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ABSTRACT

Run-time Partial Reconfiguration (PR) speed is signif-
icant in applications especially when fast IP core switch-
ing is required. In this paper, we propose to use Direct
Memory Access (DMA), Master (MST) burst, and a dedi-
cated Block RAM (BRAM) cache respectively to reduce the
reconfiguration time. Based on the Xilinx PR technology
and the Internal Configuration Access Port (ICAP) primi-
tive in the FPGA fabric, we discuss multiple design archi-
tectures and thoroughly investigate their performance with
measurements for different partial bitstream sizes. Com-
pared to the reference OPB HWICAP and XPS HWICAP
designs, experimental results show that DMA HWICAP and
MST HWICAP reduce the reconfiguration time by one or-
der of magnitude, with little resource consumption over-
head. The BRAM HWICAP design can even approach the
reconfiguration speed limit of the ICAP primitive at the cost
of large Block RAM utilization.

1. INTRODUCTION

Reconfigurability denotes the capability of programmable
devices such as FPGAs, to change customized designs by
loading different configware [1]. A more advanced reconfig-
urable technology, so-called Partial Reconfiguration (PR),
enables the process of reconfiguring a particular section of
an FPGA design while the remaining part is still operat-
ing. This vendor-dependent technology provides common
benefits in adapting hardware algorithms during system run-
time, sharing hardware resources to reduce device count and
power consumption, shortening reconfiguration time, etc. [2]
[3][4]. Typically partial reconfiguration is achieved by load-
ing the partial bitstream of a new design into the FPGA con-
figuration memory and overwriting the current one. Thus
the reconfigurable portion will change its behavior accord-
ing to the newly loaded configuration. In this procedure,
the reconfiguration speed (or reconfiguration throughput) is
a significant parameter, which determines the switching time
of PR modules. This factor must be taken into account in
many cases where performance-critical applications require
fast switching of IP cores.

Nowadays, Xilinx is the main vendor whose silicon prod-
ucts and tools support the PR feature. The Virtex-II, Virtex-4
and Virtex-5 family FPGAs all provide a dedicated Internal
Configuration Access Port (ICAP), which directly interfaces
to the configuration memory and accesses it. Based on the
Xilinx Virtex-4 partial reconfigurable platform, we investi-
gate the run-time reconfiguration speed and explore the ar-
chitectural design space to shrink the needed reconfiguration
time. The remainder of the paper is organized as follows: In
section 2, some related work on PR designs and reconfig-
uration speed studies will be addressed. In section 3, we
introduce the ICAP interface used for dynamic reconfigura-
tion. In section 4, multiple ICAP designs are described and
we will explore the architectural design space to improve
the run-time reconfiguration speed. Performance measure-
ment results on the development board will be revealed in
section 5, comparing the reconfiguration speed of different
architectures. Correspondingly, the resource utilization is
also analyzed for ICAP designs. Finally conclusions and a
discussion of future work are presented in section 6.

2. RELATED WORK

The partial reconfiguration feature has been investigated
in some applications such as [3][4][5][6]. As a consequence,
the designer can obtain the benefits of dynamically adapt-
ing parameters (in [4]), reduced chip size/count (in [3]), or
reduced power consumption (in [3][5][6]). In the Xilinx
design support, two ICAP cores are typically used for run-
time PR, specifically XPS HWICAP to the PLB bus [7] and
OPB HWICAP to the OPB bus [8]. Concerning the recon-
figuration speed when using ICAP, much work is still left
to study this important parameter: In [3], the authors com-
pare the speed of different configuration approaches, includ-
ing serial configuration, JTAG, SelectMAP and ICAP. How-
ever the listed ICAP configuration speed of 1.64 µs/Frame
(one frame contains 41 32-bit words) is only theoretically
calculated from the interface bandwidth, and the dominat-
ing overhead when the bitstream data are supplied from the
memory to ICAP has not been taken into account. In [9],
the authors considered all factors and did practical measure-
ments on OPB HWICAP. Unfortunately the results are not



satisfactory. For partial bitstreams of about 60 to 70 KBytes,
reconfiguration requires more than 100 milliseconds. In [10]
and [11], the authors achieve good reconfiguration through-
put by optimizing the PLB ICAP design. However the extra
Device Control Register (DCR) bus is required to control
the reconfiguration process, in addition to PLB for configu-
ration data delivery. Moreover, detailed resource consump-
tion overhead is not entirely presented and compared with
other designs. Hence in this paper, we will do a thorough
investigation on different ICAP architectures and optimize
them to make the PR module switching faster.

3. RUN-TIME PR WITH ICAP

The ICAP primitive is the hardwired FPGA logic by
which the bitstream can be dynamically loaded into the con-
figuration memory. As shown in figure 1, ICAP interfaces to
the configuration memory and furthermore provides paral-
lel access ports to programmable resources. During system
run-time, a master device (normally an embedded micropro-
cessor) may transmit the partial reconfiguration bitstream
from storage devices to ICAP to accomplish the reconfig-
uration process. The complete ICAP design, in which the
ICAP primitive is instantiated, interfaces to the system in-
terconnection fabric to communicate with the processor and
memories. Detailed design architectures will be discussed
in the next section.

Fig. 1. The ICAP primitive on Xilinx FPGAs

4. ICAP DESIGN ARCHITECTURE

4.1. System Architecture

A sample embedded design based on the Xilinx Virtex-4
FX FPGA is depicted in Figure 2, in which a hardcore Pow-
erPC 405 processor (or the softcore Microblaze), a Multi-
Port Memory Controller (MPMC) and some other peripheral
controllers are interconnected by the system PLB bus. To
study the PR feature, a PR Region (PRR) is integrated in the
system. Since communications exist between the PRR and
the PLB or I/O buffers to external devices, two Bus Macro
(BM) [12] interfaces (BM interface) with output enable pins
are utilized to lock the routing and isolate the unpredictable
state in the PRR during the PR process. The BM output en-
able/disable signals are controlled by a General-Purpose I/O

Fig. 2. A sample embedded design for the run-time PR study

(GPIO) core on the PLB. PRR outputs are to be switched
off during reconfiguration, and switched on again after the
newly loaded module starts functioning. To initiate the run-
time PR, the processor fetches bitstream data from the mem-
ory devices, such as DDR or the non-volatile flash memory,
and delivers them to the ICAP design. The ICAP design
takes charge of writing to or reading from the FPGA config-
uration memory. In Figure 2 it is represented as a black box
and will be elaborated in the following.

4.2. ICAP Design Evolution

As Xilinx reference designs for PR, the structures of
OPB HWICAP [13] and XPS HWICAP [14] are demon-
strated respectively in Figure 3(a) and Figure 3(b). The
OPB HWICAP core was previously designed for the low-
performance OPB bus. To interface the OPB core to the
host PLB, a bridge is needed for protocol adaptation. Via
the OPB slave interface, the partial reconfiguration data are
buffered in the Dual-Port Block RAM (DP BRAM), if the
command is decoded as “write”. A control state machine di-
agnoses the occupancy status of the buffer and continuously
supplies configuration data to ICAP, by which the FPGA
configuration memory is overwritten. XPS HWICAP shares
a similar structure except that Write/Read FIFOs and regis-
ter groups take the place of DP BRAM buffers and the com-
mand decoding state machine in the OPB HWICAP design.
Also to increase the data transport efficiency, the PLB inter-
face supports the burst transfer mode.

Considering the inefficiency when the processor moves
data to ICAP, we propose a design with DMA support as
shown in Figure 4. We reuse the XPS HWICAP structure
and attach the DMA function on it. The DMA controller
has two interfaces: The slave interface is used to receive
commands, for example starting a DMA transaction by writ-
ing to the Source Address (SA), Destination Address (DA),
and length registers. The master interface then initiates the
configuration data movement from the memory to the ICAP



(a) OPB HWICAP (b) XPS HWICAP

Fig. 3. Structure of the Xilinx ICAP designs

design. With the burst transfer supported, the DMA module
is expected to transport data more efficiently than the pro-
cessor, releasing the precious CPU time to other processor-
hungry programs.

Fig. 4. Structure of the DMA HWICAP design

To further reduce the communication overhead of the ex-
ternal DMA, we optimized the design using an integrated
bus master (MST) with burst transmission support instead
of DMA, as shown in Figure 5(a). In this design, bitstream
data can be actively fetched by the master device from the
memory, and hence the communication overhead between
DMA and HWICAP is avoided. The master interface may
be directly coupled to one port of MPMC using the PLB
protocol (see the dashed arrow in Figure 2). The slave inter-
face which receives control commands, is simply connected
to the host PLB without using the DCR bus as in [11].

A particular design shown in Figure 5(b) is used to in-
vestigate the configuration capability of the ICAP primitive.
Rather than the Write FIFO, a dedicated BRAM block is in-
stantiated to store bitstream data. It must be large enough to
hold the entire partial bitstream, because all the reconfigu-
ration data for one PR module will be initialized there be-
fore each time reconfiguration. Partial bitstreams are alter-
natively loaded in BRAM through the PLB IP interface. The
BRAM block works as a cache which removes the needed

(a) MST HWICAP (b) BRAM HWICAP

Fig. 5. Structure of MST ICAP and BRAM ICAP

time to transfer data from the memory into the HWICAP
module. Therefore ICAP always has the required data ready
in the high-speed BRAM. This approach can be used to eval-
uate the ultimate reconfiguration speed of the ICAP primi-
tive. The design architecture is well suited for the cases in
which the PR region is small, and extremely fast reconfig-
uration speed is required. Its disadvantage is the high uti-
lization of the BRAM resource on the FPGA, which will be
quantified in sub-section 5.2.

5. PERFORMANCE INVESTIGATION AND
SYNTHESIS RESULTS

5.1. Performance Measurements

Based on the Xilinx ML405 development board with a
Virtex-4 FX20 FPGA, experiments have been done to in-
vestigate the performance of various design structures. We
use the system architecture shown in Figure 2. The proces-
sor programs are executed in DDR. Partial bitstream files
are initialized in DDR as well, and different ICAP designs
are employed to reconfigure the PR region with the help
from the processor, DMA or MST. The only exception is
BRAM HWICAP, in which bitstream data are initialized di-
rectly in BRAM via PLB. In the system design, both PLB
(64-bit) and OPB (32-bit) run at 100 MHz, and so do all
ICAP designs. The reconfiguration time is measured from
the master device starting to feed data to ICAP, and ends un-
til the partial bitstream is completely downloaded into the
configuration memory. Measured with various sizes of par-
tial bitstreams in test 1 to 4, the reconfiguration speed is cal-
culated from the recorded time. Results are presented in
Table 1 and Figure 6. To demonstrate the performance de-
pendency on the processor, we did measurements using a
300 MHz PowerPC and a 100 MHz Microblaze processor
together with OPB HWICAP and XPS HWICAP respec-
tively. Shown in top rows of Table 1, we observe that en-
abling the seperate 16 KB ICache and DCache of the Pow-
erPC processor enhances the program execution speed and



ICAP design Test 1 Test 2 Test 3 Test 4 Avg. reconfig. Max. reconfig.
(Bit. Size/Reconf. Time) (Bit. Size/Reconf. Time) (Bit. Size/Reconf. Time) (Bit. Size/Reconf. Time) speed speed

OPB HWICAP
(PowerPC cache disabled)

7.7 KB/12.1 ms 23.2 KB/36.5 ms 44.5 KB/75.6 ms 79.9 KB/135.6 ms 0.61 MB/s 0.64 MB/s

XPS HWICAP
(PowerPC cache disabled)

7.7 KB/9.2 ms 23.2 KB/27.9 ms 46.5 KB/57.9 ms 80.0 KB/99.7 ms 0.82 MB/s 0.84 MB/s

OPB HWICAP
(PowerPC cache enabled)

7.7 KB/694.8 µs 22.7 KB/2.3 ms 43.9 KB/4.5 ms 75.9 KB/7.8 ms 10.1 MB/s 11.1 MB/s

XPS HWICAP
(PowerPC cache enabled)

7.7 KB/336.9 µs 23.2 KB/1.3 ms 44.5 KB/2.5 ms 74.6 KB/4.2 ms 19.1 MB/s 22.9 MB/s

OPB HWICAP
(Microblaze cache enabled)

7.7 KB/1.3 ms 23.2 KB/3.9 ms 47.1 KB/7.9 ms 77.7 KB/13.0 ms 6.0 MB/s 6.0 MB/s

XPS HWICAP
(Microblaze cache enabled)

7.7 KB/532.6 µs 23.2 KB/1.6 ms 47.2 KB/3.3 ms 79.1 KB/5.4 ms 14.5 MB/s 14.6 MB/s

DMA HWICAP 7.7 KB/95.1 µs 23.2 KB/282.3 µs 46.8 KB/566.3 µs 81.9 KB/991.1 µs 82.1 MB/s 82.6 MB/s

MST HWICAP 7.7 KB/33.0 µs 23.2 KB/98.9 µs 44.8 KB/190.7 µs 76.0 KB/323.1 µs 234.5 MB/s 235.2 MB/s

BRAM HWICAP 7.7 KB/28.0 µs 23.2 KB/66.3 µs 45.2 KB/121.7 µs none 332.1 MB/s 371.4 MB/s

Table 1. Reconfiguration speed measurements of ICAP designs for various sizes of partial bitstreams1

thus the reconfiguration speed by 16.6 and 23.3 times in av-
erage for two reference cores. Moreover, the more powerful
hardcore PowerPC achieves better performance compared
to the softcore Microblaze. The improved DMA HWICAP,
MST HWICAP and BRAM HWICAP designs are listed in
the three bottom rows of the table. The integrated DMA con-
troller or the master device replaces the processor to move
data and obtains a speedup of one order of magnitude. Es-
pecially MST HWICAP reaches an average speed of 234.5
MBytes/s after architectural optimization, which is almost
3 times faster than the original DMA design. We also find
that the bottleneck in MST HWICAP is the data delivery
throughput of the DDR memory (32-bit, 100 MHz) and the
MPMC controller (100 MHz). In designs with wider DDR
bandwidth and higher clock frequency, the performance value
is potentially improvable. In addition, the reconfiguration
speed of DMA HWICAP and MST HWICAP is guaranteed
to be processor independent, due to little processor partici-
pation in the reconfiguration work. The BRAM HWICAP
design arrives at the maximum speed of 371.4 MBytes/s,
which approaches the physical limit of 400 MBytes/s of the
ICAP primitive interface (32-bit, 100 MHz). In the exper-
iments for BRAM HWICAP, we didn’t measure large bit-
streams because of the constraint from the high BRAM uti-
lization on the small Virtex-4 FX20 FPGA. The normalized
speed of all designs is listed in Figure 7, both for the average
reconfiguration speed and the maximum one.

5.2. Synthesis Results

All ICAP designs have been synthesized with Xilinx ISE
v10.1 software. The resource utilization is summarized in
Table 2. We observe that OPB HWICAP plus the PLB-OPB
bridge consumes the least resources. LUTs are mainly used
as logic and one BRAM array constructs the Write/Read

1For different ICAP designs in each test, we fit the PR region in the same
rectangular area on the FPGA. However the sizes of partial bitstreams vary
a little due to the difference of design implementation.
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Fig. 6. Reconfiguration performance of ICAP designs

Fig. 7. Normalized average/maximum reconfiguration
speed of ICAP designs



Resources OPB HWICAP+Bridge XPS HWICAP DMA HWICAP MST HWICAP BRAM HWICAP
4-LUT (total) 608 out of 17088 (3.6%) 3275 (19.2%) 4277 (25.0%) 1083 (6.3%) 963 (5.6%)

4-LUT used as logic 576 out of 17088 (3.4%) 907 (5.3%) 1843 (10.8%) 1083 (6.3%) 614 (3.6%)

4-LUT used as shift registers 32 out of 17088 (0.2%) 2368 (13.9%) 2434 (14.2%) 0 320 (1.9%)

Slice Flip-Flops 368 out of 17088 (2.2%) 417 (2.4%) 977 (5.7%) 918 (5.4%) 469 (2.7%)

Block RAM (BRAM) 1 out of 68 (1.5%) 0 0 2 (2.9%) 32 (47.1%)

Table 2. Resource utilization of ICAP designs on Virtex-4 FX20

buffers. XPS HWICAP utilizes much more 4-LUTs than
OPB HWICAP but zero BRAM. The reason is that its buffer
device (Write/Read FIFOs) in HWICAP is synthesized into
LUTs as shift registers, rather than into BRAM. On the basis
of XPS HWICAP, DMA HWICAP adds more consumption
(totally 25% 4-LUTs) due to the direct integration of the
DMA controller without architectural optimization. Com-
paratively, the optimized alternative (MST HWICAP) uses
much less 4-LUTs and migrates the FIFO devices into two
BRAMs. So MST HWICAP is more efficient to perform
run-time PR in practical designs, taking into account its less
resource consumption plus very large performance speedup
over others including DMA HWICAP. The last column in
Table 2 lists the BRAM HWICAP design. The LUT and
Flip-Flop resource consumption is negligible but almost half
of the BRAM resource provided by Virtex-4 FX20 is used
to construct the dedicated buffer for partial bitstreams. In
our tests, 32 BRAMs constitute 64 KBytes address space,
which implies a maximum 64 KBytes bitstream initializa-
tion in the performance experiments. Nevertheless the large
BRAM consumption can bring the ultimate reconfiguration
speed of 371.4 MBytes/s.

The maximum clock frequencies of all designs for -10
speed grade Virtex-4 FPGAs are listed in Table 3. We ob-
serve that our improved designs based on XPS HWICAP do
not degrade the timing performance (MST HWICAP even
improved). In practical uses, normally we choose 100 MHz
for all to match the clock frequency of PLB or OPB.

ICAP designs Max. clock frequency
OPB HWICAP/PLB-OPB bridge 248 MHz/182 MHz

XPS HWICAP 121 MHz
MST HWICAP 200 MHz
DMA HWICAP 121 MHz

BRAM HWICAP 121 MHz

Table 3. Timing performance of ICAP designs

6. CONCLUSION AND FUTURE WORK

We have explored the design space of ICAP architec-
tures, and investigated the reconfiguration speed of five de-
signs. Experimental results show that DMA HWICAP and
MST HWICAP may achieve a processor independent re-

configuration speed of one order of magnitude faster than
OPB HWICAP and XPS HWICAP. BRAM HWICAP can
even approach the reconfiguration speed limit of the ICAP
primitive, at the cost of a large BRAM resource utilization
on FPGAs. In practice, MST HWICAP is more applicable
for fast reconfiguration requirements, and BRAM HWICAP
is useful in ultimate scenarios especially when reconfigurable
blocks are small but extremely fast IP switching is needed.

Proper ICAP cores will be utilized in our future PR de-
signs for adaptive computing studies. A high reconfigura-
tion speed guarantees the IP switching fast and largely re-
duces the time overhead when the system is partially changed.
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