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Abstract. Sparse matrix-vector multiplication forms the heart of iterative linear solvers used widely in
scientific computations (e.g., finite element methods). In such solvers, the matrix-vector product is computed
repeatedly, often thousands of times, with updated values of the vector until convergence is achieved. In an
SIMD architecture, each processor has to fetch the updated off-processor vector elements while computing
its share of the product. In this paper, we report on run-time optimization of array distribution and off-
processor data fetching to reduce both the communication and computation time. The optimization is
applied to a sparse matrix stored in a compressed sparse row-wise format. Actual runs on test matrices
produced up to a 35 percent relative improvement over a block distribution with a naive multiplication
algorithm while simulations over a wider range of processors indicate that up to a 60 percent improvement
may be possible in some cases.

1 Introduction

Sparse matrix operations are difficult to parallelize or optimize at compile time because the structure of the
involved computation and communication is not established until execution (i.e., until the positions of nonzero
entries in the matrix are known). Yet, in many scientific computations, sparse matrix operations are deeply nested
in loops making them a convenient target for parallelization. An example of such an operation is sparse matrix-
vector multiplication which is used in iterative solvers for linear equations. Such solvers repeatedly compute a
matrix-vector product, and thousands of repetitions may be required to converge to a solution. Linear equations
arising in finite element meshes generate sparse matrices. Hence, this computation is often encountered in the
finite element method (FEM) implementation of scientific and engineering modeling. In this paper, we describe
algorithms for run-time optimization of iterative sparse matrix-vector multiplication on SIMD machines.

Let A be an n × n sparse matrix that is block-distributed in a compressed sparse row-wise format [11] over
the processors of an SIMD machine. Let x be a vector aligned with the columns of A and iteratively updated
according to the equation xj+1 = Axj . The considered sparse matrix vector multiplication Axj is nested in a
loop which is exited when a norm ‖xj+1 − xj‖ satisfies certain convergence criteria. For such a computation, we
consider two interrelated issues. First, we investigate different levels of preprocessing that can be done outside
the loop on off-processor references to xj vector elements. The goal of such preprocessing is to minimize the
overhead incurred by off-processor references during the multiplication (i.e., inside the loop). Next, we present
a parallel heuristic for redistributing matrix A and the aligned vector x among the individual processors to
improve the total execution time.

The new generation of parallelizing Fortran compilers, e.g., Fortran D [7], Vienna Fortran [19] and High
Performance Fortran [1], provide two classes of directives for the layout of arrays:

– Alignment directives that describe how arrays should be aligned with respect to one another, both within
and across array dimensions.

– Distribution directives that define how arrays should be broken up and distributed onto the processors of the
target architecture.

For dense matrices, alignment and distribution of arrays depends on the underlying fine grain computation
done on the individual array elements. The access patterns of the array elements are dictated by subscript expres-
sions. Hence, optimization of alignments can be done at compile time by analyzing these expressions. Because of
the use of indirection in subscript expressions, such an analysis is useless for sparse matrix computations.

The distribution directives BLOCK and CYCLIC provided by Fortran compilers are not sufficient for
effective run-time distribution of sparse matrices. Vienna Fortran [19] and Fortran D [7] employ mapping arrays
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and corresponding routines to support arbitrary distributions of sparse matrices. The mapping array has the
same size as the mapped matrix and each location holds the identifier of the processor that stores the matrix
element with the corresponding index. Hence, mapping arrays incur a heavy storage cost while still leaving the
task of computing the mapping array to the user who has to design a partitioning algorithm.

We believe that effective support of run-time optimization for sparse matrices can be provided through
libraries as illustrated by the PARTI primitives [16, 18]. We hope that the algorithms presented in this paper
will enlarge the repertoire of run-time distribution algorithms available to the users of SIMD machines.

The paper is organized as follows. Section 2 describes array data structures commonly used to represent
FEM meshes and sparse matrices in Fortran programs. There is also a discussion of the cost of the sparse matrix
vector multiplication as a function of the number of on- and off-processor references and the communication-to-
computation ratio. Section 3 compares several implementations of such multiplication on SIMD machines. It also
describes a parallel heuristic for redistributing the underlying sparse matrix in order to optimize the performance
of the matrix-vector multiplication. The results from implementations and simulations of the multiplication and
the heuristic on benchmark test meshes are also given. Concluding remarks are presented in Section 4.

The preprocessing of off-processor references follows the methods proposed in [9] for MIMD machines. The
heuristics for run-time redistribution of sparse matrices on SIMD machines is an original contribution of this
paper. The total execution time improved by up to 35 percent relative to a naive multiplication method using a
uniform block distribution when the heuristic and preprocessing was run on a MasPar MP-1 with 2048 processors.
Some simulated runs with a smaller number of processors showed up to a 60 percent relative improvement based
on estimated execution times of multiplication using a block distribution versus multiplication using the heuristic
distribution.

2 Preprocessing and Data Distribution of Sparse Matrices

Finite element computations involve various mesh related entities such as elements, edges, nodes or node con-
nectivities. To represent these entities in an array-based language like Fortran, one-dimensional arrays pointing
to other entities via indirection are often used. An example of such a representation is given in Figure 1(a).
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ELEMENT[] = [1,4,7,10,13]

ELEM VERTS[] = [1,3,5,5,2,1,2,5,4,5,3,4]

VERT CONN[] = [1,4,7,10,13,17]

ADJ VERTS[] = [2,5,3,1,5,4,1,5,4,2,5,3,1,2,3,4]
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IA[*] = [1,4,5,6,9,12]

A[*] = [11,14,15,22,33,14,44,45,15,45,55]

JA[*] = [1,4,5,2,3,1,4,5,1,4,5]

Fig. 1. (a) The data structure used in a typical finite element program; (b) example specifying vertices making up the
elements and the adjacency information for the vertices; (c) example from ITPACK showing compressed sparse row-wise
format.



With this kind of a data structure, an entity array E points to one or more entity arrays such as E′
i. For

example, Figure 1(b) shows how various pieces of mesh information can be represented in terms of such data
structures. Here, E might be the ELEMENT array and it might point to another entity array E′

i which stores
the element vertices. Other examples of formats for the storage of sparse matrices may be found in [11]. In a
compressed sparse row-wise format, a sparse matrix A is represented as a vector of its nonzero elements VA[∗],
the corresponding vector of column indexes of these elements JA[∗], and the vector storing the cumulative number
of nonzeroes in each row of the matrix, IA[∗]. The range of vector IA is the number of rows and columns of the
sparse matrix, i.e., n. The range of vectors VA and JA is the number of nonzero entries in the matrix A and is
denoted by m. Usually, m � n2. If for some i, j an inequality IA[i] ≤ j < IA[i + 1] holds, then the j-th nonzero
element is equal to VA[j] and it is located in i-th row and JA[j]-th column of the sparse matrix A.

In this paper, we consider the problem of distributing sparse matrices with the above representation over
parallel machines. In Fortran programs, the JA array is usually accessed via an indirection in a loop. As an
example, consider the Fortran code (Figure 2(a)) for matrix-vector multiplication taken from ITPACK [10] which
is used in many sparse linear solvers. If both VA and JA are distributed by rows and aligned with the multiplied
vector x, then each processor is responsible for multiplying the rows allocated to it. Usually matrix-vector
multiplication is part of an iterative algorithm where the product Ax is computed repeatedly with updated
values of x. Hence, the off-processor vector elements should be fetched at the beginning of each multiplication
step. Depending on the size of a problem being solved, the steps of fetching and computing can be repeated
thousands of times before convergence is achieved. Thus, an optimized array distribution capable of reducing
both the volume of fetched data and the computing time is important. We are particularly interested in reducing
the combined cost of fetches and computation for each processor.
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partition 1

partition K

     SUBROUTINE PMULT (...)

            ....

      DO 30 I = 1,N

         IBGN = IA(I)

         IEND = IA(I+1)-1

         SUM = 0.0D0

         IF (IBGN.GT.IEND) GO TO 20

              JAJJ = JA(J)

10       CONTINUE

20       W(I) = SUM

30    CONTINUE

            DO 10 J = IBGN,IEND

(a)

      RETURN

              SUM = SUM+A(J)*X(JAJJ)

Fig. 2. (a) ITPACK matrix-vector multiplication code and (b) ordered array partitioning.

To formulate the cost function for the optimization we will use the following definitions. We assume that there
are k processors. The sparse n × n matrix A and n-element vector x are distributed among them in blocks of
rows. Processor i is assigned consecutive sparse matrix rows numbered fi through fi+1−1 and the corresponding
vector elements (for notational convenience, we assume that fk+1 = fk+2 = n + 1). The number of nonzero
elements assigned to the processor is denoted by E(i) and is equal to IA[fi+1]− IA[fi]. The number of nonzero
elements whose corresponding vector element is off-processor is denoted by G(i). To define G(i), let α[r1 : r2, s]
be 1 if column s contains any nonzero elements of A in the rows r1 to r2, and 0 otherwise. Then,

G(i) =

fi+1−1
∑

l=fi





fi−1
∑

j=1

α[l : l, j] +

n
∑

j=fi+1

α[l : l, j]



 .



Since once the off-processor vector element is fetched, it could be stored and reused without involving commu-
nication, the number of distinct off-processor fetches that the processor i has to make is

D(i) =

fi−1
∑

j=1

α[fi : fi+1 − 1, j] +
n

∑

j=fi+1

α[fi : fi+1 − 1, j] .

The number of distinct off-processor references that are directed to nearest neighbors is denoted Dx(i), where

Dx(i) =

fi−1
∑

j=fi−1

α[fi : fi+1 − 1, j] +

fi+2−1
∑

j=fi+1

α[fi : fi+1 − 1, j] ,

while the number of distinct off-processor references that cannot use nearest neighbor communication is denoted
Dr(i) and is given by

Dr(i) = D(i) − Dx(i) .

The execution cost of the sparse matrix-vector multiplication is a function of 1) the amount of computa-
tion, 2) the volume and organization of communication needed to resolve non-local data references, and 3) the
communication-to-computation ratio, which we will denote by c. Depending on the communication organization,
the following two cases can be distinguished for SIMD machines:

1. SIMD machine with router communication. Since the communication and computation are synchro-
nized in a lockstep, the processor with the maximum number of data fetches will dictate communication cost
and the processor with the maximum number of nonzero elements will define the computation cost:

C = c ∗ max
1≤i≤k

D(i) + max
1≤i≤k

E(i) . (1)

2. SIMD machine with mesh (xnet) and router communication. This is a variant of the previous case
in which the communication between neighbors uses fast xnet communication:

C = cx ∗ max
1≤i≤k

Dx(i) + c ∗ max
1≤i≤k

Dr(i) + max
1≤i≤k

E(i) (2)

where cx < c is the xnet communication-to-computation ratio.

For each of the above defined cost functions C, our goal is to find a sequence 1 ≤ f1 ≤ . . . ≤ fk ≤ n for which
this function reaches the minimum.

The partitioning problem defined above assumes that the order of rows is preserved in matrix A. Hence, this
is a simpler and more restricted problem than an arbitrary partitioning during which the rows can be permuted.
This assumption is justified when the sparse matrix has already been permuted by either a straightforward or
an advanced scheme like reverse Cuthill and McKee [4]. In the literature (c.f. [3] and [12]), algorithms have been
presented for a similar problem involving only the computational load as the cost function. The redistribution
heuristic presented in this paper generalizes the cost function to include communication costs.

3 Implementation and Results

This section describes different versions of the multiplication implementation and the redistribution heuristics.
The versions were run on several benchmarks including meshes originally used by Hammond [8] and test cases
from the Harwell–Boeing Sparse Matrix Collection [5, 6]. The characteristics of the tests are given in Table 1.

The first test case is an unstructured triangular mesh around a 3-component airfoil, while the second test is a
portion of a larger mesh representing an unstructured tetrahedral mesh about a Lockheed S-3A Viking aircraft.
The third test case arises from a mixed kinetics diffusion problem (specifically, the study of ionization in the
stratosphere with 38 chemical species). The fourth mesh is derived from a model of a gas-cooled nuclear reactor
core, and the fifth case was generated using a package for reservoir modeling.



Table 1. Description of test meshes and matrices.

number of number of max nonzeroes ave nonzeroes
Test Case rows nonzeroes per row per row

Hammond Test Meshes

1. 3elt 4720 27444 9 5.8

2. wave.6000 6000 73734 21 12.3

Harwell-Boeing Test Meshes

3. rua-fs 760 1 760 5976 21 7.9

4. rua-nnc1374 1374 8606 16 6.3

5. rua-pores 2 1224 9613 30 7.8

3.1 Preprocessing

The most straightforward implementation of the sparse matrix-vector multiplication shown in Figure 2(a) is
to multiply each nonzero element by the corresponding vector element, fetching it through communication,
if necessary. Such a solution would be inefficient for SIMD machines because of the tight synchronization of
statement execution. Most likely, each elementary multiplication executed on a given processor would be delayed
by some processor that has to fetch its off-processor argument. Hence, each step of elementary multiplication
would likely include communication overhead. The cost function of such an implementation can therefore be
approximated as

C ≈ (1 + c) ∗ max
1≤i≤k

E(i) .

Thus, it will be higher than the cost functions given by (1) or (2). An improvement over this implementation
is to reorder the sequence of elementary multiplications performed by each processor. All elementary multipli-
cations that require communication are executed first. Each off-processor vector value needed by an elementary
multiplication is fetched and stored in a local variable. The elementary multiplications of both local arguments
are executed next. Hence, only max1≤i≤k G(i) elementary multiplications are delayed by the communication.
However, the same off-processor vector elements are fetched as many times as they are an argument to an ele-
mentary multiplication (i.e., the number of fetches of the same vector element is equal to the number of nonzero
elements in the corresponding column section of the sparse matrix). The advantage is the small memory overhead
incurred; only an integer vector of the size G(i) is needed. We refer to this implementation as “multiple fetches.”
The cost function of this implementation is

C = max
1≤i≤k

E(i) + c ∗ max
1≤i≤k

G(i) .

Preprocessing can eliminate multiple fetches of the same vector element by forcing execution of the needed
communication first and storing the received values in a local structure before any elementary multiplication is
done. The memory overhead in this case includes an integer vector and a floating point vector, each of the size
D(i). The integer vector is needed to define which elements to fetch, and the floating point vector stores the
received values. This is the solution characterized by (1). This solution is also used as a basis for the redistribution
of the matrix (see the following subsection). We refer to this solution as “distinct fetches.”

Finally, fetches to the neighboring processes can be efficiently executed when fast xnet communication is
used instead of a more general but slower router. Therefore, we also implemented a variant of the solution in
which the neighboring fetches are executed first using xnet. In such a case, the cost of the communication is
dictated by the maximum number of router fetches and the maximum number of xnet fetches to each neighbor
destination. Therefore, some of the fetches directed to neighbors might use a router to reduce the total number
of communication steps (c.f. formulation of (2)).

The results of benchmarking the discussed alternatives for preprocessing the communication patterns are
presented in Table 2.



Table 2. Preprocessing alternatives – execution times of test runs on MP-1 for 1000 iterations.

Method 3elt wave.6000 rua-fs 760 1 rua-nnc1374 rua-pores 2

t (s) t (s) t (s) t (s) t (s)

multiple fetches 33.6 92.8 63.8 59.6 64.5

distinct fetches 32.6 93.4 66.4 42.0 58.9

xnet multiple fetches 33.9 93.2 63.7 42.1 57.7

xnet distinct fetches 32.9 94.2 63.9 41.7 59.5

3.2 Matrix Redistribution

When only the computational load term is present in the cost function, the cost grows monotonically with
the partition size. This fact is utilized in [3] and [12] to come up with algorithms of complexity O(kn) and
O(n+(klogn)2), respectively, for the optimal solution. However, when we incorporate the off-processor reference
cost into the cost function, this function is no longer monotonical in partition size. A tradeoff between load and
communication is included in the formulation. Hence, the cost might decrease as the partition size is increased
because of newly localized off-processor references. As a result, the complexity of the solution increases. Based
on the algorithm presented in [13], we found an O(n2m) algorithm for an optimal partitioning of a sparse matrix
among k processors for the asynchronous cost function defined as:

C = max
1≤i≤k

(E(i) + c ∗ D(i)) .

The repartitioning must take place at run-time, when the values of a sparse matrix are known. But an algorithm
of such complexity is unacceptable for run-time execution of scientific applications in which m > n and n is often
in the order of thousands or even millions. The cost functions given by (1) and (2) lead to algorithmically more
complex implementations than the algorithm driven by the above cost function. Indeed, suppose that algorithm
S solves the problem with the cost function (2). Setting cx = c, we will obtain an algorithm for solving the
problem with the cost function (1). If E(i) is replaced by E(i) + c ∗ G(i) and c is set to zero in such a modified
algorithm S, then it will solve the case of the asynchronous cost function given above. Hence, we do not expect
that an exact solution to any of the discussed cases of the cost functions can be used in practice. Consequently,
we developed a fast parallel heuristic for repartitioning a sparse matrix. The heuristic assumes compressed sparse
row-wise format and preserves the order of the rows.

Description of Heuristic The heuristic starts with an initial distribution and refines it through parallel
processor-pairwise repartitioning. The interconnection network is viewed as a linear array and processors are
edge-colored with two colors. One color, which changes from step to step, is selected as active. Each pair of
processors connected by the edge of the active color attempts to repartition their rows to improve the cost
function using a bi-partition algorithm. Figure 3 gives an example of repartitioning at even and odd stages of the
heuristic for six processors. The arrows indicate pairs of processors that are executing the bi-partition algorithm
at a particular stage. The dashed lines indicate inter-processor boundaries that cannot be modified during the
stage while the dotted lines illustrate boundaries that might be updated due to repartitioning. A single iteration
of the heuristic consists of an even stage followed by an odd stage.

Given an arbitrary pair of processors i and i+1 with rf representing the first row of the matrix that is stored
on i and rl representing the last row of the matrix stored on i+1, there are rl − rf +2 possible bi-partitions that
preserve the order of the rows within the processor pair. For each possible bi-partition t, the algorithm computes
a) Zt[i], the number of distinct nonzeroes on i, b) Zt[i + 1], the number of distinct nonzeroes on i + 1, c) Lt[i],
the number of distinct nonzeroes that generate local (on-processor) accesses on i, and d) Lt[i+1], the number of
distinct nonzeroes that generate local accesses on i+1. This is done as follows (note that col[j] gives the column
of the matrix in which the j-th distinct nonzero element on the processor pair is located):

1. Both the first and the last row in which each distinct element is found in the section of the matrix stored
on the processor pair are determined. For the j-th distinct nonzero, these values are given by first[j] and
last[j], respectively. This computation is done in parallel on i and i + 1. Values are then merged onto i
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Fig. 3. Example of boundary movements at even and odd stages.

which handles the rest of the bi-partition computation.
2. For each distinct nonzero j,

add 1 to Zfirst[j]−rf+1[i] and to Zlast[j]−rf
[i + 1]

if col[j] ≥ rf and col[j] ≤ rl then
if col[j] > first[j] then add 1 to Lcol[j]−rf+1[i] else add 1 to Lfirst[j]−rf+1[i]
if col[j] < last[j] then add 1 to Lcol[j]−rf

[i + 1] else add 1 to Llast[j]−rf
[i + 1]

endif
end of loop

3. Cumulatively sum the data in Zt[i] and Lt[i] in order of increasing t values.
4. Cumulatively sum the data in Zt[i + 1] and Lt[i + 1] in order of decreasing t values.

The number of distinct off-processor references may then be computed for each possible partition t. 1 These
are computed as Dt(i) = Zt[i]−Lt[i] and Dt(i+1) = Zt[i+1]−Lt[i+1], respectively. The number of (nondistinct)
nonzeroes on i and i + 1 may also be computed for each possible partition using IA. These are denoted by Et(i)
and Et(i + 1).

The actual partition selected is the value of t, say tp, such that

tp = max
t

{min(MD − c max(Dt(i), Dt(i + 1)), ME − max(Et(i), Et(i + 1)))}

where MD = c max1≤i≤k D(i) and ME = max1≤i≤k E(i) are calculated in the previous step of the heuristic. Note
that neither (1) nor (2) can be applied directly in the determination of the bi-partition boundary because both
functions are based on data that can only be computed after all of the inter-processor boundaries are set.

The complexity of this bi-partition algorithm on a uniprocessor machine is O(m). Recall that m is the number
of nonzeroes in the matrix and, typically, m � n2. In a similar fashion, the complexity of a stage of the heuristic
is determined by the processor with the heaviest load. Thus, a single stage of the heuristic may be done in O(ME)
steps on a parallel machine. Note that, since the algorithm examines all possible bi-partitions that preserve the
order of the rows, it produces an optimal bi-partition for the given pair of processors with respect to a given cost
function.

The heuristic iterates and converges to a cost, but there is no guarantee that the resulting cost is a global
minimum. It does not perform any probabilistic jump to get out of a possible local minimum.

1 Note that the value of t ranges from 0 to rl − rf + 1 and corresponds to the number of rows that will reside on i if that
t value is selected to set the partitioning boundary.



The node exchange idea can be traced back to Rosen’s [15] node ordering algorithm for reducing the band-

width of a sparse matrix. Bokhari [2] used a sequential algorithm based on the same node exchange idea to
partition and map FEM meshes onto an array of processors. Hammond [8] used the pairwise exchange heuristic
on the massively parallel CM2 system to improve communication.

Execution Results To obtain comparative data we have implemented and timed a matrix-vector multiplication
with: (i) block distribution, (ii) computational load balance (assuming consecutive allocation of rows), and (iii)
the parallel heuristic. The implementations were done on a MasPar MP-1 with 2048 processors with and without
the use of xnet communication. Due to the limited memory size of the available MP-1 configuration and to get
an idea about how well the heuristic might work on other SIMD machines, we have also simulated the execution
of the heuristic for a small and medium number of processors and for different communication-to-computation
ratios.

For each test, we generated a uniform block distribution of the data corresponding to the test and then either
directly applied the heuristic or first performed a load-balancing step using a bin-packing algorithm so that each
processor would have approximately the same number of nonzeroes. We then calculated a cost for the resulting
partition using (1) or (2). This cost was used as the initial cost in the heuristic. The heuristic was then applied
iteratively. After each iteration, cost calculation was performed, and the heuristic was repeated until no further
reduction in cost was obtained. Although the bin-packing step and the parallel heuristic measured load in terms
of the number of nonzeroes, both algorithms only moved entire rows across processors. After the heuristic step
was completed, the distribution of the sparse matrix produced was used in the execution of an iterative sparse
matrix-vector multiplication routine.

The preliminary results of several runs of the multiplication are given in Table 3. The rows labeled “block”
and “load balance” give times for runs of the multiplication with only a block distribution and the load-balancing
step performed, respectively. Using the time taken to do a double multiply-and-add as the computation cost and
the time to perform a fetch of a double float as the communication cost, the communication-to-computation
ratio for the MP-1 was determined to be approximately 3, and this is the c value that was used in the heuristic
for all runs. Results from executions presented in Table 3 showed up to a 35 percent relative improvement over
the naive multiplication method on the MP-1.

Table 3. Execution times of test runs on MP-1 for 1000 iterations.

Method 3elt wave.6000 rua-fs 760 1 rua-nnc1374 rua-pores 2

t (s) t (s) t (s) t (s) t (s)

Multiplication using router fetches only.

block, multiple fetches 33.6 92.8 63.8 59.6 64.5

load balance, multiple fetches 28.5 79.8 50.5 52.8 55.3

load balance, distinct fetches 28.6 86.2 52.3 39.6 52.4

heuristic from block 32.5 91.8 67.6 37.9 47.7

heuristic from load balance 28.7 88.1 53.6 37.9 47.7

Multiplication using router and xnet fetches.

load balance, distinct fetches 29.1 82.6 51.5 40.4 53.3

heuristic from block 33.6 95.8 65.7 39.0 46.7

heuristic from load balance 28.2 84.3 52.5 38.9 47.0

((block-heuristic)/block)*100 % 16.0 % 9.2 % 17.7 % 36.4 % 27.6 %

3.3 Simulation for a Range of Communication Speeds

To further evaluate the performance of the heuristic (and due to memory limitations on our MP-1), it was
simulated on a sequential machine using the router fetch SIMD cost function (1) for a range of communication
speeds and available processors. For each test case, we first generated a uniform block distribution of the matrix



and other information associated with the test. A load-balancing step was then performed to assure that the
nonzeroes were more evenly distributed across the processors. An initial cost for the heuristic was generated by
calculating the maximum number of nonzeroes and the maximum number of distinct nonlocals on any processor
and using (1). As in the implemented version, the parallel heuristic was applied iteratively. After each iteration,
cost calculation was performed and the heuristic was repeated until no further reduction in cost was obtained.

The tests were run for communication-to-computation ratios ranging from 3 to 40, the range suggested as the
most typical for the the computer architectures of today and the next decade [14, 17]. The number of processors
simulated ranged from 16 to 2048 (or to 512 for smaller meshes).

In the following subsections, we discuss various plots from the simulation runs. Note that only results from
four of the test cases are shown, and that the independent axis (the number of processors) uses a logarithmic
scale for each graph.

Estimated Execution Time vs. Number of Processors Figure 4 gives plots of the estimated execution time
versus the number of processors for the last four test meshes. A communication-to-computation ratio of 3 was used
in the simulation of the heuristic for these test cases. Estimated times were calculated for each mesh as follows:
1) the actual timings from the MP-1 for the block, load-balance, and heuristic from load-balance distributions
(c.f. Tables 2 and 3) were divided by the final costs generated by the simulation (for the appropriate number of
processors) for the block, load-balance, and heuristic from load-balance distributions, respectively; 2) the mean
of the three resulting values was taken; and 3) this average execution-time-per-unit-cost value was multiplied
with the final cost values from the simulation to generate expected execution times across a range of processors.
Using the mean of the execution time per unit cost is intended to average out the variations in time per cost
unit for different distributions; however, since the number of processors used may also affect this ratio, the values
given are only intended to be an approximation of run times.
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Fig. 4. Plots of estimated times vs. number of processors.

The plots illustrate the estimated reduction in time that would result from balancing the load across the
processors and the further reduction that can be achieved using the parallel heuristic afterwards. Simulations of



the performance of the heuristic when executed starting with a block distribution indicated that this coupling
generally produced results which were sometimes comparable but often inferior to those generated by the heuristic
from load balance. Thus, these results have not been included.

Relative Percent Improvements vs. Number of Processors Figure 5 shows the relative percent improve-
ments in estimated execution time over a block distribution for the load balance and heuristic distributions.
These values are plotted as a function of the number of processors. These test cases also used a communication-
to-computation ratio of 3 in the simulation of the heuristic. The relative percent improvements were found
by subtracting the estimated run time of the block distribution by the estimated run time of the appropriate
optimizing distribution, dividing this difference by the estimated run time of the block distribution and then
multiplying the result by 100 percent. The plots show improvements ranging from 0 to approximately 60 percent.
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Fig. 5. Plots of relative percent improvements vs. number of processors.

These graphs illustrate the large improvements in execution time that the load-balancing step can produce
over a simple block distribution while also showing that the heuristic can often further improve upon these gains.
Note that even in the test cases for which Graphs (a) and (b) of Figure 4 implied no difference in the effectiveness
of these two methods, we can now see some improvements in the expected times produced by the heuristic over
those generated by the load-balancing step. Further, since the number of iterations performed by the heuristic is
generally less than 10 (based on both the simulated and actual runs of the algorithm), the added time to perform
this extra step is quite small compared to the iterative multiplication itself.

Relative Percent Improvements Across c Values vs. Number of Processors Figure 6 plots relative
percent improvements in estimated execution times of the heuristic-from-load-balance distribution over the block
distribution against the number of processors for a number of different communication-to-computation ratios.
The graphs indicate that the heuristic should produce roughly the same amount of improvement for a wide range
of communication-to-computation ratios. Thus, it would be suitable for use on other SIMD machines, even those
with communication-to-computation ratios larger than the MP-1.
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Fig. 6. Plots of relative percent improvements across c values vs. number of processors.

4 Conclusion

This paper starts with a definition of the execution cost of a sparse matrix vector multiplication as a function of
local and non-local data references and the communication-to-computation ratio of the machine being used. To
minimize these cost functions, we propose algorithms to preprocess off-processor references and to repartition
the sparse matrix according to its nonzero entries. Since these algorithms cannot be executed at compile-time,
we developed a linear complexity algorithm to optimally bi-partition such matrices and propose a fast parallel
heuristic that utilizes such bi-partitions.

Our simulation results for the parallel heuristic showed up to a 60 percent cost improvement for some test cases
for a moderate number of processors, while our implementation (combined with other preprocessing) produced
up to a 35 percent relative improvement in performance on the MasPar MP-1 parallel computer. The results
also indicate that the partition produced by the heuristic is dependent on the communication-to-computation
ratio c. Given a fixed number of processors, different partitions could be produced for different values of c. This
is in contrast to standard partitioning algorithms which produce only one partitioning for the given number of
processors. Another consequence of considering c in a partitioning algorithm is that the best partitions might
not utilize all available processors. Some of the simulation results pointed to this effect.

The heuristic and other preprocessing was also implemented on a 16-node IBM SP1 using a cost function
appropriate for MIMD machines. However, while the heuristic successfully decreased the execution cost, the net
improvement in execution time over simple distributions was small. Designed primarily to support coarse-grained
applications, the SP1 has a relatively high communication-to-computation ratio, and communication overhead
led to low efficiency of parallel execution with or without the application of the heuristic. The heuristic may
produce better results on finer-grained MIMD machines, however.

Our results indicate that the parallel heuristic performs best when there is a medium number of rows assigned
to each processor. When the number of assigned rows is small, each row, when relocated, changes the balance
drastically, so there is little space for improvement. In the opposite case, when the number of rows is very large,
the load on the processors is likely to be even. However, in the most promising cases — problems with moderate
granularity and machines with moderate communication latency — the speedup can be significant.



The run-time redistribution of a sparse matrix used repeatedly in a matrix vector multiplication should
become a common option in the standard library of sparse matrix operations, such as ITPACK [10]. We hope
that the algorithms presented in this paper will enlarge the repertoire of run-time distribution algorithms available
to the users of parallel machines.
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