Tile

Figure 7.21: Platform quality manager/resource manager experiments. This platform contains
10 PE tiles, 2 small memory tiles (S) and 4 large memory tile (L).

In the first experiment, all user values are proportional with the quality level, mean-
ing that a user value of approximately 1000, 3000 and 9000 is attributed to the re-
spectively low, medium and high quality level. Figure 7.22(a) details the evolution
of the amount of activated applications. At every event, a new application is started.
In case the total amount of applications remains constant or decreases, a number of
already running applications have been terminated. The policy is to terminate the
oldest running application first.

The second experiment is similar to the first, except for the application user value
with respect to the quality level. All odd applications (i.e. applications starting at an
odd event number) have a user value of about 3000, 9000 and 1000 for respectively
a low, a medium and a high quality level. So, in this experiment, the user value
function sometimes favors a medium or low quality operating point. In those cases,
obtaining the highest user value does not require the most platform resources.

The third experiment is similar to the second, except for the evolution of the total
amount of activated applications. As Figure 7.22(b) shows, this experiment deter-
mines the performance of the operating point selection algorithm in case of contin-
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Figure 7.22: Evolution of the total amount of user activated applications. (a) Evolution for Ex-
periment 1 and Experiment 2. (b) Evolution for Experiment 3.

uous heavy fluctuating amount of applications. In contrast to the previous experi-
ments, a new application is only started to increase the number of active applications
(so not at every event).

In every experiment, we will compare the performance of the from scratch selection,
denoted as FS, with the various forms of single set selection. This includes single set
with from scratch selection and repair selection, denoted as SingleSet+FS and Single-
Set+Repair respectively. This also includes a SingleSet+Repair with from scratch selec-
tion in case of a disruptive event, further denoted as SingleSet+Repair+FS. An event
is considered disruptive as soon as the difference in number of activated applications
from one event to another is larger than 3.

These operating point selection algorithms will be compared based on (1) the pro-
vided total user value, (2) the provided value per platform resource usage, (3) their
assignment failures, (4) the amount of operating point switches required and, finally
(5) the total execution time.
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7.4.5 Experimental Results

The experiments generate a large amount of data. Figure 7.23 details the evolution of
the total value with respect to the evolution of activated applications for all three ex-
periments. Furthermore, we have a look at the average total value in Figure 7.24(a),
while Figure 7.24(b) provides the average value per platform load. Figure 7.25(a)
details the number of assignment failures, i.e. the number of QM/RM iterations re-
quired to get all activated applications assigned. Figure 7.25(b) details the number
of operating point switches. Finally, Figure 7.26 details the average execution time
for getting all activated applications assigned.

Figure 7.23(a) and Figure 7.23(b) detail the evolution with respect to the application
activation of Figure 7.22(a). First of all, we notice that the total value provided by
the from scratch (FS) selection does not rise as fast as the single set selection variants
(up until event number 7). Similarly, from scratch (FS) sometimes yields a total value
below that of the single set selection. This occurs between event 50 and 70 for Ex-
periment 1 and around event 20 for Experiment 2. This is striking as the from scratch
(FS) should be able to find a better total value since it can re-select all activated ap-
plications. A closer look reveals that this is caused by the fact that the feasibility
checking is done for multiple operating points at once (i.e. resource requirements
are mixed), while resource assignment is done per operating point. This means that,
as could be expected (see Section 7.4.2), the quality manager overestimates the as-
signment feasibility, which consequently results in a larger amount of assignment
failures (Experiment 1 in Figure 7.25(a)).

As Figure 7.24(a) shows, the average total value for Experiment 1 is the same for
both from scratch and single set selection. For Experiment 2, from scratch does provide
a higher average total value. This can be explained by the fact that, for half of the
Experiment 2 applications, the highest application value does not require the highest
amount of platform resources. Hence, the resource assignment algorithm is able to
handle the feasibility overestimation of the quality manager which, in turn, results
in a lower assignment failure rate for from scratch selection (Figure 7.25(a)).

One obvious way to solve this feasibility overestimation issue is to perform resource
co-assignment, i.e. having the resource manager co-assign all newly selected operat-
ing points. This is not an option for two reasons. First, as the results of Section 4.2.4
indicate, co-assignment would increase the execution time of the resource assign-
ment algorithm to an unacceptable level. Secondly, it would almost certainly lead to
a unacceptable amount of task and data migrations, which would further disrupt the
system, while other, less disruptive solutions might still be feasible. The claim that
from scratch (FS) needs a complete reassignment anyway, does not hold. Often, a few
operating points with good v;;/R;; are reselected. This means the resource manager
does not have to perform a (re)assignment for these points. In case of co-assignment,
this no longer holds.

The second (expected) phenomenon of Figure 7.23(a) and Figure 7.23(b), is that the
total value offered by single set selection without disruptive FS handler is a lot lower
(event number 70). Indeed, after terminating a number of applications at once, the
from scratch selection is able to revisit (and reselect) all remaining applications. By
combining single set selection with from scratch selection in case of disruptive events
(i.e. SingleSet+Repair+FS), one can combine the best of both worlds. The true value
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of the from scratch selection in case of disruptive events is best seen in the total
value evolution of Experiment 3 (Figure 7.23(c)). Indeed, here we see that Single-
Set+Repair+FS provides the highest value in most cases. This is confirmed when
comparing the average total value for Experiment 3 (Figure 7.24(a)).
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Figure 7.24: Performance in terms of (a) average total value and (b) average total value per
platform resource usage.

When it comes to providing the most value per occupied platform resource, we see
that from scratch (FS) selection outperforms all other operating point selection algo-
rithms. This is obvious as FS re-evaluates all activated applications to find the high-
est value for the lowest resource usage. Single set selection with the repair mechanism
yields a total value which is about 10% lower for Experiment 1 and Experiment 2
and about 14% lower for Experiment 3. However, in case of Experiment 3, it is possi-
ble to counteract by combining SingleSet+Repair with from scratch selection (Single-
Set+Repair+FS) as this yields a total value per platform resource usage which is only
2% lower.

Figure 7.25(a) details the number of assignment failures per event, i.e. the number
of QM/RM iterations required to select an operating point and perform a resource
assignment for every activated set. For Experiment 1, we see that the assignment
failures are quite low. As we previously explained, the from scratch (FS) selection
failure is relatively high due to an overestimation of its assignment feasibility. For
single set selection in Experiment 2, the assignment failures are a lot higher. This can
be explained as follows. In Experiment 1, a newly started application can provide
a similar value for a similar amount of resources as a recently terminated applica-
tion. In Experiment 2, this is no longer the case as some applications provide a
high value but only require a medium or a low amount of resources. Experiment
3 shows a very high assignment failure rate for SingleSet+FS and SingleSet+Repair.
As Figure 7.22(b) shows, in case of an application increasing disruptive event, on
average 3.64 new applications are started. This means that we can consider this as
three separate single set selections that each incur an assignment failure rate similar
to Experiment 2. The SingleSet+Repair+FS algorithm does not have that problem,
because as soon as 3 or more new applications get started, the algorithm resorts to
using selection from scratch.

Figure 7.25(b) details the number of operating point switches used by the different
operating point selection algorithms in order to achieve their value. It is quite obvi-
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Figure 7.25: Operating point selection and resource assignment result per event with respect to
(a) the resource assignment failures and (b) the number of operating point switches.

ous that the from scratch selection introduces the most operating point switches as it
re-evaluates all sets at every event. Using single set selection (SingleSet) only encoun-
ters this problem when it resorts to its failure mechanism. In this case we see that
SingleSet+Repair has fewer operating point switches than SingleSet+FS. Intuitively,
this is easy to understand as SingleSet+Repair only reconsiders a minimal subset of
already assigned applications. For Experiment 3, SingleSet+Repair+FS features more
operating point switches than FS, because when the from scratch selection kicks in af-
ter a disruptive event, it reselects some of the suboptimal previous selections done
by the SingleSet+Repair part of the algorithm. This also explains why SingleSet+FS
scores relatively high compared to SingleSet+Repair.
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Figure 7.26: Average total execution time per event for performing operating point selection and
resource assignment.

Finally, Figure 7.26 details the average total execution time per event for performing
operating point selection and resource assignment. The number of operating point
switches obviously has an effect on the total execution time as it requires to re-assign
the switched applications. Two conclusions can be drawn in the given context”. First,
from scratch operating point selection is not an option for a run-time manager in this
context as it takes too much time per event. Secondly, the SingleSet+Repair is the

"The context being: (1) executing on a StrongARM running at 206 MHz and (2) having to select oper-
ating points for up to 15 applications with each application having on average 22 operating points.
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only option that, on average, remains below 10 ms for selecting an operating point
and performing the resource assignment. Indeed, the time required to start a new
application (i.e. creating a new application process) in the Linux operating is in the
order of magnitude of 1 ms to 10 ms [138] depending on the hardware platform.

Concluding Remarks

A few conclusions can be drawn from these experiments. First, it is important that
the way of checking feasibility in the quality manager is aligned with the way re-
source assignment is done in the resource manager in order to produce the highest
user value. Secondly, using single selection with a repair failure mechanism as operat-
ing point selection algorithm produces good results in terms of user value. Although
it provides a lower value per used platform resource (up to 14% lower value than
FS), it is up to 5 times faster than the from scratch (FS) selection. If needed (depend-
ing on the real-life situation), one can always resort to from scratch selection in case
of a disruptive event. This then guarantees a user value per used platform resource
comparable to the from scratch selection with an execution time which is still about
2.5 times lower.

7.5 Related Work

The concept of using Pareto operating points finds its origin in welfare economics. A
conventional definition of Pareto optimality would be: ”A given economic arrange-
ment is efficient if there can be no arrangement which will leave someone better
off without worsening the position of others.” [34]. Today, the Pareto concept is
used in the industry, as a basis for sociological studies and for setting political poli-
cies [34,75,116,205]. Obviously, the Pareto concept is also useful in engineering. In
this case, the Pareto operating point set describes a set of system parameterizations
that are all Pareto optimal. Hence, a system designer can make trade-offs between
all of these solutions instead of having to consider the full range of all the system
parameters. This section details related work with respect to using the (Pareto) op-
erating points approach for run-time quality management.

7.5.1 Solving the MMKP

Finding optimal solutions for the MMKP is NP-hard [168]. Any general algorithm
that solves the MMKP exactly has a computational complexity which is exponential
in the number of sets. Obviously, the constraints for solving the MMKP (e.g. such as
compute time, optimality, number of sets, etc.) are given by the context in which the
model is used.

Various Local Search heuristics, like Tabu search [58] and simulated annealing [65],
and genetic algorithms [114] have also been applied to solve the MMKP. However,
these and some other proposed algorithms [14, 116] are so computationally expen-
sive that they cannot be used to solve the MMKP at run-time in an embedded system.

Other algorithms [111] are based on branch and bound with linear programming
technique. Although the use of linear programming to determine the feasibility of
selecting any point from any set reduces the execution time in the average case, it is
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not feasible to apply these solutions in all practical real-time systems. The execution
time of these algorithms increases dramatically with the number of sets [9]. Hernan-
dez’s heuristic [168] relaxes the MMKP to a multi-dimension knapsack problem. The
failure rate for finding a feasible solution is lower than in [113]. While its solution
quality is better, its computational complexity is higher.

Khan’s heuristic [113] applies the concept of aggregate resource consumption as
measurement to select one operating point for each set. It has a worst-case complex-
ity of O(ms?(N — 1)?), and it finds solutions with a total value on average equal to
94% of the optimum. Akbar’s heuristic [10] first reduces the multi-dimension search
space into a two-dimensional one, and then constructs the convex hull of each set to
reduce the search space. Its worst-case complexity is only O(msN + sNlog(sN) +
sNlog(s)). However, this algorithm finds less optimal solutions than [113]. Fast
greedy heuristics for solving multi-choice knapsack problems (with several sets, but
one resource) also exist for run-time task scheduling on embedded systems [239] and
run-time quality-of-service management in wireless networks [28].

An in-depth survey of several MMKP algorithms, comparing their relative complex-
ity and performance is given by Couvreur and Nollet [53]. As Section 7.2 explains,
our MMKRP heuristic is a variant of the heuristic presented by Khan [113].

7.5.2 Operating Point Selection and Application Quality

Khan et al. [112] investigate how to maximize the system utility or total system value
when mapping multiple adaptive multimedia applications onto a multimedia sys-
tem. Their approach is to translate the application quality levels into value for the
user by means of a session utility function. Their final goal, however, is to optimize the
system utility which is a function of the different session utilities. In contrast to our
approach, Khan et al. only consider a single (unique) resource vector (i.e. application
implementation) per application quality level (although the authors acknowledge
that the quality to implementation mapping does not have to be unique). The appli-
cation resource vectors and the platform resource constraints detail both the required
and available resources with respect to the processing elements, memory and band-
width in an abstract way. In addition, the actual mapping is (implicitly) present in
the resource vector. This means that they do not consider the interaction between re-
source manager and quality manager and, although they abstract the resource needs,
they do not consider allocation issues such as fragmentation. When executing on a
Pentium 120 MHz workstation with 32MB of RAM, their greedy heuristic provides
near optimal solutions in less than 1ms for a problem with 10 applications and 5
resources.

Lee et al. [121] also consider the problem of selecting the right quality operating
point for every application within a set of applications. Every application quality
has a number of associated resource usage vectors. So different resource usage vec-
tors (i.e. application implementations) can provide the same quality by using a dif-
ferent resource trade-off. However, the actual resource allocation is already included
within this resource vector. This means the resource vector describes how much of
every platform resource is used. Application quality dimensions are used as input
for a utility function. This utility function translates the application quality levels
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into a user value. The overall goal is to optimize the system utility, which is defined
as a weighted sum of the application utilities. Lee et al. compare three approaches
for solving this MMKP. Their most promising run-time approach also uses a penalty
vector to reduce the multiple resources associated with an operating point into a sin-
gle virtual resource. Consequently, the single-resource operating points are sorted
according to the utility (value) they provide and the sorted lists of different appli-
cations are merged. Their results show that the local search heuristic requires tens
of milliseconds (Unfortunately, the authors do not provide information concerning
the computing architecture used to make these measurements) to provide a near
optimal solution for about ten applications with three resources and three quality
dimensions. Similar to our approach, this work considers multiple implementations
with different resource trade-offs for a single application quality level. However,
in contrast to our approach, their solution requires the resource allocation to be in-
cluded into the operating point, i.e. it does not use a resource manager to flexibly
allocate the required resources to obtain a certain quality. This obviously results in
a large amount of points. In addition, the authors do not specify how the penalty
vector should be obtained as they make an abstraction of the underlying platform.

Pastrnak et al. [170-172] also manages the quality of adaptive applications by means
of a quality manager and a resource manager. Each application operating point,
generated at design-time, corresponds to a quality setting and a mapping to a virtual
platform (i.e. an annotated task graph). Hence, the authors do not consider multi-
ple implementations with different trade-offs for a single quality level. Given such
virtual platform, it is up to the resource manager to find physical resources with suf-
ficient free capacity. To solve the quality selection problem, the authors reduce the
multidimensional resource needs to a single resource by a process denoted as cluster-
ing. By combining this single resource with a benefit figure, provided by the quality
manager, the run-time heuristic is able to select the best quality given the available
resources. Unfortunately, the authors only provide a high-level description of both
the process that verifies if there are enough resources for a certain quality level and
the process of actually assigning platform resources. The authors characterized an
MPEG-4 decoder with respect to its resource needs for every quality level [170] and
used it as a driver application for their quality management algorithm [171].

7.6 Conclusion

This chapter explains the concept of adaptive applications, i.e. applications with
multiple quality levels and even multiple application implementations per quality
level. Such flexible and scalable applications are easy deployable over multiple gen-
erations (with increasing resource capabilities) of a certain MPSoC platform. In ad-
dition, for a given platform, such applications can adapt to varying user quality
requirements.

This chapter also introduces a quality manger on top of the resource manager. The
role of the quality manager is twofold: translating the application quality levels into
user values (performed by the QoE manager, which is out of the scope of this thesis)
and selecting, for every active user application, a suitable operating point (i.e. quality
level and implementation, performed by the operating point selection manager).
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In order to optimize the user value for a limited amount of platform resources, the
quality manager has to solve a Multi-dimensional, Multiple-choice Knapsack Prob-
lem (MMKP). To this end, we introduce an efficient and fast algorithm in order to
solve this problem at run-time.

Furthermore, in order to be deployable over multiple platforms, the application op-
erating points will have to be described in a way which is not platform specific. Still,
the quality manager needs to be able to verify during its selection process if a certain
operating point will be assignable. To this end, we introduce a resource histogram.
For the application, such a histogram is included as additional design-time informa-
tion with every operating point. Ideally such a histogram is generated by application
design and mapping tools. For the available platform resources, such a histogram is
generated by the resource manager at run-time. These resource histograms allow the
quality manager to check, with a high degree of certainty, the feasibility of the appli-
cation operating point resource needs with the available platform resources. Indeed,
without a resource histogram, the chance that a feasible point is assignable ranges
from 13% to 38% respectively for a high and a low platform load. With a resource
histogram, this chance increases to respectively 100% and 96%. The fact that the
quality manager can better assess the feasibility of an operating point also improves
the operating point selection and resource assignment speed up to a factor 5.4 (again
depending on the platform load).

Finally, we evaluate the collaboration and the interaction between the quality man-
ager and the resource manager. Here we conclude that integrating the MMKP algo-
rithm as is does not produce the desired results in terms of collaboration and in terms
of execution time. Indeed, we show it is important that the way of checking feasi-
bility in the quality manager is aligned with the way resource assignment is done in
the resource manager in order to produce the highest user value. We also show it is
important to tune the operating point selection algorithm: only performing operat-
ing point selection for a single set at a time, with a selective fall-back mechanism in
case of failure, produces good results in terms of total user value and user value per
platform resource usage. Indeed, this tuned operating point selection algorithm pro-
vides less value per used platform resource (up to 14% less value than FS), it is up to
5 times faster than the from scratch (FS) selection. If needed (depending on the real-
life situation), one can always resort to from scratch selection in case of a disruptive
event. This then guarantees a user value per used platform resource comparable to
the from scratch selection with an execution time which is still about 2.5 times lower.



218 Run-Time Quality Management




CHAPTER &

Conclusion & Future Work

ever more applications and services supported and running in their mobile

phone, PDA, settop box, etc. without paying a premium price. All companies
involved in the value chain of these devices consider these services a way to (1) dif-
ferentiate themselves from the competition and (2) segment the market. By putting a
flexibly programmable MPSoC platform that combines a high compute performance
with a low power consumption in those everyday embedded devices, manufacturers
are able to provide that ever-increasing number of complex user applications at an
ever-increasing pace. At the same time, it also allows them to keep the cost of those
devices under control. In beating the competition through service or application dif-
ferentiation, a short time-to-market is essential. This means that MPSoC platform
programmability is important as it determines the time needed to create new appli-
cations. This also means that combining multiple applications in a predictable way
(i.e. without inter-application interference) and using the same (scalable) application
for different market segments (with different platform capabilities) is equally impor-
tant.

The MPSoC revolution is essentially driven by the customers’ desire for having

This results in a set of key MPSoC requirements that any MPSoC platform should ad-
dress: flexibility, programmability, scalability, predictability, a high performance and
alow power consumption. The run-time manager plays an important role in tackling
each of these requirements. Indeed, by providing application quality management
and platform resource management, the run-time manager directly addresses the
flexibility and scalability issues. This also means the run-time manager is responsi-
ble for assigning compute performance and for controlling the power consumption.
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By minimizing the inter-application interference and by providing a hardware ab-
straction layer, the run-time manager respectively ensures predictable behavior and
programmability.

Besides providing a comprehensive survey of the contemporary MPSoC run-time
management functionality and its implementation space, this thesis introduces sev-
eral novel algorithms, mechanisms and components for performing run-time man-
agement of multiple adaptive applications running on a heterogeneous multiproces-
sor SoC. This includes run-time FPGA fabric management combined with efficient
and fast resource allocation, task migration policies and mechanisms, a NoC com-
munication management policy and mechanism, and a quality management compo-
nent for handling adaptive applications. In addition, we describe a real-life MPSoC
proof-of-concept implementation and demonstrator.

Run-time management research is likely to be a never-ending story as the run-time
manager interfaces with the applications on the one side and with the platform ser-
vices on the other side. As a result, there will be a need to provide an adapted
run-time manager as long as platforms continue to evolve and as long as new appli-
cations and user services keep popping up.

So, this chapter provides a concluding overview of the work covered in this thesis
and provides a peek into the future of MPSoC run-time management. It is organized
as follows. Section 8.1 briefly summarizes the thesis and details how our run-time
management contributions address the key MPSoC requirements. Section 8.2 pro-
vides both an overview of the short term improvements with respect to the presented
work, and a vision on the longer term directions for multicore run-time management
research.

8.1 Summary

The run-time manager is logically located between the application and the platform.
The main goal of the MPSoC run-time manager is to match the needs and the properties
of the application in a fast, efficient and flexible way with the MPSoC platform services and
properties in order to execute multiple applications while minimizing inter-application in-
terference. Such a run-time manager is typically composed of a quality management
component, a resource management component and a run-time library (Figure 8.1).
Each of these components play an important role in enabling or fulfilling the identi-
fied MPSoC requirements: reduction of application design cost, platform and appli-
cation scalability, flexibility, predictability and combining high performance with
low power operation.

In order to match the needs of the application (and its user) with the available plat-
form services in a fast and efficient way, one requires a quality manager and a re-
source manager. The quality manager considers the application user requirements
to derive the application resource requirements, while the resource manager takes
these resource requirements and matches them with the available platform resources.

With respect to our quality manager, we present a heuristic capable of selecting an
appropriate application quality level (Figure 8.1a). To work efficiently, this heuristic
is closely linked to the resource assignment heuristic of the resource manager (Fig-
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ure 8.1b). The latter assigns an application task graph with associated properties to
an MPSoC platform architecture graph. The efficiency of the heuristic comes close to
an algorithm that explores the entire solution space while it only requires a fraction
of the execution time (i.e. it is fast). In order to retain the run-time flexibility with
respect to the changing application requirements and the availability of platform re-
sources, the run-time manager should be capable of changing both the application
quality level as well as the application’s resource allocation without causing (too
much) inter-application interference.

The resource manager is extended with a task migration policy (Figure 8.1c). Run-
time task migration also enables the run-time manager react to changing run-time
conditions. The associated run-time task migration mechanisms are tuned both to-
wards the specific platform properties (i.e. heterogeneous processing elements) and
limitations (i.e. limited amount of tile memory) as well as towards the specific appli-
cation properties (i.e. considering an application as a pipeline of tasks).

The resource assignment heuristic is also extended to consider the platform proper-
ties. This is illustrated by (1) taking into account the specific properties of on-chip
FPGA tiles and (2) by considering the properties of the on-chip interconnect. With
respect to managing FPGA fabric, we introduce a novel algorithm that exploit the ca-
pability of FPGA fabric to create a configuration hierarchy. This allows the run-time
manager to match the needs of the application with the capabilities of the platform
(Figure 8.1b). With respect to managing the NoC communication, we introduce a
reactive algorithm that matches the communication needs of application with the
communication services provided by the target platform architecture (Figure 8.1d).
In addition, the algorithm minimizes inter-application interference. This communi-
cation management algorithm builds on top of two platform services: a communi-
cation statistics collector to monitor NoC traffic and an injection rate control mecha-
nism to execute its decisions.

As there are multiple ways of implementing a run-time manager, we also provide an
overview of the run-time management implementation space. In addition, we pro-
vide an overview of the contemporary academic and industrial run-time manager
implementations.

We now give a brief summary of every chapter.

Chapter 2

As the run-time manager sits at the heart of the operating system, it monitors and
controls critical platform resources such as the (heterogeneous) processing elements,
the (on-chip) memory hierarchy and the platform communication infrastructure.
The run-time manager is composed of multiple interacting components (Figure 8.1):
the quality manager, responsible for application interaction with respect to the qual-
ity needs of the user, the resource manager, responsible for efficiently managing the
platform resources with respect to the requirements of the different executing ap-
plications and the run-time library component, that provides the necessary platform
abstraction functions used by the designer for creating the application and called by
the application at run-time. As there are multiple ways of implementing an MPSoC
run-time manager, Chapter 2 introduces a run-time management implementation
design space. This chapter also briefly details some contemporary industrial and
academic multiprocessor run-time management solutions and takes a peek into the
future. Clearly the contemporary industrial MPSoC run-time management is mainly
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Figure 8.1: Detailed view of the contributions, the run-time management components and their
algorithms discussed within this thesis.

focused on providing RTLib functionality, i.e. on providing the application designers
with a hardware abstraction layer. The overall MPSoC run-time management trend
for the future is quite clear: moderate distribution of the run-time manager over the
platform resources, more platform services to support the run-time manager and
more configurability or adaptation towards the application. Finally, Chapter 2 also
serves as a reference for the rest of the thesis as it puts the run-time manager func-
tionality, introduced in this thesis, in the correct perspective.

Chapter 3

This chapter focuses on the flexibility and performance requirements as it details a
fast and efficient run-time task assignment heuristic capable of handling fine-grain
reconfigurable hardware (i.e. FPGA fabric) and exploiting its properties. This in-
volves introducing a novel run-time task assignment concept denoted as hierarchical
configuration. Hierarchical configuration enables easy time-multiplexing of FPGA
fabric and it improves the spatial task assignment freedom resulting in a more effi-
cient usage of platform resources. The generic heuristic produces very good results
in terms of assignment success rate, quality of the assignment and speed of the algo-
rithm, compared to algorithm that explores the full solution space. Adding support
for creating a configuration hierarchy significantly improves the performance of the
run-time task assignment algorithm. In some cases, the average heuristic success
rate improvements even exceed searching the full solution space without hierarchi-
cal configuration, while using only a fraction of the execution time.

Chapter 4

Flexibility requires taking varying run-time conditions (e.g. new user requirements,
new incoming applications, etc.) into account for deciding the best allocation of plat-
form resources. Concretely this means the run-time manager needs a way to revise
the initial mapping of one or more already executing applications. Hence, this chap-
ter introduces run-time task migration capabilities, i.e. a way to move tasks to a differ-
ent (heterogeneous) processor without the need to completely stop and restart the
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application. With respect to heterogeneous task migration, we consider four issues:
the run-time task migration policy, the HW/SW task migration issue, i.e. design-
time and run-time components needed to migrate a task from FPGA hardware to
ISP software, the task migration mechanism tailored to the Networks-on-Chip envi-
ronment and, finally, the migration initiation issue, i.e. how a cooperative migration
request from the run-time manager are detected and handled by the application. We
show that adding task migration capabilities to the resource assignment heuristic of
Chapter 3 clearly improves the assignment success. In most cases, the success rate
of a migration-enabled task assignment heuristic exceeds searching the full solution
space without considering migration, while using only a fraction of the execution
time. With respect to HW/SW task migration, we detail the design-tools and the
required run-time environment illustrated by an MJPEG video case study. With re-
spect to the mechanisms, we introduce two novel task migration mechanisms and
we detail a novel poll-free task migration initiation technique.

Chapter 5

This chapter focuses on the predictability challenge by providing a reactive platform
communication management scheme in order to minimize inter-application commu-
nication interference. Indeed, as the NoC is a shared communication medium, one
has to minimize the impact different unrelated applications have on one another.
In case of imperfect platform virtualization or imperfect application characteriza-
tion, one requires a reactive communication management scheme. Such a scheme
requires three components: a way to monitor the on-chip communication, a decision
making entity and an actuator to execute and enforce the decisions. A control loop
is built feeding the output of the monitoring into the decision-making process and
using its output to control the traffic shaping. In this chapter, we study monitoring at
the connection-level combined to a global decision making under the control of a run-
time manager. We show how a global decision making algorithm implemented on
a Strong ARM processor can efficiently manage the injection rate controller actuators
in order to re-shape traffic at run-time to reduce NoC congestion. Taking a global
decision-making approach permits an efficient reactive control of communication of
a pipeline of tasks. In contrast, Marescaux [132] studies a system, based on the same
experimental setup, where monitoring is performed at the link-level, combined with
distributed decision making.

Chapter 6

This chapter combines the previous concepts into a set of real-life demonstrators,
denoted as Gecko demonstrators. The work on the MPSoC proof-of-concept Gecko
platform emulators started at IMEC in 2001 as an ambitious engineering project.
This project included run-time management of the MPSoC platform, with a partic-
ular focus on the NoC, on dynamic partial reconfiguration of the FPGA computing
resources, and on heterogeneous task migration. This chapter essentially shows how
the Gecko run-time manager builds on top of the platform services and how it in-
teracts with the (hardware) RTLib functionality of every slave node and with the
applications. This includes a description of the run-time management structures. Fi-
nally, we also detail the envisioned user scenario for such a platform and we provide
a brief transcript of the Gecko demos.

Chapter 7

This chapter focuses on the scalability challenge, as it describes how the quality man-
ager supports scalable applications, i.e. applications with multiple quality operating
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points. Such scalable applications are easy deployable over multiple generations of a
certain MPSoC platform. For a given platform, such applications can adapt to vary-
ing user quality requirements. The run-time quality manager is responsible for se-
lecting the right operating point for every active application in order to optimize the
total user value, while considering the platform capabilities. This means the quality
manager requires an efficient and fast algorithm to select the best operating point
for every active application given the platform resource constraints. We introduce
an algorithm to solve the Multiple-choice Multi-dimensional Knapsack Problem. As
the operating point information is provided in a way that is not platform specific,
the quality manager will have to reconcile a platform independent description of the
application resource needs with a platform specific description of available resources.
To tackle this problem, we introduce a resource histogram that describes, for every
operating point, the distribution of the required resources. At run-time, the resource
manager constructs such a histogram for the available resources. By comparing both
histograms, the quality manager can verify the operating point assignment feasibil-
ity with a very high degree of certainty: without a resource histogram, the chance
that a feasible point is indeed assignable ranges from 13% to 38% respectively for a
high and a low platform load. With a resource histogram, this chance increases to
respectively 100% and 96%. The fact that the quality manager can better assess the
feasibility of an operating point also improves the operating point selection and re-
source assignment speed up to a factor 5.4 (again depending on the platform load).
Finally, as the quality manager relies of on the resource manager to assign the plat-
form resources, both run-time management components have to closely cooperate.
In a situation that simulates a user starting and stopping a set of adaptive applica-
tions (generated with the PSFF tool of Appendix A), we investigate the interaction
between the quality manager and the resource manager. As a result, we refine the
operating point selection algorithm to provide the resource manager an operating
point in a faster and more accurate way without either sacrificing too much user
value or additional platform resources.

8.2 Future Work

This thesis obviously provides only a small piece of the ever-evolving overall multi-
processor SoC run-time management puzzle. Each chapter comes with its own set of
assumptions and limitations. Providing a complete productizable solution requires
validating these platform and application assumptions (or solving the remaining
limitations).

First, Section 8.2.1 identifies the most prominent lacunae of every chapter. Then, Sec-
tion 8.2.2 provides a more in-depth look on the task scheduling lacuna, i.e. making
decisions on the temporal task ordering. This includes determining the effect of task
scheduling on resource assignment.

Finally, we show a broader and more long term view on the issues of MPSoC run-
time management. As the run-time manager is squeezed between the application
layer and the platform layer, it requires continuous tuning towards new and emerg-
ing platforms and their associated platform services and towards the needs of new
applications. Section 8.2.3 briefly details the future collaboration of design-time tools
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and run-time management. Section 8.2.4 provides an outlook of the many-core fu-
ture and the role of the run-time manager. Finally, Section 8.2.5 details the (poten-
tial) role of run-time management for managing SoC platforms in the deep deep
sub-micron era.

8.2.1 Lacunae

Because the research focus of the supporting organization or funding authority tends
to shift over time and because time, space and money are all scarce resources, every
chapter contains one or more lacunae. This section briefly details the most promi-
nent! ones.

Chapter 2

The description and understanding of the run-time management implementation
space is only the beginning. The next step is to create a methodology for searching
this space for a suitable run-time management implementation given a set of MPSoC
requirements, boundary conditions and cost functions.

Chapter 3

The applicability and performance of the resource assignment algorithm should be
explored for a wider variety of platforms (e.g. platform size, topology, heterogene-
ity, etc.), applications properties (e.g. size of the task graphs) and mapping cost func-
tions. In addition, the effect of explicitly adding different forms of scheduling should
investigated (more details in Section 8.2.2).

Chapter 4

The most prominent lacuna is the coupling of the actual mechanism task migration
cost to the task migration policy. Furthermore, one should explore and classify the
different forms of task migration mechanisms with respect to NoC-based platforms.
This includes e.g. investigating a deeper collaboration between design-time migra-
tion analysis and run-time execution.

Chapter 5

Combined with the work of Marescaux [132], this chapter only details two points in
the communication management design space. The next step would be to combine
and/or compare these approaches. In general, a methodology to traverse this design
space in a more systematic way is needed.

Chapter 7

The next step for quality management would be to combine the presented global
quality manager and the resource manager with a local, application-specific quality
manager. In addition, one should come up with a matching operating point switch-
ing mechanism. Also here, there should be a deeper exploration of the collaboration
possibilities between, on the one hand, design-time analysis and mapping tools and,
on the other hand, the quality manager.

8.2.2 MPSoC Task Scheduling

The way an application, consisting of multiple communicating tasks, is assigned
to the different computing resources of an MPSoC platform is quite critical to its

I This also means the ones closest to my heart.
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performance. However, next to the resource assignment problem there is a PE re-
source scheduling (or task scheduling) problem. This entails, for example, determin-
ing how to interleave tasks executing on the same processing element. This section
determines the potential impact of this resource scheduling problem on the various
components of the run-time management system.

We briefly discuss the impact of scheduling on resource assignment. Here, we dis-
tinguish two phenomena related to assigning multiple tasks to a single PE: the co-
scheduling issue and PE cache affinity issue. In addition, the relation between PE
scheduling and FPGA fabric is briefly discussed.

Impact on Resource Assignment: Co-Scheduling

One could argue that PE scheduling in an MPSoC is nothing more than deciding on
the assignment of a task set to a set of processors in order to meet a certain criterion
like e.g. maximizing processor utilization, minimizing the response time or minimiz-
ing the inter-node communication. Once all tasks have been assigned, it is up to a
PE local scheduler to manage the temporal ordering of its assigned tasks. However,
scheduling heavily communicating tasks on separate processors in a parallel sys-
tem does not automatically produce the expected speed-up. Indeed, a task schedul-
ing mismatch combined with communication and synchronization overhead, could
even result in a slower execution.

Figure 8.2: Naively scheduling multiple communicating tasks on an MPSoC system can mitigate
the available parallel processing power.

Example 8.1: How parallelization does not lead to speed-up (Figure 8.2).

Consider two applications, each containing two communicating tasks. The
first application is composed of tasks T4 and Tz, the second application is
contains tasks T and Tp. T4 and T¢ are assigned to PE 1, while T and T
are assigned to PE 2. Each PE is timeshared with 7'y and Tp executing in
the odd numbered time slices, while Tz and T run in the even numbered
time slices. When closely synchronized, T4, sends a lot of messages to T’.
However, Tz is unable to respond since its time slice has not yet arrived.
Consequently, after the first time slot is over, a task switching occurs and
Tp is able to receive and process the data received from T4. Again, T4 is
unable to either receive the results or to continue feeding data to T'p until it
is scheduled again in the third time slot. This simple example illustrates how
PE scheduling reduces the advantage of having parallel processing power.
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As this issue also occurs in parallel & distributed systems, Ousterhout [165] intro-
duced the co-scheduling or gang-scheduling concept to solve this kind of problem.
Co-scheduling takes inter-task communication into account when scheduling tasks.
This means that communicating tasks of the same application are scheduled in the
same time-slice. In addition, the time-slices of the different processors need to be
synchronized (for example by means of a broadcast message). This technique guar-
antees the desired parallelism. Figure 8.3 illustrates this solution.

The main problem with using co-scheduling is fragmentation. This means that, de-
pending on how the application is parallelized, some PEs are left idle during a cer-
tain time slot. Another type of fragmentation is caused by load imbalance. The load
difference and dependencies between tasks is a result of the chosen design-time par-
allelization and inter-task synchronization. A load imbalance potentially affects the
whole parallel application, since each task requires a different amount of time to
complete and the entire application is restricted by the slowest task.

[C] PE Fragmentation [] PE Fragmentation

@) (b)

Figure 8.3: Co-scheduling. (a) Strict co-scheduling example. (b) Loose co-scheduling by insertion
of communication buffers.

Example 8.2: Co-scheduling and resource fragmentation (Figure 8.3(b)).
Consider task T’y being responsible for providing T’z with input data. If pro-
viding this input takes a long time, task T’z will be blocked and, hence, is not
be able to make full use of its time-slice. So, in general, following a strict co-
scheduling policy leads to sub-optimal system utilization (i.e. resource frag-
mentation). One possible solution is to loosen the synchronization between
the tasks by inserting memory buffers between them. This will amortize the
processing time variations and will enable a more pipelined processing ap-
proach which reduces PE fragmentation at the cost of extra memory usage.
It will be up to the designer to provide this trade-off, while it will be the re-
sponsibility of the run-time manager to select the right application operating
point and assign the tasks to the right resources.

In the context of parallel & distributed systems, several techniques have been pro-
posed to relax the strict co-scheduling policy in order to reduce PE fragmentation.
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Feitelson et al. [73] employ a processor control scheme called Distributed Hierar-
chical Control (DHC). This scheme enables synchronized task switching, effectively
allowing co-scheduling. They describe a technique to quantify and reduce the waste
of PE resources, caused by the fact that the gang size does not match the number
of processors. The main idea of this technique is that small gangs can execute on
the leftover processors from the larger gangs. Zhou et al. [243] depict a technique to
reduce fragmentation caused by idle processing power. They use re-packing of tasks
(i.e. shifting all tasks of a certain gang to another time slot), whenever a number of
tasks in a certain time slot are terminated. In addition, they allow tasks to run in
multiple time-slots. Frachtenberg et al. [74] introduce a methodology called Flexible
CoScheduling to reduce fragmentation caused by load imbalance. This methodology
detects load imbalance by monitoring the communication behavior of applications
and defining metrics for their communication performance. Wiseman et al. [238] in-
troduce a technique called pair gang scheduling. This technique tries to optimize
system usage by combining an I/O bound gang with a CPU bound gang in the same
time-slot on a single node. The reason for such matching is that these task gangs will
not interfere with each other.

Recently, Kumar et al. [118] illustrate this scheduling issue for mapping a set of task
graphs of streaming applications onto an MPSoC platform. The authors show, us-
ing some synthetic examples, that fully exploiting the computing performance of the
system, while being able to handle dynamic varying load and achieving predictable
performance is not trivial. Just adding the amount of cycles required for every task
does not hold due to communication dependencies with tasks on other PEs and due
to the decision making of the local scheduling mechanism. They conclude that the
best resource utilization and predictability is achieved with a static schedule of tasks
on a certain PE. However, a static schedule requires more design-time analysis. A
round-robin task scheduler (with skipping) is better suited to handle task dynamism.
These conclusions also have to be taken into account when performing resource as-
signment.

Overall, the above scheduling techniques have to be revisited in the (dynamic) MP-
SoC context. This not only means determining the effect of taking different PE
properties into account with e.g. different context saving and restoring overheads,
it also means considering the potential processor-versus-communication resource
co-scheduling.

Impact on Resource Assignment: PE Affinity

In a parallel system, it might be more efficient to execute a task on one processor
than on another. This is called processor affinity. One can distinguish three types
of PE affinity that a certain task can have: speed affinity, resource affinity and cache
affinity. As Squillante et al. [208] explain, the affinity of a certain task for a particular
processor can have several causes. Speed based affinity occurs, for example, in a het-
erogeneous environment where a task can execute faster on a certain type of PE. This
type of affinity is considered in Chapter 3. Resource based affinity mainly concerns the
resources associated with the processors, rather than the processor itself. A task that
requires a certain resource, can only execute on a processor that is associated with
such a resource. This, for example, entails considering processor-local L1 memory or
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specific I/O related to a processor. The main subject of this section is the cache-based
affinity. Most contemporary multiprocessors make use of a cache memory. A cache
memory is a small on-chip memory that automatically retains recently used memory
data or instructions. Having data available in L1 cache memory avoids accessing the
much slower L2 or off-chip memory. The cache memory concept works because of
the locality property. This property describes how most tasks tend to execute the
same instruction a number of times (e.g. in a loop) on the same area of data (e.g. part
of an image). During a task context switch, part of the cache memory contents used
by the previous task is overwritten in order to store the contents coming from the
main memory for the new (current) task. This overhead, called cache corruption,
can cause performance degradation.

So in a multiprocessor environment, depending on the relevant tasks data still present
in a processor’s cache memory, it might be more efficient to execute a task on a cer-
tain PE instead of on another one of the same type. In contrast to the other types of
processor affinity, cache-based affinity is time-dependent.

Squillante et al. [208] show that ignoring the cache affinity when assigning tasks in
a multiprocessor environment can have a significant effect on the individual task
performance (i.e. it takes longer for the task to execute), due to the fact that cache
memory needs to be restored. In addition, ignoring cache affinity when scheduling
a single task also degrades the performance of the whole system. This is caused by
the fact that restoring the cache memory contents requires accessing main memory,
which in turn can cause bus contention (i.e. other processors in the parallel system
compete for the same bus resource). In addition, the cache-based affinity concept
can create interesting assignment and scheduling dilemmas.

Example 8.3: Cache-based affinity scheduling dilemma.

Suppose processor A is running a certain task, when a higher priority
task, previously running on processor B (currently unavailable) becomes
runnable. In case the higher priority task is scheduled immediately on
processor A (i.e. current task is pre-empted), performance degrades due to
cache corruption. On the other hand, waiting until processor B becomes
available means the system does not really exploit the parallelism offered
by the parallel system. The Linux SMP scheduler solves this problem em-
pirically by using a rough estimate of the time it takes to overwrite the cache
content, called cacheflush_time. If this cacheflush_time is bigger than the av-
erage time a task is executed on a processor, no pre-emption is performed.

In conclusion, PE affinity will have an effect on the assignment of the task graph
to the architecture graph. This affinity factor was currently not taken into account
in the presented resource management algorithms. In addition, one should, for ex-
ample, investigate the role of application design-time information in relation to the
PE affinity concept. This means that, instead of relying on simple rules of thumb,
the resource manager would rely on PE affinity information included in the design-
time mapping information and run-time application state (provided by the RTLib)
to make its assignment decisions.
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Example 8.4: Scheduling with a memory hierarchy (Figure 8.4).

One could translate the cache affinity concept to an MPSoC assignment
problem with a scratchpad memory hierarchy. In the considered assignment
problem, there are only two PEs to accommodate three tasks, Tz should ei-
ther be assigned to Tile 1 or Tile 2. However, the task graph details that there
is intense communication between task 7'z and 7 through a block of shared
memory. In addition, 75 and T both read and write from the shared mem-
ory region. In contrast, the communication between 7’4 and 7'z is handled
by simple FIFO communication. In that context it would be an advantage (if
possible from a PE load viewpoint) to assign both Tz and T to Tile 2. This
way, the inter-task communication can be kept tile-local.
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Figure 8.4: Memory affinity influence on task assignment.

Scheduling FPGA Fabric

The algorithms presented in Chapter 3 only considered placing a single task per
reconfigurable hardware tile. However, one could consider assigning multiple hard-
ware tasks (or soft IP cores) to a FPGA fabric tile in a time-multiplexing fashion. This
means that configuration latency (i.e. task setup time) would become an issue. The
main question is: how would the task assignment algorithm take this reconfigurable
hardware configuration latency into account.

Consider the following situation. A hardware task needs to be assigned to a plat-
form with two identical reconfigurable hardware tiles. Each tile already contains a
hardware task. What FPGA tile should the assignment algorithm favor? A possible
answer would be to select the tile which will ensure a minimal task context switch
latency. This can be achieved by looking at configuration techniques that only con-
sider the configuration difference between two tasks. The following authors have
considered such techniques to reduce task configuration latency.

Charlwood et al. [212] present an idea denoted as just-in-time reconfiguration. This
strategy will analyze the relationship (regarding routing resources) between the al-
ready present hardware configuration and the new configuration and will defer all
unnecessary configuration. The overlay technique, described by Kennedy et al. [109]
is based on the same idea. In order to speed up the task placement, they created soft-
ware to analyze the differences between hardware tasks. This means that placing
a new task only requires loading the differences between the new task and the al-
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ready running task instead of the complete configuration. In addition, they describe
a reconfigurable architecture that contains a small amount of memory and an asso-
ciated controller at the top of each column of configuration frames. The memory
contains the changes to go from one task to another. Similarly, Chen et al. [41] have
simulated the impact of configuration reuse on scheduling reconfigurable hardware
tasks. Their results also show that it is beneficial for the scheduling algorithm to take
configuration reuse into account when placing hardware tasks.

So, in conclusion, a multiprocessor task assignment algorithm considering to assign
multiple tasks to one single-context FPGA tile should take the redundancies between
reconfigurable hardware tasks into account when deciding on the assignment of a
particular hardware task. In a sense, this concept is closely related to the PE affinity
concept.

8.2.3 Design-time Mapping and Run-time Management

In the embedded systems domain, there has always been a division of work and a
collaboration between design-time tools and run-time managers. There is still quite
some work to investigate and improve the collaboration between application design-
tools and run-time management components.

In the short term, the presented techniques for task migration and operating point
switching ideally require the existing design-tools to (semi) automatically place mi-
gration points and points for operating point switching in the code. This includes
providing a (platform independent?) cost function or estimate to guide the run-time
manager.

In the longer run, the division of work between design-time tools and run-time man-
ager not only requires a view on the evolution of applications and platforms, but
also on the economic context. Applications are becoming more complex and, just
like complex MPSoC platforms, will be constructed using third-party components
and services in order to prevent an application design productivity gap. Platforms
are also evolving from multi-core to many-core (further discussed in Section 8.2.4).
And finally, economics play will play an increasingly important role in the context
of what can be calculated and decided at design-time and what decisions need to be
postponed to run-time. In an environment where time-to-market is essential, where
new applications pop-up in a fast pace and where applications and services can be
downloaded from any source, one has to rely more on run-time management to make
things work. This shift from design-time to run-time* requires researchers (or research
teams) that can perform this cross-layer optimization: i.e. from design-tools down to
platform services.

Also for fine-grain reconfigurable hardware manufacturers and their respective EDA
tool designers, the role of design-tools and run-time managers will need to be re-
vised. As todays’ FPGA synthesis tools mainly focus on creating the platform and
providing the run-time manager with the memory map of the fixed platform, future
FPGA tools should come up with a set of platform templates or platform operating
points (just like we have discussed application operating points in Chapter 7). In

2Either run-time management of platform services
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this case, the run-time manager would have to select the best platform operating point
given the set of active applications. The cost of selecting one point would be pro-
portional to the reconfigurable granularity. Therefore such flexible platforms would
probably contain a wide variety of predesigned configurable blocks glued together
with fine-grain reconfigurable logic.

8.2.4 The Many-Core Run-Time Management Future

How will the future of multiple processing elements on a single chip evolve? For
the coming ten years, the ITRS roadmap predicts a ten-fold increase in both the
general purpose (main) processing elements and the application-specific process-
ing elements (denoted DPE) present on SoC platforms. Indeed, by 2016 a many-core
platform would contain about 12 general purpose porcessors and 100 application-
specific processors. This many-core era will still be fueled by scaling silicon technol-
ogy’. Recently, Intel has shown it is capable of creating such an 80-tile Tera-scale
processor [226].

Figure 8.5 illustrates my two cents at predicting the (many-core) future. Contem-
porary embedded devices containing multiple (heterogeneous) processing elements
in order to provide the required processing power within the power budget, while
maintaining some degree of run-time programmability and flexibility. At the other
end of the spectrum, we also experience the rise of (symmetric) multicore systems
in general purpose computing. This phenomenon is caused by the fact that, in ac-
cordance with Pollack’s Rule [182], single processor scaling no longer delivers the
expected speed-up, while, at the same time, the power density (causing so-called
chip hot-spots) is getting problematic.

Embedded single Multi-Processor SoC
processor platforms platforms (MPSoC) ~~™~-.__ -
Many-Core
Platforms
.4
Workstation single Chip Multi-Processor _,/"
processor platforms Platforms (CMP)

Figure 8.5: Vision of evolution to many-core systems.

Today, these worlds are still apart. The embedded application designer (still) relies
on virtual platforms, emulators, an MP-RTOS and a basic set of software tools (in
essence EDA tool) to get the (heterogeneous) platform designed and programmed.
The general-purpose application designer mainly relies on hardware and software
abstraction layers, like e.g. caches and the operating system, to squeeze the most
performance out of the (symmetric) multicore system. These designers are often
supported by software development tools and compilers, like e.g. the Intel OpenMP
enabled compiler, to split-up compute-intensive kernels in order to have them ex-
ecuted by a symmetric multiprocessor system more efficiently. In the many-core
future, these two worlds are likely to join (or collide). I am not implying that we will
end up with a single platform, mapping or run-time management solution. But it

3 As the ITRS roadmap predicts that die size will remain constant at about 220mm?
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does mean we would end up with heterogeneous platforms with a (more) unified
approach towards programming tools and run-time management technology.

The many-core era indeed shows a trend towards heterogeneity. We already see
Intel [82], AMD [141] and ARM combine general purpose processing elements with
graphics processing elements and accelerators on a single die. In addition, designers
are experimenting with combining general purpose processing elements with fine-
grain reconfigurable logic. On the other hand, we see today’s embedded designers
struggling with getting their multicore platforms programmed. Hence, the many-
core era will also require a new set of programming tools that allow a designer to
program such platform in an efficient and fast way. These programming tools and
compilers might well be an evolution of the current CMP tools seasoned with today’s
embedded programming expertise.

With respect to run-time management, the many-core era not only provides new op-
portunities, it also introduces new research challenges. Obviously, there will be a
need to support the heterogeneity and there will be a need to align with program-
ming tools and compilers [193]. Designing a run-time manager will require revisiting
(and maybe extending) the implementation space detailed in Chapter 2: what ser-
vices will be provided by hardware and what services by software, what is the ideal
amount of distribution and to what extend do we allow an application to manage its
own resources?

Does this mean that the multicore run-time management concepts of this thesis will
no longer be usable in the many-core era? Not necessarily. One could imagine a
many-core being composed of a set of multi-core clusters each providing a specific
service or executing a specific application. In this case, the concepts of this thesis can
be applied to such a cluster. This component-based design would also (temporarily)
relief the designer of having to handle a large amount of cores. From a run-time
management viewpoint, it means that one is likely to end-up with a global run-
time manager collaborating with multiple cluster-local run-time managers. In turn,
this raises issues on how the different run-time managers would collaborate (i.e.
more centralized or more distributed), especially when clusters need to collaborate
in order to provide a more abstract platform or application service. Furthermore, it
is likely that a platform contains clusters have been designed (hardware as well as
software and cluster-local run-time manager) by a third party. This means that there
will be a need to define interfaces that allows the global run-time manager to handle
the third-party clusters and the services it provides. This also implies a shift towards
more run-time management distribution.

8.2.5 Deep Deep Sub-Micron Run-Time Management Needs

In the sub-45nm technology nodes, process variability and reliability issues will start
to play an important role [61]. Variability will cause a difference in behavior for two
identical processing elements in a single SoC platform as well as two identical SoC
platforms. Furthermore, these differences will vary over time. Reliability issues
result in run-time failure of hardware components and their associated services. Es-
sentially this means that the behavior of the predictable platform hardware services,
on which the run-time manager relies, are themselves becoming unpredictable.
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As these phenomena depend on run-time conditions, one requires a sort of run-time
manager to handle these situations. IMEC’s Technology Aware Design (TAD) research
program focuses on introducing Knobs and Monitors inside various critical compo-
nents in order to (1) detect when a component goes out of its designed operating
conditions and (2) apply corrective measures if possible. This effectively means that
costly worst case design is not necessary and that run-time phenomena such as tem-
perature drift and aging effects can be managed. Figure 8.6 illustrates this setup.
In this case, monitors include e.g. delay monitors, temperature sensors and signal
level monitors, while the knobs* include e.g. setting the voltage or changing the
speed/power ratio in line drivers. Just like for the NoC communication manage-
ment (Chapter 5), there will (probably) be local and global monitoring and decision
taking. In all this, one has to revisit the role of the different run-time management
components and their design space (discussed in Chapter 2). Minor corrective ser-
vices might be implemented as (reliable) platform components, while corrective ser-
vices others will require action of the processor-local run-time library. There might
be a need to also involve the resource manager, e.g. when a certain processing ele-
ment or a NoC link fails. In this case, issues like task migration of communication
rerouting can be performed. One thing seems certain, the role of the run-time man-
ager will be increasingly important for handling platform variability and reliability
issues.
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Figure 8.6: SoC platform equipped with Knobs and Monitors [61]. Will the future role of
the run-time manager include controlling the variability and reliability issues in such deep deep
sub-micron platform?

Intel also considers reliability issues and fault tolerance schemes for its future many-
core platforms [18]. Also in their schemes, the run-time manager should be able to
cope with tiles that are out-of-spec, or that are under-performing, and with rerouting
communication in case of a faulty NoC communication link.

4A knob is a run-time controlled actuator.
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8.3 Concluding Remarks

MPSoC platforms play an increasingly important role in satisfying the user hunger
for extra application functionality and services in their embedded devices without
an increase in cost. The run-time manager represents the glue between these ap-
plications and the MPSoC platform. It the plays an increasingly important role in
enabling the flexibility, scalability, predictability and programmability of the MPSoC
platforms. In addition, it is responsible for distributing the compute performance
among the applications. Creating an MPSoC run-time manager that is both tuned to
the needs of the application and its designer and adapted to the services provided by
the hardware platform is not trivial. Indeed, most contemporary (industrial) MPSoC
run-time managers are mainly focused on improving programmability by provid-
ing a run-time library. A more complete MPSoC run-time manager also considers
application quality management and resource management. This thesis considered
all three main run-time management components: the quality manager, the resource
manager and the run-time library (RTLib). For each of these components, we have
conceived several decision making algorithms and control mechanisms. In addition,
we have created a proof-of-concept platform that not only integrates part of these
algorithms and mechanism, but also illustrates their potential use case.

As long as MPSoC platforms and application continue to evolve, the run-time man-
ager functionality and implementation will have to be adapted. This includes up-
dating the relationship and the division of work between design-time tools and run-
time management components. This also entails investigating the implementation
and the functionality of the run-time managers for many-core platforms. Finally,
as technology continues to scale, the platform services themselves will be subject to
predictability issues. reliability the run-time manager could also take up the respon-
sibility of monitoring and managing the platform hardware.
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APPENDIX A

PSFF: Pareto Surfaces For Free

ing existing resource management techniques. Validating these novel or im-

proved algorithms requires a flexible and realistic application and/or plat-
form testbench. Obviously, a run-time management researcher could develop and
maintain a set of relevant, real-life testbench applications. However, maintaining
and modifying such a testbench not only requires an enormous amount of effort, it
also prohibits fellow researchers to reproduce the results as they do not possess this
specific testbench.

[ z un-time management research is often focused on defining new or optimiz-

In order to overcome the reproducibility problem, some researchers publish their
synthetic input data on the web so others can reproduce and compare results. For
example, the publicly available MMKP input data [1] allowed us to validate our
MMKEP algorithm and compare the results in a fair way to other algorithms (Sec-
tion 7.2.2). However, publishing the synthetic input data does not address the test-
bench flexibility issue. This means that a testbench should be flexible enough to
enable fast what if analysis. Meaning that one would like to change the boundary
conditions of the input data to assess the limits of the run-time management algo-
rithms. In order to overcome the flexibility problem, input data generators, like e.g.
Task Graphs For Free (TGFF) [60] are developed. These input data generators not only
allow other researcher to reproduce the input data based on a given set of generator
input data, they also allow the researcher to quickly adapt the testbench during the
research phase.
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In order to have a the realistic, reproducible and flexible testbench with respect to
adaptive multimedia applications where a single application quality level can have
multiple implementations (like the example of Figure 7.1(b)), we have developed an
input data generation tool denoted Pareto Surfaces For Free (PSFF).

The main goal of the PSFF tool is to generate multiple realistic application operating
points given application kernel information and some overall designer knowledge
about a specific application or the application domain. We used the QSDPCM video
encoding application (Section 7.1.2) to substantiate the tool results.

The rest of this appendix is organized as follows. First, we describe the operating
point generation algorithm and motivate the tool knobs and options. This algorithm
sits at the heart of the PSFF tool. The main input for the operating point selection
algorithm is a kernel graph. This kernel graph is either synthetically generated by
the PSFF tool or based on real-life application information. Then, we show how the
tool estimations compare to measured application results. Finally, we provide more
details on the PSFF-generated experimental setup of Chapter 7.

A1 Operating Point Generation

The goal of the PSFF tool (Figure A.1) is to derive a set of realistic operating points
for a real or synthetic adaptive application given a set of minimal input parameters.
The tool considers multimedia applications that are composed of a set of inner loops,
further denoted as kernels, glued together by the application control code, further
denoted as the skeleton. These kernels consume and produce data according to their
relative dependency. Brockmeyer et al. [32] discusses the concepts of application
kernels and skeletons more in-depth. Information concerning these kernels forms
the basis input for the tool and, for real-life applications, should be easily obtainable
by profiling the sequential application on a target processor architecture.

This basic input information includes a kernel graph (Figure A.1(b)) and, for every
kernel, its execution time (expressed in e.g. number of cycles, target processor load,
etc.), its memory needs, i.e. the size of the required memory and, finally, the amount
of accesses and the bandwidth to every kernel memory block. For a real life appli-
cation the number of execution cycles (or processor load) and the number of data
accesses can easily be obtained by a sequential profiling run. The amount of data
accesses can be obtained either by using an e.g. (modified) instruction set simula-
tor or by by using application analysis and profiling tools like e.g. ATOMIUM [39]
or the Software Instrumentation Tool (SIT) [137]. To determine the required shared
memory between the kernels, the amount of accesses and the associated read /write
bandwidth, one requires an estimate of the data reuse factor. Again, for a real-life
application, the data reuse distance can be estimated by profiling the application
and the memory accesses and the associated bandwidth can be derived for a given
memory hierarchy [6,99].

Furthermore, the PSFF tool user will have to provide a set of modeling parameters
(either global or specified per kernel) based on specific application implementation
knowledge (in case of a real-life application) or based on application domain knowl-
edge. These parameters include:
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Figure A.1: PSFF tool flow. The PSFF tool (a) requires a kernel graph (b) as input. This kernel
graph can be based on synthetic application data provided by the designer or can be obtained by
analyzing and/or profiling a real-life application.

- Skeleton overhead (sko). This represents the overhead of the skeleton code
and can be estimated by subtracting the total amount of cycles (or time) spent
in kernel processing from the total sequential application execution time.

- Functional-split overhead (fso). This represents the overhead introduced by
the synchronization of the different kernels when executing in an asynchronous
fashion. This overhead depends on the synchronization granularity and, in
case of a real-life application, obviously requires some application knowledge
to estimate.

- Data-split overhead (dso). This represents the overhead introduced when du-
plicating a kernel in order to have multiple identical kernels. This overhead
represents 3 components: the potentially uneven workload distribution, exe-
cution dependencies and the fact that processing one part of the data might re-
quire accessing a part belonging to another kernel. The data-split overhead can
be constant or can grow with the size of the data-split. Providing an estimate
for the data split overhead for a real-life application requires some amount of
application knowledge.

- Trade-offs. A description of the trade-offs that have to be explored. The most
common trade-offs are the processing-time versus bandwidth trade-off and
the memory size versus bandwidth trade-off. Intuitively, it is easy to under-
stand that limiting the bandwidth of an edge to a shared memory will increase
the processing wait time, while having more local memory will decrease the
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amount of accesses to a higher layer memory and, potentially, also reduces the
required bandwidth.

- Constraints. This includes the maximum number of tasks and whether only
consecutive kernels can belong to the same task (i.e. in order) or not.

Consider, for every quality ¢ € @, a kernel graph KG,(k, m, e) containing a set of
application kernels k;, memory blocks m;, and edges e;. Every kernel has an execu-
tion time k$*°¢, while every memory block has a size m;**¢. Every edge has a certain

read and write bandwidth, denoted ¢~ and e?}:*w% respectively, and a certain

amount of read and write accesses, denoted e?,fc_rd and e];“""" respectively. Fur-
ther, the tool receives a skeleton overhead parameter sko, a functional split overhead

parameter fso, a data-split overhead dso and a maximum amount of tasks V.

Algorithm 16: Algorithm to generate a adaptive application Pareto surface
Input: KG,(k, m,e), Application Parameters, Sur faceAxis
Output: Application Pareto Surface
PSFF(K G guaiity; (K, E, M), Application Parameters, Sur faceAxis)
(1) foreachq € Q
(2)  NewTaskGraphs = Per formFunctionSplit(KG4(K, E, M), N, fso)
(B)  AddToTaskGraphList(NewTaskGraphs, TaskGraphList)
(4)  foreach TaskGraph € TaskGraphList with amount of tasks < N
(5) NewTaskGraphs = Per formDataSplit(TaskGraph)
(6) AddToTaskGraphList(NewTaskGraphs, TaskGraphList)
(7)  foreach TaskGraph € TaskGraphList
(8) NewTaskGraphs = Per formTradeO f fs(TaskGraph)
9) AddT oT askGraphList(NewTaskGraphs, TaskGraphList)
(10) OperatingPointSur face = CreateOperating PointSur face(Sur faceAxis)
(11) PruneDominatedPoints(OperatingPointSur face)

The rest of this section provides more details about the most important parts of Al-
gorithm 16. First, Section A.1.1 details the Per formFunctionSplit() function used
on line 2. Section A.1.2 describes the Per formDataSplit() function used on line 5.
Finally, Section A.1.3 details the Per formTradeO f fs() function used on line 8

A.1.1 Functional Split

This part of the algorithm combines the application kernels k;, memory blocks my
and edges e;;, into a task graph T'G containing one or more functional tasks 7}, and
their associated memory blocks M; and task edges E;. Figure A.2 illustrates the
result of this exercise for the kernel task graph shown in Figure A.1(b).

At the extremes, Figure A.2(a) illustrates the case where all kernels are combined
in a single task, while Figure A.2(e) illustrates the situation where there is only one
kernel per task. In between, Figure A.2(b), Figure A.2(c) and Figure A.2(d) illustrate
the combinations for a functional split with two tasks. The functional combination
illustrated by Figure A.2(d) combines two non-consecutive kernels, k; and k3, into a
single task. This type of task graph can be avoided if the designer specifies to only
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Figure A.2: Creating a functional split application based on the kernel graph of Figure A.1(b). Of
course, this includes a single task (a), a set of functional splits containing two tasks (b,c,d) and a
functional split containing three tasks (e).

combine consecutive kernels. As these figures illustrate, there is not more than one
memory block for communication between two tasks.

calculation of the task execution time. In case of a single task (Figure A.2(a)), the
functional split overhead factor fso is dropped. The size of a memory block is given
by Equation A.2. Every task edge E); is associated with a type (read or write from the
perspective of the task), with an amount of memory accesses (Equation A.3) and with
a communication bandwidth (Equation A.4). Indeed, the bandwidth of a task edge
should be the maximum of the bandwidth required for the kernels this task contains
if all contained kernels are to meet their execution time. The graph execution time is
equal to the largest task execution time.

T = ki x (1+ sko + fso) (A.1)
Mjsize — Z mzize (A2)
k
acc—rd/wr acc—rd/wr
E, o= N e (A.3)
bw—rd ik bw—rd
Elw—r Jwr _ MAXVki,kjei;ﬂ_r Jwr (A4)

A.1.2 Data Split

The second part of the algorithm performs a data split on the task graphs generated
in the previous step. Performing a data split involves duplicating the task graph,
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but splitting one or more tasks into two or more data-parallel tasks. Such data-split
tasks are identical in functionality, but they will operate on a subset of the data that
needs to be processed. Although one could exhaustively make a combination of all
possible data-splits on all tasks of a specific task graph, the currently implemented
data-split policy is focused on splitting the task with the largest execution time in
order to get a task graph which is more balanced with respect to task execution time.

Theoretically, this would imply that the execution time and the amount of data ac-
cesses of the original task is evenly distributed over the data-split tasks, while the
required bandwidth for every data-split task remains the same as for the original
task (i.e. half the amount of accesses in half the amount of time results in the same
bandwidth requirement). In practice, however, there are three potential issues. First,
it might be that the data that needs to be processed cannot be evenly distributed
among the data-split tasks (Figure A.3(a)). In turn, this means that the execution
time and the amount of data accesses will not be distributed evenly. Secondly, there
might be execution dependencies between two data-split tasks causing some amount
of serialization (Figure A.3(b)). This means that the overall execution time required
for this task will be larger than the execution time of the original task divided by the
amount of data-split tasks. Finally, there might be an overlap in the required data
between two data-split tasks (Figure A.3(c)).

« " ey timeT,, «— >  timeT,, -« 0y,
,,,,,,,,,, I i:j T
. -—
] Il Busy pr dataT,,
-
data T,

(a) (b) (@]

Figure A.3: Potential causes of uneven task data-split. (a) An uneven data workload distribution.
(b) Data processing dependencies. (c) Additional input needs for processing assigned data.

The properties of the n data split tasks (71, Tiz, ..., Tin) originating from task 7; and
the edges (Ei1, Eiz, ..., Eip) originating from edge E; are calculated as follows. In
these formulas, o describes whether the data-split overhead is constant or growing
with the size of the split. This means « is either equal to n if the data-split overhead is
not proportional to the amount of data-split tasks or equal to 1 in case of proportional
data-split overhead. Equation A.5 details the task execution time, while Equation A.6
and Equation A.7 detail the edge accesses and bandwidth.

Ti(;xec _ i x (1 + n X dSO) (AS)
n «
acc—rd/wr
_ E:
EZCC rd/wr el BN (1 + n X dSO) (A6)
n
bw—rd/wr _ pbw—rd/wr n X dso
Eij =E x (1+ ) (A7)

(67
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A.1.3 Applying Trade-offs

Limiting the bandwidth of a task edge may increase the task execution time as Fig-
ure A 4 illustrates. The task execution time is equal to the sum of its kernel execution
times, while the bandwidth of its communication edge is equal to the maximum of
the included kernel bandwidth figures (Figure A.4(a)). Limiting the edge bandwidth
leaves kernel 1 unaffected but results in a prolonged kernel 2 execution time and, as
a consequence, a prolonged task execution time (Figure A.4(b)).

(]
i=J
§ Bandwidth Limit
£
b}
3
°
c
©
o | >
kernell kernel2 Time
(@)
()
=]
©
1]
=)
g Bandwidth Limit
°
c
o >
I | Time

kernel1 kernel2

(b)

Figure A.4: Bandwidth reduction results in a prolonged task execution time. (a) A task contains
two kernels. The task bandwidth is set to the maximum of the required kernel bandwidth. (b)
Reducing the maximum bandwidth does not affect kernel 1, but does prolong the execution of
kernel 2. In turn this results in a prolonged task execution time.

For the selected task graph, the algorithm limits every edge to a specified value and
assesses the impact on the execution time of the task kernels. In case of Figure A 4,
the policy is to proportionally increase the kernel execution time. The task execution
time is recalculated based on the updated kernel execution times. Another trade-
off, currently not supported by the PSFF tool, is the memory-bandwidth trade-off.
The idea is to trade either L1 memory size for L1-L2 communication bandwidth or
L2 memory size for L2-L3 communication bandwidth. Indeed, by using more L1
memory, one can reduce the amount of accesses (also denoted as L1 misses) and, as
a (potential) consequence, the required bandwidth. This trade-off requires a locality
metric for every kernel to determine its number of access misses as a function of the
L1 memory size.

A.2 Generating Random Surfaces

By including a random kernel graph generator (Figure A.1(a)), the PSFF tool also
allows a researcher to quickly create a large set of synthetic operating point surfaces.
This random kernel graph generator is detailed by Algorithm 17. It essentially con-
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sists of two parts. In the first part, a random kernel graph structure is generated
based on a set of designer-provided kernel graph parameters. In the second part,
this kernel graph structure is annotated with resource usage values according to one
or more quality requirements.

Creating the kernel graph structure (line 1-line 8) requires a minimum and maximum
value for the number of kernels, the number of memory blocks and the number of
edges per kernel. A kernel graph structure is created with N, kernels, N,, memory
blocks and N¥ edges for a given kernel k. Every edge is also linked to a memory and
is either READ or WRITE (from the kernel perspective).

Once the kernel graph structure has been created, resource usage figures, corre-
sponding to the required quality, have to be added (line 8-line 15). This means that
for every quality ¢, one has to determine, for every kernel £, its execution time k°*¢¢,
for every memory m its size m**¢ and for every edge e;; its bandwidth ef;i”_rd/ “r
between kernel k; and memory m;. The amount of accesses of every edge is derived
from it bandwidth and the kernel execution time of its associated kernel. The re-
source usage figures are based an average (1) and a spread (§) resource usage value

for every quality level ¢ provided by the designer.

This way, the GenerateKernelGraph(- - -) algorithm provides, for every quality ¢ €
Q, a kernel graph KG (K, E, M) that can be used as input for the operating point
surface generation algorithm (Algorithm 16).

Algorithm 17: Algorithm to generate a random kernel graph set
InPUt Mk, 6k'7 Moy 5m7 He, 5&
Output: KG,(K,E, M)
GENERATEKERNELGRAPH(tk, 0%, b Om s e, Oc)
(1) Ny = random(ming, maxy)
(2) N, = random(min,,, max,,)
(3) foreach kernel k
(4)  NF = random(min., maz.)
(5) foreach edge ey
(6) €k, mem = random(Ny,)
(7) ek type = random(READ, WRITE)
(8) foreachqe @
(9) foreachm e M
(
(
(
(
(
(

10) ms#¢ = random (usie, 6517¢)

11) foreachk € K

12) keme = random(u*ec, §57<°)

13) foreach e;; € E between k; and m;

14) ef;jfrd/w = random(ul®, 5°)

acc—rd/wr _  bw—rd/wr erec
15) e e X kf

i - “ig

A.3 QSDPCM Operating Points

In order to assess the tool on its realism, we reproduce the outcome of the QSDPCM
mapping experiments of Section 7.1.2 by using the PSFF tool. Figure A.5 details the
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QSDPCM QCIF input kernel graph and its properties. These properties have been
derived from the sequential QSDPCM analysis performed by Brockmeyer et al. [32].
The kernel graph consists of three kernels that mainly communicate through a single
shared memory block. A few scalars (i.e. the motion vectors) are communicated
directly between the kernels using FIFO communication (dotted lines). Although
the PSFF tool is capable of handling this communication (just another four kernel
edges with two memory blocks), this data is currently not considered in this exercise
as it was not considered in the QSDPCM analysis.

ME42
(1128976
cycles/frame)

Edge# Type #acc | BW (MB/s)
1 READ 50688 26
ME1 E, Mem 2 WRITE 6336 3
(4348690 1 (145728 bytes) 3 READ 68112 19
-\ cycles/frame) 4 READ 68112 35
5 WRITE | 25344 13

Qc
(921090
cycles/frame)

Figure A.5: QSDPCM kernel graph for QCIF resolution.

Table A.1 details the used overhead parameters, also derived from the QSDPCM
analysis by Brockmeyer et al. [32]. The skeleton overhead (sko) was calculated by
subtracting the sum of the kernel execution times from the total sequential execu-
tion time. The functional split overhead (fso) represents an estimate based on the
QSDPCM execution time analysis experiments (also briefly detailed in Figure 7.6).
The data-split overhead (dso) has to consider two issues. First, there is an overlap in
the required data between two data parallel tasks, illustrated by Figure A.3(c). For
QCIF this has been evaluated to be 22% [32]. Secondly, as there are 11 columns, the
data-split cannot be performed equally. This concept is illustrated by Figure A.3(a).
Indeed, a split into two tasks will produce a task that processes 6 columns and a
task that processes 5 columns (i.e. a difference of about 20%). When going to more
data-parallel tasks, this relative overhead may increase!. Hence, the o parameter is
set to 1.

By using this kernel graph and the parameters as input for the PSFF tool and by se-
lecting those points that correspond to the mapping experiments of Section 7.1.2, one
can compare the measured operating point set versus the PSFF generated set. This
comparison is illustrated by Figure A.6. Figure A.6(a) and Figure A.6(b) compare
the results when the task edge bandwidth is limited to respectively 100MB/s and
20MB/s.

1Here we neglect the fact that, depending on the kernel, processing image boundaries can require more
or less time than processing an inner column.
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Table A.1: QSDPCM PSFF overhead parameters.

PSFF Parameter | Value
sko 2%
fso 20%
dso 22%
' 1

Overall, the generated results are quite close to the measured values. The maximum
difference between the generated values and the measured values is 17%, while the
average difference in about 9%. This is satisfactory from a perspective of performing
research on selecting operating points.

In case of 100MB/s, some results require a closer inspection. It is odd that the mea-
sured value is higher than the generated value as the generated value is merely the
sum of the kernels. A brief look at the source code used for this measurement re-
vealed that the sequential code was obtained by concatenating three tasks, each con-
taining a single kernel, into one large task. This means that, compared to the sequen-
tial code, there is additional overhead that the PSFF tool cannot take into account.
With respect to the implementation using two tasks, the synergies between ME1
and QC were maximally exploited in order to reduce the load imbalance. Indeed,
without this additional effort, the 2-processor implementation would be slower than
its single processor counterpart due to the additional functional split overhead. As
PSFF does not model this optimization, the difference between measured and PSFF
results is significantly larger.

When comparing both graphs, one notices a difference between both graphs. In the
20MB/s graph, the PSFF estimate is relatively lower with respect to the measured
values than for the 100MB/s graph. This is, most probably, caused by the fact that
a bandwidth limitation has a high impact on the execution of pre-amble and post-
amble of a task. During the pre-amble and post-amble, a task requires, for a short
amount of time, more bandwidth to retrieve initial data of store final results. This
occurs both for cache-based implementations and for scratchpad-based implemen-
tations. This phenomena is discussed by Marescaux [132]. In order for PSFF to take
this into account, the model should be extended to also consider bandwidth needs
and kernel execution time during preamble and postamble.

A.4 Random Operating Point Surfaces

The PSFF tool has been used to generate a set of random operating point surfaces
to study the collaboration between the quality manager and the resource manager.
These sets have been used in the experiments of Section 7.3 and Section 7.4. We cre-
ated 100 random sets that each contain between 10 and 40 Pareto operating points
(22 on average) distributed over a low, a medium and a high quality level. The
input parameters for the PSFF random kernel graph generator tool are given by Ta-
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Figure A.6: Comparison of measured and PSFF estimated QSDPCM operating points for dif-
ferent parallelizations. These graphs assume one task per processor. First (a) in case of an edge
bandwidth limit of 100MB/s, then (b) in case of a 20MB/s limit.

ble A.2, while the parameters for the PSFF operating point generator are detailed in

Table A.32.

The characteristics of the generated operating points and their associated task graphs
are detailed in Figure A.7. First, it shows that a task graph contains up to 7 tasks
(Figure A.7(a)). and up to 3 memory blocks (Figure A.7(c)). The fact that most of
the task graphs have only a single memory block is due to clustering of kernels into
tasks (and hence kernel memory blocks into a single task graph memory block). The
distribution of task load and memory block size of all operating points is given by
respectively Figure A.7(b) and Figure A.7(d).

2These parameters have to be considered in the context of the resources available on the evaluation

platform detailed in Figure 7.14.
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Figure A.7: PSFF random generator results for all generated operating points and their associated
task graph. (a) Distribution of the number of tasks. (b) Distribution of task load. (c) Distribution
of the number of memory blocks. (d) Distribution of memory block size.
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Table A.2: PSFF Overhead Parameters.

PSFF Parameter | Value
sko 2%
fso 20%
dso 22%
' 1

Table A.3: PSFF Random Generator Parameters. This includes the kernel graph parameters and,
for every quality, the kernel load parameters.

Kernel Graph Parameter | min | max
# kernels 2 5
# kernel memory blocks 1 4
# edges per kernel 1 4
Load Parameters
Quality Resource 7 J
PE load 10 5
Low Memory size | 400 | 100
Edge BW 20 10
PE load 20 10
Medium | Memory size | 800 | 200
Edge BW 40 20
PE load 40 20
High Memory size | 1200 | 300
Edge BW 80 40

A.5 Conclusions

The PSFF tool is primarily aimed at allowing a researcher to create, in a fast way, a
realistic operating point sets with specific properties. This can be achieved starting
from the profiled properties of a real application or from synthetic data. Although
the model is, on some points, quite coarse for predicting the mapping result for real-
istic applications, it provides a high enough accuracy for performing run-time man-
agement research. Furthermore, we provide more detail on the experimental setup
for assessing the collaboration between the quality manager and the resource man-

ager.
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2 APPENDIX B

TGFF Input Values

his appendix describes the TGFF option file for generating task graphs and as-

sociated details used in the resource assignment experiments detailed in Sec-

tion 3.6. In addition, this option file also enables TGFF to generate the softcore
library used for the experiments detailed in Section 3.9.

#
# TGFF option file for resource management experiments
#

FHEF AR R R R R R
# average time per task (including communication)
task_trans_time 3

period_mul 1, 2

# number of task graphs

tg_cnt 1000

# minimum number of tasks within graph: <average> <multiplier>
task_cnt 3 1.2

# sets the maximum number of edges per task: <in> <out>
task_degree 3 3

# sets the number of possible task types

task_type_cnt 128

# sets the number of possible communication types
trans_type_cnt 128

FHEF R
COMMUNICATION LOAD SPECIFICATION

=> total timeslots available on a link = 300
=> average used:

- low = 25% —--> 75

- medium = 50% --> 150

- high = 75% —--> 225

S % o W o W
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# jitter = 0.5 by default
# rounding = 1

#

table_cnt 1

table_label COMM_LOAD

table_attrib

# type attribute <name> <average> <multiplier> <jitter> <rounding>

type_attrib slot_low 75 40 1.0 1.0, slot_med 150 75 1.0 1.0, slot_high 225 75 1.0 1.0
# write it to file (’trans_write’ applies to transmission events)

trans_write

FHEHHHHH A AR A R R R R

# WHICH HARD PROCESSOR TYPES ARE AVAILABLE ON THE PLATFORM ??

#

# ISP => ARM (type 0)

table_cnt 1

table_label PE_INFO

table_attrib pe_type 0 0 0 0, soft_size 0 0 0 O

type_attrib low 25 15 1.0 1.0, med 50 15 1.0 1.0, high 75 15 1.0 1.0, size 0 0 0 O
pe_write

# ISP => DSP (type 1)

table_cnt 1

table_label PE_INFO

table_attrib pe_type 1 0 0 0, soft_size 0 0 0 O

type_attrib low 20 10 1.0 1.0, med 40 10 1.0 1.0, high 60 10 1.0 1.0, size 0 0 O O
pe_write

# FPGA (type 2)

table_cnt 1

table_label PE_INFO

table_attrib pe_type 2 0 0 0, soft_size 0 0 0 O

type_attrib low 18 10 1.0 1.0, med 35 10 1.0 1.0, high 50 10 1.0 1.0, size 50 30 0.5 1.0
pe_write

# ACCEL (type 3)

table_cnt 1

table_label PE_INFO

table_attrib pe_type 3 0 0 0, soft_size 0 0 0 O

type_attrib low 15 10 1.0 1.0, med 30 10 1.0 1.0, high 45 10 1.0 1.0, size 0 0 0 O
pe_write

LT L T2 a e R
SOFTCORES (type 10)

— softcores have a certain size (so one cannot put them on any tile)
— the performance of a softcore is lower than that of a hardcore

e

# LARGE SOFTCORES
table_cnt 4

table_label PE_INFO
table_attrib pe_type 10 0
type_attrib low 35 10 1.0
pe_write

= o

0, soft_size 70 30 0.5 1.0
0, med 80 25 1.0 1.0, high 120 25 1.0 1.0, size 0 0 0 O

# SMALL SOFTCORES
table_cnt 4

table_label PE_INFO
table_attrib pe_type 10 0
type_attrib low 35 10 1.0
pe_write

= o

0, soft_size 40 20 0.5 1.0
0, med 80 25 1.0 1.0, high 120 25 1.0 1.0, size 0 0 0 O

FHEF AR
# write tasks graphs and figures

tg_write

eps_write



APPENDIX C

IMEC MPSoC Application Design and
Mapping

design and mapping, one can come to better run-time decision-making. In-

deed, if the run-time manager can rely on design-time application analysis
information, it can improve the overall user experience and make better use of the
available platform resources.

By establishing a close relation between run-time management and application

Although it would be possible for a designer to perform all application exploration
and analysis manually, having design-time application exploration, design and map-
ping tools greatly increase the speed and accuracy of this process. Hence, IMEC is
spending effort to create such proof-of-concept tools. Just like the run-time manager,
these tools fit into the global MPSoC application mapping picture.

This appendix provides a brief overview of the IMEC MPSoC design-time tools. In
addition, it illustrates the relation between the design tools and the run-time man-
ager. So the rest of this chapter is organized as follows. Section C.1 briefly details
the application mapping flow with its associated tools and the role of the run-time
manager. Section C.2 details the application design exploration investigated by the
mapping tools. Finally, Section C.2.4 provides more details on the relation between
the tools and the run-time manager.
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C.1 Application Mapping Flow and Tools

In order to relief the embedded designer as much as possible, the IMEC MPSoC
tools focus on assisting the designer in mapping sequential C code in an efficient,
predictable and fast way onto a multiprocessor platform. In order to achieve this,
these mapping tools should:

- perform parallelization, add synchronization and inter-task communication,
and manage the memory hierarchy;

- explicitly control the (data) communication to avoid the hardware cache co-
herency problem/scaling bottleneck and avoid resource contention. This in-
volves active management of inter-task synchronization and communication,
and handling the memory hierarchy communication;

- make the code-transition to the parallel programming model and make sure
the transition is functionally correct and optimized for a given set of platform
parameters;

- be capable of providing feedback to the designer on a sequential level.

Creating such mapping tools obviously comes at a cost in both software and hard-
ware. The software cost boils down to the fact that it is not possible to use plain
ANSI C. Some language constructs are not well analyzable (e.g. pointer aliasing),
while others make it hard for the mapping tool to efficiently perform, for example, a
parallelization (e.g. global variables). Hence, sequential Clean C needs to be derived
from sequential ANSI C in order to obtain good mapping results! The hardware cost
boils down to the MPSoC platform needing to provide services that allow a map-
ping tool to reason about parallelization performance, inter-task communication,
resource assignment, resource scheduling and application component performance.
These services include are, for example, a bounded latency on a memory-to-memory
data movement transaction. This, in turn, requires a platform service that allocates
a certain amount of communication bandwidth. Another example is a service that
enables a software-controlled memory hierarchy.

Figure C.1 shows the general MPSoC flow for mapping sequential ANSI C code onto
a multiprocessor platform. This flow starts by cleaning the code, i.e. deriving Clean
C code, by means of the MPSoC interactive cleaning tools in order to remove un-
desired language constructs. Consequently, the designer uses the MPSoC mapping
tools to map the code onto the multiprocessor platform. These mapping tools re-
quire as input: Clean C, high-level platform properties and designer parallelization
hints. Note that this sequential C code can contain calls to accelerator functionality.

The tools map the application component onto a parallel programming API pro-
vided by the RTLib library. This library is part of the run-time manager and is im-
plemented on top of the platform hardware services (and hence should be provided
to the embedded SW designer together with the MPSoC platform). The designer
can, if desired, program the platform directly by using the RTLib API. Finally, the
compiler is responsible for transforming the parallel source code into platform ex-
ecutables. The run-time manager is responsible for flexibly assigning platform re-
sources to one or more application components. In essence, the embedded software
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Figure C.1: General MPSoC flow for mapping sequential ANSI C code onto a MPSoC platform.

designer should only be concerned with step 1 and step 2 (Figure C.1), the rest, i.e.
the platform services and RTLib, should be provided by the platform designer and
are under the hood with respect to the embedded software designer.

The MPSoC mapping tools are responsible for parallelizing the sequential applica-
tion component (given some designer pragmas). This includes automatically adding
inter-task communication and synchronization. Furthermore, these tools explicitly
manage and exploit the scratchpad memory hierarchy in a component-specific way.

C.2 Application Design Exploration

This section focuses on the application design and mapping exploration. This in-
cludes exploring the trade-off between memory size and bandwidth usage (Sec-
tion C.2.1) and the parallelization exploration (Section C.2.2). IMEC is also develop-
ing a set of application mapping tools to help the designer perform this exploration
(Section C.2.3).

C.2.1 Memory Size versus Bandwidth Exploration

The MPSoC mapping tools are able to explicitly manage data communication by
inserting data transfer statements into the code. These statements, denoted as block-
transfers, should be implemented by the RTLib and rely on a platform DMA service
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to perform these data transfers. By relying on a guaranteed bandwidth service, the
tools enable the designer to perform a trade-off between memory size and commu-
nication bandwidth. Indeed, by changing the prefetch initiation time of a certain
memory block, one can change the required bandwidth for transferring the data.
Unfortunately, prefetching earlier means that a certain block of memory will have a
longer life-time and, as a consequence, the overall required memory will rise.

Simple Time Extension Pipeline Time Extension Parallel Time Extension

[ Memory Size k1| [ Memory Size k1 |
BWT BWT BWT
o " o0 e®" O 8"

O Blocktansfer Issue ® Blocktansfer Sync ® Consuming kernel (input)

Figure C.2: Memory-Bandwidth trade-off that needs to be considered when inserting explicit data
management statements.

With respect to explicit data communication, the MPSoC mapping tool adds two
types of RTLib-supported statements into the code. A blocktransfer issue for start-
ing a DMA data transfer and a blocktransfer sync for waiting on the finalization of
the blocktransfer. There are three ways the MPSoC mapping tool can insert these
statements into the source code (Figure C.2).

The first way, denoted as simple time extensions, is composed of a blocktransfer issue
immediately followed by a blocktransfer sync and the data consuming kernel (k1).
This blocktransfer requires a significant amount of bandwidth to minimize the block-
transfer waiting time, since the communication does not happen in parallel with the
computation and, hence, the computation waits until the data is transferred.

In the second way, denoted as pipeline time extensions, the blocktransfer happens in
parallel with the computation of other kernels (k2). Meaning that there is a block-
transfer sync just before the consuming kernel. After all data has been consumed,
a new blocktransfer is started. The blocktransfer can happen in parallel with all the
other computation in the loop (not shown in the figure). Hence, the amount of re-
quired bandwidth with respect to the first case can be lower.

In the third way, denoted as parallel time extensions, the data for the next loop iteration
is already prefetched while the previously fetched data is still unprocessed. This can
be seen by the fact that there is a blocktransfer sync to ensure that the data for the
current loop iteration (i.e. for the consuming kernel) is ready. But even before the
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data is consumed, a new blocktransfer is already started. Only then, the ready data
is consumed. This solution obviously requires more memory since new data is being
fetched, while the ready data is still being processed. Due to the fact that the data
can take more time to arrive, the required bandwidth is lower.

Brockmeyer et al. provide more detail on the concept of explicit data transfers [31]
and performs these trade-offs (and more) with respect to the QSDPCM video encod-
ing application [32].

C.2.2 Parallelization Exploration

The general idea of parallelization with the IMEC MPSoC mapping tools is that the
designer identifies parts of the sequential code that are heavily executed and should
be executed by multiple threads in parallel to improve the performance of the appli-
cation component. These pieces of code that will be parallelized are denoted as par-
sections.

For each parsection, the designer specifies the number of threads that execute it. The
designer can divide the work over threads in terms of functionality (i.e. functional
parallelism), in terms of loop iterations (i.e. data parallelism), or a flexible combina-
tion of both depending on what is the most appropriate for a given parsection.

These parallelization directives are to be written in a file provided to the mapping
tool. The main reason for using directives in a separate file instead of pragmas in-
serted in the input code, is that it simplifies exploration (and retainment) of multiple
parallelization specifications for the same sequential code.

Given the input code and the parallelization directives, the tool will generate a par-
allel version of the code and insert FIFO and synchronization statements where
needed. These statements correspond to the target RTLib APL

Hence, the designer does not need to worry about dependencies between threads,
etc. This is all taken care of automatically by the tool. However, as designers like to
be in control, the MPSoC mapping tool provides the optional mechanism of shared
variables. By specifying a variable as being shared, the designer explicitly tells the
tool that it does not have to add synchronization and communication mechanisms
for that variable, because he will take care of that himself. This can be done in several
ways. One way is to add dummy dependencies that will be converted into scalar
FIFOs. Another way is to specify a loop sync, that synchronizes certain iterations of
a loop with other iterations of loops in other threads. Sometimes, there is even no
need to add additional synchronization mechanisms, if it is already guaranteed by
other existing synchronization mechanisms (e.g. FIFOs).

C.2.3 IMEC MPSoC Design Tools

IMEC is developing a set of application exploration and mapping tools. These tool
not only help the designer in managing scratchpad memory or in parallelizing se-
quential code, they also allow the designer to quickly explore and evaluate different
mapping options with respect to the available resources. Figure C.3 shows the func-
tionality of these tools.
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Figure C.3: IMEC MPSoC design-time mapping and exploration tools.

Given the platform specification information, the Memory Hierarchy (MH) tool is re-
sponsible for inserting blocktransfer issue and blocktransfer sync statements into the
sequential C input code. By analyzing the scalar and array dependencies the tool is
able to determine what data copies need to be made and how they should be sched-
uled in order to have the data prefetching finalized before the consuming kernel is
started. The output of the tool is sequential code with scratchpad memory manage-
ment statements and its associated design-time mapping information. The Multipro-
cessor Parallelization Assist (MPA) tool is responsible for parallelizing the sequential
code according to the parallelization specification provided by the designer. This tool
first extracts a parallel model of the application. Consequently, it analyzes scalar and
array dependencies, adds synchronization statements and, finally, dumps the paral-
lel code with its associated analysis information. The final goal is to develop a single
tool, denoted Multiprocessor Parallelization and Memory Hierarchy (MPMH) tool that
combines both the MH and the MPA tool functionality.

C.24 Design-Time Tools and Run-Time Management

There are two main relations between relation between the design-tools of Section C.2.3
and the run-time manager. First, the RTLib defines the API functions that are in-
serted by the design-tools in the output code. This includes APIs for task man-
agement (e.g. spawny(), join()), inter-task communication and synchronization (e.g.
fifo_put(), fifo_get(), loopsync()), and memory hierarchy management (e.g. block-
transfer_issue() and blocktransfer_sync()). Secondly, by changing the platform speci-
fication file and/or the parallelization specification file, the designer can provide the
run-time manager with a set of application operating points. This allows the run-
time manager to choose an operating point, i.e. a certain parallelization and memory
size versus bandwidth trade-offs, given the run-time application user requirements
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and the available platforms resources. More information regarding the collaboration
between design-time tools and the run-time manager can be found in Chapter 2.
More information on the usage of application operating points by the run-time man-
ager can be found in Chapter 7.

C.3 Concluding Remarks

This appendix details the IMEC MPSoC mapping flow. It briefly introduces the
IMEC MPSoC mapping tools that perform memory hierarchy management and par-
allelization for a sequential input application. In addition, it shows how the run-time
manager and the design-time tools are linked through the run-time library API and
the application mapping and analysis information.
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