
Run-time Monitoring of Requirements for Systems Composed of Web-Services:
Initial Implementation and Evaluation Experience

Khaled Mahbub and George Spanoudakis
Department of Computing, City University,

London EC1V 0HB, United Kingdom
E-mail: {am697 | gespan}@soi.city.ac.uk

Abstract

This paper describes a framework supporting the run-
time monitoring of requirements for systems implemented
as compositions of web-services specified in BPEL. The
requirements that can be monitored are specified in event
calculus. The paper presents an overview of the
framework and describes the architecture and
implementation of a tool that we have developed to
operationalise it. It also presents the results of a
preliminary experimental evaluation of the framework.

1. Introduction

Run-time requirements monitoring is the activity of
checking whether at run-time a software system operates
according to requirements set for it [5], [6]. This form of
monitoring is required to detect violations of
requirements that cannot be detected by static verification
(e.g. model checking). Violations of requirements may
not be detectable by static verification if: (a) the
satisfaction of these requirements depends on
assumptions about the behaviour of actors in a system's
environment that cannot be verified before the system is
put in operation (see assumption A1 in Section 2 for
example), or (b) system specification models are
incomplete or have an infinite or large number of states
that makes static verification intractable.

The need for run-time requirements verification
becomes even more important for service-based software
(SBS) systems (i.e., systems which are composed from
autonomous web services co-ordinated by some
composition process). This is because the web-services
that constitute an SBS system may not be specified at a
level of completeness that would allow the application of
static verification methods, and some of these services
may change dynamically at run-time causing
unpredictable interactions with other services.

In this paper, we present a framework that we have
implemented to support the run-time verification of
requirements for SBS systems and discuss the results of a
preliminary experimental evaluation of it. The formal
foundations of this framework are discussed in [13].

Our framework supports the run-time monitoring of
behavioural properties of an SBS system or assumptions
about the behaviour of the different web-services that

constitute it or agents in its environment. Behavioural
properties are automatically extracted from the
specification of the composition process of the SBS
system which our framework assumes to be expressed in
BPEL [1]. Assumptions are additional requirements about
the behaviour of agents interacting with the system, or the
individual services of it. Assumptions are specified by
system providers in event calculus (EC) [10] using an
XML schema that we have developed to support the
representation of EC formulas.

Our framework can monitor three different types of
deviations from behavioural properties and assumptions.
These are: (i) violations of assumptions by the recorded
system behaviour, (ii) violations of behavioural properties
and assumptions by the expected system behaviour (i.e.
the behaviour that would have been exhibited by the
system if assumptions other than the one being checked
had been satisfied), and (iii) cases of unjustified system
behaviour that may arise when a system acts incorrectly
due to incorrect information about its state.

Monitoring is performed in parallel with the normal
operation of an SBS system without interrupting it. This
is possible by intercepting events which are exchanged
between the composition process of an SBS system and
its services and the effects of these events on the state of
the composition process of the system. This approach
makes run-time monitoring non intrusive as: (a) it does
not affect the performance of SBS systems, and (b) it
does not require the instrumentation of the code of the
composition process of SBS systems or their services to
generate the events which are required for monitoring.

The rest of the paper is structured as follows. In
sections 2 and 3, we present the foundations of our run-
time monitoring framework and an overview of its
architecture, respectively. In Section 4, we discuss its
monitoring process. In Section 5, we present the results of
an initial experimental evaluation of the framework. In
Section 6, we overview related work and in Section 7 we
summarise our approach and plans for future work on it.

2. Foundations of Run-time Monitoring

2.1 Specification of Requirements

In our framework, the behavioural properties and
assumptions that are to be monitored at run-time are

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

specified using an XML schema that represents formulas
of event calculus (EC) [10]. Event calculus is a first-order
temporal logic language that can be used to specify the
events that occur within a system and the effects of these
events (called fluents in EC).

In an SBS system, the events that may occur can be of
5 different types:
(i) Invocation events that signify the invocation of an

operation in one of the partner services of an SBS
system by its composition process. These events are
represented by terms of the form:
ic:Service:OperationName(Parameters)

(ii) Return events that signify the return from the
execution of an operation that was invoked by the
composition process of an SBS system in one of its
partner services. These events are represented by
terms of the form:
ir:Service:OperationName(Parameters).

(iii) Request events that signify the invocation of an
operation in the composition process of an SBS
system by one of its partner services. These events
are represented by terms of the form:
rc:Service:OperationName(Parameters).

(iv) Reply events that signify the reply following the
execution of an operation that was invoked by a
partner service in the composition process of an
SBS system. These events are represented by terms
of the form:
re:Service:OperationName(Parameters).

(v) Assignment events that signify the assignment of a
value to a variable in the composition process of an
SBS system. Assignment events are represented in
our framework by terms of the form:
as:AssignmentName(assignmentId)

The occurrence of an event is represented by the
predicate Happens(e,t, (t1,t2)) which signifies that an
event e occurs at some time t within the time range

(t1,t2). The boundaries of (t1,t2) can be specified by
using either time constants, or arithmetic expressions
over the time variables of other Happens predicates of the
same formula.

An event may initiate or terminate a fluent. A fluent is
specified as a condition over the value of a specific
variable of the composition process of a system. The
fluent equalTo(x,y), for example, signifies that the value
of the variable x is equal to y. The effects of events on
fluents are represented by the predicates Initiates(e,f,t)
and Terminates(e,f,t). Initiates(e,f,t) signifies that a fluent
f starts to hold after the event e at time t. Terminates(e,f,t)
signifies that a fluent f ceases to hold after the event e
occurs at time t. An EC formula may also use the
predicate HoldsAt(f,t) which signifies that the fluent f
holds at time t.

An EC formula in our framework can also specify
additional constraints about the time variables of
predicates using the predicates < and (t1 < t2 is true if
t1 is a time instance that occurred before t2, and t1 = t2 is
true if t1 is a time instance that is equal to t2).

Behavioural properties:
B1. (t1:Time) (t2:Time) (t3:Time)

Happens(rc:UI:CarRequest(oID1),t1, (t1,t1))
Initiates(rc:UI:CarRequest(oID1), equalTo(p,pID),t1)

 Happens(ic:IS:FindAvailable(oID2, pID),t2, (t1,t2))
Happens(ir:IS:FindAvailable(oID2),t3, (t2,t3))
Initiates(ir:IS:FindAvailable(oID2), equalTo(res,vID),t3)
(t4:Time) Happens(re:UI:CarHire(oID3,vID), t4, (t3,t3+tu))

Assumptions:
A1. (t1,t2:Time) Happens(rc:SS:Enter(oID1),t1, (t1,t1))

Initiates(rc:SS:Enter(oID1), equalTo(v1, vID), t1)
 Initiates(rc:SS:Enter(oID1), equalTo(p1, pID1), t1)
 Happens(rc:SS:Enter(oID2),t2, (t1+tu,t2))

Initiates(rc:SS:Enter(oID2), equalTo(v2, vID), t2)
 Initiates(rc:SS:Enter(oID2), equalTo(p2, pID2), t2)

(t3:Time) Happens(rc:SS:Depart(oID3),t3, (t1+tu,t2 tu))
Initiates(rc:SS:Depart(oID3), equalTo(v3, vID), t3)

 Initiates(rc:SS:Depart(oID3), equalTo(p3, pID1), t3)
A2. (t1, t2:Time)
 Happens(ic:IS:FindAvailable(oID,pID), t1, (t1,t1))
 Happens(ir:IS:FindAvailable(oID), t2, (t1,t2))

HoldsAt(equalTo(availability(vID1),"not avail"), t2 tu)
Initiates (ir:IS:FindAvailable (oID),equalTo(vID2, vID1), t2)

A3. (t1, t2, t3:Time)
 Happens(ic:UI:RelKey(oID1,vID), t1, (t1, t1))

Happens(ir:UI:RelKey(oID1), t2, (t1, t2))
Happens(rc:UI:RetKey(oID2), t3, (t2, t3))

 Initiates(rc:UI:RetKey(oID2), equalTo(v, vID), t3)
 (t4:Time) ((t1 < t4) (t4 < t3)

HoldsAt(equalTo(available(vID),"not-avail"),t4)

In the above formulas, all non-time variables are assumed to be
universally quantified and tu is the minimum time between two events.

Figure 1. Requirements for CRS

Figure 1 shows some examples of behavioural
properties and assumptions for a car rental system (CRS).
CRS acts as a broker offering its customers the ability to
rent cars provided by different car rental companies,
directly from car parks at different locations. CRS
interacts with:

Car information services (IS) provided by different
car rental companies to maintain registries of cars,
check car availability and allocate cars to customers.
Sensoring services (SS) provided by different car
parks in order to sense cars as they enter in or depart
from car parks, and inform CRS accordingly.
User interaction services (UI) handling interactions
with end-users.
A Payment service (PS) that CRS uses to take
electronic payments for car rentals.
In a typical scenario, CRS receives a car rental request

from a UI service and checks for the availability of cars
by contacting IS services. If an available car can be found
at the requested location, CRS books the car rental
through an IS service, and takes payment through the PS
service. When cars move in and out of car parks,
respective SS services inform CRS, which subsequently
invokes operations in IS services to update the
availability status of the moved car.

The formula A1 in Figure 1 expresses an assumption
about the behaviour of the sensoring services (SS) of
CRS. According to it, if a car vID is sensed to enter a car
park pID1 at some time t1 and later at time t2 the same

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

car is sensed to enter the same or a different car park,
then a Depart event signifying the departure of vID from
pID1 must have also occurred between the two enter
events. The Happens predicates in A1 represent the
invocation of the operations Enter and Depart in CRS by
SS following the entrance and departure of cars in car
parks. The Initiates predicates in the same formula
initiate fluents that represent the specific value bindings
of the input parameters vi and pi (i=1,…,3) of the
operations Enter and Depart. A1 represents a composite
requirement whose satisfiability depends on the
availability of SS services and their ability to function
correctly. This requirement cannot be verified by static
analysis and must be monitored at run-time.

2.2 Deviations

As discussed in Section 1, our framework can detect
violations of assumptions by the recorded run-time
behaviour of a system, violations of assumptions and/or
behavioural properties by the expected behaviour of a
system, and cases of unjustified behaviour.

Violations of assumptions by recorded behaviour. As
defined in [13], an assumption is violated by the
recorded behaviour of a system at time T if the negation
of f is entailed by the set of the recorded events ER(T) that
have been produced by the system until T or, formally, if:
{ER(T)} |=nf (|=nf signifies entailment using the
normal rules of inference of first-order logic and the
principle of negation as failure).

L1 : Happens(rc:SS:Enter(op1),1, (1,1))
L2 : Initiates(rc:SS:Enter(op1), equalTo(v1,veh1),1)
L3 : Initiates(rc:SS:Enter(op1), equalTo(p1,loc1),1)
L4 : Happens(rc:SS:Enter(op2),27, (27,27))
L5 : Initiates(rc:SS:Enter(op2), equalTo(v1,veh1),27)
L6 : Initiates(rc:SS:Enter(op2), equalTo(p1,loc3),27)
L7 : Happens(ic:UI:RelKey(op3, veh2),28, (28,28))
L8 : Happens(ir:UI:RelKey(op3), 29, (29,29))
L9 : Happens(rc:UI:CarRequest(op4),49, (49,49))
L10: Initiates(rc:UI:CarRequest(op4),equalTo(p,loc2),49)
L11: Happens(ic:IS:FindAvailable(op5,loc2),50, (50,50))
L12: Happens(ir:IS:FindAvailable(op5), 51, (51,51))
L13 : Initiates(ir:IS:FindAvailable(op5), equalTo(Res,veh2),51)
L14: Happens(re:UI:CarHire(op6,veh2,loc2), 52, R(52,52))
L15: Happens(rc:SS:Enter(op7),53, (53,53))
L16: Initiates(rc:SS:Enter(op7), equalTo(v1,veh2),53)
L17: Initiates(rc:SS:Enter(op7), equalTo(p1,loc4),53)
L18: Happens(rc:UI:RetKey(op8),54, (54,54))
L19: Initiates(rc:UI:RetKey(op8), equalTo(v, veh2), 54)
L20: Happens(rc:UI:CarRequest(op9),69, (69,69))

Figure 2. Event log of CRS

Assuming the log of events of the CRS system shown
in Figure 2, the recorded behaviour of CRS violates the
assumption A1. This is because there are two enter events
that signify the entrance of veh1 first to car park loc1 at
T=1 (see literals L1-L3 in Figure 2) and, subsequently, to
car park loc3 at T=27 (see literals L4-L6 in Figure 2) but
no depart event to signify the departure of veh1 from loc1
between these enter events.

Violations of assumptions and/or behavioural
properties by expected behaviour. A behavioural
property or assumption of the form : C1 A1 is violated
by the expected behaviour of an SBS system if the
negation of f is entailed by the set of the recorded events
of the system and the events that can be deduced from
them by the behavioural properties and assumptions of
the system that f depends on. As defined in [13], f
depends on a formula g: C2 A2 if the head A2 of g has a
literal L that unifies either with some literal K in the body
C1 of f or with some literal K in the body of another
formula h that f depends on. Assuming that dep() is the
set of the formulas that f depends on and EU(dep(),T) is
the set of events that can be produced from these
formulas by deduction, a behavioural property or
assumption f is violated by the expected behaviour of an
SBS system at time T if: {ER(T), EU(dep(),T), ECa} |= nf

 (ECa denotes the standard set of axioms of event
calculus [10]).

Given the event log of Figure 2, the assumption A2 is
violated by the expected behaviour of CRS. A2 is an
assumption about the behaviour of IS services. According
to this assumption, the operation FindAvailable, which is
provided by the IS service of CRS and searches for
available cars at specific car parks should not return the
identifier of a car to CRS unless this car is available. The
violation of A2 in this case occurs since from the
assumption A3 in Figure 1 (A3 states that whilst a
customer has the key of a car this car cannot be available
for renting) we can derive that veh2 could not be
available from T=30 when its key was released (see
literals L7 and L8 in Figure 2) until T=53 (that is one
time unit before its key was returned back - see literals
 L18 and L19 in Figure 4). Nevertheless, the execution of
the operation FindAvailable of the IS service at T=51
reported veh2 as an available vehicle (see literal L13 in
Figure 2).

Unjustified Behaviour. The third type of deviation
that can be detected by our framework occurs when the
conditions of a behavioural property that has generated
an event e are satisfied by the recorded system behaviour
but violated by the expected system behaviour. In such
cases, the generation of the event e is the result of wrong
assumptions about the satisfiability of the conditions of
that the system makes at run-time, and constitutes what
we refer to as "unjustified behaviour". Formally, a
behavioural property of the form : C A is said to
generate unjustified behaviour if and only if there is a
literal e such that
(i) e ER(T) and e can be unified with A
(ii) {ER(T) {e}, , ECa} |=nf e and {ER(T) {e}, BS

{ }, ECa} | nf e (BS is the set of the behavioural
properties of a system)

(iii) there is a literal L in C for which, {ER(T),
EU(dep(),T), ECa} |=nf L

The conditions (i)-(ii) identify an event e which has
been generated by the system due to the realisation of a

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

formula . The satisfaction of these conditions implies
that the conditions of f are satisfied by the recorded
behaviour of the system. Note, however, that according to
condition (iii), there is some condition in C that would
not be satisfied if all the events that could be generated by
formulas which f depends on are taken into account. In
such cases, e is the result of behaviour that is based on
wrong assumptions about the satisfiability of the
conditions of that the system makes at run-time.

Given the event log of Figure 2, a case of unjustified
behaviour of CRS that has been caused by the
behavioural property B1 can be detected at T=54. B1
states that following the receipt of a request for a car
rental, CRS will contact IS services to find an available
vehicle and if such a vehicle can be found it accept the
request. More specifically in this case, as the literals L9-
L13 in Figure 2 indicate, all the conditions of B1 were
satisfied at T=51 and therefore CRS replied to the car hire
request that it had received from its UI service by
invoking the operation CarHire in it at T=52 (see the
literal L14 in Figure 2) as specified by B1. Note,
however, that if the IS and SS services of CRS had
behaved according to the assumptions A2 and A3
respectively the condition
Initiates(ir:IS:FindAvailable(oID2), equalTo(res,vID),t3)
of B1 would have been violated. The violation of this
condition of B1 can be deduced from:

the literals L11 and L12 the event log of Figure 2;
the assumption A2 about the behaviour of SS (A2
belongs to dep(B1)), and
the literal HoldsAt(equalTo(availability(veh2), "not
avail"), 50) that can be derived from the literals L7, L8,
L18 and L19 in the event log of Figure 2 and the
assumption A3 (A3 belongs to dep(A2)).

In other words, if IS and SS had behaved as expected
by the assumptions A2 and A3 in this case, veh2 should
not have been reported by the operation FindAvailable
as available and, subsequently, veh2 should not have been
hired. The formal derivation of the inconsistency in this
example is discussed in [13].

3. Architecture of the Framework

Our monitoring framework has been implemented in
JavaTM and incorporates the components shown in Figure
3, namely: a behavioural properties extractor, an
assumption editor, an event receiver, a monitor, and a
deviation viewer.

The behavioural properties extractor extracts the
behavioural properties to be monitored from the BPEL
composition process of an SBS system. Behavioural
properties are extracted according to the patterns that we
describe in [13] and represented in an XML-based
language that we have defined to represent EC formulas.
This language cannot be presented here due to limited
space but is discussed in [12]. The properties extractor

also identifies events, effects and state variables in the
SBS composition process that provide the primitive
constructs for specifying further assumptions about the
behaviour of the system. These assumptions are specified
by system providers using the assumption editor.

Figure 3. Monitoring framework

The assumption editor presents system providers with
the different types of events and fluent initiation
predicates that have been identified in the SBS
composition process and supports the specification of
assumptions as logical combinations of these event and
fluent initiation predicates. System providers may also
use the editor to define additional fluents to represemt
service and system states and relevant initiation and
holding predicates. When an assumption is specified, the
assumption editor can check its syntactic correctness.
Figure 4 presents an intermediate step in specifying the
assumption A1 using the assumption editor.

Figure 4. The assumptions editor

While executing the composition process of an SBS
system, the process execution engine generates events
which are sent as string streams to the event receiver of
our framework. In our implementation, we have used the

BPEL
Execution Engine

Monitor

Event
Receiver

System
Provider

Run-time SBS environment

Events
database

Deviations

SBS composition
Process (BPEL)

Run-time Monitoring Framework

Assumptions

Behavioural Properties Extractor

Assumptions
Editor

Behavioural
Properties

Deviation Viewer

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

bpws4j process execution engine [8] that uses log4j [9]
to generate logs of the events during a BPEL process
execution. The event receiver identifies the type of the
events in its input stream, filters out events which are
irrelevant to the monitoring process and records all other
events in an event database. Irrelevant events are
determined by the formulas that have been extracted or
specified for monitoring by the system provider.

The monitor processes the events which are recorded
in its database by the event receiver in the order of their
occurrence, identifies other expected events that should
have happened but have not been recorded (these events
are derived from the assumptions by deduction), and
checks if the recorded and expected events are compliant
with the behavioural properties and assumptions of the
system. In cases where the recorded and expected events
are not consistent with these requirements, the monitor
records the deviation in a database.

The framework incorporates also a deviation viewer
that is used to browse the detected violations of the
formulas. A snapshot of this viewer is shown in Figure 5.

4. The Monitoring Process

At runtime, the monitor maintains templates that
represent different instantiations of the formulas to be
checked. A template for a formula f stores:

The identifier (Id) and type of f. The type of f is F
(future) if all the predicates in f whose time variables
are constrained by time variables of other predicates
must occur after these predicates (e.g., formula B1 in
Figure 1) or P (past) if there is one predicate p that
must occur before another predicate q that constraints
it (e.g., formula A1 in Figure 1).

A list of pairs (i, p) indicating formulas depending on
f (i) and the predicate creating the dependency (p).

The current unification ut computed for the template.

For each predicate p in f :

- The quantifier of its time variable (Q) and its
signature (SG).

- The boundaries (LB, UB) of the time range in which p
should occur.

- The truth-value (V) of p which can be: UN (i.e.,
unknown), T (true), or F (false).

- The source (SC) of the evidence for the truth value of
p which can be: UN (if the truth value has not been
established), RE (if the truth value is established by a
recorded event), DE (if the truth value is established
by a derived event), or NF (if the truth value is
established by the principle of negation as failure)

- A time stamp (TS) indicating the time in which the
truth-value of p was established.
The monitor picks events in the order of their

occurrence from the event database and checks if there
are formula templates that should be updated by them. A
template is updated by an event as specified in the
algorithm shown in the appendix. This algorithm

distinguishes two types of predicates: (i) predicates with
existentially quantified time variables and (ii) predicates
with universally quantified time variables.

Existentially quantified predicates. The truth-value of
a predicate of the form (t)p(x,t) where t must be in the
range (t1,t2) is set to true as soon as the first event e
that can be unified with p occurs between t1 and t2. If no
such event occurs at the distinguishable time points
between t1 and t2 the truth value of p is set to false. The
absence of events unifiable with p is confirmed as soon as
the first event that cannot be unified with p occurs either
on t2 or after this time point. The truth value of a
predicate of the form (t)p(x,t) is established in the
opposite way: as soon as an event e that can be unified
with p occurs between t1 and t2 the truth value of p is set
to false and if no such events occur at the distinguishable
time points between t1 and t2 it is set to false.

Universally quantified predicates. The truth value of
a predicate of the form (t)p(x,t) where t must be in the
range (t1,t2) is set to false as soon as an event that is
not unifiable with p occurs between t1 and t2, and to true
if all the events that occur at the distinguishable time
points between t1 and t2 can be unified with p. For
predicates of the form (t)p(x,t), the algorithm sets
their truth value to true as soon as the first event that is
not unifiable with p occurs within the time range (t1,t2)
and false if no such event occurs at any of the
distinguishable time points between t1 and t2. A special
kind of universally quantified predicates are
unconstrained predicates of the form (t)p(x,t) whose
time range is instantaneous and is not constrained by the
time variables of other predicates (i.e., a range of the
form (t,t)). The truth value of such predicates is set to
true as soon as an event that can be unified with them is
encountered by the monitor.

When the truth values of all predicates in a template
have been determined, a check for possible formula
violations is performed. In the case of F-formulas, for
example, if the truth-value of all the predicates in the
template is true the formula is satisfied. If the truth value
of all the predicates in the body B of a formula : B H is
true and the truth-value of at least one predicate in the
head H of it is false and the source of all predicates is RE
or NF, a violation of the formula by the recorded
behaviour of the system is detected.

Example. Following the occurrence of the event L9
in Figure 2 that can be unified with the unconstrained
predicate Happens(rc:UI:CarRequest(oID1),t1, (t1,t1))
of B1, the monitor creates the template shown below for
this formula. The truth value (V) of the predicate
Happens(rc:UI:CarRequest(oID1),t1, (t1,t1)) in this
template is set to true, its time stamp (TS) along with the
upper and lower bound of the time range of the predicate
(UB and LB) are set to 49 (i.e., the time stamp of the
event L9), and the source (SC) of the truth value of the
predicate is set to RE to signify the update of the truth
value due to a recorded event.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

Id: B1 T F DP
ut { (oID1, op4) }
P Q SG TS LB UB V SC
1 Happens(rc:UI:CarRequest(

oID1),t1, (t1,t1)) 49 49 49 T RE

2 Initiates(rc:UI:
CarRequest(oID1),
equalTo(p,pID),t1)

49 49 49 UN UN

3 Happens(ic:IS:FindAvailabl
e(oID2,pID), t2, (t1,t2))

t2 49 t2 UN UN

4 Happens(ir:IS:
FindAvailable(oID2),t3,

(t2,t3))

t3 t2 t3 UN UN

5 Initiates(ir:IS:
FindAvailable(oID2),equalT
o(res,vID),t3)

t3 t2 t3 UN UN

6 Happens(re:UI:
CarHire(oID3,vID),t4,

(t2,t2+tu))

t4 t3 t3
+1

UN UN

Note that, as a result of the update of the time variable
of Happens(rc:UI:CarRequest(oID1),t1, (t1,t1)) the monitor
also sets the time boundaries LB and UB of the predicates
Initiates(rc:UI:CarRequest(oID1), equalTo(p,pID),t1) and
Happens(ic:IS:FindAvailable(oID2,pID),t2, (t1,t2)) in the
template. Then, when the event L10 is processed, the
monitor sets the truth value of the predicate Initiates(rc:UI:
CarRequest(oID1),equalTo(p,pID),t1) to true and updates its
time stamp and source to 49 and RE, respectively.
Subsequently, following the processing of events
 L11 L13, the above template for B1 takes the following
form:

Id B1 T F DP
ut {(oID1, op4), (pID, loc2), (vID, veh2), (oID2, op5), (p, p), (oID3,

op6)
P Q SG TS LB UB V SC
1 Happens(rc:UI:CarReq

uest(oID1),t1, (t1,t1)) 49 49 49 True RE

2 Initiates(rc:UI:
CarRequest(oID1),
equalTo(p,pID),t1)

49 49 49 True RE

3 Happens(ic:IS:FindAv
ailable(oID2,pID), t2,

(t1,t2))

50 49 50 True RE

4 Happens(ir:IS:
FindAvailable(oID2),t3
, (t2,t3))

51 50 51 True RE

5 Initiates(ir:IS:
FindAvailable(oID2),e
qualTo(res,vID),t3)

51 50 51 True RE

6 Happens(re:UI:
CarHire(oID3,vID),t4,

(t2,t2+tu))

t4 51 52 UN UN

At this point, the next event to be processed by the
monitor is the event L14 in Figure 2. This event can be
unified with the predicate
Happens(re:UI:CarHire(oID3,vID),t4, (t2,t2+1)) in the
template and as it occurs before the upper time boundary
of it (i.e., T=52), the truth value of the predicate is set to
true, and its source and time stamp are set to RE and 52,
respectively.

Figure 5. Deviation viewer

Following the establishment of the truth values of all
the predicates in this template, the monitor can check it
for possible violations. No violation, however, occurs
until T=54, when the monitor derives the event

Initiates(ir:IS:FindAvailable(oID2), equalTo(res,veh2),51) as
we described in Section 2. Following the derivation of
this event, the monitor will detect that it contradicts with
the instantiation of the predicate Initiates(ir:IS:
FindAvailable(oID2),equalTo(res,vID),t3) in the above
template of B1 and since this predicate is one of the
conditions of B1, it will record a case of unjustified
behaviour.

System providers may view templates with recorded
deviations using the deviation viewer of the prototype
that implements the monitoring framework. Figure 5
shows a snapshot of this component of the prototype.

5. Evaluation

To evaluate our monitoring framework we performed
a series of experiments in which we used an
implementation of the CRS example as a case study. In
this case study, we extracted 7 behavioural properties
from the BPEL specification of the composition process
of CRS and specified 4 assumptions about the system and
(these included the assumptions shown in Figure 1). The
BPEL process of our case study and the behavioural
properties and assumptions specified for it can be found
at: www.soi.city.ac.uk/~am697/CRS_Case_Study.html.

The objective of our experiments was to measure: (a)
the number of different types of violations that can be
detected at run-time, (b) the average delay that occurs in
detecting these violations, (c) the average delay for
processing each event, and (d) the idle time of the
monitor during the operation of the system.

In the experiments, we used a simulator that we
developed to create sequences of events that can be
generated by a given BPEL process. This simulator
extracts all possible complete execution paths in a given
BPEL process and expresses them as event calculus
formulas. For each of the non-time variables in these
formulas, the user must define the type (i.e., string,
number or an enumeration) and size (i.e., the number of
distinct elements) of its domain. For unconstrained time
variables, the user must define the distribution function of

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

their values. For the formula Happens(ic:p:A(id,x), t1, (t1,
t1)) Happens(ic:p:B(id, y), t2, (t1, t1 + 10)), for example,
the user can declare the domains of x and y as strings with
a maximum of 50 different values, and t2 as a time
variable uniformly distributed in the range (t1, t1+10).

The simulator selects randomly a formula
representing an execution path and generates all the
events in it in the order they are expected. The time stamp
of each of these events is computed randomly according
to the distribution of the time variable of the relevant
predicate. For predicates with unconstrained time
variables (e.g. the predicate Happens(ic:p:A(id,x), t1, (t1,
t1))) in the above formula, the simulator creates a random
time stamp according to the distribution function of the
time between different execution paths that is also set by
the user. Finally, for non time variables, the simulator
picks up randomly a value for each predicate variable
from the respective variable domain.

Table 1. Basic time measures
Time Meaning/Calculation

ti

e Time of event i as generated by the simulator.

Ts

m Starting time of the monitor.

Tc

m Current time of the monitor.

ti

e(d) Time of recording of an event i in the monitor's database.

ti

e(d)

 = (ti

e

 t0

e

) + Ts

m

where t0

e

 is the first event that has
been generated by the simulator.

ti

M Time when the monitor retrieves an event i from its
database to process it.

TS

Fj Starting time of the decision procedure that checks for
violations caused by a template j of a formula F

TE

Fj Time of completion of the check for violations caused by
a template j for a formula F

Given the basic time measures shown in Table 1 that
were taken in our experiments, we measured:
(i) The average delay in making a decision about possible

violations in a template using the formula
d-delay = i=1,…,N dj / N

where
N is the number of the formula templates for which
a decision has been made
dj is the delay in making the decision for template j

that is computed as di = max(TE

Fj
TS

Fj
+ maxi Fj (

ti

e(d)
),TE

Fj
) where i ranges over the events used to

establish the truth values of the formulas in Fj).
(ii) The average delay in processing an event using the

formula:

 e-delay = i=1,…,K where ti
M ti

e(d) > 0 (ti

M
 ti

e(d)
) / K

where K is the total number of events.
(iii) The monitor's idle time using the formula

idle-time = event i where ti
e(d) ti

M > 0 (ti

e(d)
ti

M
)

In the experiments, we ran 3 simulations of the CRS
system. In the first of these simulations (Sim 1) we used a
set of 50 customers, 20 cars and 3 car parks. In the
second simulation (Sim 2), we increased the number of
customers, cars and car parks to 100, 40 and 6,
respectively. And in the third simulation (Sim 3), we

increased these numbers to 200, 80 and 12, respectively.
For each of these simulations, we generated 5 different
sets of events having 1000-1020, 2000-2020, 3000-3020,
4000-4020, and 5000-5020 events respectively (small
differences in the number of events of each simulation
occurred due to the need to produce all the events of the
last execution path selected by the simulator). The graphs
in Figures 6-7 summarise our performance findings.

0

200

400

600

800

1000

1200

1400

1600

1000-
1020

2000-
2020

3000-
3020

4000-
4020

5000-
5020

Events

d
-d

el
ay

 (
se

cs
) Sim 1

Sim 2

Sim 3

0

200

400

600

800

1000

1200

1400

1600

1000-
1020

2000-
2020

3000-
3020

4000-
4020

5000-
5020

Events

d
-d

el
ay

 (
se

cs
) Sim 1

Sim 2

Sim 3

(i) recorded events (ii) recorded & derived events

Figure 6. d-delay for violations

More specifically, Figure 6 shows the average delay
for detecting different violations (d-delay) when only
recorded events were taken into account (Figure 6.(i)) and
when both recorded and derived events were taken into
account (Figure 6.(ii)). The results were mixed. In Sim 1,
we observed a linear increase in d-delay up to 4,000
events and then a steeper but linear increase for higher
event numbers. In Sim 2, d-delay increased linearly with
the number of the events all the way through and in Sim
3, we observed a drop in d-delay after 4,000 events. All
simulations, however, demonstrated that the
incorporation of derived events in monitoring did not
affect d-delay. This was due to the fact that the derived
event generator of the monitor runs in parallel with the
monitoring process.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1000-
1020

2000-
2020

3000-
3020

4000-
4020

5000-
5020

Events

Id
le

-t
im

e
(s

ec
s)

Sim1

Sim2

Sim3

0

100

200

300

400

500

600

700

1000-
1020

2000-
2020

3000-
3020

4000-
4020

5000-
5020

Events

e-
d

el
ay

(s
ec

s) Sim1

Sim2

Sim3

(i) idle time (ii) event waiting time

Figure 7. Monitor's idle and event waiting time

The aggregate monitor's idle time that is shown in
Figure 7.(i) went down to very low levels for all three
simulations after about 3,000 events and only in Sim 3 it
went up again to 1,000 secs in 5000 events. This finding
was in line with the drop in d-delay that we observed in
this simulation. The opposite trend was observed in e-
delay: in Sim 1 and Sim 2 the average delay in processing
an event was 3.2 and 17.7 secs at 1000 events and went
up to 584 and 573.2 secs at 5000 events, respectively.

The number of different types of inconsistencies that
were detected in our simulations is shown in Table 2. As
shown in this table the number of violations of

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

assumptions due to recorded events (see columns T1 in
Table 2) increased linearly with the number of events in
all simulations. The number of violations by expected
behaviour showed a less clear pattern as in two
simulations (Sim 1 and Sim 2) there was a drop in it after
4,000 events and only in Sim 3 it increased linearly along
with the number of events. Cases of unjustified behaviour
were detected only in Sim 2.

Table 2. Number of violations
Sim 1 Sim 2 Sim 3

Events T1 T2 T3 T1 T2 T3 T1 T2 T3

1000-1020 8 0 0 9 0 0 7 0 0

2000-2020 13 13 0 13 54 2 15 38 0

3000-3020 18 47 0 25 39 38 25 62 0

4000-4020 26 107 0 28 100 0 25 96 0

5000-5020 40 83 0 40 74 0 27 123 0

The above results have been positive as they
demonstrate that the size of the domains of the variables
used in the formulas did not affect the performance of the
monitor. Also there were cases where a drop in the delay
of detecting violations was observed after a certain
number of events (see Sim 3). Clearly, optimisations of
the monitoring process (e.g. use of multiple parallel
monitors) will be necessary to make our approach
applicable to large scale systems, and further experiments
will be required to confirm our initial results.

6. Related Work

Run-time requirements monitoring has been the focus
of different strands of requirements engineering research.
Most of the existing techniques (e.g. [5][6][11]) express
requirements in the KAOS framework [7] as high level
goals that must be achieved by a system. These goals are
mapped onto events that must be monitored at run-time.
Typically, the existing approaches assume that the events
to be monitored are generated by special statements
which must be inserted in the code of a system for this
purpose (i.e., instrumentation) [6]. Note, however, that
instrumentation cannot be always applied to SBS systems
since typically service providers are not the owners of the
services deployed by the system.

More recently, there has been research focusing on
monitoring of SBS systems. Barezi et al [4], for example,
have developed a monitoring tool that supports the run-
time monitoring of assertions which are inserted into
composition process of an SBS system specified in
BPEL. When the execution of this process reaches the
point where an assertion must be checked it calls an
external service that checks the assertion. The execution
of the composition process waits until the monitor returns
the result of the check and it may continue or raise an
exception depending on whether the assertion has been
violated.

A different approach has been developed by Robinson
[11]. In this approach, requirements are expressed in

KAOS and analysed to identify obstacles for them (i.e.,
conditions under which they can be violated). If an
obstacle is observable (i.e., it corresponds to a pattern of
events that can be observed at run-time), it is assigned to
an agent for monitoring. At run-time, an event adaptor
translates web service requests and replies expressed as
SOAP messages into events and a broadcaster forwards
these events to the obstacle monitoring agents which are
registered as event listeners to the broadcaster.

7. Conclusions

In this paper, we have presented the implementation
and results of a preliminary experimental evaluation of a
framework that we have developed to monitor
requirements for service-based systems. This framework
is applicable to service-based systems whose composition
process is specified in BPEL and specifies the
requirements to be monitored against such systems in
event calculus. These requirements may be behavioural
properties automatically extracted from the composition
process of a service based system or assumptions
specified by system providers. EC was chosen as the
requirements representation language of our framework
as it provides a formal temporal language amenable to
reasoning based on the inference rules of first-order logic
unlike other temporal logic languages.

We have implemented a prototype of this framework
in JavaTM and used it in a preliminary set of experiments
to evaluate the performance of our framework. These
experiments have confirmed that, due to its non-intrusive
nature, our framework detects violations with some delay.
On average, this delay has been found to increase linearly
with the number of system events. Our experiments have
also indicated no effect of the size of the domains of
variables of formulas onto the delay of violation
detection.

On-going work on the framework is concerned with:
(i) the translation of service requirements expressed in the
WS-Policy [3] and WS-Agreement [2] standards into the
event calculus based language used by our framework,
and (ii) the optimisation of the monitoring process
deployed by the framework (e.g. introduction of formula
template pruning capabilities).

Acknowledgements
The work reported in this paper has been partially

funded by the European Commission under the
Information Society Technologies Programme as part of
the project SeCSE (contract IST-511680).

References
[1] Andrews T. et al. "Business Process Execution Language

for Web Services", v1.1, http://www-
106.ibm.com/developerworks/library/ws-bpel

[2] Andrieux A. et al. "Web Services Agreement
Specification", Global Grid Forum, 2004,

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

http://www.gridforum.org/Meetings/GGF11/Documents/dr
aft-ggf-graap-agreement.pdf

[3] Bajaj S. et al. "Web Services Policy Framework", 2004,
ftp://www6.software.ibm.com/software/developer/library/
ws-policy.pdf

[4] Baresi L., Ghezzi C., and Guinea S. "Smart Monitors for
Composed Services", Proc. of 2nd Int. Conf. on Service
Oriented Computing, 2004

[5] Feather M.S., Fickas S., Van Lamsweerde A. and Ponsard
C., "Reconciling System Requirements and Runtime
Behaviour". Proc. of 9th IWSSD, 1998.

[6] Robinson W. "Monitoring Software Requirements using
Instrumented Code". Proc. of the Hawaii Int. Conf. on
Systems Sciences, 2002.

[7] Dardenne A., van Lamsweerde A. and Fickas S., "Goal-
Directed Requirements Acquisition", Science of Computer
Programming, 20:3-50, 1993.

[8] BPWS4J, http://alphaworks.ibm.com/tech/bpws4j
[9] http://logging.apache.org/log4j/docs/, September 2003
[10] Shanahan M. "The event calculus explained", Artificial

Intelligence Today, 409-430, 1999
[11] Robinson W.N., "Monitoring Web Service Requirements",

Proc. of 12th Int. Conf. on Req. Engineering, 2003
[12] Mahbub K., Spanoudakis G. "A Scheme for Requirements

Monitoring of Web Service Based Systems", Technical
Report, Computing Dept., City University, London, 2004.

[13] Mahbub K., Spanoudakis G. "A Framework for
Requirements Monitoring of Service Based Systems" Proc.
of 2nd Int. Conf. on Service Oriented Computing, 2004

Appendix: Event Processing Algorithm

EVENT_UPDATE(T,E): TL
/* E:event, T: formula template */
1. TL = {} /* TL is a list of new templates created from T */
2. for each predicate P in T such that P.V=UK do
3. ucur := imgu(E,P,ut|P)
4. if (P.tv is unconstrained) then

5. if(ucur) then

6. if partial(ut|P) & ucur ut|P then

7. T' := T; TL := TL T’
8. end if

9. P.V:= (P.NoQ xor E.NG); P.SC := RE;

10. P.TS := E.TS; ut := ut ucur;
11. update boundaries of all other predicates Q in T
 where Q.tv is constrained by P.tv;
12. end if
13. else /* predicates with constrained time vars*/

14. if (P.Q =) then

 /* predicate type: t.p(x,t) or t.p(x,t) */

15. if ucur & E not negated & (P.LB E.TS P.UB) then

16. if partial(ut|P) & ucur ut|P then

17. T' := T; TL := TL T’
18. end if

19. P.V := P.NoQ; P.SC := RE; P.TS := E.TS;

20. ut := ut ucur;
21. update boundaries of all other predicates Q in T
 where Q.tv is constrained by P.tv;
22. else
23. if E.TS < P.UB then

24. if ucur & E is negated & E.TS=P.TS+mint then then

25. if partial(uf|P) & ucur uf|P then

26. T' := T; TL := TL T’
27. end if

28. P.TS := E.TS; ut := ut ucur;
29. end if
30. else
31. if not partial(ut|P) then
32. P.V := P.NoQ;
33. if P.TS= P.UB then P.SC := RE
34. else P.SC := NF end if
35. P.TS := P.UB;
36. update boundaries of all other predicates Q in
 T where Q.tv is constrained by P.tv;
37. end if
38. end if
39. end if

40. else /* predicate type: t.p(x,t) or t.p(x,t) */

41. if (ut) then

42. if E.TS P.UB then
43. if E.TS = P.TS+mint then

44. if ucur then /* E is unifiable with p */

45. if partial(ut|P) & ucur ut|P then

46. T' := T; TL := TL T’
47. end if
48. if E not negated then
49. P.TS := E.TS
50. else
51. P.V := P.NoQ; P.SC := RE; P.TS := E.TS;
52. update boundaries of all other predicates
 Q in T where Q.tv is constrained by P.tv;
53. end if

54. ut := ut ucur;
55. else /* E is not unifiable with p */
 if not partial(ut|P) then
56. P.V := P.NoQ; P.TS := P.TS + mint;
57. P.SC := NF;
58. update boundaries of all other predicates Q
 in T where Q.tv is constrained by P.tv;
59. end if
60. end if
61. else /* E.TS > P.TS+mint */
62. if not partial(ut|P) then
63. P.V := P.NoQ; P.TS := P.TS + mint;
64. P.SC := NF;
65. update boundaries of all other predicates Q
 in T where Q.tv is constrained by P.tv;
66. end if
67. end if
68. else /* E.TS > P.UB */
69. if P.TS = P.UB then

70. P.V := P.NoQ; P.SC := RE;
71. update boundaries of all other predicates Q in
 T where Q.tv is constrained by P.tv;
71. else
72. if not partial(ut|P) then

73. P.V := P.NoQ; P.TS := E.TS mint;
74. P.SC := NF;
75. update boundaries of all other predicates Q
 in T where Q.tv is constrained by P.tv;
76. end if
77. end if
78. end if
79. end if
80. end for
81. return TL
82. end EVENT_UPDATE

Symbols
imgu(e,p,ut|P): Function that returns the most general partial unifier (i.e.,
a set of the form {(v1, c1), …, (vk, ck)}) of a predicate p in a template t
with an event e that is compatible with the current unification of the
variables of p in t (i.e. uf|P).
ut : ut is a set {(v1, c1), …, (vm, cm)} representing the current bindings of
the non time variables vi in t (ci is the value of vi). In general, m n as
there may be variables of t which have not been assigned any values at a
given time.

ut|P: uf|P is the projection of ut over the variables of a predicate P of t
defined as: ut|P := {(vi,ci) | (vi P.Vars) and ((vi,ci) ut)}
partial(ut|P): Function that returns True if there is variable v of a
predicate p for which there is no pair binding (v,c) in ut|P and False
otherwise
P.NoQ: Variable indicating if the quantifier of P is negated (True) or
not (False).
mint: Minimum time unit in the clock of the SBS system
P.tv (Q.tv): time variable of predicate P (Q)

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

