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Abstract

This paper describes a framework supporting the run-
time monitoring of requirements for systems implemented 
as compositions of web-services specified in BPEL. The 
requirements that can be monitored are specified in event 
calculus. The paper presents an overview of the 
framework and describes the architecture and 
implementation of a tool that we have developed to 
operationalise it. It also presents the results of a 
preliminary experimental evaluation of the framework. 

1. Introduction 

Run-time requirements monitoring is the activity of 
checking whether at run-time a software system operates 
according to requirements set for it  [5],  [6]. This form of 
monitoring is required to detect violations of 
requirements that cannot be detected by static verification 
(e.g. model checking). Violations of requirements may 
not be detectable by static verification if: (a) the 
satisfaction of these requirements depends on 
assumptions about the behaviour of actors in a system's 
environment that cannot be verified before the system is 
put in operation (see assumption A1 in Section 2 for 
example), or (b) system specification models are 
incomplete or have an infinite or large number of states 
that makes static verification intractable. 

The need for run-time requirements verification 
becomes even more important for service-based software 
(SBS) systems (i.e., systems which are composed from 
autonomous web services co-ordinated by some 
composition process). This is because the web-services 
that constitute an SBS system may not be specified at a 
level of completeness that would allow the application of 
static verification methods, and some of these services 
may change dynamically at run-time causing 
unpredictable interactions with other services. 

In this paper, we present a framework that we have 
implemented to support the run-time verification of 
requirements for SBS systems and discuss the results of a 
preliminary experimental evaluation of it. The formal 
foundations of this framework are discussed in [13]. 

Our framework supports the run-time monitoring of 
behavioural properties of an SBS system or assumptions
about the behaviour of the different web-services that 

constitute it or agents in its environment. Behavioural 
properties are automatically extracted from the 
specification of the composition process of the SBS 
system which our framework assumes to be expressed in 
BPEL [1]. Assumptions are additional requirements about 
the behaviour of agents interacting with the system, or the 
individual services of it. Assumptions are specified by 
system providers in event calculus (EC) [10] using an 
XML schema that we have developed to support the 
representation of EC formulas.  

Our framework can monitor three different types of 
deviations from behavioural properties and assumptions. 
These are: (i) violations of assumptions by the recorded 
system behaviour, (ii) violations of behavioural properties 
and assumptions by the expected system behaviour (i.e. 
the behaviour that would have been exhibited by the 
system if assumptions other than the one being checked 
had been satisfied), and (iii) cases of unjustified system 
behaviour that may arise when a system acts incorrectly 
due to incorrect information about its state. 

Monitoring is performed in parallel with the normal 
operation of an SBS system without interrupting it. This 
is possible by intercepting events which are exchanged 
between the composition process of an SBS system and 
its services and the effects of these events on the state of 
the composition process of the system. This approach 
makes run-time monitoring non intrusive as: (a) it does 
not affect the performance of SBS systems, and (b) it 
does not require the instrumentation of the code of the 
composition process of SBS systems or their services to 
generate the events which are required for monitoring. 

The rest of the paper is structured as follows. In 
sections 2 and 3, we present the foundations of our run-
time monitoring framework and an overview of its 
architecture, respectively. In Section 4, we discuss its 
monitoring process. In Section 5, we present the results of 
an initial experimental evaluation of the framework. In 
Section 6, we overview related work and in Section 7 we 
summarise our approach and plans for future work on it.

2. Foundations of Run-time Monitoring 

2.1 Specification of Requirements 

In our framework, the behavioural properties and 
assumptions that are to be monitored at run-time are 
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specified using an XML schema that represents formulas 
of event calculus (EC) [10]. Event calculus is a first-order 
temporal logic language that can be used to specify the 
events that occur within a system and the effects of these 
events (called fluents in EC). 

In an SBS system, the events that may occur can be of 
5 different types: 
(i) Invocation events that signify the invocation of an 

operation in one of the partner services of an SBS 
system by its composition process. These events are 
represented by terms of the form: 
ic:Service:OperationName(Parameters)

(ii) Return events that signify the return from the 
execution of an operation that was invoked by the 
composition process of an SBS system in one of its 
partner services. These events are represented by 
terms of the form:
ir:Service:OperationName(Parameters).

(iii) Request events that signify the invocation of an 
operation in the composition process of an SBS 
system by one of its partner services. These events 
are represented by terms of the form: 
rc:Service:OperationName(Parameters).

(iv) Reply events that signify the reply following the 
execution of an operation that was invoked by a 
partner service in the composition process of an 
SBS system. These events are represented by terms 
of the form: 
re:Service:OperationName(Parameters).

(v) Assignment events that signify the assignment of a 
value to a variable in the composition process of an 
SBS system. Assignment events are represented in 
our framework by terms of the form: 
as:AssignmentName(assignmentId)

The occurrence of an event is represented by the 
predicate Happens(e,t, (t1,t2)) which signifies that an 
event e occurs at some time t within the time range 

(t1,t2). The boundaries of (t1,t2) can be specified by 
using either time constants, or arithmetic expressions 
over the time variables of other Happens predicates of the 
same formula. 

An event may initiate or terminate a fluent. A fluent is 
specified as a condition over the value of a specific 
variable of the composition process of a system. The 
fluent equalTo(x,y), for example, signifies that the value 
of the variable x is equal to y. The effects of events on 
fluents are represented by the predicates Initiates(e,f,t)
and Terminates(e,f,t). Initiates(e,f,t) signifies that a fluent 
f starts to hold after the event e at time t. Terminates(e,f,t) 
signifies that a fluent f ceases to hold after the event e
occurs at time t. An EC formula may also use the 
predicate HoldsAt(f,t) which signifies that the fluent f
holds at time t.

An EC formula in our framework can also specify 
additional constraints about the time variables of 
predicates using the predicates < and  (t1 < t2 is true if 
t1 is a time instance that occurred before t2, and t1 = t2 is 
true if t1 is a time instance that is equal to t2).

Behavioural properties: 
B1. (  t1:Time) ( t2:Time)  ( t3:Time) 

Happens(rc:UI:CarRequest(oID1),t1, (t1,t1)) 
Initiates(rc:UI:CarRequest(oID1), equalTo(p,pID),t1) 

 Happens(ic:IS:FindAvailable(oID2, pID),t2, (t1,t2)) 
Happens(ir:IS:FindAvailable(oID2),t3, (t2,t3)) 
Initiates(ir:IS:FindAvailable(oID2), equalTo(res,vID),t3) 
( t4:Time) Happens(re:UI:CarHire(oID3,vID), t4, (t3,t3+tu))

Assumptions:
A1.  (  t1,t2:Time) Happens(rc:SS:Enter(oID1),t1, (t1,t1)) 

Initiates(rc:SS:Enter(oID1), equalTo(v1, vID), t1) 
 Initiates(rc:SS:Enter(oID1), equalTo(p1, pID1), t1) 
 Happens(rc:SS:Enter(oID2),t2, (t1+tu,t2)) 

Initiates(rc:SS:Enter(oID2), equalTo(v2, vID), t2) 
 Initiates(rc:SS:Enter(oID2), equalTo(p2, pID2), t2) 

( t3:Time) Happens(rc:SS:Depart(oID3),t3, (t1+tu,t2 tu)) 
Initiates(rc:SS:Depart(oID3), equalTo(v3, vID), t3) 

 Initiates(rc:SS:Depart(oID3), equalTo(p3, pID1), t3) 
A2. (  t1, t2:Time) 
 Happens(ic:IS:FindAvailable(oID,pID), t1, (t1,t1)) 
 Happens(ir:IS:FindAvailable(oID), t2, (t1,t2)) 

HoldsAt(equalTo(availability(vID1),"not avail"), t2 tu)
Initiates (ir:IS:FindAvailable (oID),equalTo(vID2, vID1), t2)  

A3. (  t1, t2, t3:Time) 
 Happens(ic:UI:RelKey(oID1,vID), t1, (t1, t1)) 

Happens(ir:UI:RelKey(oID1), t2, (t1, t2)) 
Happens(rc:UI:RetKey(oID2), t3, (t2, t3)) 

 Initiates(rc:UI:RetKey(oID2), equalTo(v, vID), t3) 
 ( t4:Time) ((t1 < t4)  (t4 < t3)

HoldsAt(equalTo(available(vID),"not-avail"),t4) 

In the above formulas, all non-time variables are assumed to be 
universally quantified and tu is the minimum time between two events.

Figure 1. Requirements for CRS 

Figure 1 shows some examples of behavioural 
properties and assumptions for a car rental system (CRS). 
CRS acts as a broker offering its customers the ability to 
rent cars provided by different car rental companies, 
directly from car parks at different locations. CRS 
interacts with: 

Car information services (IS) provided by different 
car rental companies to maintain registries of cars, 
check car availability and allocate cars to customers. 
Sensoring services (SS) provided by different car 
parks in order to sense cars as they enter in or depart 
from car parks, and inform CRS accordingly. 
User interaction services (UI) handling interactions 
with end-users. 
A Payment service (PS) that CRS uses to take 
electronic payments for car rentals. 
In a typical scenario, CRS receives a car rental request 

from a UI service and checks for the availability of cars 
by contacting IS services. If an available car can be found 
at the requested location, CRS books the car rental 
through an IS service, and takes payment through the PS 
service. When cars move in and out of car parks, 
respective SS services inform CRS, which subsequently 
invokes operations in IS services to update the 
availability status of the moved car. 

The formula A1 in Figure 1 expresses an assumption 
about the behaviour of the sensoring services (SS) of 
CRS. According to it, if a car vID is sensed to enter a car 
park pID1 at some time t1 and later at time t2 the same 
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car is sensed to enter the same or a different car park, 
then a Depart event signifying the departure of vID from 
pID1 must have also occurred between the two enter 
events. The Happens predicates in A1 represent the 
invocation of the operations Enter and Depart in CRS by 
SS following the entrance and departure of cars in car 
parks. The Initiates predicates in the same formula 
initiate fluents that represent the specific value bindings 
of the input parameters vi and pi (i=1,…,3) of the 
operations Enter and Depart. A1 represents a composite 
requirement whose satisfiability depends on the 
availability of SS services and their ability to function 
correctly. This requirement cannot be verified by static 
analysis and must be monitored at run-time.  

2.2 Deviations

As discussed in Section 1, our framework can detect 
violations of assumptions by the recorded run-time 
behaviour of a system, violations of assumptions and/or 
behavioural properties by the expected behaviour of a 
system, and cases of unjustified behaviour.  

Violations of assumptions by recorded behaviour. As 
defined in [13], an assumption  is violated by the 
recorded behaviour of a system at time T if the negation 
of f is entailed by the set of the recorded events ER(T) that 
have been produced by the system until T or, formally, if: 
{ER(T)} |=nf  ( |=nf signifies entailment using the 
normal rules of inference of first-order logic and the 
principle of negation as failure). 

L1 : Happens(rc:SS:Enter(op1),1, (1,1)) 
L2 : Initiates(rc:SS:Enter(op1), equalTo(v1,veh1),1) 
L3 : Initiates(rc:SS:Enter(op1), equalTo(p1,loc1),1) 
L4 : Happens(rc:SS:Enter(op2),27, (27,27)) 
L5 : Initiates(rc:SS:Enter(op2), equalTo(v1,veh1),27) 
L6 : Initiates(rc:SS:Enter(op2), equalTo(p1,loc3),27) 
L7 : Happens(ic:UI:RelKey(op3, veh2),28, (28,28)) 
L8 : Happens(ir:UI:RelKey(op3), 29, (29,29)) 
L9 : Happens(rc:UI:CarRequest(op4),49, (49,49)) 
L10: Initiates(rc:UI:CarRequest(op4),equalTo(p,loc2),49) 
L11: Happens(ic:IS:FindAvailable(op5,loc2),50, (50,50)) 
L12: Happens(ir:IS:FindAvailable(op5), 51, (51,51)) 
L13 : Initiates(ir:IS:FindAvailable(op5), equalTo(Res,veh2),51) 
L14: Happens(re:UI:CarHire(op6,veh2,loc2), 52, R(52,52)) 
L15: Happens(rc:SS:Enter(op7),53, (53,53)) 
L16: Initiates(rc:SS:Enter(op7), equalTo(v1,veh2),53) 
L17: Initiates(rc:SS:Enter(op7), equalTo(p1,loc4),53) 
L18: Happens(rc:UI:RetKey(op8),54, (54,54)) 
L19: Initiates(rc:UI:RetKey(op8), equalTo(v, veh2), 54) 
L20: Happens(rc:UI:CarRequest(op9),69, (69,69)) 

Figure 2. Event log of CRS 

Assuming the log of events of the CRS system shown 
in Figure 2, the recorded behaviour of CRS violates the 
assumption A1. This is because there are two enter events 
that signify the entrance of veh1 first to car park loc1 at 
T=1 (see literals L1-L3 in Figure 2) and, subsequently, to 
car park loc3 at T=27 (see literals L4-L6 in Figure 2) but 
no depart event to signify the departure of veh1 from loc1
between these enter events. 

Violations of assumptions and/or behavioural 
properties by expected behaviour. A behavioural 
property or assumption of the form : C1 A1 is violated 
by the expected behaviour of an SBS system if the 
negation of f is entailed by the set of the recorded events 
of the system and the events that can be deduced from 
them by the behavioural properties and assumptions of 
the system that f depends on. As defined in  [13], f
depends on a formula g: C2 A2 if the head A2 of g has a 
literal L that unifies either with some literal K in the body 
C1 of f or with some literal K in the body of another 
formula h that f depends on. Assuming that dep( ) is the 
set of the formulas that f depends on and EU(dep( ),T) is 
the set of events that can be produced from these 
formulas by deduction, a behavioural property or 
assumption f is violated by the expected behaviour of an 
SBS system at time T if: {ER(T), EU(dep( ),T), ECa} |= nf 

 (ECa denotes the standard set of axioms of event 
calculus  [10]).  

Given the event log of Figure 2, the assumption A2 is
violated by the expected behaviour of CRS. A2 is an 
assumption about the behaviour of IS services. According 
to this assumption, the operation FindAvailable, which is 
provided by the IS service of CRS and searches for 
available cars at specific car parks should not return the 
identifier of a car to CRS unless this car is available. The 
violation of A2 in this case occurs since from the 
assumption A3 in Figure 1 (A3 states that whilst a 
customer has the key of a car this car cannot be available 
for renting) we can derive that veh2 could not be 
available from T=30 when its key was released (see 
literals  L7 and  L8 in Figure 2) until T=53 (that is one 
time unit before its key was returned back - see literals 
 L18 and  L19 in Figure 4). Nevertheless, the execution of 
the operation FindAvailable of the IS service at T=51 
reported veh2 as an available vehicle (see literal  L13 in 
Figure 2). 

Unjustified Behaviour. The third type of deviation 
that can be detected by our framework occurs when the 
conditions of a behavioural property  that has generated 
an event e are satisfied by the recorded system behaviour 
but violated by the expected system behaviour. In such 
cases, the generation of the event e is the result of wrong 
assumptions about the satisfiability of the conditions of 
that the system makes at run-time, and constitutes what 
we refer to as "unjustified behaviour". Formally, a 
behavioural property of the form : C A is said to 
generate unjustified behaviour if and only if there is a 
literal e such that
(i) e  ER(T) and  e can be unified with A 
(ii) {ER(T)  {e}, , ECa} |=nf e and {ER(T)  {e}, BS

{ }, ECa} | nf e  (BS is the set of the behavioural 
properties of a system) 

(iii) there is a literal L in C for which, {ER(T), 
EU(dep( ),T), ECa} |=nf L

The conditions (i)-(ii) identify an event e which has 
been generated by the system due to the realisation of a 
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formula . The satisfaction of these conditions implies
that the conditions of f are satisfied by the recorded
behaviour of the system. Note, however, that according to 
condition (iii), there is some condition in C that would
not be satisfied if all the events that could be generated by
formulas which f depends on are taken into account. In
such cases, e is the result of behaviour that is based on
wrong assumptions about the satisfiability of the
conditions of  that the system makes at run-time.

Given the event log of Figure 2, a case of unjustified
behaviour of CRS that has been caused by the
behavioural property B1 can be detected at T=54. B1
states that following the receipt of a request for a car 
rental, CRS will contact IS services to find an available
vehicle and if such a vehicle can be found it accept the 
request. More specifically in this case, as the literals L9-
L13 in Figure 2 indicate, all the conditions of B1 were
satisfied at T=51 and therefore CRS replied to the car hire
request that it had received from its UI service by
invoking the operation CarHire in it at T=52 (see the
literal L14 in Figure 2) as specified by B1. Note,
however, that if the IS and SS services of CRS had
behaved according to the assumptions A2 and A3
respectively the condition
Initiates(ir:IS:FindAvailable(oID2), equalTo(res,vID),t3)
of B1 would have been violated. The violation of this
condition of B1 can be deduced from:

the literals L11 and L12 the event log of Figure 2;
the assumption A2 about the behaviour of SS (A2
belongs to dep(B1)), and
the literal HoldsAt(equalTo(availability(veh2), "not
avail"), 50) that can be derived from the literals L7, L8,
L18 and L19 in the event log of Figure 2 and the
assumption A3 (A3 belongs to dep(A2)).

In other words, if IS and SS had behaved as expected
by the assumptions A2 and A3 in this case, veh2 should
not have been reported by the operation FindAvailable
as available and, subsequently, veh2 should not have been
hired. The formal derivation of the inconsistency in this
example is discussed in [13].

3. Architecture of the Framework

Our monitoring framework has been implemented in
JavaTM and incorporates the components shown in Figure
3, namely: a behavioural properties extractor, an
assumption editor, an event receiver, a monitor, and a 
deviation viewer.

The behavioural properties extractor extracts the
behavioural properties to be monitored from the BPEL
composition process of an SBS system. Behavioural
properties are extracted according to the patterns that we 
describe in [13] and represented in an XML-based
language that we have defined to represent EC formulas.
This language cannot be presented here due to limited
space but is discussed in [12]. The properties extractor 

also identifies events, effects and state variables in the
SBS composition process that provide the primitive
constructs for specifying further assumptions about the
behaviour of the system. These assumptions are specified
by system providers using the assumption editor.

Figure 3. Monitoring framework

The assumption editor presents system providers with
the different types of events and fluent initiation
predicates that have been identified in the SBS 
composition process and supports the specification of 
assumptions as logical combinations of these event and 
fluent initiation predicates. System providers may also
use the editor to define additional fluents to represemt
service and system states and relevant initiation and 
holding predicates. When an assumption is specified, the
assumption editor can check its syntactic correctness.
Figure 4 presents an intermediate step in specifying the
assumption A1 using the assumption editor.

Figure 4. The assumptions editor

While executing the composition process of an SBS
system, the process execution engine generates events
which are sent as string streams to the event receiver of
our framework. In our implementation, we have used the
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bpws4j process execution engine [8]  that uses log4j [9] 
to generate logs of the events during a BPEL process 
execution.  The event receiver identifies the type of the 
events in its input stream, filters out events which are 
irrelevant to the monitoring process and records all other 
events in an event database. Irrelevant events are 
determined by the formulas that have been extracted or 
specified for monitoring by the system provider. 

The monitor processes the events which are recorded 
in its database by the event receiver in the order of their 
occurrence, identifies other expected events that should 
have happened but have not been recorded (these events 
are derived from the assumptions by deduction), and 
checks if the recorded and expected events are compliant 
with the behavioural properties and assumptions of the 
system. In cases where the recorded and expected events 
are not consistent with these requirements, the monitor 
records the deviation in a database. 

The framework incorporates also a deviation viewer
that is used to browse the detected violations of the 
formulas. A snapshot of this viewer is shown in Figure 5. 

4. The Monitoring Process 

At runtime, the monitor maintains templates that 
represent different instantiations of the formulas to be 
checked. A template for a formula f  stores: 

The identifier (Id) and type of f. The type of f is F
(future) if all the predicates in f whose time variables 
are constrained by time variables of other predicates 
must occur after these predicates (e.g., formula B1 in
Figure 1) or P (past) if there is one predicate p that 
must occur before another predicate q that constraints 
it (e.g., formula A1 in Figure 1). 

A list of pairs (i, p) indicating formulas depending on 
f (i) and the predicate creating the dependency (p).

The current unification ut computed for the template.

For each predicate p in f : 

- The quantifier of its time variable (Q) and its 
signature (SG). 

- The boundaries (LB, UB) of the time range in which p
should occur. 

- The truth-value (V) of p which can be: UN (i.e., 
unknown), T (true), or F (false). 

- The source (SC) of the evidence for the truth value of
p which can be: UN (if the truth value has not been 
established), RE (if the truth value is established by a 
recorded event), DE (if the truth value is established 
by a derived event), or NF (if the truth value is 
established by the principle of negation as failure) 

- A time stamp (TS) indicating the time in which the 
truth-value of p was established. 
The monitor picks events in the order of their 

occurrence from the event database and checks if there 
are formula templates that should be updated by them. A 
template is updated by an event as specified in the 
algorithm shown in the appendix. This algorithm 

distinguishes two types of predicates: (i) predicates with 
existentially quantified time variables and (ii) predicates 
with universally quantified time variables. 

Existentially quantified predicates. The truth-value of 
a predicate of the form ( t)p(x,t) where t must be in the 
range (t1,t2) is set to true as soon as the first event e
that can be unified with p occurs between t1 and t2. If no 
such event occurs at the distinguishable time points 
between t1 and t2 the truth value of p is set to false. The 
absence of events unifiable with p is confirmed as soon as 
the first event that cannot be unified with p occurs either 
on t2 or after this time point. The truth value of a 
predicate of the form ( t)p(x,t) is established in the 
opposite way: as soon as an event e that can be unified 
with p occurs between t1 and t2 the truth value of p is set 
to false and if no such events occur at the distinguishable 
time points between t1 and t2 it is set to false.

Universally quantified predicates. The truth value of 
a predicate of the form ( t)p(x,t) where t must be in the 
range (t1,t2) is set to false as soon as an event that is 
not unifiable with p occurs between t1 and t2, and to true
if all the events that occur at the distinguishable time 
points between t1 and t2 can be unified with p. For 
predicates of the form ( t)p(x,t), the algorithm sets 
their truth value to true as soon  as the first event that is 
not unifiable with p occurs within the time range (t1,t2) 
and false if no such event occurs at any of the 
distinguishable time points between t1 and t2. A special 
kind of universally quantified predicates are 
unconstrained predicates of the form ( t)p(x,t) whose 
time range is instantaneous and is not constrained by the 
time variables of other predicates (i.e., a range of the 
form (t,t)). The truth value of such predicates is set to 
true as soon as an event that can be unified with them is 
encountered by the monitor.  

When the truth values of all predicates in a template 
have been determined, a check for possible formula 
violations is performed. In the case of F-formulas, for 
example, if the truth-value of all the predicates in the 
template is true the formula is satisfied. If the truth value 
of all the predicates in the body B of a formula : B H is 
true and the truth-value of at least one predicate in the 
head H of it is false and the source of all predicates is RE
or NF, a violation of the formula by the recorded 
behaviour of the system is detected. 

Example. Following the occurrence of the event L9
in Figure 2 that can be unified with the unconstrained 
predicate Happens(rc:UI:CarRequest(oID1),t1, (t1,t1))
of B1, the monitor creates the template shown below for 
this formula. The truth value (V) of the predicate 
Happens(rc:UI:CarRequest(oID1),t1, (t1,t1)) in this 
template is set to true, its time stamp (TS) along with the 
upper and lower bound of the time range of the predicate 
(UB and LB) are set to 49 (i.e., the time stamp of the 
event  L9), and the source (SC) of the truth value of the 
predicate is set to RE to signify the update of the truth 
value due to a recorded event. 
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Id: B1 T F DP
ut { (oID1, op4) }
P Q SG TS LB UB V SC
1 Happens(rc:UI:CarRequest(

oID1),t1, (t1,t1)) 49 49 49 T RE

2 Initiates(rc:UI:
CarRequest(oID1),
equalTo(p,pID),t1)

49 49 49 UN UN

3 Happens(ic:IS:FindAvailabl
e(oID2,pID), t2, (t1,t2))

t2 49 t2 UN UN

4 Happens(ir:IS:
FindAvailable(oID2),t3,

(t2,t3))

t3 t2 t3 UN UN

5 Initiates(ir:IS:
FindAvailable(oID2),equalT
o(res,vID),t3)

t3 t2 t3 UN UN

6 Happens(re:UI:
CarHire(oID3,vID),t4,

(t2,t2+tu))

t4 t3 t3
+1

UN UN

Note that, as a result of the update of the time variable
of Happens(rc:UI:CarRequest(oID1),t1, (t1,t1)) the monitor
also sets the time boundaries LB and UB of the predicates
Initiates(rc:UI:CarRequest(oID1), equalTo(p,pID),t1) and
Happens(ic:IS:FindAvailable(oID2,pID),t2, (t1,t2)) in the
template. Then, when the event L10 is processed, the
monitor sets the truth value of the predicate Initiates(rc:UI:
CarRequest(oID1),equalTo(p,pID),t1) to true and updates its
time stamp and source to 49 and RE, respectively.
Subsequently, following the processing of events
 L11 L13, the above template for B1 takes the following
form:

Id B1 T F DP
ut {(oID1, op4), (pID, loc2), (vID, veh2), (oID2, op5), (p, p), (oID3,

op6)
P Q SG TS LB UB V SC
1 Happens(rc:UI:CarReq

uest(oID1),t1, (t1,t1)) 49 49 49 True RE

2 Initiates(rc:UI:
CarRequest(oID1),
equalTo(p,pID),t1)

49 49 49 True RE

3 Happens(ic:IS:FindAv
ailable(oID2,pID), t2,

(t1,t2))

50 49 50 True RE

4 Happens(ir:IS:
FindAvailable(oID2),t3
, (t2,t3))

51 50 51 True RE

5 Initiates(ir:IS:
FindAvailable(oID2),e
qualTo(res,vID),t3)

51 50 51 True RE

6 Happens(re:UI:
CarHire(oID3,vID),t4,

(t2,t2+tu))

t4 51 52 UN UN

At this point, the next event to be processed by the
monitor is the event L14 in Figure 2. This event can be
unified with the predicate
Happens(re:UI:CarHire(oID3,vID),t4, (t2,t2+1)) in the
template and as it occurs before the upper time boundary
of it (i.e., T=52), the truth value of the predicate is set to
true, and its source and time stamp are set to RE and 52,
respectively.

Figure 5. Deviation viewer

Following the establishment of the truth values of all 
the predicates in this template, the monitor can check it
for possible violations. No violation, however, occurs
until T=54, when the monitor derives the event

Initiates(ir:IS:FindAvailable(oID2), equalTo(res,veh2),51) as
we described in Section 2. Following the derivation of
this event, the monitor will detect that it contradicts with 
the instantiation of the predicate Initiates(ir:IS:
FindAvailable(oID2),equalTo(res,vID),t3) in the above 
template of B1 and since this predicate is one of the 
conditions of B1, it will record a case of unjustified
behaviour.

System providers may view templates with recorded
deviations using the deviation viewer of the prototype
that implements the monitoring framework. Figure 5
shows a snapshot of this component of the prototype.

5. Evaluation 

To evaluate our monitoring framework we performed
a series of experiments in which we used an 
implementation of the CRS example as a case study. In
this case study, we extracted 7 behavioural properties
from the BPEL specification of the composition process
of CRS and specified 4 assumptions about the system and
(these included the assumptions shown in Figure 1). The
BPEL process of our case study and the behavioural
properties and assumptions specified for it can be found 
at: www.soi.city.ac.uk/~am697/CRS_Case_Study.html.

The objective of our experiments was to measure: (a)
the number of different types of violations that can be
detected at run-time, (b) the average delay that occurs in
detecting these violations, (c) the average delay for 
processing each event, and (d) the idle time of the
monitor during the operation of the system.

In the experiments, we used a simulator that we 
developed to create sequences of events that can be
generated by a given BPEL process. This simulator
extracts all possible complete execution paths in a given
BPEL process and expresses them as event calculus
formulas.  For each of the non-time variables in these
formulas, the user must define the type (i.e., string,
number or an enumeration) and size (i.e., the number of
distinct elements) of its domain. For unconstrained time
variables, the user must define the distribution function of
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their values. For the formula Happens(ic:p:A(id,x), t1, (t1,
t1)) Happens(ic:p:B(id, y), t2, (t1, t1 + 10)), for example,
the user can declare the domains of x and y as strings with
a maximum of 50 different values, and t2 as a time
variable uniformly distributed in the range (t1, t1+10).

The simulator selects randomly a formula
representing an execution path and generates all the
events in it in the order they are expected. The time stamp
of each of these events is computed randomly according 
to the distribution of the time variable of the relevant
predicate. For predicates with unconstrained time
variables (e.g. the predicate Happens(ic:p:A(id,x), t1, (t1,
t1))) in the above formula,  the simulator creates a random
time stamp according to the distribution function of the
time between different execution paths that is also set by
the user. Finally, for non time variables, the simulator
picks up randomly a value for each predicate variable
from the respective variable domain.

Table 1. Basic time measures
Time Meaning/Calculation

ti

e Time of event i as generated by the simulator.

Ts

m Starting time of the monitor.

Tc

m Current time of the monitor.

ti

e(d) Time of recording of an event i in the monitor's database.

ti

e(d)

 = (ti

e

 t0

e

) + Ts

m

where t0

e

 is the first event that has
been generated by the simulator.

ti

M Time when the monitor retrieves an event i from its 
database to process it.

TS

Fj Starting time of the decision procedure that checks for
violations caused by a template j of a formula F

TE

Fj Time of completion of the check for violations caused by
a template j for a formula F

Given the basic time measures shown in Table 1 that
were taken in our experiments, we measured:
(i) The average delay in making a decision about possible

violations in a template using the formula
d-delay = i=1,…,N dj / N 

where
N is the number of the formula templates for which
a decision has been made
dj is the delay in making the decision for template j

that is computed as di = max(TE

Fj
TS

Fj
+ maxi Fj (

ti

e(d)
),TE

Fj
) where i ranges over the events used to 

establish the truth values of the formulas in Fj).
(ii) The average delay in processing an event using the

formula:

 e-delay = i=1,…,K where ti
M  ti

e(d) > 0  (ti

M
 ti

e(d)
) / K 

where K is the total number of events.
(iii) The monitor's idle time using the formula

idle-time = event i where ti
e(d)  ti

M > 0  (ti

e(d)
ti

M
)

In the experiments, we ran 3 simulations of the CRS
system. In the first of these simulations (Sim 1) we used a 
set of 50 customers, 20 cars and 3 car parks. In the
second simulation (Sim 2), we increased the number of 
customers, cars and car parks to 100, 40 and 6, 
respectively. And in the third simulation (Sim 3), we

increased these numbers to 200, 80 and 12, respectively.
For each of these simulations, we generated 5 different
sets of events having 1000-1020, 2000-2020, 3000-3020,
4000-4020, and 5000-5020 events respectively (small
differences in the number of events of each simulation
occurred due to the need to produce all the events of the
last execution path selected by the simulator). The graphs
in Figures 6-7 summarise our performance findings.
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Figure 6. d-delay for violations

More specifically, Figure 6 shows the average delay 
for detecting different violations (d-delay) when only
recorded events were taken into account (Figure 6.(i)) and
when both recorded and derived events were taken into
account (Figure 6.(ii)). The results were mixed. In Sim 1,
we observed a linear increase in d-delay up to 4,000
events and then a steeper but linear increase for higher
event numbers. In Sim 2, d-delay increased linearly with
the number of the events all the way through and in Sim
3, we observed a drop in d-delay after 4,000 events. All
simulations, however, demonstrated that the
incorporation of derived events in monitoring did not
affect d-delay. This was due to the fact that the derived
event generator of the monitor runs in parallel with the
monitoring process.
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Figure 7. Monitor's idle and event waiting time 

The aggregate monitor's idle  time that is shown in 
Figure 7.(i) went down to very low levels for all three
simulations after about 3,000 events and only in Sim 3 it 
went up again to 1,000 secs in 5000 events. This finding
was in line with the drop in d-delay that we observed in
this simulation. The opposite trend was observed in e-
delay: in Sim 1 and Sim 2 the average delay in processing
an event was 3.2 and 17.7 secs at 1000 events and went
up to 584 and 573.2 secs at 5000 events, respectively.

The number of different types of inconsistencies that
were detected in our simulations is shown in Table 2. As 
shown in this table the number of violations of
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assumptions due to recorded events (see columns T1 in 
Table 2) increased linearly with the number of events in 
all simulations. The number of violations by expected 
behaviour showed a less clear pattern as in two 
simulations (Sim 1 and Sim 2) there was a drop in it after 
4,000 events and only in Sim 3 it increased linearly along 
with the number of events. Cases of unjustified behaviour 
were detected only in Sim 2.

Table 2. Number of violations 
Sim 1 Sim 2 Sim 3 

Events T1 T2 T3 T1 T2 T3 T1 T2 T3

1000-1020 8 0 0 9 0 0 7 0 0 

2000-2020 13 13 0 13 54 2 15 38 0 

3000-3020 18 47 0 25 39 38 25 62 0 

4000-4020 26 107 0 28 100 0 25 96 0 

5000-5020 40 83 0 40 74 0 27 123 0 

The above results have been positive as they 
demonstrate that the size of the domains of the variables 
used in the formulas did not affect the performance of the 
monitor. Also there were cases where a drop in the delay 
of detecting violations was observed after a certain 
number of events (see Sim 3). Clearly, optimisations of 
the monitoring process (e.g. use of multiple parallel 
monitors) will be necessary to make our approach 
applicable to large scale systems, and further experiments 
will be required to confirm our initial results. 

6. Related Work 

Run-time requirements monitoring has been the focus 
of different strands of requirements engineering research. 
Most of the existing techniques (e.g. [5][6][11]) express 
requirements in the KAOS framework [7] as high level 
goals that must be achieved by a system. These goals are 
mapped onto events that must be monitored at run-time. 
Typically, the existing approaches assume that the events 
to be monitored are generated by special statements 
which must be inserted in the code of a system for this 
purpose (i.e., instrumentation) [6]. Note, however, that 
instrumentation cannot be always applied to SBS systems 
since typically service providers are not the owners of the 
services deployed by the system.   

More recently, there has been research focusing on 
monitoring of SBS systems. Barezi et al  [4], for example, 
have developed a monitoring tool that supports the run-
time monitoring of assertions which are inserted into 
composition process of an SBS system specified in 
BPEL. When the execution of this process reaches the 
point where an assertion must be checked it calls an 
external service that checks the assertion. The execution 
of the composition process waits until the monitor returns 
the result of the check and it may continue or raise an 
exception depending on whether the assertion has been 
violated. 

A different approach has been developed by Robinson 
[11]. In this approach, requirements are expressed in 

KAOS and analysed to identify obstacles for them (i.e., 
conditions under which they can be violated). If an 
obstacle is observable (i.e., it corresponds to a pattern of 
events that can be observed at run-time), it is assigned to 
an agent for monitoring. At run-time, an event adaptor 
translates web service requests and replies expressed as 
SOAP messages into events and a broadcaster forwards 
these events to the obstacle monitoring agents which are 
registered as event listeners to the broadcaster. 

7. Conclusions 

In this paper, we have presented the implementation 
and results of a preliminary experimental evaluation of a 
framework that we have developed to monitor 
requirements for service-based systems. This framework 
is applicable to service-based systems whose composition 
process is specified in BPEL and specifies the 
requirements to be monitored against such systems in 
event calculus. These requirements may be behavioural 
properties automatically extracted from the composition 
process of a service based system or assumptions 
specified by system providers. EC was chosen as the 
requirements representation language of our framework 
as it provides a formal temporal language amenable to 
reasoning based on the inference rules of first-order logic 
unlike other temporal logic languages.  

We have implemented a prototype of this framework 
in JavaTM and used it in a preliminary set of experiments 
to evaluate the performance of our framework. These 
experiments have confirmed that, due to its non-intrusive 
nature, our framework detects violations with some delay. 
On average, this delay has been found to increase linearly 
with the number of system events. Our experiments have 
also indicated no effect of the size of the domains of 
variables of formulas onto the delay of violation 
detection. 

On-going work on the framework is concerned with: 
(i) the translation of service requirements expressed in the 
WS-Policy [3] and WS-Agreement [2] standards into the 
event calculus based language used by our framework, 
and (ii) the optimisation of the monitoring process 
deployed by the framework (e.g. introduction of formula 
template pruning capabilities). 

Acknowledgements 
The work reported in this paper has been partially 

funded by the European Commission under the 
Information Society Technologies Programme as part of 
the project SeCSE (contract IST-511680). 

References 
[1] Andrews T. et al. "Business Process Execution Language 

for Web Services", v1.1, http://www-
106.ibm.com/developerworks/library/ws-bpel

[2] Andrieux A. et al. "Web Services Agreement 
Specification", Global Grid Forum, 2004,  

Proceedings of the IEEE International Conference on Web Services (ICWS’05) 
0-7695-2409-5/05 $20.00 IEEE 



http://www.gridforum.org/Meetings/GGF11/Documents/dr
aft-ggf-graap-agreement.pdf 

[3] Bajaj S. et al. "Web Services Policy Framework", 2004, 
ftp://www6.software.ibm.com/software/developer/library/
ws-policy.pdf 

[4] Baresi L., Ghezzi C., and Guinea S. "Smart Monitors for 
Composed Services", Proc. of 2nd Int. Conf. on Service 
Oriented Computing, 2004 

[5] Feather M.S., Fickas S., Van Lamsweerde A. and Ponsard 
C., "Reconciling System Requirements and Runtime 
Behaviour". Proc. of 9th IWSSD, 1998. 

[6] Robinson W. "Monitoring Software Requirements using 
Instrumented Code". Proc. of the Hawaii Int. Conf. on 
Systems Sciences, 2002. 

[7] Dardenne A., van Lamsweerde A. and Fickas S., "Goal-
Directed Requirements Acquisition", Science of Computer 
Programming, 20:3-50, 1993. 

[8] BPWS4J, http://alphaworks.ibm.com/tech/bpws4j
[9] http://logging.apache.org/log4j/docs/, September 2003 
[10] Shanahan M. "The event calculus explained", Artificial 

Intelligence Today, 409-430, 1999 
[11] Robinson W.N., "Monitoring Web Service Requirements", 

Proc. of 12th Int. Conf. on Req. Engineering, 2003 
[12] Mahbub K., Spanoudakis G. "A Scheme for Requirements 

Monitoring of Web Service Based Systems", Technical 
Report, Computing Dept., City University, London, 2004. 

[13] Mahbub K., Spanoudakis G. "A Framework for 
Requirements Monitoring of Service Based Systems" Proc.
of 2nd Int. Conf. on Service Oriented Computing, 2004 

Appendix: Event Processing Algorithm

EVENT_UPDATE(T,E): TL 
/* E:event, T: formula template */   
1. TL = {} /* TL is a list of new templates created from T */
2. for each predicate P in T such that P.V=UK do
3.   ucur := imgu(E,P,ut|P)
4.   if (P.tv is unconstrained) then 

5.      if(ucur ) then 

6.        if partial(ut|P) & ucur  ut|P then 

7. T' := T; TL := TL  T’ 
8. end if 

9.        P.V:= (P.NoQ xor E.NG); P.SC := RE; 

10.      P.TS := E.TS; ut := ut  ucur;
11.      update boundaries of all other predicates Q in T
       where Q.tv is constrained by P.tv;
12.     end if
13.  else /* predicates with constrained time vars*/

14.   if (P.Q = ) then 

       /* predicate type: t.p(x,t) or t.p(x,t) */

15.       if ucur & E not negated  &  (P.LB E.TS P.UB) then

16.          if partial(ut|P) & ucur ut|P then 

17.      T' := T; TL := TL  T’ 
18.        end if 

19.          P.V :=  P.NoQ; P.SC := RE; P.TS := E.TS; 

20.     ut := ut  ucur;
21.         update boundaries of all other predicates Q in T
        where Q.tv is constrained by P.tv;
22.       else
23.        if E.TS < P.UB then

24.            if ucur & E is negated & E.TS=P.TS+mint then   then

25.                if partial(uf|P) & ucur uf|P then 

26.         T' := T; TL := TL  T’ 
27.         end if 

28. P.TS := E.TS; ut := ut  ucur;
29.           end if 
30.        else 
31.          if not partial(ut|P) then
32.           P.V := P.NoQ;
33. if P.TS= P.UB then P.SC := RE
34.       else P.SC := NF end if
35.           P.TS := P.UB;
36.           update boundaries of all other predicates Q in
       T where Q.tv is constrained by P.tv;
37.           end if
38.       end if 
39.    end if 

40.  else /* predicate type: t.p(x,t) or t.p(x,t) */ 

41.   if (ut ) then

42.     if E.TS   P.UB  then
43.       if E.TS = P.TS+mint then

44.         if ucur  then /* E is unifiable with p */

45.            if partial(ut|P) & ucur ut|P then 

46.     T' := T; TL := TL  T’ 
47.    end if 
48.            if E not negated then
49.         P.TS := E.TS
50.            else
51.          P.V := P.NoQ; P.SC := RE; P.TS := E.TS;
52.       update boundaries of all other predicates  
      Q in T where Q.tv is constrained by P.tv;
53. end if 

54.            ut := ut  ucur;
55.         else /* E is not unifiable with p */
      if not partial(ut|P) then 
56.            P.V := P.NoQ; P.TS := P.TS +  mint;
57.       P.SC := NF; 
58.            update boundaries of all other predicates Q
       in T where Q.tv is constrained by P.tv;
59.           end if 
60.        end if 
61.       else /* E.TS > P.TS+mint */
62.          if not partial(ut|P) then 
63.            P.V := P.NoQ; P.TS := P.TS +  mint;
64.       P.SC := NF; 
65.            update boundaries of all other predicates Q
       in T where Q.tv is constrained by P.tv;
66.           end if 
67.       end if 
68.     else /* E.TS >  P.UB */ 
69.       if P.TS = P.UB then 

70.          P.V :=  P.NoQ; P.SC := RE;
71.           update boundaries of all other predicates Q in
       T where Q.tv is constrained by P.tv;
71.       else  
72.          if not partial(ut|P) then 

73.            P.V := P.NoQ; P.TS := E.TS  mint;
74.             P.SC := NF; 
75.      update boundaries of all other predicates Q
       in T where Q.tv is constrained by P.tv;
76.          end if
77.       end if 
78.     end if
79.    end if
80. end for 
81. return TL 
82. end EVENT_UPDATE 

Symbols 
imgu(e,p,ut|P): Function that returns the most general partial unifier (i.e., 
a set of the form {(v1, c1), …, (vk, ck)} ) of a predicate p in a template t 
with an event e that is compatible with the current unification of the 
variables of p in t (i.e. uf|P).
ut : ut is a set {(v1, c1), …, (vm, cm)} representing the current bindings of 
the non time variables vi in t (ci is the value of vi). In general, m  n as 
there may be variables of t which have not been assigned any values at a 
given time.

ut|P: uf|P is the projection of ut over the variables of a predicate P of t
defined as: ut|P := {(vi,ci) | (vi  P.Vars) and ((vi,ci)  ut)}
partial(ut|P): Function that returns True if there is variable v of a 
predicate p for which there is no pair binding (v,c) in ut|P and False
otherwise 
P.NoQ: Variable indicating if the quantifier of P is negated (True) or 
not (False).
mint: Minimum time unit in the clock of the SBS system 
P.tv (Q.tv): time variable of predicate P (Q)
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