
Run-Time Power-Down Strategies for
Real-Time SDRAM Memory Controllers

Karthik Chandrasekar1, Benny Akesson2, Kees Goossens2

1Computer Engineering, TU Delft, The Netherlands
2Electronic Systems, TU Eindhoven, The Netherlands

1k.chandrasekar@tudelft.nl
2{k.b.akesson, k.g.w.goossens}@tue.nl

ABSTRACT

Powering down SDRAMs at run-time reduces memory en-
ergy consumption significantly, but often at the cost of per-
formance. If employed speculatively with real-time mem-
ory controllers, power-down mechanisms could impact both
the guaranteed bandwidth and the memory latency bounds.
This calls for power-down strategies that can hide or bound
the performance loss, making run-time memory power-down
feasible for real-time applications.

In this paper, we propose two such strategies that re-
duce memory energy consumption and yet guarantee real-
time memory performance. One provides significant en-
ergy savings without impacting the guaranteed bandwidth
and latency bounds. The other provides higher energy sav-
ings with marginally increased latency bounds, while still
preserving the guaranteed bandwidth provided by real-time
memory controllers. We also present an algorithm to select
the most energy-efficient power-down mode at run-time. We
experimentally evaluate the two strategies at run-time by ex-
ecuting four media applications concurrently on a real-time
MPSoC platform and show memory energy savings of 42.1%
and 51.3% for the two strategies, respectively.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; B.8.2 [Performance and
Reliability]: Performance Analysis and Design Aids

General Terms

Performance, Design, Algorithms

Keywords

SDRAM, Power-Down, Real-Time, Memory Controller

1. INTRODUCTION
Increasing performance demands of modern MPSoCs of-

ten reflect poorly in overall system energy consumption.
SDRAMs in particular, contribute considerably to the sys-
tem energy consumption [1] and have the option of powering
down [2] at run-time to save energy. However, these power-
down mechanisms come at the cost of performance (band-
width and latency), due to their power-up latencies [10].

Applications with real-time requirements demand worst-
case performance guarantees from every component in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 20XX X-XXXXX-XX-X/XX/XX ...$10.00.

system, including the SDRAMs, where these guarantees are
at the memory transaction level. Real-time SDRAM con-
trollers provide such guarantees to a memory requester, such
as a processor, in terms of a minimum guaranteed band-
width and/or a maximum latency bound for memory ac-
cesses. Real-time SDRAM controllers, such as [3–8], em-
ploy predictable memory arbiters, such as Round-Robin or
Time Division Multiplexing, to schedule memory accesses
from different requesters and to provide performance guar-
antees. If they speculatively employ power-down mecha-
nisms at run-time when the memory is idle, it can affect both
the latency and the bandwidth guarantees provided, due to
the power-up latencies [10]. Hence, they do not support
run-time power-down. However, to design efficient future
real-time systems [9], it is essential to reduce memory power
consumption while satisfying performance requirements.

This paper proposes two run-time power-down strategies
that reduce memory power consumption, while preserving
the original bandwidth guarantees and also providing mem-
ory access latency bounds to guarantee real-time behavior.
The first strategy provides significant energy savings without
impacting either the maximum latency bounds or the mini-
mum guaranteed bandwidth. The second strategy provides
higher energy savings with marginally increased bounds on
the memory latency, while still preserving the original guar-
anteed bandwidth provided by the real-time memory con-
troller. Both these strategies can be employed with any of
the real-time memory controllers presented in [3–8].

SDRAMs support different power-down modes viz., fast
exit and slow exit. The former has a short power-up latency
and saves some power, while the latter has a longer power-
up latency, but saves more power. This paper also proposes
an algorithm to select the most energy-efficient power-down
mode at run-time based on the memory state and the power-
down duration, for both the power-down strategies.

We experimentally evaluate the two proposed strategies
by concurrently executing four media applications on an
MPSoC platform using a real-time SDRAM memory con-
troller. We show around 42.1% memory energy savings us-
ing the first power-down strategy and around 51.3% using
the second strategy. The second strategy almost reaches the
theoretical maximum of 51.4% memory energy savings using
power-down modes, but slightly increases the execution time
of the applications by 0.25%, due to the marginal increase
in latency bounds. We also compare these two strategies
against a speculative power-down policy on energy savings
and impact on performance guarantees.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the related work on real-time SDRAM con-
trollers and memory power optimization strategies. Sec-
tion 3 gives the background on SDRAMs and introduces
real-time memory arbitration. Section 4 presents the pro-
posed power-down strategies, followed by deriving the im-
pact of these strategies and a speculative power-down policy

on performance guarantees in Section 5. Section 6 describes
an algorithm to select the most energy-efficient power-down
mode at run-time. In Section 7, we experimentally evalu-
ate our solutions using four media applications and compare
against the speculative and theoretical-best power-down op-
tions. Section 8 concludes the paper by highlighting the
contributions of this work.

2. RELATED WORK
Real-time SDRAM memory controllers like [3–8] employ

predictable arbiters, such as Round-Robin or TDM, and pro-
vide latency and/or bandwidth (rate) guarantees by bound-
ing the temporal interference between requesters.

[4] employs Round-Robin arbitration and provides upper
bounds on delays for different memory accesses. Similarly,
[6] employs Round-Robin arbitration and uses worst-case re-
sponse time to bound memory access latency. [3] adopts a
budget-based static-priority arbitration and provides bounds
on latency and guarantees a minimum bandwidth for every
memory requester. It also supports Round-Robin or TDM
arbiters. [7] uses TDM arbitration and provides bandwidth
guarantees and a worst-case execution time for memory ac-
cesses. In [5], weighted Round-Robin arbitration is used
to provide both bandwidth guarantees and latency bounds.
[8] uses static scheduling and provides predictable memory
accesses. However, none of these real-time memory con-
trollers support power-down at run-time, due to the impact
of power-up latencies on performance guarantees.

When it comes to work on SDRAM memory power min-
imization, there exists no generic run-time SDRAM power-
down solution for real-time systems. For instance, [15] pro-
posed to reduce idle power consumption by using a compiler-
directed selective power-down and a hardware-assisted run-
time power-down. However, the former is not suitable for
run-time use and the latter can incur large performance
penalties due to mis-predictions of future idleness. [16] pro-
posed history-based scheduling and an adaptive memory
throttling mechanism to allow memory to remain in the
idle mode for longer periods of time to employ power-down
longer. However, these methods also incur performance
penalties and cannot be used for real-time applications.

In short, real-time memory controllers do not currently
support power-down mechanisms, and existing power-saving
solutions are not applicable at run-time and cannot be used
with real-time memory controllers. This paper bridges this
gap and provides run-time power-down strategies for real-
time SDRAM memory controllers.

3. BACKGROUND
This section discusses SDRAM organization, operation

and power-down options. This is followed by an introduc-
tion to predictable arbiters and how they guarantee latency
and bandwidth (rate) in a real-time memory controller.

3.1 SDRAM Essentials
SDRAMs are organized as a set of memory banks that

include memory elements arranged in rows and columns. A
row buffer also resides in every bank to store contents of the
currently accessed memory row. The banks in an SDRAM
operate in a parallel and pipelined fashion, although only
one bank can perform an I/O operation (data transfer) at
a particular instance in time, due to the shared data bus.
To read contents from the memory, an Activate command is
first issued by the memory controller to the SDRAM, which
opens the requested row and brings data from the SDRAM
cells into the row buffer. Then, any number of Read orWrite
commands can be issued to read out or write into specific
columns of data in the row buffer. Subsequently, a Precharge
command is issued and the contents of the row buffer are
stored back into the corresponding memory row. Reads and
writes can also be issued with an auto-precharge flag to au-

tomatically precharge as soon as the request completes. If
any row is active, the memory is said to be in the active
state, else it is in the precharged state. Switching between a
read and a write transaction, or vice versa, takes a few clock
cycles. Further, to retain data in the memory, all rows in the
SDRAM need to be refreshed at regular intervals, which is
done by issuing a Refresh command. The number of words
of data transferred in a single read/write command is called
a burst, and its size is given by the Burst Length (BL) (usu-
ally 8 words for DDR3). A memory controller may serve
a single request by issuing a number of read/write bursts
per bank (defined by the Burst Count (BC) parameter) and
interleaving over more than one banks (given by the degree
of Bank Interleaving (BI)). The BL, BC and BI parameters
determine the data access granularity with which the mem-
ory controller accesses the memory and have a large impact
on performance and power consumption [18].

3.2 Power-Down Options in SDRAMs
It is possible to power down the SDRAM memory at

run-time to reduce power consumption if it is not in use.
SDRAMs support different power-down modes, such as fast
exit and slow exit [10, 11]. The former has shorter power-
up latency but saves less power, while the latter has longer
power-up latency, but saves more power. These power-down
modes can be entered either in the active or precharged
state, based on certain timing constraints and the type of
memory being used. For DDR2 memories, an active power-
down can be used in the fast or slow exit mode, but only
in the slow exit mode for DDR3. Conversely, a precharged
power-down can be used in the fast or slow exit mode for
DDR3, but only in the slow exit mode for DDR2.

When transitioning into and out of these power-down (PD)
modes, certain timing constraints must be respected, as shown
in Figure 1. In the figure, the tTRANS parameter gives the
transition in timing constraint before the memory can switch
to a power-down mode after a read/write command is issued.
The tPD parameter gives the power-down time, which may
vary from a minimum of tCKE (Clock Enable pulse width)
to a maximum of 9 × tREFI (refresh interval). The tPUP

parameter gives the power-up timing constraint before the
next command can be issued. This tPUP parameter for the
fast exit mode is given by tXP for DDR3 and tXARD for DDR2
memories. For the slow exit mode, the same power-up tim-
ing constraints are applicable if the next issued command
is an ACT/PRE/REF. However, before a Read/Write com-
mand is issued after powering-up, the timing constraints of
tXPDLL for DDR3 and tXARDS for DDR2 must be satisfied,
for the DLL to be activated before issuing these commands.

PDTRANS PUP

Figure 1: Power-Down Transitions

3.3 Arbiters and Latency-Rate Servers
Real-time SDRAMmemory controllers employ predictable

arbiters to provide latency and bandwidth (rate) guarantees
to applications (requesters) accessing the memory. These
arbiters use scheduling algorithms like Round-Robin and
TDM, and can be analyzed using the Latency-Rate (LR)
server model [12], to characterize their performance guaran-
tees. These guarantees are provided to a requester in terms
of a minimum rate of service (ρ) and a maximum initial
service latency (Θ), whenever it is busy (requesting a higher
rate of service on average than allocated to it). Figure 2
depicts this rate guarantee and the initial service latency

bound provided by LR arbiters. As shown in the figure, a
busy period for a requester corresponds to a time interval
when its requested service rate is above the busy line, else, it
is considered to be not busy. In the figure, the allocated ser-
vice line indicates the minimum rate guarantee (ρ) given to
a requester. ρ corresponds to the fraction of the net memory
bandwidth that is provided as the bandwidth guarantee (β)
to that requester. The maximum initial service latency (Θ)
gives the maximum duration a requester has to wait after its
arrival, to start getting served by the memory at the guar-
anteed rate (ρ). As can be noticed in the figure, the actual
provided service may be higher than the allocated rate, if
the system has the capacity to support it.

Requested
Service

Busy
Line

Allocated
Rate

Provided
Service

Initial
Service Latency

Time

A
c
c
u

m
u

la
te

d
D

a
ta

Busy

Not Busy

Allocated
Service

Figure 2: Latency-Rate Server

In short, a Latency-Rate (LR) arbiter provides a busy
requester, a guaranteed bandwidth β in the form of a guar-
anteed rate of service ρ after an initial service latency (Θ).
These guarantees can be used for formal verification of an
application’s real-time behavior.

3.4 LR Arbiters and Memory Controller Guarantees
This section describes how latency and bandwidth (rate)

guarantees are derived for a real-time SDRAM controller.
The initial service latency bound (Θ) of a requester can

be intuitively seen as the duration between the time of ar-
rival of a request at the arbiter and the time at which the
request is accepted by the memory for service. It is given
by the sum of the service time of the request currently be-
ing served and that of other interfering requesters, including
refreshes (if any), as discussed later in Section 5. The ser-
vice time for any given request is defined as the service cycle
length (SCL) of that request. This can be highly variable
depending on whether the request is a read or a write and if
there is switching time involved (from read to write or vice
versa) between the last and the next request. Hence, we use
the longest SCL denoted by maximum service cycle length
(max SCL) to derive a conservative worst-case initial service
latency bound Θ (as will be shown in Section 5.1).

As stated before, once the request is accepted for ser-
vice by the memory after Θ, it is guaranteed a minimum
rate of service, ρ. This rate of service (ρ) defines the band-
width guarantee (β), based on the net memory bandwidth
(net BW). This net memory bandwidth is predominantly
defined by the request size and the max SCL for the par-
ticular request size. The size of a request can be defined
as a multiple of the access granularity parameter (described
in Section 3.1), which is the minimum size of data accessed
by the memory controller. For efficient memory access, the
access granularity should be of the same size as the request
size, although it can be smaller. In this work, we assume
all requests to be of one size, and the access granularity to
be of the same size as the requests, for efficient memory ac-
cess and simplicity of analysis. The max SCL for the given
access granularity is then used to compute the net memory
bandwidth (net BW) and along with ρ, is used to provide
the bandwidth guarantee β (also shown in Section 5.1).

An LR arbiter employs a scheduling interval parameter,
to schedule different requesters to memory. This parame-
ter gives the duration after which, in every service cycle, a
subsequent requester is selected to be scheduled at the end

of the current request. This scheduling interval is statically
defined as the minimum service cycle length among all re-
quests (min SCL), since this is the minimum period after
which, the next requester could be scheduled.

As an example, consider 64-byte requests from a real-time
memory controller accessing a 1Gb DDR3-800 memory with
a BC of 4 interleaving over 1 bank. The SCLs of read and
write requests (including any switching) corresponding to
the 64-byte access granularity are shown in Figure 3. As
can be noticed, the SCLs vary depending on the request
type (read/write). The shortest SCL (min SCL) is 26 clock
cycles for a read transaction and this defines the scheduling
interval for all service cycles and the length of an idle service
cycle. The longest SCL max SCL is 37 cycles and it includes
write SCL (tWR) and read to write switching time (tRTW).

�� ��

��

�� ��	

��
�������

��������

������	

��
��

������	������	

�
���

Figure 3: Scheduling Interval & SCLs

4. REAL-TIME POWER-DOWN STRATEGIES
Existing real-time SDRAM controllers employ predictable

LR arbiters, such as Round-Robin and TDM, to provide
latency and/or bandwidth guarantees, but do not address
power optimization. In this section, we propose two run-
time power-down strategies for such memory controllers;
one a conservative latency-bandwidth-neutral strategy and
the other an aggressive bandwidth-neutral strategy. These
strategies can be employed whenever the memory is idle to
reduce memory power consumption, while preserving the
original guaranteed bandwidth, and providing bounds on
memory latencies. The analysis here is restricted to DDR3
memories, although it is easily adaptable for DDR2 as well.

4.1 Conservative Latency-Bandwidth-Neutral Strategy
The first strategy involves triggering a special power-off

request whenever an arbiter service cycle is idle. This power-
off request is designed to power down the memory and power
it back up within the scheduling interval, thus hiding the
power-up transition latencies within the idle service cycle.
This ensures that the scheduling of memory access requests
is not disturbed and the power-down mechanism is effec-
tively hidden from the requesters. This latency-bandwidth-
neutral strategy provides significant energy savings and pre-
serves both the guaranteed initial service latency bounds
and the bandwidth, as is shown later in Section 7.

4.2 Aggressive Bandwidth-Neutral Strategy
The second strategy is more aggressive, since it checks for

new requests before powering up the memory. It involves
issuing a power-down request when there are no pending re-
quests at the arbiter, and snooping the arbiter inputs for
new requests before the end of the current idle service cycle.
If there are any new pending requests, a power-up request
is issued to the memory to power it up by the end of the
idle service cycle (thus maintaining scheduling interval). To
implement this strategy, we introduce a Snooping Point at
a pre-defined time instance, before the end of the schedul-
ing interval, as shown in Figure 4. This snooping point
can be derived by subtracting the worst-case power-up time
(tPUP max) (given by Equation (1)) from the scheduling in-
terval (given by Equation (2)).

tPUP max = max(tXP, tXPDLL − tRCD) (1)

tSNOOP = tSCHED INTERVAL − tPUP max (2)

This strategy assures that the memory powers-up in time
and following request is scheduled on-time, as in the conser-
vative case, if it arrives before this snooping point.

��

��

�� ��	

��
�������

��������

������	

��

��

������	

������	

�
���

��������

 ����

!

� "
���

��

Figure 4: Snooping Point in Aggressive Power-Down

As can be noticed in Equation (1), tPUP max considers the
minimum timing constraint between an ACT and a RD/WR
command (tRCD) [10], besides the fast exit (tXP) and slow
exit (tXPDLL) power-up timing constraints. The rationale
behind it is as follows: In DDR3 memories, the slow exit
power-down can be employed only in the precharged state,
which implies that every read/write transaction has to end
with a precharge and begin with an ACT command. The
power-up timing constraint before issuing an ACT after a
slow-exit power-down is given by tXP, which is shown as the
first constraint in Equation (1). For efficient memory ac-
cess, the first RD/WR command is scheduled immediately
after tRCD is satisfied, after an ACT command is issued.
However, since a RD/WR can be issued only after a dura-
tion of tXPDLL, after the memory begins to power-up, the
corresponding ACT in the transaction can be issued after
max (tXP, tXPDLL - tRCD) is satisfied.

Now consider the scenario, when the next request arrives
after the snooping point but before the end of scheduling
interval. In this case, no power-up will be issued and the
memory continues in the power-down mode. This results in
the next request missing a service cycle and getting sched-
uled in the following service cycle, if no other interfering
requesters show up. However, as will be shown in Section 5,
this only increases the latency bounds (Θ) by the power-
up transition time (in the worst-case) and does not impact
the maximum service cycle length (max SCL) and there-
fore the bandwidth guarantee (β). In short, this strategy
is bandwidth-neutral and provides marginally increased la-
tency bounds, thus guaranteeing real-time memory perfor-
mance. The advantage of this strategy is that all contiguous
idle periods are combined into one large idle period, thereby
avoiding frequent powering-up of memory (every idle service
cycle), as in the conservative strategy, to save more energy.

5. IMPACT ON LATENCY-BANDWIDTH BOUNDS
In this section, we first derive the initial service latency

bounds and bandwidth guarantees offered by real-time mem-
ory controllers. These guarantees are conservative and sim-
pler than those presented in [14], for ease of understanding.
We then analyze the impact of the conservative, aggressive
and speculative power-down strategies on these bounds.

5.1 Latency and Bandwidth Guarantees
As stated in Section 3.4, the bandwidth guarantee (β)

depends on net memory bandwidth (net BW), which can
be derived using the max SCL for a given access granularity.
The worst-case bound for max SCL can be computed as the
maximum of: (1) the service time of a read (tRD) and the
time to switch to a read after a write (tWTR), and (2) the
service time of a write (tWR) and the time to switch to a
write after a read (tRTW) (given by Equation (3)).

max SCL = max(tWTR + tRD, tRTW + tWR) (3)

To compute the net memory bandwidth, let us assume
that a requester is busy throughout a refresh interval (tREFI),
when it is interrupted by a refresh. For a worst-case esti-
mate, we consider every service cycle during tREFI to be as

long as max SCL. Hence, the total number of service cycles
(num SCL) in tREFI is given by Equation (4), where tRef is
the length of a single refresh request in the refresh interval.

num SCL = ⌊(tREFI − tRef)/max SCL⌋ (4)

The total data transfer during this period, assuming an
access granularity of G is num SCL × G. Hence, the next
memory bandwidth is given by Equation (5).

net BW = num SCL×G/tREFI (5)

Consider a use-case with ‘x’ requesters accessing the mem-
ory through a real-time memory controller using Round-
Robin arbitration. Each requester is guaranteed a service
rate of ρ = ‘1/x’ in the form of 1 out of x Round-Robin time
slots, if it is busy. Hence, the minimum bandwidth guaran-
teed to each requester (β), is given by Equation (6).

β = net BW× ρ (6)

Next, we derive the initial service latency (Θ) for a re-
quester (in Equation (7)), considering the max SCL from
Equation (3)), in the presence of ‘x’ interfering requesters.
We also consider a refresh request length ttRef for any inter-
ference from a refresh during the busy period. In addition,
Θ would also include the SCL of the currently scheduled
request and a waiting period twait equal to the difference be-
tween the max SCL and the scheduling interval (min SCL).

Θ = twait + tRef + (max SCL× (x+ 1)) (7)

In Equation (7), the ‘1’ corresponds to service cycle of the
currently scheduled request. The twait period corresponds to
the difference between the time of scheduling a request and
the end of the current SCL (max SCL in the worst-case).

These conservative guarantees are applicable to most real-
time memory controllers discussed in this paper.

5.2 Impact of Conservative and Aggressive
Power-Down Strategies

To explain the implications of both the conservative and
aggressive strategies, we illustrate a use-case with four re-
questers (R1, R2, R3 and R4) connected to a Round-Robin
arbiter, as shown in Figure 5. Each requester is provided
with a initial service latency bound (Θ) and a bandwidth
guarantee (β) based on a rate guarantee (ρ).

Figure 5: Impact on Latency and Rate Guarantees

We first re-visit the condition for deriving the worst-case
initial service latency bound for requester R1 (given by Θ).
Consider that R1 arrives at the arbiter one clock cycle after
the end of the current scheduling interval, depicted in Fig-
ure 5 as worst-case arrival. In this case, it would miss out
on being scheduled in its first service slot (indicated by the
striped slot). It would eventually get serviced after waiting
four service cycles, at the next allotted service slot (indicated
by the shaded slot), with a guaranteed rate of service ρ at
a guaranteed bandwidth β. Hence, its worst-case latency
bound, Θ, includes four max SCLs, apart from the tRef and
twait discussed in Equation (7).

In the case of conservative power-down, the SCLs are not
modified, since power-up is always completed within the
scheduling interval, which is given by the shortest service
cycle. Hence, max SCL remains unaltered and the band-
width guarantee (β) does not change. The initial service

latency bound is also maintained as is, since any request ar-
riving before the end of scheduling interval in the idle service
cycle is scheduled as before, when no power-down was used.

In the case of aggressive power-down, a power-down (PD
in Figure 5) was issued during the idle period, preceding
R1’s request for service. If R1 arrives before the snooping
point, it is scheduled during its first available service slot
(striped slot). If R1 arrives after the scheduling interval,
as discussed above, it is scheduled after waiting four service
cycles. However, if R1 arrives after the snooping point and
before the end of scheduling interval, it also misses out on
its first service slot, since the next slot is already scheduled
to be in power-down. But, after waiting over the next four
service cycles and any memory-generated refresh, R1 would
get serviced at the next allotted service slot (indicated by
the shaded slot), with the guaranteed rate of service ρ at
a guaranteed bandwidth β. This is the same, as the case
when R1 arrives one clock cycle after the scheduling interval,
as discussed above. The only difference in this scenario is
that, the worst-case initial service latency bound Θ would
increase marginally by the worst-case power-up transition
time tPUP max, as shown in Equation (8).

Θ′ = Θ+ tPUP max (8)

Since powering-up of memory is not allowed beyond the
snooping point, the power-up is always completed by the
end of scheduling interval in the idle service cycle. Hence,
the worst-case bound on max SCL (shown in Equation (3))
is not affected by the power-up and hence, the net memory
bandwidth (net BW) and the bandwidth-guarantee (β) do
not change. To quantify the increase in Θ (shown in Equa-
tion (8)), we consider service cycle lengths from the illustra-
tion in Figure 3 with request size of 64 bytes. The original
Θ for requester R1 in the presence of three interfering re-
questers (R2, R3 and R4) is derived as 203 clock cycles (cc)
using Equation (7), where tRef is 44 cc for 1Gb DDR3-800.
The increased Θ′ is calculated as 208 cc (tPUP max = 5 cc),
thus, showing marginal increase in latency bounds (2.4%).

In conclusion, the initial service latency hit of tPUP max is
observed only once per busy period and only by the requester
waking up the memory from power-down. Also, there is no
impact on the requester’s bandwidth guarantee.

5.3 Impact of Speculative Strategies
In this subsection, we derive the impact of speculative

power-down policies on latency and bandwidth guarantees.
A speculative power-down strategy can be defined as one

that powers-down the memory whenever it is idle and allows
it to power-up even after the snooping point in the idle ser-
vice cycle. In the worst-case, a request may arrive at the last
clock cycle of the idle service cycle and hence, the power-up
transition time (tPUP max) gets added to the SCL of the fol-
lowing request, which may originally have been max SCL in
length. This impact on max SCL as a result of a speculative
power-up, is shown in Equation (9). This reduces the net
memory bandwidth (net BW) and thereby, the bandwidth
guarantee (β) provided by the memory controller, as shown
in Equations (4), (5) and (6). It also increases Θ in the
presence of ‘x’ interfering requesters, by tPUP max × (x + 1).

max SCL′ = max(tPUP max + tRD, tPUP max + tWR,max SCL)
(9)

Using the SCLs from Figure 3, max SCL increases to 42 cc
from 37 cc (by 13.5%). As a result, the service latency bound
increases to 228 cycles, showing a larger increase (around
12.3% using Equation (7)) compared to the aggressive strat-
egy. Most importantly, the net memory bandwidth reduces
from 681 MB/s to around 599 MB/s and the bandwidth
guarantee (β) reduces from around 170.27 MB/s to 149.72
MB/s (around 12.1% using Equation (5)), which is unac-
ceptable for real-time memory controllers, since it results in

an inefficient use of the already scarce memory bandwidth.
Moreover, the bandwidth and latency impact of the spec-

ulative policy depends on the number of requesters accessing
the memory and gets worse with an increase in the same.

6. POWER-DOWN MODE SELECTION
In this section, we present a power-down mode selection

algorithm that determines the most appropriate mode of
power-down (fast exit or slow exit) based on the state of
the memory and idle service cycle length. Using the power-
down equations presented in [13], and the current and volt-
age numbers from SDRAM datasheets [17], the algorithm
evaluates the different power-down modes (fast exit or slow
exit, active or precharged) and selects the best power-down
mode with the least energy consumption.

To employ Algorithm 1, we derive a ‘power-off’ (tOff) pe-
riod for the entire power-down request including the transi-
tions in and out of the power-down mode (tTRANS + tPD +
tPUP in Figure 1), equal to the idle service cycle length
(min SCL). We then forward this information to the algo-
rithm, along with the memory state information (precharged
or active), which then selects the most energy-efficient power-
down mode for the given system configuration. If there can
be no energy savings with any of the power-down modes,
the algorithm opts for no power-down (No PD).

Algorithm 1 Power-Down Mode Selection

Require: mode select(tOff, mem state)
1: if tOff > tCKE + tXPDLL − tRCD then

2: {Comment: Minimum PRE Slow Exit Duration}
3: if mem state == PRE then
4: Mode←Min Mode

(

E(tOff, S PRE), E(tOff, F PRE)
)

5: else
6: Mode← F ACT

7: end if
8: else if tOff > tCKE + tXP then

9: {Comment: Mimimum ACT/PRE Fast Exit Duration}
10: if mem state == PRE then
11: Mode←Min Mode

(

E(tOff, F PRE), E(tOff, No PD)
)

12: else
13: Mode← F ACT

14: end if
15: else
16: Mode← No PD

17: end if
18: return (Mode)

It should be noted that the algorithm presented here is for
DDR3 memories. For DDR2, the appropriate power-down
modes and timings described in [11], must be used.

7. EXPERIMENTS AND RESULTS
In our experiments, we employ a 1Gb Micron DDR3-

800 [17] memory and four common media applications: (1)
H.263 encoder, (2) EPIC Encoder, (3) JPEG Encoder and
(4) MPEG2 Decoder. Using these applications, we evalu-
ate the two proposed real-time power-down strategies and a
speculative power-down policy with respect to energy sav-
ings, average execution time, initial service latency bounds
and bandwidth guarantees. We also derive the theoretical
best-case energy savings when using power-down by per-
forming memory trace post-processing. Once the trace is
obtained, we manually insert a power-down request at the
start of every idle period and power-up the memory in-time
for the next transaction to be served, in order to avoid any
impact on execution times and performance guarantees.

7.1 System and Experiments Setup
We executed the four test applications independently on

the Simplescalar simulator [20] with a 16KB L1 D-cache,
16KB L1 I-cache, 128KB shared L2 cache and 64-byte cache
line configuration. We filtered out the L2 cache misses, and
obtained a trace of the transactions meant for the SDRAM

memory. To simulate four requesters in our experimental
setup (similar to the illustration in Section 5.2), we em-
ployed the traces from these four applications on four trace
players in a SystemC model of our real-time MPSoC plat-
form [19]. We forwarded these transactions to our real-time
SDRAM memory controller [3], fitted with a Round-Robin
arbiter. To obtain 64-byte access granularity for DDR3-800,
we used a BL of 8 words, each 2 bytes long, with a BC of
4, interleaving over 1 bank, for most power-efficient memory
accesses [13]. For all our power analysis, we employed our
open-source DRAM energy estimation tool [21] based on the
power model presented in [13], and the current and voltage
numbers from SDRAM datasheets [17].

7.2 Results and Analysis
In our first experiment, we analyze the impact of the

different power-down policies on total memory energy con-
sumption when executing the four application traces con-
currently. In doing so, we also observe the average-case im-
pact on total execution time, due to these power-down poli-
cies. We compare the conservative (CPD) and aggressive
(APD) power-down strategies against the theoretical best-
case power-down, no power-down (No PD) and the spec-
ulative power-down (Spec PD) policies, as depicted in the
graph in Figure 6. We observed that the conservative strat-
egy saves around 42.1% of total memory energy, compared
to using no power-down, without impacting the execution
times. We also observed that the aggressive power-down
strategy saves 51.3% of the total memory energy (very close
to the theoretical best-case of 51.4%), at a marginal increase
of 0.25% (approximately 510 µs) in the total execution time.
The speculative power-down policy saves around 51.1% of
the memory energy consumption, but at an increase of about
1.32% (approximately 2640 µs) in the total execution time.

No PD CPD APD Spec PD Theoretical Best

18000

20000

µ
J)

14000

16000

e
rg
y

 (µ

12000

14000

a
l E
n
e

8000

10000

To
ta

0 1000 2000 3000

Increase in Execution Time (µs)Increase in Execution Time (µs)
Figure 6: Total Energy & Penalties using Strategies

In our second experiment, we analyze the difference in
the energy savings, and the bandwidth guarantee (β) and
initial service latency bound (Θ) of the different policies, as
depicted in the graph in Figure 7. The data labels indicate
the energy consumption, and the bandwidth and latency
guarantees of the different policies.

2
.3

 μ
J

s9
4
9
1
.6
2

 μ
J

s9
5
2
7
.6
6

 μ
J

9480 μJ

s30

40

50

60

e
n
ce

CPD APD Spec PD Theoretical Best

1
1
2
9
2

1
7
0
.2
7

 M
B
/s

5
0
7
.5

 n
s

1
7
0
.2
7

 M
B
/s

5
2
0

 n
s

9

149.72 MB/s

5
7
0

 n
s

1
7
0
.2
7

 M
B
/ s

5
0
7
.5

 n
s

‐20

‐10

0

10

20

Energy Savings Change in β Change in θ

%
 D
if
fe
re

Figure 7: Energy Savings & Latency-Rate Impact

As can be observed, the aggressive and speculative power-
down strategies save almost as much energy as the theoret-
ical best power-down solution. However, in the case of the
aggressive power-down strategy, the service latency bound

(Θ) increases only marginally by around 2.4% to 520 ns,
whereas it increases by around 12.3% to 570 ns in the case
of the speculative power-down policy. Moreover, the band-
width guarantee (β) of the speculative power-down policy
takes a large of around 12.1% and reduces to 149.72 MB/s
from the initial 170.27 MB/s, while it is maintained by the
aggressive power-down policy at 170.27 MB/s. This decrease
in bandwidth-guarantee occurs for any speculative power-
down policy that decides to power-up the memory after the
snooping point, since it increases max SCL by 13.5% and
decreases net BW by 12.1%, as shown in Section 5.3. Both
the proposed bandwidth-neutral strategies can be employed
at run-time by any real-time SDRAM memory controller.

8. CONCLUSION
This paper presented two run-time power-down strategies

that reduced SDRAM memory energy consumption and yet
guaranteed real-time memory performance. The conserva-
tive strategy provided significant energy savings of around
42.1% when running traces from four media applications,
without impacting the guaranteed latency bound and band-
width. The aggressive strategy provided higher energy sav-
ings of around 51.3% (close to the theoretical best of 51.4%)
and only marginally increased the latency bounds by 2.4%,
while still preserving the original guaranteed bandwidth.
This paper also showed that a speculative power-down policy
cannot do any better than the aggressive strategy in terms
of energy savings and would also increase the latency bounds
by 12.3% and reduce the guaranteed bandwidth by 12.1%,
which is unacceptable for real-time memory controllers. Fi-
nally, this paper also presented an algorithm to select the
most energy-efficient power-down mode at run-time for both
the strategies, thereby providing a complete power-down so-
lution for all real-time memory controllers using LR arbiters.

9. REFERENCES

[1] O. Vargas, Achieve minimum power consumption in mobile
memory subsystems, EE Times Asia, March 2006.

[2] B. Jacob et al., Memory Systems: Cache, DRAM, Disk,
Morgan Kaufmann Publishers, 2007.

[3] B. Akesson et al., Architectures and Modeling of Predictable
Memory Controllers for Improved System Integration, In Proc.
DATE 2011.

[4] M. Paolieri et al., An Analyzable Memory Controller for Hard
Real-Time CMPs, IEEE Embd. Sys. Letters, Vol.1, No.4, 2009.

[5] A. Burchard et al., A Real-Time Streaming Memory
Controller, In Proc. DATE 2005.

[6] S.A. Edwards et al., A Disruptive Computer Design Idea:
Architectures with Repeatable Timing, In Proc. ICCD 2009.

[7] C. Pitter, Time-predictable memory arbitration for a Java
chip-multiprocessor, In Proc. JTRES 2008.

[8] J. Reineke et al., PRET DRAM Controller: On the Virtue of
Privatization, In Proc. CODES+ISSS 2011.

[9] ITRS, http://www.itrs.net
[10] JEDEC, DDR3 SDRAM Standard, JESD79-3E, 2010.
[11] JEDEC, DDR2 SDRAM Standard, JESD79-2F, 2009.
[12] D. Stiliadis et al., Latency-rate servers: a general model for

analysis of traffic scheduling algorithms, IEEE Trans. on
Netw., Vol. 6, No. 5, 1998.

[13] K. Chandrasekar et al., Improved Power Modeling of DDR
SDRAMs, In Proc. DSD 2011.

[14] B. Akesson et al., Memory Controllers for Real-Time
Embedded Systems, Springer, 2011.

[15] V. Delaluz et al., Hardware and Software Techniques for
Controlling DRAM Power Modes, IEEE Trans. on Comp.,
Vol.50, No.11, 2001.

[16] I. Hur et al., A comprehensive approach to DRAM power
management, In Proc. HPCA 2008.

[17] Micron, 1Gb: X4, X8, X16 DDR3 SDRAM, Rev. 2010.
[18] S. Goossens et al., Memory-Map Selection for Firm

Real-Time Memory Controllers, In Proc. DATE 2012.
[19] A. Hansson et al., CoMPSoC: A template for composable and

predictable multi-processor system on chips, ACM TODAES,
Vol. 14, No. 1, 2009.

[20] D. Burger et al., The SimpleScalar tool set, Version 2.0, ACM
SIGARCH Comp. Arch. News, Vol. 25, No. 3, 1997.

[21] K. Chandrasekar et al., DRAMPower: Open-source DRAM
power & energy estimation tool, www.es.ele.tue.nl/drampower

