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ABSTRACT Reliability is one of the major concerns of Time Sensitive Networking (TSN). Current

systems mostly rely on static redundancy to protect functionality from permanent component failures. This

greatly increases the cost of Time-Triggered (TT) flows. Instead, Software Defined Networking (SDN)

enables dynamic redundancy. Disrupted traffic can be rerouted by a centralized controller to reduce the

cost while maintaining reliability. This paper presents an approach to compute alternative paths at run-time

and analyze their impact on reliability. We define a novel three-mode recovery scheme, which includes full

functionality, reduced functionality, and emergency halt modes. Run-time recovery for TT flows is explored

using Integer Linear Programming (ILP) and a heuristic algorithm. Then, a Markov chain-based design-

time reliability analysis is developed to evaluate the Mean Time to Reduced Functionality Mode (MTTRF)

and Mean Time to Failure (MTTF) of run-time recoverable systems. Our experiments show that run-time

recovery provides better protection against multi-point failures than static redundancy. Compared with the

state of the art, our proposed ILP has better routing efficiency. The proposed heuristic algorithm can perform

routing and scheduling in polynomial time, but it tends to route multicast flows to longer paths than ILP.

Furthermore, when applied to realistic recovery scenarios, our proposed ILP improves the MTTF by up to

2× and the average execution time by up to 20× than the raw ILP of the state of the art. Although less

efficient with multicast flows, the heuristic algorithm achieves similar reliability as the ILP, and its worst-

case recovery time is below 100ms on an embedded ARM processor.

INDEX TERMS Network reliability, Run-time recovery, Times-sensitive networking.

I. INTRODUCTION

The communication bandwidth demand of the emerging au-

tonomous driving technology has encouraged innovations in

next-generation vehicle networks. While switched Ethernet

is considered as a promising solution, it is not originally de-

signed for real-time safety-critical systems and requires en-

hancements for bounded latency and reliability. This results

in a set of amendments of the Ethernet standard named Time

Sensitive Networking (TSN) [1]. To support safety critical

control applications, TSN strictly specifies that recovery time

must be less than 100ms [2].

TSN supports seamless redundancy with Frame Replica-

tion and Elimination for Reliability (FRER) [3]. According

to FRER, frames are replicated at source and transmitted

through separate paths; duplicates are eliminated at desti-

nations. While single-point failures are eliminated, FRER

introduces a significant overhead since it requires at least

twice the bandwidth. Instead, earlier practices in Software

Defined Networking (SDN) [4] point out a more efficient

solution [5], [6]. If network has a logically centralized con-

troller possessing knowledge of its flows, it will be able

to compute alternative configuration at run-time to recover

flows from failures. Therefore, bandwidth of the backup

paths does not have to be reserved but can be assigned to

non-safety critical traffic until needed. If designed properly,

recovery also tolerates more multi-point failures than static

protection.

Today’s intelligent vehicles employ cross-layer ap-

proaches [7] to enhance reliability, which means fault han-

dling mechanisms on different layers (e.g., TSN, computa-
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tion hardware, applications, etc.) can collaborate to perform

graceful degradation. Therefore, TSN has the option to in-

form its applications when facing unrecoverable failures and

cooperate with their fault handling mechanisms to operate or

shutdown the system safely.

Problems remain to be solved to bring run-time recover-

able TSN into reality: 1) the recovery scheme in which TSN

gracefully propagate failures to its applications is yet to be

defined; 2) run-time recovery requires computation of routing

and scheduling within a 100ms deadline, which existing solu-

tions still cannot satisfy; 3) a system-level reliability analysis

at design-time to evaluate the impact of specific recovery

algorithms on reliability is missing.

In this paper, our exploration of run-time recovery is lim-

ited to Time-Triggered (TT) traffic on TSN. We target a Time

Sensitive Software Defined Networks (TSSDN) architecture

[8], which provides the necessary software-defined features

for run-time recovery. It has been formally verified that,

with careful optimization, TSN configuration latency lower

than a millisecond is possible [9]. Thus, we assume that the

real-time configuration is provided. This paper focus on the

prior steps of building an integrated run-time recoverable

system, which is to prove the feasibility of run-time routing

and scheduling within the deadline as well as analyzing the

reliability gain of run-time recovery. We specifically target

TSN used in in-vehicle networks, where the network scale

and the number of flows to be supported is relatively limited.

The contributions of this paper are as follows.

• We define a novel recovery approach for TT traffic.

It consists of three modes: full functionality mode, re-

duced functionality mode, and emergency halt mode. Run-

time recovery attempts to maintain the current function-

ality mode. When failures are not recoverable, system-

wide functionality degradation is performed through mode

switching. (§3-4)

• We develop faster methods to compute alternative routes

and schedules in response to failures. Our Integer Linear

Programming (ILP) solution produces near optimal results

at design-time. We minimize its number of variables and

linear constraints to substantially reduce the solving time

and introduce slots prioritization as well as destination

forwarding to increase it routing capacity. But it may

take longer than the recovery deadline (100ms) making

it unsafe for use at runtime. (It does provide a baseline to

which the run-time implementation can be compared). Our

polynomial time heuristic algorithm instead finds feasible

routes and schedules within the deadline using resources

available on embedded platforms. But it tends to use more

links than ILP when routing multicast flows. (§5)

• We develop a system-level reliability analysis for our

recovery and degradation process. Given system specifica-

tions and recovery approaches, the system’s Mean Time to

Reduced Functionality Mode (MTTRF) and Mean Time to

Failure (MTTF) are calculated by evaluating the recovery

behavior for possible failure sequences. (§6)

• We perform a comparative study of the proposed recov-

ery approaches, a state of the art routing & scheduling

approach [10], and FRER using randomized testing and

the proposed reliability analysis tool. Experiments are

conducted on 40 synthetic topologies to demonstrate that

run-time recovery is more reliable against multi-point

failures than FRER. Compared with the state of the art,

our proposed ILP can setup more flows on a same net-

work. The proposed heuristic algorithm achieves similar

efficiency with ILP for unicast flows. But it is less efficient

in handling multicast flows. Using additional 120 more

realistic test cases, our experiment shows that the proposed

recovery approaches can result up to twice the mean time

to failure than the state of the art; the proposed ILP by its

average can setup flows within a second; and the heuristic

algorithm meets the 100ms worst-case execution time

requirement. Finally, to demonstrate that the proposed

approaches are feasible in realistic network configurations,

we perform a case study of an automotive TSN to show

that the execution time of the proposed heuristic algorithm

is well below the recovery deadline. (§7)

II. RELATED WORK

Various techniques for fault recovery have been studied on

switched Ethernet. SDN enables segment protection which

creates static redundancy [6], [11]. It features at low response

time and can be combined with dynamic path configuration

which is not real-time to improve the average recovery delay.

However, such techniques cannot be applied to TSN which

requires worst-case recovery time guarantee. Recovery is

also studied in OpenFlow [5], [12]. These research focus on

the design of network architecture and use build-in routing

algorithm from the network controller. Because OpenFlow

networks require nationwide scalability, they conclude that

carrier grade recovery is hard to achieve. However, TSN is a

scenario where scalability is of less concern. Moreover, high

redundancy cost, high determinism of traffic and powerful

computation resources on-board together makes TSN a fea-

sible scenario for run-time recovery.

Flow recovery connects to the well-researched routing and

scheduling problem of TSN. Here we consider only TT traf-

fics. TSN scheduling focuses on assigning the transmission

duration to flows that traverse determined paths. Satisfiability

Modulo Theories (SMT) is a well-developed and widely

used approach for this problem [13]–[16]. Latest research

[17] proposes window-based heuristic scheduling which re-

laxes flow isolation but still provides real-time guarantee for

flows. However, flow routes must be provided for scheduling

whereas recovering link failures requires finding both the

alternative routes and schedules. Therefore, a scheduling

mechanism that relies on additional routing methods alone

is not sufficient for solving the run-time recovery problems.

A joint routing and scheduling technique solves flow routing

and scheduling as a single optimization problem, for which

ILP [18], [19] is a widely-adopted design-time approach. It

offers better routing quality (e.g., lower latencies) compared

2 VOLUME x, 2021



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3092572, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

with scheduling on fixed paths [18] but also demands sig-

nificant run-time and resources. As an example, the ILP in

[18] takes more than a minute to route 30 flows on a server-

grade processor. To solve the joint routing and scheduling

problem for online usage, incremental approaches [10] have

been developed. Routing and scheduling for online usage is

the closest scenario to run-time recovery. Thus, the work in

[10] is the state of the art with which our solutions will be

compared. However, since it is not strictly real-time, the state

of the art is not efficient enough for recovery: their raw ILP

formulation takes more than 10s per flow; and to achieve sub-

seconds average execution time, they introduce optimizations

involving reattempts on which recovery cannot rely. Instead,

our ILP solution focuses on directly optimizing the raw ILP

formulation to achieve sub-seconds execution time. Recent

research also addresses machine learning as an accurate

approach for the schedulability analysis and verification of

TSN [20], [21]. However, issues such as "false positives" [20]

still remain to be solved before it can be applied to run-time

recovery.

A survey on functional safety of the Ethernet-based com-

munication solutions can be found in [22]. Existing reliability

analysis for self-recoverable networking has limitations to

be applied to self-recoverable TSN. [23] uses Markov state

reward model for SONET mesh networks by considering link

restoration with a measurable restoration rate. However, flow

recovery requires more in-depth analysis of the systems. [24]

uses discrete-event simulation to analyze a binary sibling

tree network. But it has the risk to over-estimate system’s

reliability and is thus not suitable for safety critical systems.

[25] considers the reliability of self-healing networks from

the perspective of tasks. It is based on the general assump-

tions that the alternative path can be found if a route exists,

which omits the impact of recovery mechanism and might

significantly overestimate the system reliability.

III. SYSTEM OVERVIEW

In this section, we describe our run-time recoverable system,

following a detailed introduction of the TSSDN’s scheduling

model. We model a TSN-based system as a directed graph

G ≡ (V,E). The set of vertices V contains end stations

(VES) such as Electronic Control Units (ECU), sensors,

actuators, and switches (VSW ), i.e. V = VES ∪ VSW . E
represents simplex links connecting network vertices. Since

TSN requires bidirectional communication, each pair of con-

nected vertices is connected by at least two opposite edges.

Direct links between end stations are allowed. Both switches
and end stations can forward flows while end stations addi-
tionally can generate and consume flows.

A. SCHEDULING MODEL OF TSSDN

According to IEEE 802.1Qbv [26], TT flows are cyclic and

shaped by Time Aware Shapers (TAS) on egression ports.

TAS synchronously grant transmission to traffic queues based

on a predefined schedule in Gate Control Lists (GCL), which

consist of ordered operations to open or close transmission

T

tsl=20us

link1

T

slot1 slot2 slot 25

tbp=500us

link2

link2

link1

tsl=20us tsl=20us

Base Period

4us

FIGURE 1. Schedule of TSSDN. Durations with ’T’ are for TT flows. The rest

of each slot is assigned to other flow types.

T

Flow 1 on Slot 1

T

Base Period 1

Flow Period p

Base Period p

Flow p on Slot 1

T

Flow 1 on Slot 1

Base Period p+1

FIGURE 2. Example of p flows sharing the same slot

gates for each port. TSSDN uses the same hardware basis

but imposes an extra non-queuing transmission constraint

to ensure timing isolation as well as ultimate low delay

and jitter [8]. Non-queuing transmission requires to reserve

consecutive links so that flows can be forwarded from sources

to destinations without blocking. To avoid collisions, TSSDN

uniformly divides large TAS periods into smaller synchro-

nized time slots. As shown in Fig. 1, different TT flows are

not allowed to be scheduled on the same slot of the same

link. As a result, each egress port will receive only one frame

during each time slot. And that frame will be transmitted

before the time slot ends. Such specification dispel worries

about timing interference, such as cyclic dependency caused

during routing [27].

In TSSDN, the period of TAS is referred to as Base Period

(BP). Its duration tbp must be smaller than the minimum

transmission period of TT flows so that flow periods can be

rounded down to its nearest integer multiple for scheduling.

Meanwhile, the duration of time slot tsl must be larger

than the non-queuing end-to-end delay of a maximum-sized

frame. b represents the number of slots in one BP, i.e.

tbp = b×tsl. And B = {1, ..., b} represents the set of all time

slots in one BP for all links available for scheduling. TSSDN

scheduling only involves specifying the time slot. Reserving

links and generating GCL are automated [28].

F represents the set of flows to be supported at a specific

moment. A flow f ∈ F consists of a specification and

an implementation, i.e. f = (sp, ip). The specification sp
defines single-frame transmissions from a source s ∈ VES

to a set of destination D ⊆ VES with period pt. Since pt

is rounded to p =
⌊

pt
tbp

⌋

during scheduling, we consider p

instead of pt in flow specifications, i.e. sp = (s,D, p).

Phase is the transmission offsets that allow flows to overlap

on the same slot of the same link. Since a flow with period

p transmits every p BPs, it can share slot sc with at most

p − 1 other flows of the same period marked by different

phases [10]. This is shown in Fig. 2. We represent the set of

phases for flows whose periods are p by P = {1, ..., p}. The

implementation ip = (RO, sc, ph) consists of the route, time
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slot and phase of a flow. The route RO ⊆ E is a cycle-free

set of links. sc ∈ B is the slot of transmissions and ph is

the phase. If a flow is currently under disruption and does not

have a valid implementation, it is referred to as ip = ∅.

TSSDN conforms to the Control Data Traffic (CDT) spec-

ification of TSN in [29]. Frames can have maximum size of

128 bytes. The minimum interval between frames is 500µs.

Flows can traverse at most 5 hops and require end-to-end

delay of less than 100µs. Thus, network diameter must be

limited, e.g., to seven hops as required by IEEE 802.1AS time

synchronization protocol [30].

B. MODEL OF SELF-RECOVERABLE SYSTEMS

Today’s intelligent in-vehicle networks are designed with

domain-based pattern where different applications are sup-

ported in different domains. Due to their strict timing re-

quirement, TT flows must be constrained within the control

domain fully equipped with TSN-capable switches. There-

fore, recovery can only be performed within a fraction of

the system. In fact, both the standard [30] and TSSDN [10]

suggest the network diameter to be limited within seven hops.

Due to expensive bandwidth overhead, network designers

also tend to minimize the amount of TT flows. The realistic

systems evaluated in recent studies [17], [29], [31] indicate

that there can be less than twenty TT flows in relatively small

TSN use cases.

Centralized network control: The network control in

TSSDN is centralized. When the recovery controller receives

notification on failures, it interprets the disrupted flows and

computes their alternative routes and schedules based on the

global knowledge of the network. Then, it sends update mes-

sages to either recover the disrupted flows without changing

running flows or initiates a system degradation by switching

to a mode with less functionality. Previous study [9] has

formally verified that the network configuration latency is

well below the required recovery deadline. For instance, with

the explicit flow configuration protocol where SDN traffic are

mapped to highest priority and number of SDN messages per

switch is limited to one, the upper bound of configuration

latency can be reduced to 0.6ms which is independent from

the size of the configuration message [9].

Failures: Run-time recovery targets long-lived or perma-

nent failures of the network components. Transient failures

such as packet loss due to noise should be handled by other

fault tolerant mechanisms. When failures are detected, the

messages sent to the recovery controller only signal link

failures. The vertex failures can be taken as the failure of all

its attached links. Upon arrival of the first failure message,

the recovery controller keeps monitoring messages given a

worst-case timeout. Thus, all failure messages can be re-

ceived in case of vertex failures or multi-link failures.

Functionality: The growing complexity of today’s au-

tonomous driving systems demands cross-layer reliability

approaches. Different from the traditional fail-operational

networks that must handle failures within their own scope,

TSN has the option to propagate failures to the application

layer when necessary and collaborate with its failure han-

dling mechanisms. For example, a flow carrying 60 fps video

stream of a camera might not be recoverable from a link

failure because the redundant links in the network do not

have enough bandwidth. Therefore, the network controller

informs the camera to reduce its frame rate to 30 fps for a

successful reroute. Furthermore, the vehicle now must limit

its speed and other applications may also change their flows

accordingly. Similar but more complex examples of such

design can be found in [32].

Negotiating system-wide flow requirement upon degrada-

tion is very likely to cause a recovery delay violation. Instead,

a more suitable solution would be specifying the degradation

behavior as a part of the Service Level Agreement (SLA),

which allows pre-configuration. We generalize such system

behavior as functionality modes. Each functionality mode is

a set of flows to be supported. We refer to the mode in which

full designed functionality is performed as the full function-
ality mode, and the mode to which the system switches when

full functionality cannot be supported as reduced functional-
ity mode. F fm is the set of flows for full functionality mode,

and F rm is the set of flows for reduced functionality modes.

When the reduced functionality mode cannot be supported

due to failures, the system enters emergency halt mode to

avoid catastrophic behavior. The emergency halt mode does

not require setting up new flows, i.e. applications should

utilize the surviving flows to perform safe shutdown.

While designing flows in different functionality modes is

a multi-discipline question involving co-design of TSN and

safety-critical applications, we focus on the recovery of TSN

in this paper. Generally, TSN does not impose any constraints

on the flows of these modes. But to make the protection

valid, F rm should require fewer network resources than F fm

(fewer flows and/or lower frame rate per flow). Like fast

failover mechanisms in OpenFlow [33], our mode-switching

degradation requires the reduced functionality mode con-

figuration to be pre-installed in switches. If switches can

support multiple pre-installed configurations, the network

can have multiple reduced functionality modes. However,

for simplicity and w.l.o.g., we consider only one reduced

functionality mode in this paper.

FRER: Run-time recovery requires flows to tolerate a

recovery delay during which packet will be lost. Such packet

losses need to be captured by the application-level fault

tolerance mechanisms. For flows that cannot tolerant re-

covery delay or packet losses, FRER must be applied to

guarantee reliability. In this scenario, run-time recovery can

be a supplementary protection for the redundant paths. These

flows will not fail if at least one of their replicas is still

running, regardless of whether the disrupted replicas are

recoverable. However, if the last running replica is disrupted,

or all replicas are disrupted simultaneously, the system must

degrade immediately without recovery attempt.

Given a set of flows F , we refer to its subset of FRER

flows as F f and its subset of non-FRER flows as Fn.

For every FRER flow f ∈ F f , its replica is identified as
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f ′ ∈ F f . f and f ′ are identical in specification but different

in implementation. To avoid being disrupted by the same

link failure, their routes cannot share links. Additionally, the

maximum tolerable jitter jt between two replicated frames

must be specified in their specification, i.e. ∀f ∈ F f ,

sp = (s,D, p, jt).

IV. PROPOSED RECOVERY PROCESS

In this section, we describe the forwarding and management

operations of the network controller and vertices to perform

a reliable recovery.

Initialization: On startup, the recovery controller queries

each network vertex for the topology. Based on the given time

slot and flow specification, it computes two GCL configura-

tions for each network vertex, one for the full functionality

mode and one for the reduced functionality mode. Both con-

figurations are then transmitted to the corresponding network

vertices. Full functionality configuration is immediately set

up on regarded ports and becomes ready for incoming traffic.

Meanwhile, reduced functionality configuration is stored in

a fallback GCL. It has no effect on traffic, but the ports can

switch to fallback GCL following reconfiguration messages.

Usually TT flows are static. Configurations for dynamic

and transient flows can be added to the network incremen-

tally by the network controller. Resources for dynamic flows

must be reserved based on their worst-case assumptions.

Before transmission, transient flows send transient requests

for which a timeout is specified to free the resources. Before

the timeout is reached, transient flows are served as static

flows in the current functionality for recovery. To avoid the

transient requests disrupting the recovery process, they must

have lower priority in transmission and processing, resulting

in potentially higher startup delay of the transient flows

compared to the recovery process.

Failure processing: When link failures are identified,

network vertices block the affected ports and send failure

messages to the network controller. Delayed frames can-

not be used by the safety-critical applications due to their

timing violation. But they still carry information about the

failures and thus are valuable for reliability mechanisms. For

instance, if ECUs detect that an actuator is not responding,

knowing that packets are blocked due to network failures

indicates that the actuator might still be functioning leading

to different handling procedure. Hence, the blocked frames

can be redirected to nearby ports to be forwarded to their

source, destinations, or the network controller depending on

their applications. They can be forwarded as Best-Effort (BE)

or Audio Video Bridging (AVB)-A traffic depending on the

exact reliability mechanisms.

Reconfiguration: The recovery controller collects all

failed links Ef ⊂ E including those involved in earlier

recoveries, and computes alternative implementations for

affected flows FD whose routes have at least one failed

link (i.e., FD = {f ∈ F | RO ∩ Ef 6= ∅}). Based on

the alternative implementation, reconfiguration messages are

generated. There are two scenarios.

• When maintaining current mode, the reconfiguration mes-

sage contains instructions to remove invalid GCL entries

on old routes and add alternative entries to new routes.

During this process, non-disrupted flows are forwarded

normally.

• When changing mode, the reconfiguration message for

a network vertex contains instructions to remove invalid

fallback GCL entries on old routes and add alternative

entries to new routes. During this process, the ongoing

mode is supported in a fail-operational manner. As the

fallback GCL is updated, an activate instruction within re-

configuration message causes the network vertex to switch

to the fallback GCL for forwarding.

Note that emergency halt does not involve any GCL

switching on network vertices. The network controller in-

forms tasks about the existing failures. And it is up to the

tasks to shutdown using their surviving flows.

Verification: Before reconfiguring the network, the gen-

erated implementation must be verified. We implement a

simple rule-based verification for our recovery controller

which checks: 1) if each route exceeds the maximum of hops,

2) if each route is connected and cycle-free, 3) if the schedule

has conflicts between flows. Implementation that fails to be

verified signals a failure of the recovery controller and results

in instant system halt.

V. ROUTING AND SCHEDULING FOR RECOVERY

Upon reception of the failed links Ef , the recovery con-

troller marks the implementation of all disrupted flows FD

as invalid. It then processes flows in FD one by one. We

use a deterministic processing order to ensure analyzabil-

ity. Attempting recovery with non-deterministic order, e.g.,

randomly selecting the next flow to be processed, will cause

additional complexity for reliability analysis. In this section,

we introduce an ILP and a heuristic algorithm to compute

alternative routes and schedules.

To recover a disrupted flow, the following inputs are used.

• Network topology G = (V,E)
• Set of all time slots B = {1, ..., b}
• Set of all failed links Ef so far

• Selected flow to be recovered f ∈ F
• Set of phases that f can use P = {1, ..., p}
• Specification and implementation of all flows in F

A. ILP SOLUTION

ILP has already been used in TSSDN to set up flows on

a fixed topology [10]. Since it produces near optimal re-

sults, we develop an ILP solution to indicate the maximum

reliability achievable by recovery. Compared with ILP in

[10], our proposed solution features at handling an extended

routing and scheduling problem with dynamic failures in the

topology as well as FRER flows. We propose to express the
problem using fewer variables. And the correlations between
these variables can be mostly resolved as upper and lower
bounds of the variables instead of linear constraints. Thus,
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FIGURE 3. An example of slot prioritization.

the solving time of our ILP formulation is greatly reduced. To

increase the routing capability of our ILP, we propose slots
prioritization and destination forwarding. Our main objective

is the same as [10] which is to minimize flows’ route length,

because it has been shown that the shortest routing path

utilizes network resources more efficiently.

Here are the variables used in our ILP solution.

• Flow counter ci ∈ N, for i ∈ E. ci indicates the number of

destinations flow f reaches through link i. If i is not used

by f , then ci = 0.

• Slot and phase selection hj,k ∈ {0, 1}, for j ∈ B, k ∈ P .

hj,k = 1 if and only if f uses slot j and phase k.

• Link-wise schedule li,j,k ∈ {0, 1}, for i ∈ E, j ∈ B, k ∈
P . li,j,k = 1 if and only if f is scheduled on link i, slot j
and phase k.

The objective function is shown in Eqn. 1. pij is the

priority for slots j, ∀j ∈ B.

Min







∑

∀i∈E,j∈B,k∈P

li,j,k +
∑

∀j∈B,k∈P

pij · hj,k

b+ 1







(1)

The primary objective (first term) minimizes the length

of path for f to minimize its network load. The secondary

objective (second term) specifies slots prioritization in which

each time slot is assigned a fixed priority as its preference

of being selected for scheduling (slots with lower priority

first). Slots prioritization urges the solution to concentrate

flow scheduling to avoid false blocking. An example of such

false blocking is shown in Fig. 3. In Fig. 3(a), flows 1 and 2

are scheduled on the shortest path but the randomly picked

slots block flow 3. Prioritization forces flows 1 and 2 to use

slot 1 in Fig. 3(b), so flow 3 can use slot 2. We define pij = j
so slots represented by smaller number are preferred. Since

selected slot and phase are unique,
∑

∀j∈B,k∈P pij × hj,k 6

b. Thus, the secondary objective divided by b + 1 will be

effective only when the primary objective is minimized.

General constraints: Constraints for all flows are:

1. A flow selects a single slot and a single phase.
∑

∀j∈B,k∈P

hj,k = 1 (2)

2. Flow conservation constraints ensure the validity of the

route. A valid route must be continuous starting from the

source and passing all destinations free of cycles. i(v) and

o(v) stand for input and output links for vertex v. Eq. 4

allows destination forwarding in which route could pass a

destination to each other destinations. It makes maximum use

of the redundant links connecting end stations to route flows.

Note that the network interface of these end stations must

be designed with forwarding capability to enable destination

forwarding.
∑

∀i∈i(s)

ci = 0 ,
∑

∀i∈o(s)

ci = |D| (3)

∀ v ∈ D :
∑

∀i∈i(v)

ci −
∑

∀i∈o(v)

ci = 1 (4)

∀ v /∈ {s} ∪D :
∑

∀i∈i(v)

ci −
∑

∀i∈o(v)

ci = 0 (5)

3. Link-wise route and schedule constraints ensure hj,k =
1 if at least one link is used and li,j,k is not all 0.

∀i ∈ E, j ∈ B, k ∈ P : li,j,k − hj,k 6 0 (6)

∀i ∈ E : ci −
∑

∀j∈B,k∈P

|D| · li,j,k 6 0 (7)

4. Collision avoidance constraints for every flow fn ∈ F
with period pn and valid ipn = (ROn, scn, phn) are as

follows.

if p = pn → ∀i ∈ ROn : li,scn,phn
= 0; (8)

if p 6= pn → ∀i ∈ ROn, k ∈ P : li,scn,k = 0; (9)

5. Failed links must be avoided.

∀i ∈ Ef , j ∈ B, k ∈ P : li,j,k = 0 (10)

FRER constraints: Constraints for FRER flows are:

6. If f ∈ F f with replica f ′, ensure that their paths are

disjoint.

∀i ∈ RO′, j ∈ B, k ∈ P : li,j,k = 0 (11)

7. If f ∈ F f with replica f ′, ensure replicas arrive in

tolerated jitter range, where JC is the feasible slot and phase

pairs (j ∈ B, k ∈ P ) that satisfy Eq. 13.

∀(j, k) /∈ JC : hj,k = 0 (12)

|(k − ph′) · b+ (j − sc′)| 6
⌊ jt

tsl

⌋

(13)

Constraints 4, 5, 6, and 7 are encoded into the upper and

lower bound constraints of the solver (both upper and lower

bounds of the variables are 0). As a result, FRER, existing

flows, and failures do not change the number of variables

and constraints but require extra efforts to form the upper

and lower bounds. Compared to using linear constraints, it

reduces the search effort and helps to quickly identify the

existence of feasible solutions. The rest of the constraints are

linear constraints. Our formulation uses |E| × |B| × |P | +
2× |E|+ |V |+ 2 linear constraints. In comparison, the ILP

in [10] uses 4 × |E| × |B| × |P | + |V | + |D| + |E| + 2
linear constraints. Since |E|× |B|× |P | is magnitudes larger

than remaining factors, the # of constraints is reduced by

approximately 75%.
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Algorithm 1 Heuristic Routing & Scheduling

1: for all j in B do

2: for all k in P do

3: Grj,k = residualnw(G,ST, PT,Ef , j, k)
4: roj,k = shortestpath(Grj,k, s,D)
5: if roj,k is currently shortest then

6: ip = (roj,k, j, k)
7: end if

8: end for

9: end for

10: return ip if found

B. HEURISTIC SOLUTION

Instead of solving routing and scheduling as a uniform opti-

mization problem, they can also be viewed as separated steps.

Consider a given schedule (j, k) where j ∈ B, k ∈ P , the

problem is reduced to routing a multi-destination flow among

the free links Erj,k ⊆ E (links that are neither scheduled on

(j, k) nor failed). This is the well-known Steiner tree problem

[34]. Although the problem is NP-complete [35], there are

polynomial-time heuristic algorithms to find near optimal

solutions.

Besides inputs defined earlier, our heuristic algorithm re-

quires keeping track of two additional variables along with

the flow implementation, which avoids checking flows to

identify link availability. However, they must be updated

every time a flow implementation is changed.

• Slot table ST = {sti,j}, for i ∈ E, j ∈ B. sti,j is the

period of the flows scheduled on slot j of link i. Only flows

with the same period can share slots. sti,j = 0 if it is

unused.

• Phase table PT = {pti,j,k}, for i ∈ E, j ∈ B, k ∈
{1, ..., sti,j}. pti,j,k = 1 means phase k is occupied on

slot j of link i.

Our heuristic algorithm iterates through all pairs of slots

and phases to find the one that minimizes the route length.

To ensure fast execution, we compute the shortest path tree

from source to all destinations as an approximate solution to

the Steiner tree problem. This is shown in Algorithm 1.

In Algorithm 1, residualnw() computes the sub-network

Grj,k = (V,Erj,k) of G formed by free links. A link i ∈
Erj,k if it satisfies Eq. 14. Grj,k and G always have the same

vertices. It is up to the routing algorithm to handle vertices

isolated by failures and occupied links if they exist.

(i /∈ Ef ) ∧ {sti,j = 0 ∨ [(sti,j = p) ∧ (pti,j,k = 0)]} (14)

Procedure shortestpath() computes shortest path tree con-

necting source and all destinations of f on Grj,k. Instead

of finding the shortest tree that connects the source and all

the destinations, this algorithm finds the shortest route from

source to each of the destination. So, it can be performed

by the Dijkstra algorithm with O(|Erj,k| + |V | log |V |)
complexity [36]. Thus, the overall complexity for routing

and scheduling is O(|B| × |P | × (|E \ Ef | + |V | log |V |)).

I

1

......

H

1,2,41,2

......
2 2,1

......

FIGURE 4. CTMC of a 4-link network. Colors are: green for full, yellow for

reduced, red for halted functionality modes. λi is the failure intensity of link i.

Node labels indicate the failure sequences.

This polynomial complexity comes at the cost of its solution

quality. While it still provides shortest route for unicast flows,

its solution will potentially cost more links than an optimal

Steiner tree for multicast flows.

Slot prioritization can be implemented when deciding if

the route found is currently shortest. First, the recorded

solution ip is compared with roj,k on the length of the route.

If they are the same, the selected time slots are compared.

The solution whose time slot has higher priority is recorded

as the best solution.

Algorithm 1 only requires slight modification to be applied

to FRER flows. If its replica f ′ has a valid implementation,

(j, k) must be selected from JC, which is calculated as in

constraint 7 in §5.a. Also, RO′ must be excluded from Gr.

Thus, the overall complexity for processing an FRER flow is

O(⌊jt/tsl⌋ × (|E \ {Ef ∪RO′}|+ |V | log |V |)).

VI. CTMC-BASED RELIABILITY ANALYSIS

The life cycle of run-time recoverable TSN can be modeled

by a Continuous Time Markov Chain (CTMC) since the flow

implementation after recovery only depends on the failure

and flow implementation in the previous state of the network.

Failure events: Long-lived or permanent component fail-

ures that can possibly occur to the system can be modeled as

failure events. Each failure event consists of a set of failed

components associated with a distribution function. To make

CTMC analysis valid, all failure events must be independent.

The coverage of the failure events determines the precision

of the analysis.

State space generation: Given a system and all its failure

events, state space generation takes the failure events and

generates a CTMC exploring all sequences of successive

failures events. Fig. 4 shows an example of our CTMC

considering only link failures. For a given failure sequence,

it starts from the initial full functionality state, removes the

first failed link and recovers the system into a new state.

The analysis applies the recovery approach under evaluation
to determine the functionality of the new state based on
whether the previous failures are recoverable. This process is

repeated until the system enters the halt mode (when reduced
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functionality cannot be sustained). The system cannot be

restored from the halt mode by itself, as it is shut down for

maintenance in the real life.

System reliability: Given the CTMC generated above, the

distribution of states can be calculated using an analytical

approach [37] with outputs:

• πf (t) is the probability that the system is in full function-

ality mode at time t.
• πr(t) is the probability that the system is in full or reduced

functionality mode at time t.

We evaluate different recovery approaches with two met-

rics, MTTRF and MTTF. MTTRF is the mean time that the

system stays in the full functionality mode, i.e. the average

time since system start up till the first functionality degrada-

tion happens. It indicates the frequency which the network

requires for maintenance. MTTF is the mean time before the

emergency halt, which reflects the lifetime of the system.

They can indicate the reliability of the systems as well as

the maintenance frequency (cost). Therefore, both metrics

reflect the quality of recovery approaches. While our work

mainly focuses on finding recovery approaches that meets

the execution time requirement, improvement of recovery

quality is preferred. And significant loss of reliability must

be avoided. MTTRF and MTTF are calculated by Eq. 15 and

16.

MTTRF =

∫ ∞

0

t · (1− πf (t))
′dt (15)

MTTF =

∫ ∞

0

t · (1− πr(t))
′dt (16)

Optimization: For large or highly redundant networks,

the CTMC generated can be huge. Thus, we apply following

optimization to reduce the cost of computation:

• The sequences are enumerated in a depth-first order to

reduce the memory consumption, e.g., {1, 2} is evaluated

after {1} in Fig. 4, since it requires knowledge of {1}.

After all states reachable from {1} are evaluated, the

implementation of {1} can be deleted from memory.

• High order failures can be assumed to result in the halt

mode. This is a conservative approximation as it provides

a lower bound of the system reliability. Depending on the

timing and precision requirement, designers can chose the

maximum number of failures evaluated.

• Merge all halt states into a single absorbing state. Parallel

edges created are also merged, e.g., halt is reachable from

{2, 1} by failure of link 3 or 4 in Fig. 4, and thus can be

encoded as a single edge λ3 + λ4 = 2λ.

VII. EVALUATION

To evaluate the proposed approaches, we implement our

proposed ILP (pILP, §5.a) and analysis (§6) in MATLAB

which runs on a desktop computer equipped with an Intel(R)

Core(TM) i7-9700F 3.0GHz CPU. For comparison, we re-

implement the state of the art ILP (SOA) [10] using the same

setup. To show that our heuristic algorithm (HRS, §5.b) is

ready for embedded deployment, it is implemented in C++

together with the state space generation (§6) and runs on a

Cortex-A9 dual-core 650MHz processor on a PYNQ board

[38]. The result is post-processed by MATLAB to calculate

MTTRF and MTTF. Note that in CDT specification, TT

traffic can transmit in maximum 5 hops. Thus, for larger

networks, links and nodes beyond the reach of 5 hops can

be pruned for each source node to reduce the execution time.

In this section, we comparatively evaluate our proposed

approaches with the existing approaches. We compare their

routing capability on networks with/without failures using 40

randomly generated topologies to which a limited number of

time slots are allocated (§7.a). Then, we generate 120 test

cases based on 3 typical redundant topologies with 30-100

flows setup by pILP and analyze the impact of the recovery

approaches as well as topologies on reliability (§7.b). The ex-

ecution time of different approaches captured in this process

is evaluated (§7.c). Finally, a case study on an automotive

TSN is performed (§7.d).

A. RECOVERY EVALUATION

The network designers tend to allocate just enough time slots

for meeting the scheduling and redundancy requirement so

that more bandwidth guarantee can be provided to other

traffic types. The routing and scheduling approaches that

can probably setup more flows given the same amount of

time slots are preferred. Randomized testing can be used to

evaluate the efficiency of the proposed recovery approaches

in comparison with the SOA and FRER. We generate 40

topologies with redundancy using random regular graph,

each with 8 end stations. Every end station is attached to 3

links. To show how the algorithms perform when time slots

are just enough or even insufficient, the number of time slots

per link is set to only 4 (TSSDN can have 40 time slots if

necessary [10]). Allocating more time slots results in more

flows to be successfully setup in the network. But it does

not change the trend demonstrated in the results. On each

topology, we carry our experiment with randomly generated

flows whose source and destinations are selected by uniform

distribution. The period of the flows is set to the BP of the

networks.

First, we compare the three approaches (pILP, HRS and

SOA) in their capability of setting up flows on failure-free

networks. The capacity of the algorithms is indicated by

the acceptance rate which is the percentage of different
topologies in which the corresponding set of flows can be
successfully setup. Note that even there is only one single

flow in the tested set of flows cannot be setup, the topology

cannot be counted as accepted. Because FRER relies on these

routing and scheduling approaches to be setup, it is excluded

from this comparison.

Flow capacity: To test the routing capacity of the algo-

rithms, evaluation is conducted by generating 15 - 50 unicast

flows by steps of 5 on each topology, resulting 40×8=320

cases. The quality of the algorithms is measured by the

acceptance rate. The result is shown in Fig. 5.(a).
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FIGURE 5. Evaluation of different recovery approaches. (a) Acceptance rate versus the number of flows for unicast flows. (b) Acceptance rate versus the number of

destinations of 15 multicast flows. (c) Survival rate versus the order of failures.

Generally for all three algorithms, the acceptance rate

reduces when the number of flows increases. Compared with

SOA, the acceptance rate of pILP reduces more smoothly

due to slot prioritizing. For example, when there are 35

flows in the network, pILP can successfully setup 47.5%
cases while SOA can only setup 22.5%. In scenarios of

unicasting, the Steiner tree problem is reduced to the single

destination routing problem. Thus, the acceptance rate of

HRS is very close to that of pILP. Notice that pILP and HRS

are slightly different as they may chose different shortest

path when multiple options exist. Thus, there is a minor

variation between the acceptance rate of HRS and pILP in

Fig. 5.a. The acceptance rate of all approaches reduces to

zero for scenarios with 50 flows. Since there are only 4 time

slots on each link, flows exceed the capacity of the network.

More flows could be setup if more time slots are allocated.

However, the relative behavior of the algorithms will not

change.

Multicast flows: To demonstrate how these algorithms be-

have when setting up multicast flows, evaluation is conducted

by generating 15 multicast flows with 1-7 destinations on

the topologies, resulting 40×7=280 cases. The quality of the

algorithms is again measured by the acceptance rate. The

result acquired is shown in Fig. 5.(b). Note that adding more

flows to the networks will not change the trend observed in

this experiment.

When the flows have more destinations, their paths gener-

ally occupy more links. Thus, the acceptance rate decreases.

As indicated by the result, pILP again achieves highest accep-

tance rate, which indicates slot prioritizing is still effective

for multicast flows. Due to the approximation in HRS, it

finds longer paths than pILP. Hence, the networks are more

likely to be saturated, resulting in lower acceptance rate. The

original design of SOA does not allow flows to be forwarded

through its destinations. To ensure a fair comparison, we run

the same test with the original SOA and a modified SOA

(SOAm) which has constraints allowing forwarding through

destinations. Note that in scenarios of unicasting, flows only

need to reach one destination, which means destinations do

not forward flows anyway. So, the ILP formulation of SOA

and SOAm are exactly the same for unicast flows. Despite

the lack of slot prioritizing, SOAm still finds shorter paths

for multicasting, thus is more efficient than HRS. In contrast,

SOA has the lowest acceptance rate among all the solutions,

since it cannot utilize the redundant links at destinations.

However, whether forwarding is allowed through destina-

tions is more of a question for the network design than

routing, since end stations needs efficient network interfaces.

Our experiment show that in networks with redundancy,

enabling forwarding in end stations can enhance the capacity

of the networks by up to 60% (# of destination nodes=3).

Note that multicast flows with more destinations potentially

require more links to be setup. When flows have 5 or more

destinations, the flows exceed the capacity of the network in

which 4 slots are allocated per link. Hence, the acceptance

rate drops to 0, although part of the flows with more than 5

or more destinations can be successfully setup.

Then, we compare run-time recovery using different algo-

rithms and FRER under different failure scenarios.

Order of failures: To demonstrate the effectiveness of dif-

ferent approaches in handling failures, we randomly generate

sequential failures of 1-9 links on the topologies, resulting

40×9=360 cases. For each case, 10 random unicast flows

are setup on the failure-free network. The quality of the

approaches is indicated by survival rate which is the percent
of cases with the same number of failed links but on different
topologies where all disrupted flows can be successfully
recovered. Note that since FRER does not involve recovery,

we measure its percent of cases where all flows have at least
one surviving replica. The result is shown in Fig. 5.(c).

Similar to the conclusion in Fig. 5.(a), the proposed re-

covery approaches and SOA achieves similar quality in the

unicasting scenarios. While FRER can provides 100% pro-

tection for single link failures, it is vulnerable to multi-link

failures. Its survival rate drops to 87.5% for 2-link failures

and 45% for 3-link failures, while survival rate remains

higher than 95% for the recovery approaches.

B. SYSTEM ANALYSIS

To compare the impact of topological redundancy on the

reliability of run-time recoverable systems, evaluation is per-

formed on three redundant topologies: 8 nodes ring (R08),

10 nodes ring (R10), and 4x2 mesh (M08) with all vertices

as end stations, and each link has 16 transmission slots. For

simplicity, we only consider link failures with exponential

distribution, whose failure rate is λ = 3×10−9h−1 for every

link as required by Automotive Safety Integrity Level D [39].
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FIGURE 6. Reliability achieved by different recovery approaches on various topology and flow setups.

On each topology, evaluation is conducted by generating

30-100 flows which randomly have 1-3 destinations resulting

3 × 5 × 8 = 120 (5 cases for each number of flows). Flows

in F fm and F rm are identical except their period, i.e. F fm

consists of these flows with period set to two times the base

period while F rm consists of these flows with period set

to 3 times the base period. We analyze the reliability of

those systems under different recovery approaches compared

above (SOA, pILP, HRS, SOAm) using the proposed reliabil-

ity analysis. The average of MTTRF and MTTF for every 5
test cases with the same number of flows are shown in Fig. 6.

Note that flows are initialized using pILP for all cases. And to

reduce the state space, reliability analysis assumes that failure

of more than 3 links will in result emergency halt.

As already indicated by previous experiments, loading

more flows to the network will reduce the effect of recovery

because they occupy time slots and links as well as increasing

the number of disrupted flows on failures. Additionally, due

to phase sharing, flows with lower periods are also harder to

recover. Thus, reduced functionality mode tends to survive

even after the failure of full functionality mode. For exam-

ple, in M08 with 60 flows and pILP recovery, on average,

MTTRF is 3.807× 107h while MTTF is 5.128× 107h. This

means that the systems are expected to survive an additional

1.321 × 107h with reduced functionality after leaving full

functionality mode. Compared with SOA which is effective

in fewer scenarios causing reduced functionality mode to

fail soon after degrading from full functionality mode, we

thereby conclude that the proposed recovery process signifi-

cantly enhances the ability of reduced functionality to protect

full functionality.

Recovery Approaches: pILP and HRS can have MTTRF

and MTTF up to 2x larger than SOA which does not allow

forwarding using the destinations, e.g., on M08 with 30

flows, average MTTRF for pILP is 5.137 × 107h while it
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FIGURE 7. Average and maximum runtime measured for pILP and SOA on

i7-9700F, and HRS on Cortex-A9. SFL: time to process a single flow, TOT:

total time to process a failure.

is 2.637×107 for SOA. In contrast, SOAm which is the SOA

with modified routing constraint to allow forwarding through

destinations can achieve similar MTTRF and MTTF as pILP

when the network is not heavily loaded. However, when the

network load increases, it becomes less effective than pILP

due to the lack of slot prioritizing.

The fact that HRS finds longer path for multicast flows

does not cause major reliability impact in this realistic setup.

The reason is that multicast flows are sensitive to the integrity

of the topologies. So, they are more likely to cause system

halt due to loss of connectivity which is not recoverable by

any approach than saturating the network. In fact, although

only 1/3 of the flows has 3 destinations, we found more than

50% of the degradation is caused by flows with 3 destinations

no matter what recovery approach is used. Therefore, the

reliability achieved by a recovery approach is more affected
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FIGURE 8. Network and flows reconstructed from Orion [31] and EcoTwin [40]. SW represents switches.

Approach MTTR/h MTTF/h MAX/ms AVG/ms
pILP 9.75× 10

6
9.76× 10

6
2.49× 10

4 432.75

SOA 9.75× 10
6

9.76× 10
6

5.87× 10
4

5.32× 10
3

HRS 9.75× 10
6

9.76× 10
6 29.69 0.524

TABLE 1. Experiment results for the case study. MAX and AVG stands for the maximum and average time observed to process a failure (TOT).

by its capability of handling unicast flows. In this experiment,

since HRS is also enforced with slot prioritizing, it even

achieves better MTTRF and MTTF than SOAm which has

be proven to handle multicast flows more efficiently.

Topology: By virtue of the cross-links, meshes are more

redundant and can safely carry more flows. Thus, reliability

of R08 is more sensitive to the number of flows compared

with M08. The capability to reliably carry flows also reduces

when rings scale up. Because limited redundancy can be

easily congested during recovery, plus the fact that the failure

probability increases when there are more links.

C. RUN-TIME EXECUTION

While performing reliability analysis to the 120 test cases

above, our program also records the execution time to process

each failure and flows. They are shown in Fig. 7. Since the

execution time of HRS and ILPs have different magnitude,

we apply logarithmic scale on x-axis to ensure readability.

Even in the worst case, HRS can process a single flow

within 5ms. Thus, recovering a single link failure without

degradation requires no more than b × 5ms = 80ms.

Compared with SOA, the per-flow average execution time

is 156.90/1.99 ≃ 79× faster on M08. The worst-case

total recovery time is observed during degradation, where

up to 2 × b flows need to be processed. But this can be

avoided by evaluating reduced functionality mode in parallel

(on 2 cores) with full functionality mode. According to the

experiment, HRS is capable of computing alternative flow

implementations within 100ms. Considering that today’s

vehicles are equipped with much more powerful processors

than a 650MHz Cortex-A9, e.g., 2.0GHz Cortex-A72 on

NXP BlueBox [41], we conclude that HRS is capable of

dynamically computing flow configuration in response to

failures well within required 100ms deadline.

Compared with SOA, the per-flow average execution time

of pILP is improved by 3195/157 ≃ 20× on M08 and more

than 40× on both rings. Thus, pILP has more advantages

while being used to setup networks or benchmark topologies.

However, both ILP-based approaches require more than 10s
to process a single failure, thus are not suitable for run-time

recovery.

D. AN AUTOMOTIVE CASE STUDY

To demonstrate the proposed approaches are suitable for

realistic automotive networks, we perform a case study on

the scenario shown in Fig. 8. The network consisting of 15

switches and 21 end stations is modified from the architecture

of the Orion crew exploration vehicle [31]. Although this

topology is not initially built for automotive applications, it

features at larger scale and more redundancy than automotive

networks. Thus, it demonstrates that our approaches scale to

realistic automotive use cases. We keep the switch network of

Orion and remap its end stations to vehicle components. Un-

mapped end stations are considered non-safety-critical and

thus omitted. Since the applications of Orion only use up to

5 TT flows, we reconstruct an automotive application based

on a level 2+ truck platooning architecture EcoTwin [40]. The

safety-critical functions of the EcoTwin is initially distributed

on four processors. To maximize the amount of flows, we

map each function to an individual processor resulting six

processors connected by TT flows. Audio and video streams

in the EcoTwin are also omitted because they are forwarded
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as AVB flows. Additionally, the original topology does not

have redundant links for end stations. So, we add redundant

links for end stations related to the basic control functions

(e.g., braking and steering).

The number of time slots per link in our case study

network is set to 8 as it is the minimum number of time slots

for the network to reach maximum reliability. Link failure

rate is λ = 3 × 10−9h−1 as in the previous experiments.

While the application performs automatic truck platooning in

full functionality mode, its reduced functionality mode can

be designed to provide only the basic driving interface for

drivers. A driver take-over is requested and the platooning

application is still executed to provide route suggestion in-

stead of directly controlling the vehicle. Thus, flows in full

and reduced functionality mode have different period, other

specifications remain the same for simplicity. The flow period

equals to base period in F fm and two times the base period

in F rm. We compare pILP, SOA, and HRS.

The reliability of the system and execution time for each

approach is shown in Table 1. As there are plenty of time slots

allocated for recovery, all three approaches compared reaches

the maximum MTTRF and MTTF. This is consistent with

our previous experiment that when there are plenty of redun-

dancy and relatively fewer flows, network reliability achieved

by different recovery approaches is similar. Complex topol-

ogy introduces significant variation of the execution time.

Although the average execution time of pILP is 12x lower

than SOA, its worst-case execution time is only 2x better.

While both pILP and SOA cannot meet the 100ms deadline

for run-time recovery, the maximum execution time of HRS

is 29.69ms which is well below the recovery deadline.

VIII. CONCLUSION

This paper presents a design to realize run-time recovery of

TSN. We develop an improved design-time ILP approach and

a fast run-time heuristic algorithm based on a novel multi-

mode recovery scheme, which we evaluate with a CTMC-

based reliability analysis. Our evaluation shows that recovery

improves MTTF of the system by up to 2× depending on the

redundancy, topology, and recovery algorithm. The execution

time of the heuristic algorithm on an embedded processor

is within the 100ms requirement of recovery. We compare

run-time recovery with the standardized FRER, as well.

The result shows that run-time recovery which requires less

redundancy in bandwidth achieves better protection against

multi-point failures. In the future, we will implement efficient

network architecture that supports fast configuration and

mode switching to bring run-time recovery to reality. We

are also interested in developing mechanisms in which ECUs

collaborate with the spatial and temporal redundancy of TSN

to ensure a more reliable system.
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