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Abstract

In this paper we give a new run-time technique for finding an

optimal parallel execution schedule for a partially parallel loop, i.e.,

a loop whose parallelization requires synchronization to ensure that

the iterations are executed in the correct order. Given the original

loop, the compiler generates inspector code that performs run-time

preprocessing of the loop’s access pattern, and scheduler code that

schedules (and executes) the loop iterations. The inspector is fully

parallel, uses no synchronization, and can be applied to any loop.

In addition, it can implement at run-time the two most effective

transformations for increasing the amount of parallelism in a loop:

array privatization and reduction parallelizatiort (element–wise).

We also describe a new scheme for constructing an optimal parallel

execution schedule for the iterations of the loop.

1 Introduction

To achieve a high level of performance for a particular program

on today’s supercomputers, software developers are often forced to

tediously hand-code optimization tailored to a specific machine.

Such hand-coding is difficult, error-prone, and often not portable

to different machines. Restructuring, or parallelizing, compilers

address these problems by detecting and exploiting parallelism in

sequential programs written in conventional languages. Although

compiler techniques for the automatic detection of parallelism have

been studied extensively over the last two decades [22, 32], current

parallelizing compilers cannot extract a significant fraction of the

available parallelism in a loop if it has a complex and/or statically

insufficiently defined access pattern. This is an extremely important

issue because a large class of complex simulations used in industry

today have irregular domains and/or dynamically changing inter-

actions. Examples include SPICE for circuit simulation, DYNA–

3D and PRONTO-3D for structural mechanics modeling, GAUS-

SIAN and DMOL for quantum mechanical simulation of molecules,

CHARMM and DISCOVER for molecular dynamics simulation of

organic systems, and FIDAP for modeling complex fluid flows [8].
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Thus, since the available parallelism in theses types of applica-

tions cannot be determined statically by present parallelizing com-

pilers [6, 8], compile-time analysis must be complemented by new

methods capable of automatically extracting parallelism at run–tirrw.

Run-time techniques are needed because the access pattern of some

programs cannot be statically determined, either because of limita-

tions of current analysis algorithms or because the access pattern is

input data dependent. For example, most dependence analysis al-

gorithms conservatively assume dependence when presented with

non–liiear or subscripted subscript expressions.

During the past few years, tectilques have been developed for the

run-time analysis and scheduling of loops [5,9, 13,17, 2!0, 23,25,26,

27,28,29,30,33, 34]. The majority of this work has concentrated on

developing run-time methods for constructing execution schedules

for partially parallel loops, i.e., loops whose psrallelization requires

synchronization to ensure that the iterations are executed in the

correct order. Given the original, or source loop, most of these

techniques generate inspector code that analyzes, at run-time, the

cross-iteration dependence in the loop, and schedulerlexecutor code

that schedules and executes the loop iterations using the dependence

information extracted by the inspector [30].

Our Results. We give a new inspector/scheduler/executor method

for finding an optimal parallel execution schedule for a partially par-

allel loop. Our inspector is fully parallel, uses no synchronization.

and can be applied to any loop (from which an inspector can be

extracted). In addition, our inspector can implement at rur-time the

two most effective tzansformations for increasing the amount of par-

allelism in a loop: array privatization and reduction parallelization

(element-wise). The ability to identify privatizable and reduction

variables is very powerful since it eliminates the data dependence

involving these variables and increases the available parallelism in

the loop. The schedule partitions the set of iterations into subsets

called wavefronts. Iterations in each wavefront can be executed in

parallel, i.e., there are no data dependence between iterations in

a wavefront. Although the wavefronts themselves are constructed

one after another, the computation of each wavefront is fully parallel

and requires no synchronization. The scheduling can be dynami-

cally overlapped with the parallel execution of the loop iterations to

utilize the machine more uniformly. Our new methoc~ improves on

the previous techniques since none of them has all of these properties

(a comparison to previous work is contained in Section 4).

2 Preliminaries

In order to guarantee the semantics of a loop, the parallel exe-

cution schedule for its iterations must respect the data dependence

relations between the statements in the loop body [22, 15,3,32, 35].

There are three possible types of dependence between two state-

ments that access the same memory location flow (rea~dafter write),

anti (write after read), and output (write after write). Flow depen-

dence express a fundamental relationship about the data flow in the

program. Anti and output dependence, also known as memory-

related dependence, are caused by the reuse of memory, e.g., pro-

gram variables. If there are flow dependence between accesses in
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do i= l,n/2 do i=l, n

Sl: tmp = A(2*i) do j=l, m

A(2*1) = A(2*1-1) (a) Sl: A(j) = A(J)+ expo b)
S2 : A(2*i-1) = tmp enddo

enddo enddo

Figure 1:

different iterations of a loop, then the semantics of the loop cannot be

guaranteed unless those iterations are executed in order of iteration

number because values that are computed (produced) in an iteration

of the loop are used (consumed) during some later iteration. If there

are no flow dependence, but there are anti or output dependence

between iterations of a loop, then the loop must be modified to re-

move all such dependence before these iterations can be executed

in parallel. In some cases, even flow dependence can be removed

by simple algorithm substitution, e.g., reductions. Unfortunately,

not all such situations can be handled efficiently. In order to remove

certain types of dependence two transformations can be applied to

the loop: privatization and reductionparallelization.

Privatization creates, for each processor cooperating on the ex-

ecution of the loop, private copies of the program variables that

give rise to anti or output dependence (see, e.g., [7, 18, 19, 31]).

The loop shown in Figure 1(a), is an example of a loop that can

be executed in parallel by using privatization; the anti dependence

between statement S2 of iteration i and statement S1 of iteration

i + 1, for 1 g i < n/2, can be removed by privatizing the tempo-

rary variable tmp. In this paper, the following criterion is used to

determine whether a variable maybe privatized.

Privatization Criterion: Let Abe a shared array (or array section)

that is referenced in a loop L. A can be privatized if and only if

every read access to an element of A is preceded by a write access

to that same element of A within the same iteration of L.

In general, dependence that are generated by accesses to variables

that are only used as workspace (e.g., tempor~ variables) within

an iteration can be eliminated by privatizing the workspace.

Reduction parallelization is another important technique for

transforming certain types of data dependent loops for concurrent

execution.

Definition: A reduction variable is a variable whose value is used

in one associative operation of the form z = z @ezp, where @is the

associative operator and z does not occur in ezp or anywhere else in

the loop. If the operator is not commutative then the implementation

of the parallel equivalent reduction operation is more constrained.

Reduction variables are therefore accessed in a certain specific pat-

tern (which leads to a characteristic data dependence graph). A

simple but typical example of a reduction is statement S 1 in Fig-

ure 1(b). The operator @ is exemplified by the + operator, the

access pattern of array A(:) is read, modijj, write, and the flmction

performed by the loop is to add a value computed in each iteration

to the value stored in A(:). Once reduction variables are identi-

fied, methods are known for performing tie reduction operation in

parallel (see, e.g., [11, 14, 16, 35]).

3 Run-Time Analysis of Loops

Given ado loop whose access pattern cannot be statically ana-

lyzed, compilers have traditionally generated sequential code. Since

compile–time data dependence analysis techniques cannot be used

on such programs, methods of performing the analysis at run-time

are required. Several techniques have been developed for the run–

time analysis and scheduling of loops with cross-iteration depen-

dence [5, 9, 13, 17, 20, 23, 28, 29, 30, 33, 34]. However, for

various reasons, such techniques have not achieved wide–spread

use in current parallelizing compilers.

In the following we describe a new run-time scheme for con-

structing a parallel execution schedule for the iterations of a loop.

The general structure of our method is similar to the above cited

run-time techniques: given the original, or source loop, the com-

piler generates inspector code that analyzes, at run-time, the cross-

iteration dependence in the loop, scheduler code that schedules the

loop iterations using the dependence information extracted by the

inspector, and executor code that executes the loop iterations. In the

previous techniques, the scheduler and the executor are tightly cou-

pled codes which are collectively referred to as the executor, and the

inspector and the scheduler/executor codes are usually decoupled

[30]. Although our methods can also interleave the scheduler and

the executor, we treat them separately since they do tackle distinct

tasks.

3.1 The Inspector

In thk section we describe a new inspector scheme that processes

the memory references in a loop and constructs a data structure which

the scheduler can use to efficiently assign iterations to wave fronts.

In addition, our inspector can implement at run-time two important

transformations: (element–wise) array privatization and reduction

parallelization (see Section 2). The ability to identify privatizable

and reduction variables is very powerful since it eliminates the data

dependence involving these variables. In particular, these trans-

formations increase the available parallelism in the loop and also

reduce the work required of the scheduler since it need not consider

dependence involving such variables when it constructs the parallel

execution schedule for the loop iterations.

The basic strategy of our method is for the inspector to preprocess

the memory references and determine the data dependence for each

memory location accessed. Later, the scheduler uses this memory-

location dependence information to determine the data dependence

between the iterations. We describe the method as applied to a

shared array A that is accessed through subscript arrays (see Fig-

ure 2(a)). For simplicity, we first consider only the problem of

identifying the cross–iteration dependence for each array element

(memory location). After describing the inspector, we discuss how

the dependence information it discovers can be used to identify the

array elements that are read-only, privatizable, or reduction vari-

ables. The inspector has two main tasks.

1. For each array element A[z], the inspector collects all the refer-

ences to it into an array (or list) R. and stores them in iteration

order. For each reference it stores the iteration number and

access type (i.e., read or write) (see Figure 2(b)).

2. For each array element A[z], the inspector determines the data

dependence between all its references and stores them in a data

structure H= for later use by the scheduler.

Below we discuss how the references to each array element can

be collected and stored in the array (or list) R.. Assuming R. is

available, we first describe how the inspector determines the depen-

dence among the references to A[z] and computes the data structure

H=. The relations between the references to A[z] can be organized

(conceptually) into an array element dependence graph D=. If ad-

jacent references in R. have different access types, then a flow or
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R
~1 2 3 4 5 67 8 9

do i = 1,8

A(W(i)) = ...
~Ortil)= A(R(i))

,,, i= ‘b)
enddo

W(1:8)= [13243563] H

R(1:8)=[37338333]
31234567

index
,n ~3 1 2 3 5 6 8 9 (d)

D3

(c)

level 1 2 3 4 5 6 7

Figure2: A(a)source loop, @)tieanay R3for A[3], (c)its dependence

graph D3, and (d) its hierarchy vector H3.

anti dependence exists, and if they are both writes, then an output

dependence is signaled. These dependence are reflected by parent-

child relationships in Da. Ifadjacentreferences are bothreads, then

there is no dependence between the elements, but they may have a

common parent (child)in D=: thelast write preceding (first write

following) them inl?a. Forexample, thedependencegraph D~for

A[3] is shown in Figure 2(c).

Our goal is to encode the predecessor/successor information of

the (conceptual) dependence graph D= in a hierarchy vector H= so

that the scheduler can easily look-up the dependence information

forthereferences to A[z]. First, weaddalevel field tothe records

inRa, andstore initthe reference's level intbe dependence graph

D= (see Figure 2(b)). Then, for each level, we store in H. the

index (pointer to location)in R. of the first reference at that level.

Specifically, H= is an array and Ha[i] contains the index in R. of

thetirst reference atleveli, i.e., H= will serve asalook-up table

forthefirst reference in R.atany level (see Figure 2(d)). Notethat

this implies that H= records the position in R= of every write access

and of the first read access in any run of reads.

We now give an example of how the hierarchy vector serves as a

look-up table for the predecessors and successors of all the accesses.

Consider the read access to A[3] in the 6th iteration, which appears

as the 6th entry in R3. Its level is 5, and thus it finds its successor

by looking at the 5 + 1 = 6tb element of the hierarchy vector H3,

which contains the value 8 indicating that its successor is the 8th

element in R3. Similarly, its predecessor is found by looking in the

5 – 1 = 4th element of Hs, which indicates that its predecessor is

the 5th element of R3.

Implementing the Inspector. We now consider how to collect the

accesses to each array element A [z] into the arrays R.. Regardless

of the technique used to construct these arrays, to ensure the scala-

bility of our methods we must process (mark) the references to the

shared array A in a doa 11 (see Figure 3(a) and (b)). The compu-

tation perfotmed in the marking operations will depend upon the

technique used to construct the arrays R=. In any case, note that

since we are interested in cross-iteration data dependence we need

only record at most one read and one write access in R. for ztny

particular iteration, i.e., subsequent reads or writes to A[~] in the

same iteration can be ignored.

Perhaps the simplest method of constructing the element arrays

doi=l,S

A@V(,)) =
= A(R(l))

work(l)
enddo

W(I:8)= [13243563]

R(1:8)=[37338333]

(a)

doall p = l.,nproc
private integer j

do J=St@p,niter@Id(p,niter)

Rd:s%%gf?)

enddoall

(b)

Proc 2 mdm

pR ~ (c)

n2

H

Wam
index index

‘H m-+= ““’”” ‘“m

&
2 —-~

3 7121317j

n2

~-WCf121.l.i

Figure 3: An example of the private element arrays pR and hierarchy

vectors pH (c) when two processors are used in the inspector deal 1 loop

(b) for the source do loop (a).

R= is to first place a record for each memory reference into an array

RA, and then sort the records lexicographically by array element

number (first key) and iteration number (second key). After sorting,

each array R. will occupy a contiguous portion (a subarray) in the

array Rd. In this case the marking operations simply record the

information about the access into R~. After the lexicographic sort,

the level of each reference in D. can be computed by a prefix sum

computation.

However, since the range of the values to be sorted is known

in advance (it is given by the dimension of the shared amay A),

a linear time bucket or bin sort can be used in place of the more

general O(n log n) lexicographic sort. Moreover, if the inspector’s

marking phase is chunked (i.e., statically scheduled), then further

optimization is possible. In this case, processor i will be assigned

iterations i [n/pi through (i + 1) [n/pi — 1, where p is the total

number of processors, n is the number of iterations in the loop,

and O s i < p. The basic idea is as follows. First, in a private

marking phase, each processor marks the references in its assigned

iterations, and constructs element arrays R= and hierarchy vectors

He as described above, but only for the references in its assigned

iterations. Then, in a cross–processor analysisphase, the hierarchy

vectors for the whole iteration space of the loop are formed using

the processors’ hierarchy (sub)vectors.

The private marking phase proceeds as follows. Let AII:s] be

the shared array under scrutiny, and suppose each processor has

a separate array pR[l:s, l:2Tz/p] in which to store the records of

the references in its set of iterations. Each record contains the

iteration, type of reference, artd level as described above. (The

second dimension of l:2njp follows since at most one read and

one write to any element need to be marked in eaCh iteration, and

each processor has n/p iterations.) Assuming a processor marks its

iterations in order of increasing iteration number, it can immediately

place the records for the references into its array pR in sorted order

of iteration number. In addition to the array pR, each processor

has a separate array pH[l:9, 1:2n/p] used to store the hierarchy

vectors for the references in i~ assigned set of iterations. Again,
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assuming that iterations are processed in increasing order of iteration

number, the hierarchy vectors cam be filled in at the same time that

the references are recorded in pR (see Figure 3(c)).

In the cross-processor analysis phase we need to find for each

array element A [~] the predecessor, if any, of the first reference

recorded by each processor, i.e., we need to fill in the value in

processor i’s hierarchy vector for the reference that immediately

precedes (in the dependence graph D=) the first reference to A[z] that

was assigned to processor i. Similarly, we must find the immediate

successor of the last reference to A[z] that was assigned to processor

i. Processor i can find the predecessors (successors) needed for

its hierarchy vectors by scanning the arrays of the processors less

than (larger than) i. For example, the “?” at the end of pH[3]

for processor 1 in Figure 3 would be filled in with a pointer to

the first element in the array pR[3] of processor 2. Hence, the

inhial and final entries in the hierarchy vectors also need to store the

processor number that contains the predecessor and successor. These

scans can be made more efficient by maintaining some auxilimy

information, e.g., for each array element, each processor computes

the total number of accesses it recorded, and the indices in pR of the

first and last write to that element. In any case, we note that filling

in the processors’ hierarchy vectors requires a minimal amount of

interprocessor communication, i.e., it requires only a “connecting”

and not a full “merging” of the different hierarchy vectors.

There are several ways in which the above sketched analysis

phase can be optimized. For example, in order to determine which

array elements need predecessors and successors (i.e., the elements

with non–empty arrays R=), the processor needs to check each

row of its array pR (row i of pR corresponds to the array R;).

Thk could be a costly operation if the dimension of the original

array is large and the processor’s assigned iterations have a sparse

access pattern. However, the need to check each row in pR can

be avoided by maintaining a list of the non–empty rows. This list

can be constructed during the marking phase, and then traversed

in the analysis phase. Another source of inefficiency for machines

with many processors is the search for a particular predecessor (or

successor) since each processor might need to look for a predecessor

in all the preceding (succeeding) processors’ iterations. The cost of

these searches can be reduced from p to O(log p) using a standard

parallel divide–and-conquer “pair-wise” merging approach [16],

where p is the total number of processors.

Privatization and Reduction Recognition. The basic inspector

described above can easily be augmented to find the array elements

that are independent (i.e., accessed in only one iteration), read–only,

privatizable, or reduction variables. We first consider the problem of

identifying independent, read–only, and privatizable array elements.

During the markmg phase, a processor maintains the status of each

element referenced in its assigned iterations with respect to only

these iterations. In particular, if it finds than an element is written in

any of ita assigned iterations, then it is not read+nly. If an element

is accessed in more than one of its assigned iterations, then it is

not independent. If an element was read before it was written in

any of its assigned iterations, then it is not privatizable. Next, the

final status of each element is determined in the cross-processor

analysis phase as follows. An element is independent if and only

if it was classified as independent by exactly one processor, and

was not referenced on any other processor. An element is read–

only if and only if it was determined to be read–only by every

processor that referenced it. Similarly, an element is privatizable

if and only if it was privatizable on every processor that accessed

Sl:
S2:
S3:

Sl:

S2

S3:

doi=l, n

A(K(i)) = .

..... ... ... . = A(L(I))

A(R(i)) = A(R(i)) + expo

enddo

doall I= l,n
markwnte(K(l))

msrkredux(K(i))

A(K(,)) = .......
markreed(L(i))

markredux(L(i))

............ = A(L(i))

markwrite(R(i))

A(R(i)) = A(R(i)) + expo

(a)

(b)

enddoa[l

Figure 4: The transformation of the do loop m (a) is shown m (b). The

markwri t e (mark read) operation adds a record to the processor’s array

pR (if its not a duplicate), and updates the hierarchy vectorPFI appropriately.

The markredux operation invalidates the indicated array element as a

reduction vanable since it is accessed outside the reduction statement s 3.

it. Thus, the elements can be categorized by a similar process to

the one used to find the predecessors and successors when filliig in

the processors’ hierarchy vectors. Finally, if we maintain a liied

list of the non-empty rows of pR as mentioned above, then the

rows corresponding to elements that were found to be independent,

read–only, or pnvatizable are removed from the list, i.e., accesses to

these elements need not be considered when constructing the parallel

execution schedule for the loop iterations.

We now consider the problem of verifying that a statement is

a reduction using run-time data dependence analysis. Recall that

potential reduction statements are generally identified by syntacti-

cally matchmg the statement with the generic reduction template

z = z @ ezp, where z is the reduction variable, and@ is an associa-

tive operator. The statement is validated as a reduction if it can be

shown that z is neither referenced in ezp nor anywhere in the loop

body outside the reduction statement. For example, although state-

ment S 3 in the loop in Figure 4(a) matches a reduction statement,

it is still necessary to prove that the elements of array A referenced

in S 1 and S 2 do not overlap with those accessed in statement s3,

i.e., that K(i) # R(j) and L(i) # R(j), for all 1 < i, j ~ n. It

turns out that this condhion can be tested in the same way that read-

only and privatizable array elements are identified. In particular,

during the marking phase, whenever an element is accessed outside

the reduction statement the processor invalidates that element as a

reduction variable. Again, the final status of each element is deter-

mined in the cross–processor amdysis phase, i.e., an element is a

reduction variable if and only if it was not iuvahdated as such by

any processor. This basic strategy can be extended to handle more

complex reduction operations (refer to [24] for details).

Complexity of the’Inspector. The worst case complexity of the in-

spector is O ( a log p), where a is the maximum number of references

assigned to each processor and p is the total number of processors.

In particular, using the bucket sort implementation, each processor

spends constant time on each of its 0(a) accesses in the marking

phase, and the analysis phase takes time O(a log p) using a parallel

divide–and-conquer pair-wise merging strategy [16], We remark

that since the cost of the analysis phase is proportional to the number

of distinct elements accessed (i.e., the number of non-empty rows

in the pR array) the complexity of thk phase could be significantly

less than O(a log p) if there are many repeated references in the

loop. Also, if a log p > s, then the merge among the processes can

be improved to 0(s + log p) time by chunking the pR arrays.

140



3.2 The Scheduler

The scheduler derives the more restrictive iteration-wise depen-

dence relations from the memory location dependence information

found by the inspector. A valid parallel execution schedule for a

loop is a partition of the set of iterations into ordered subsets called

wavefionfs, so that all cross-iteration dependence go from an it-

eration in a lower numbered wavefront to an iteration in a higher

numbered wavefront. We say that a valid parallel execution schedule

is optimal if it has a miniium number of wavefronts, i.e., is has as

many wavefronts as the longestpath (the criticalpath) in the d~ected

acyclic graph (dag) describing the cross-iteration dependence in the

loop. We remark that the schedulers described below can be used

to construct the full iteration schedule in advance (as described) or

they can be interleaved with the executor, i.e., the iterations could

be executed as they are found to be ready.

A simple scheduler. A simple scheduler that finds an optimal sched-

ule is sketched in Figure 5(a). In the figure, an array wf ( i ) stores

the wavefront found for iteration i, the global variable done flags if

all iterations have been scheduled, rdy ( i ) signals if iteration i is

ready to be executed, lower case letters (a, b) are used for references

to array elements, a. it e r is the iteration which contains reference

a, and Pred (a) is the set of immediate predecessors of a in the

array element dependence graphs. The scheduling is performed in

phases (line 4) so that in phase i the iterations belonging to ith

wavefront are identified. In each phase, all the references recorded

in the pR arrays are processed (limes 7–1 6), and the predecessors

of all references whose iterations have not been scheduled (line 10)

are examined. An iteration is not ready if the iterations of any of its

reference’s predecessors were not assigned to previous wave fronts

(line 11). After all the references are processed, all the iterations

are examined (lines 17–1 9) to see which can be added to the current

wavefron~ an iteration i is ready (lime 18) if none of its references

set rdy ( i ) to false. Advantages of this scheduler are that it is

conceptually very simple and quite easy to implement.

Optimizing the simple scheduler. There are some sources of ineffi-

ciency in this scheduler. First, since a write access could potentially

have many “parent” read accesses it could prove expensive to re-

quire each write to check all its “parents” (line 10). Fortunately, this

problem is easily circumvented by requtimg an unscheduled read

access to inform its successor’s iteration that it is not ready. Then,

a write access only needs TOcheck its predecessor if the (single)

predecessor is also a write.

Another source of inefficiency arises from the fact that each inner

deal 1 (lines 7-16) requires time O(na/p) to identify unscheduled

iterations (line 9), where n= is the total number of accesses to the

shared array and p is the number of processors. Thus, the scheduler

takes time O((n=/p)cpl), where cpl is the length of the critical

path. If cpl > p, then it cannot be expected to offer any speedup

over sequential execution, and even worse, it could yield slowdowns

for longer critical paths. However, note that in any single iteration

of the scheduler, the only iterations that could potentially be added

to the next wavefront must have all their accesses at the lowest un-

scheduled level in their respective element-wise dependence graphs.

For example, consider the dependence graph shown in Figure 5(b).

If iteration 2 (level 1) has not been scheduled yet, then none of

the iterations with accesses in K,gher levels could be added to the

current wavefront. Thus, in each of the cpl iterations of the do

whi 1 e loop, we would like to examine only those references that

are in the topmost unscheduled level of their respective dependence

4

7

8

1;

11

16
17
18
19

wf ( 1 :numlter) = O

done = false.

Cpl = 1

do while (done. eq..false.)

rdy( 1 :nurmter) ~ .tme.

done = true.

doail i = 1, numaccess

a = access(i)

if (wf(a.iter) .eq. O) then

for each (bin Pred(a))

if (wf(b.iter).eq.0) then
done = false.

rdy(a.iter) = false.

end for
(a)

endlf

enddoail

doall i = 1.numiter

if (wf(i)~eq. O and. rdy(l).eq..wue.) wf(l) = cpl

enddoall

Cpl=cpl+l

enddo while

level

DX for A[x]

1

*

2 - iteration
w

4
2,:::;

3
17
w

(b)

4
e

21 22 23
r r r

Figure 5: A simple scheduler(a), and the dependence graph for one of the

memory locations accessedm the loop (b).

graph. First note that we can easily identify the accesses on each

level of the array element dependence graphs since references are

stored in increasing level order in the pR arrays and the pH arrays

contain pointers the first access at each level. To process only the

accesses on the lowest unscheduled level it is useful to have a count

of the total number of (recorded) accesses in each iteration-which

can easily be extracted in the marking phase. Then, in the sched-

uler, a count of the number of ready accesses for each iteration is

computed on a per processor basis in the first doall. (lines 7-16).

In the second doall (lines 17–19), the cross-processor sum of the

ready access counts for each unscheduled iteration is compared to

its total access count, and if they are equal the iteration is added to

the current wavefront.

In summary, we would expect the optimized version to outper-

form the original scheduler if there are multiple levels in the array

element dependence graphs. Hence, the determination of which

version to use should be made using knowledge gained about the

access pattern by the inspector. In [24], we discuss ways to reduce

scheduling overhead such as overlapping wavefront computation

with actual loop execution and using dynamic ready queues [21].

4 A Comparison with Previous Methods

We now compare the methods described in thk paper to sev-

eral other techniques that have been proposed for analyzing and

scheduling do loops at run-time. Most of this woxk has concen-

trated on developing inspectors. A high level comparison of the

various methods is given in Table 1.

Methods utilizing critical sections. The method of Zhu and Yew

[34] computes the wavefronts one after another using a method sirni-
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obtains contzuns requires restricts pnvat

optimal serial global type of or

Method sched portions synch loop reduct

New Yes No No No P,R

ZY [34] NoL No Yesz No No

MP [20] Yes No Yesz No No

KS [13] N03 No Yesz No P

CYT [9] Nol,3 No Yes No ATO

SM [28] N03 No Yes Yes5 No

SMC [30] Yes Yes* Yes Yesb No

LZ [17] Yes No Yes Yes5 No

P [23] No No No No No

RP [25, 26] Noe No No No P,R

Table 1: A comparison of run-time paraltelization [echniques for do loops.

In the table entries, F’ and R show that the method iderrtmes pnvatizable

and reduction variables, respectively. The superscripts have the following

meanings: 1, the merhod serializes all read accesses; 2, performance can

degrade significantly in the presence of hotspots; 3, the schedulerlexecutor

is a doac ross loop (Iterations are started m a wrapped manner) and busy

waits are used to enforce certain data dependence; 4, the inspector loop

sequermatly traverses the access pattern; 5, the method is applicable only to

loops without output dependence (I.e., each memory location is written at

most once); 6, the method identifies only fully parallel loops.

lar to the simple scheduler described in Section 3.2. During a phase,

an iteration is added to the current wavefront if none of the data

accessed in that iteration is accessed by any lower unassigned itera-

tion; the lowest unassigned iteration to access any array element is

found using atomic compare-and-swap synchronization primitives

and a shadow version of the array. Midkiff and Padua [20] extended

this method to allow concurrent reads from a memory location in

multiple iterations. These methods run the risk of a severe degra-

dation in performance for access patterns containing hot spots (i.e.,

many accesses to the same memory location). A feature of them

is that they use only a shadow version of the shared array whereas

all other methods (except [23, 25, 26]) unroll the loop and store all

accesses to the shared array.

Krothapalli and Sadayappan [13] proposed a run-time scheme

for removing anti and output dependence from loops. For each

memory location, their inspector counts the number references to

it (using critical sections as in [34]), places them in a dynamically

allocated array, and then sorts them by iteration number. After

building a dependence graph for each memory location (similar to

our arrays R=), the inspector removes all anti and output depen-

dence by redirecting the accesses to dynamically allocated storage

(using an additional level of indirection). Flow dependence are

enforced using fttll/empty bits. To our knowledge, this is the only

other run-time privatization technique except for the one described

in [25, 26].

Recently, Chen, Yew, and Torrellas [9] proposed an inspector

that first builds (in private storage) access lists for each memory

location referenced in a processor’s assigned iterations (similar to

[13] and our inspector’s marking phase, except they serialize read

accesses), and then links them across processors using a global

Zhu/Yew algorithm [34]. Their scheduler/executor uses doacross

parallelization [28] (see below). Although this scheme potentially

has less communication overhead than [34], it is still sensitive to hot

spots and there are cases (e.g., deal 1s) in which it proves inferior

to [34].

Methods for loops without output dependence. This problem

has also been studied extensively by Sakz et al. [5, 28,29,30, 33].

Most of their work assumes that there are no output dependence

in the source loop. In doa c ross parallelization [28], an inspector

finds the (at most one) iteration in which each variable is written.

The scheduler/executor starts iterations in a wrapped marmer and

processors busy wait until their operands are available. In [30], the

inspector constructs wavefronts that respect the flow dependence by

performing a sequential topological sort of the accesses in the loop,

and the scheduler/executor enforces any anti dependence using old

and new versions of each variable (possible since each variable in

the source loop is written at most once). The topological sort can

be parallelized somewhat using doacross parallelization. Leung

and Zahorjan [17] proposed methods of parallelizing the sequential

inspector of [30]. In theit sectioning method, the loop is chunked

and each processor computes an optimal schedule for its chunk,

and then these schedules are concatenated together separated by

synchronization barriers. In bootstrapping technique, the inspec-

tor is parallelized (not optimally) using sectioning, but an optimal

schedule is produced.

Other methods. In contrast to the above methods which place

iterations in the lowest possible wavefron~ Polychronopolous [23]

gives a method where wave fronts are maximal sets of contiguous

iterations with no cross-iteration dependence. Dependence are

detected using shadow versions of the variables, either sequentially,

or in parallel with the aid of critical sections as in [34].

All of the above mentioned methods attempt to find a valid par-

allel execution schedule for the source do loop. Recently, we con-

sidered a related problem [25, 26]: testing at run-time whether

the loop is fully parallel, i.e., whether there are any cross-iteration

dependence in the loop. Our interest in filly parallel loops is moti-

vated by the observation that they arise frequently in real programs.

5 Implementation and Experimental Results

We present experimental results obtained on two modestly pat-

allel machines with 8 (Alliant FX/80 [1]) and 14 processors (Alliant

FX/2800 [2]). However, we remark that the results scale with the

number of processors and the data size and thus they maybe extrap-

olated for massively parallel processors (MPPs), the actual target of

our run-time methods. To demonstrate that the new methods can

achieve speedups, we applied them to three loops contained in the

PERFECT Benchmarks [4]. To analyze the overhead incurred by

the methods we applied them to access patterns taken from actual

programs and to synthetic access patterns.

The methods were implemented in Cedar Fortran [12]. The in-

spector was essentially as described in Section 3.1. In particular, we

implemented the bucket sort version using separate p.??and pH data

structures for each processor. Each processor constructed a linked

list of the non-empty rows in its pR array during the marking phase.

Checks for independen~ read–only, snd privatizable elerne~~ W.~re

implemented in the inspector (we have not yet included the test for

reduction variables). In the analysis phase, these elements are clrtssi-

fied at the same time that the predecessors and successors are found

for each row. An optimization that we did not yet implement was

the “pair–wise” merge across processors when searching for pre-

decessors or successors in the analysis phase (or when classifying

elements as independent, read–only, or privatizable). However, this

is art irnportmtt optimization since, as previously noted, without it the

analysis phase of the inspector may fail to scale with the number of

processors. Since we implemented the optimized version of the sin-
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ple scheduler described in Section 3.2, a count of the total number

of accesses in each iteration was computed in the marking phase (no

inter-processor communication is needed to determine these counts

since each iteration is assigned to a single processor). For simplic-

i% the scheduler and the executor were completely decoupled in the

implementation, but better speedups should be obtainable by inter-

leaving these two tasks (see Section 3.2). We remark that there are

other issues to be considered when applying these methods in a real

application environment such as memory requirements and known

bounds on the source loop’s available parallelism (refer to [24] for

more details).

Synthetic Loops

Using synthetic loops, we studied the sensitivity of the overhead of

the methods to two characteristics of the source do loop: its average

parallelism (#iterations/cpl) and its hotspot degree (the maximum

number of repeated accesses to any array element). To simplify the

generation of the synthetic workioads, we did not identi@ indepen-

dent, read–only, or privatizable elements in the analysis phase.

Average parallelism. To isolate the effect of the average pmallelism

in the source loop on the overhead of the methods. we generated ac-

cess patterns that were as similar as possible in all aspects except

for the average parallelism: each iteration had two accesses (a read

followed by a write), and every array element was accessed approx-

imately twice.

We would not expect the inspector’s execution time to be depen-

dent on the average parallelism in the source loop since it is fully

parallel. However, as the scheduler runs in cpl steps, its execution

time should be inversely correlated with the average parallelism. In

Figures 6 and 7 we display results from a loop with 2048 iterations

run on 10 processors. The plot shows the overhead incurred for a

loop with a critical path length of “Step.” As expected, the overhead

of the inspector is invariant with the length of the critical path, and

that of the scheduler grows Kmearly with this length.

We also studied how overhead speedup relates to average par-

allelism. The inspector’s overhead is independent of the average

parallelism since it is fully parallel. Although, the scheduler con-

sists of cpl steps, it may still exhibit substantial speedups since each

step is fully parallel. In fact, in Figures 8 and 9 we show that

almost identical speedups are obtained for sequential, partially par-

allel, and fully parallel loops for both the inspector and scheduler.

The slightly diminished slope of the inspector’s speedup curve after

about 10 processors is because our implementation did not use a

“pa&wise” merge among the processors (Section 3.1).

Hotspots. To isolate the effect of the hotspot degree in the source

loop on the overhead of the methods, we generated similar access

patterns differing only in hotspot degree: all loops had 2048 iter-

ations (each with two accesses), a critical path length of 40, and a

loop with hotspot value h contained h references to each of 2048/h

array elements. We would not expect the methods to be negatively

affected by the hot spot degree. In fact, a larger hotspot degree

implies fewer non-empty rows in the pR array, and thus we might

see improved results in the analysis and scheduling phases. The

results in Figure 10 show that in fact the total overhead (inspector+

scheduler) is nearly the same for all hotspot degrees.

Loops from the MA28 Solver

We applied the new methods to loops from real applications, both to

demonstrate the diversity of partially parallel access pat[.ems and afso

to reconfirm the conclusions reached above using synthetic loops.

For this purpose we chose Loop MA30cd/DO_120 from MA28 (a

blocked sparse non-symmetric linear solver [10]). We selected this

loop, which performs the forward-backward substitution in the final

phase of the blocked sparse linear system solver, because it can gen-

erate many diverse access patterns when using the Harwell-Boeing

matrices as input. Unfortunately, the loop itself is no{. a good can-

didate for parallelization since it performs very little work and is

highly itnbalrmced.

We discuss two input sets: gemat12, which generates 4929 it-

erations, and bp_l 600, which generates 822 iterations. After ex-

tracting and precomputing the linear recurrences fro]m the source

loop (based on the methods in [27]), we generated a parallel in-

spector and computed an optimal parallel execution schedule for the

loop. The parallelism profiles obtained (Figures 11 and 12) show

the wavefiont sizes of the optimal parallel execution schedule and

illustrate how the same loop can generate vastly different depen-

dence graphs given dEferent input. Figure 11 shows that most of

the iterations of the loop can be executed in the initial wavefronts

(cpl = 114), which suggests that interleaving the wavefront com-

putation and execution would be more beneficial than overlapping

them, so that parallelization can be abandoned when ihe sequential

tail of the profile is reached. Aldtough in Figure 12 most of the

iterations are also executed in the initial wavefronts, in thk case it

appears that some benefit could be gained by overlapping, i.e., we

can take advantage of the “pauses” in parallelism to compute future

(hopefully larger) wavefronts. The histograms in Figures 13 and 14

underscore the need for scheduling and execution strategies that can

adapt dynamically depending upon the type of parallelism encoun-

tered. Figures 15 and 16 show that overhead speedup is invariant

with the parallelism profile. Larger speedups were not obtained

since the loop is heavily irnbalanced due to the blocked nature of the

algorithm used in MA28.

Perfect Benchmark Loops

We applied the methods to three loops contained in Ihe PERFECT

Benchmarks [4]. In the analysis phase it was found that one of the

loops was fully parallel, and that the other two could be transformed

into doalls by privatizing the shared array under test. Figures 17

through 19 show the speedup measured for each loop as a function

of the number of processors used. As a reference, we give the ideal

speedup, which was measured using an optimally parallelized (by

hand) version of the loop. These graphs show that the :speedup scales

with the number of processors and is a significant percentage of the

ideal speedup. We note that these loops could also be identified

by the LRPD test [25, 26], a run-time test for identifying fully

parallel loops, i.e., loops that can be transformed into (doalls using

privatization and reduction parallelization. Although rhe LRPD test

has a smaller overhead than the methods presented here, it cannot

extract partial parallelism.

In BDNA–ACTFOR–Loop 240, the shared array under test is

accessed through a subscript array computed inside the loop which is

found to b. privatizable in the anstysis phase (Figure 17). In MDG–

INT.ERF-Loop 1000, it is also found that the shaned array under

test is privatizable in the analysis phase (Figure 18). In OCEAN–

FTRVMT-Loop 109, all accesses to the shared array are found to
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be unique in the analysis phase. Since this loop is invoked 26,000

times, artd accounts for 40% of the sequential execution time of the

program, it is an excellent candidate for schedule reuse [30]. The

access pattern for each instantiation of the loop is determined by a

set of five scalars. In order to apply schedule reuse, we checked

whether the current set of scalars matched a previously analyzed set.

If no~ then we applied the parallelization techniques, and if they did

match then we simply executed the loop as a doa 11. As can be

seen in Figure 19, with schedule reuse we obtain scalable speedups

that are comparable to the ideal speedup.

6 Conclusion

Parallelizing statically intractable loops at run-time is an impor-

tant task since automatic, compile–time parallelization had stopped

with regular, well–behaved, statically defined programs-which rep-

resent only a fraction of all applications. We believe that aggressive,

dynamic techniques such as those described here can break this

barrier and extract much of the available parallelism from even the

most complex progrmns. The scalability of our methods ensures that

their run-time overhead can be reduced to an insignificant fraction

of the program’s sequential execution time, which implies that their

significance will only increase with the advent of massively parallel

processors (MPPs).

Although these new methods illustrate the potential benefits of

run-time parallelization, there is still much work left to be done.

For example, there are many potential scheduling strategies that

need to be studied. Another important task is to devise effective, au-

tomatable strategies for determining when and how to use run-time

parallelization. Since speedups obtainable from run-time paral-

lelization are upper bounded by the inherent parallelism of the loop,

the compiler needs to estimate obtainable parallelism. Such esti-

mates can be produced only through collection and interpretation

of valid statistics from programs in different application domains.

The new methods provide a useful tool for such studies since they

determine the dependence graph and parallelism profile of the loop.

It should be noted that rut-time overhead could be significantly

reduced through architectural support.

We view the methods described in this paper as a building block in

an evolving framework of run-time parallelization as a complement

to the existing techniques [25, 26, 27].
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