
Run-time Spatial Mapping of Streaming Applications to a Heterogeneous
Multi-Processor System-on-Chip (MPSOC)

Philip K.F. Hölzenspies, Johann L. Hurink, Jan Kuper, Gerard J.M. Smit
University of Twente

Department of Electrical Engineering, Mathematics and Computer Science
P.O. Box 217, 7500 AE Enschede, The Netherlands

p.k.f.holzenspies@utwente.nl

Abstract

In this paper, we present an algorithm for run-time al-
location of hardware resources to software applications.
We define the sub-problem of run-time spatial mapping
and demonstrate our concept for streaming applications
on heterogeneous MPSoCs. The underlying algorithm and
the methods used therein are implemented and their use is
demonstrated with an illustrative example.

1. Introduction

In this paper we present an algorithm for the run-time
mapping of streaming applications onto a MPSOC. Such a
mapping has to allocate sufficient resources to the applica-
tion before the application can start. For embedded and/or
energy-constrained devices, it is important that this alloca-
tion is done such that as few as possible energy is consumed.
In conventional uniprocessor systems, schedules for ap-

plications and their resource requirements can be optimized
exhaustively at design-time. In homogeneous multiproces-
sor systems, such a design-time optimization gets more
complex since a spatial choice is added to the temporal
choice of resources; applications can share a resource and
wait on each other, or they can run simultaneously with in-
dependent resources. This implies that the optimization can
only be done heuristically, since exhaustive search already
requires far too much time. In heterogeneous systems (tiled
architectures) the resource allocations becomes even more
complex. Each application has a preferred type of resource
(e.g. a DSP) on which it ideally should be allocated. But
it can, if necessary, run with another type of resource (e.g.
an ARM) as well (albeit less efficiently). Moreover, often a
full design-time exploration is not even possible, since not
all software a user may run on a system is known at design-
time.
Another drawback of design-time exploration lies in the

fact that many modern systems allow a wide variety of us-
age scenarios (different combinations of applications, dif-

ferent Quality of Service (QOS) constraints), all of which
have different optimal resource allocations. On the one
hand, the cost of finding optimal solutions for all these sce-
narios, storing these solutions for run-time reference poses
considerable problems. On the other hand, design-time
explorations are generally based on worst-case assump-
tions with respect to resource requirements of applications.
These may be far away from actual requirements when ap-
plications are started (e.g. the computational resources re-
quired for baseband processing depend heavily on channel
conditions).
By moving resource allocation out of design-time to

the moment when applications are started, we introduce a
higher degree of flexibility and can thus incorporate run-
time information to further reduce the (energy) cost of run-
ning the application. Deriving proper methods for such a
run-time allocation is the challenge tackled in this paper. In
the remainder of this section we present in more detail the
context in which we treat the problem and we introduce the
concepts and terminology.

1.1. Tiled architectures

As heterogeneous system we consider a tiled architec-
ture. In this paper we understand this as a composable
system made up out of multiple processing elements. The
combination of a processing element and its interface to
the architecture’s interconnect is referred to as a tile. Fur-
thermore, we assumes that the tiles on the chip are inter-
connected by a predictable (with respect to throughput and
latency[5]) Network-on-Chip (NOC).

1.2. Streaming DSP applications

The concept of run-timemapping fits mainly to long run-
ning applications. Therefore, we restrict ourself to stream-
ing DSP applications. Such applications consist of (multi-
ple) computational kernels, operating on a stream of data.
Many of these kernels can be implemented on very special-
ized hardware as well as on more general purpose archi-
tectures. We assume to have multiple implementations for

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



many of the kernels. Generally speaking, streaming DSP
applications have a predictable behaviour, both temporally
and spatially and can be modelled by task graphs[3, 9].
Typical examples are found in signal processing for wire-
less baseband processing (for wireless LAN, digital radio,
UMTS), multi-media processing, medical image processing
and sensor processing.
On a functional level, a streaming application can be de-

scribed as a Kahn Process Network (KPN), because only
the functional decomposition of an application and the data
dependencies between the kernels is specified. Concrete
implementations of these kernels need to be specified with
much more detailed information, i.e. Worst-Case Execution
Time (WCET) and granularity of consumption and produc-
tion of data (e.g. an implementation of a function on video
frames may read the entire frame before executing, but it
may also work only on the first few lines).
A fine grained specification by means of Cyclo-Static

Data Flow [2] (CSDF) graphs is used to allow for detailed
analysis[11]. In CSDF, actors and edges are labelled respec-
tively with WCET and token production and consumption
rates, for all different phases of execution of the actor.

1.3. Run-time spatial mapping

Generally, spatial mapping is the allocation of spatial
resources for applications. In the context of tiled archi-
tectures, spatial resources are tiles and—in the case of a
NOC—routers. Thus, spatial mapping is the assignment of
tasks from the KPN, describing the streaming application,
to tiles and channels to paths through the NOC. A feasi-
ble spatial mapping satisfies the mapped application’s QOS
requirements. A spatial mapping’s quality depends on the
extend to which it minimizes cost (in our case: energy con-
sumption) under the resource constraints. The objective of
run-time spatial mapping is to find a feasible spatial map-
ping with the best quality (in our case: the lowest energy
cost).
To be able to utilize heterogeneousmulti-tile systems ef-

ficiently, tasks that are used often in streaming applications
should be implemented for different tile types. For exam-
ple, for a frequently used DSP kernel such as an FFT, there
are implementations for an embedded ARM tile and for a
reconfigurable core. Thereby, flexibility is introduced that
allows a task to be executed, even if there is no tile avail-
able of the most preferred type, e.g. when all tiles of the
preferred type are occupied.
This flexibility furthermore allows for software to be in-

troduced by the user, unknown at the time the system was
designed. Since the availability of resources depends on
the set of applications running simultaneously and varia-
tions in QOS requirements due to changes in the environ-
ment, a design-time mapping requires worst case assump-
tions. However, at run-time when starting an application,
the actual set of applications already running is known, al-
lowing for a spatial mapping based on actual, rather than
worst case information. As a result, the mapping gener-

ated at run-time may actually be cheaper than the cheapest
design-time alternative.

Goals and requirements In our context, the objective of
the spatial mapping is to minimize the energy consumption
of the entire application: processing (including memory re-
quirements thereof) as well as interprocess communication.
In principle, the spatial mapping is performed always when
a new streaming application is started. The run-time set-
ting asks for fast and simple methods. To be able to per-
form the mapping of an application to tiles, a spatial map-
ping algorithm needs models of the application and of the
MPSOC. Furthermore, the QOS constraints of the appli-
cation (e.g. throughput requirements and latency bounds)
need to be known, as well as the resource requirements of
the available implementations (e.g. time, memory, etc.)

1.4. Overview

The remainder of this paper is structured as follows. Sec-
tion 2 describes the contributionsmade by this paper and the
related work. An algorithm implementing our initial spatial
mapper is described in Section 3. To provide some intu-
ition, a full case example is given in Section 4, which also
includes a brief summary of the experimental implementa-
tion we made of the spatial mapper. Conclusions are drawn
in Section 5.

2. Contribution & Related Work

Moreira et al. have demonstrated methods for user initi-
ated on-line resource management [8]. By means of a vec-
tor bin packing algorithm, optionally preceded by clustering
of neighbours, they can map tasks from task graphs to tiles
and interconnect. However, their method relies on the ho-
mogeneity of the processors and aims to minimize the num-
ber of off-tile connections, because network connectivity is
scarce in their system (three tiles per five port router) and
clustering works well only in homogeneous systems.
Kumar et al. have shown an on-line resource man-

agement for heterogeneous multi-tile systems [6]. They
demonstrate quite clearly that information unavailable until
run-time can actually improve utilization of resources and
throughput of applications. However, they only consider
temporal settings at run-time, i.e. an assignment of tasks to
tiles is made at design-time.
A lot of work has also been done for mapping applica-

tions to FPGAs at run-time, e.g. Banerjee et al. [1]. How-
ever, since FPGAs are reconfigured on a per-column basis,
not only is the problem inherently homogeneous, but since
reconfiguration often affects communication, the focus lies
on exploiting data parallelism with tasks and reconfiguring
between tasks (i.e. multiplexing tasks in time rather than
space).
We propose heuristics to perform the mapping at a task-

level granularity taking into account the tight time con-
straints that come with the run-time setting. By separat-



ing the spatial and temporal mappings, we have achieved
promising results[10].

3. Algorithm

Spatial mapping is a complex problem. Even when
only considering the assignment of processes to a hetero-
geneous multi-tile platform, we find a Generalized Assign-
ment Problem [7] (GAP), which is NP-complete. Consid-
ering the prohibitive complexity of exhaustive search, we
propose an application domain aware heuristic: hierarchi-
cal search with iterative refinement. We divide the search
process in steps, starting with a very coarse perspective in
the first step and gradually adding more detail. At each step
decisions are made that shrink the search space in the next.
Decisions made in previous steps are considered fixed in
later steps.
As is to be expected of heuristics, this abstraction car-

ries with it the danger that decisions made in early steps,
using very high level abstract information, lead to search
spaces in later steps that contain no feasible solutions. Since
this infeasibility only comes to light in later steps, we pro-
pose a strategy for iterative refinement (we rerun the steps
as needed). In the following we describe each of these steps
in more detail.
For ease of explanation, we define three characteristics

for spatial mappings. A spatial mapping is considered ade-
quate if for all processes there is an implementation avail-
able for the type of tile to which it is assigned. A mapping
is considered adherent when it is adequate and there are no
tiles that are assigned more processes than they are able to
serve. Finally, a mapping is considered feasible if it is ad-
herent and all the application’s constraints are met.

1. Assign implementations to processes. The goal of
the first step is to choose an implementation (and thereby
tile type) for every process. To prevent running into inad-
herence directly after this step, we only consider those im-
plementations for which an adhering mapping exists, i.e.
such that every implementation fits on at least one tile in
the system.

We go about this choice iteratively. The choice of the next
process to pick an implementation for is based on its de-
sirability. The desirability of a process is the difference
between the cheapest assignment and the second cheapest
assignment of the process to a tile. In other words, if the
alternative is more expensive, the desirability to map the
process ‘now’ increases.

If a process has been chosen to be assigned next, not only
do we choose this process’ implementation, we also map
it to the first tile we come across with sufficient resources
(i.e. a first-fit packing). This guarantees that after this step
(if this step manages to map all processes), at least one
concrete tile assignment exists that does not break the ad-
herence of the mapping, although the mapping might still

be inadherent when the communication can not be mapped
successfully.
2. Assign processes to tiles. The (greedy) assignment of
processes to specific tiles obtained in the previous step is
now improved upon by taking more detail into account. In
a local search type fashion, we iteratively make a choice,
based on desirability. In particular, for every implemen-
tation we try to remove it from the tile it is mapped onto
and to map it onto the best available tile of the same type.
Alternatively, we try to swap the process with another pro-
cess mapped to the same tile type. The difference in cost
between the original mapping and the best tile found is,
again, the measure of desirability for choosing this re-
assignment. Only the best reassignment is actually per-
formed every iteration.
This step uses heuristics to look ahead towards commu-
nication, but does not have exact knowledge of the status
of the complete NOC. Improvements arise from having
to communicate less (probably, since exact routing is not
known here) and from being able to turn off parts of the
system that are not being used. The Manhattan distance
is used to estimate how much a channel’s communication
costs. The total communication cost of assigning an imple-
mentation to a tile is the sum of the Manhattan distances
of all the implementation’s incoming and outgoing chan-
nels. Since a process can only be reassigned to a tile with
the same type as the tile it is already assigned to, this step
maintains adequacy by construction.
Step one simply iterates until all processes are assigned to
a tile (one process per iteration). Deciding when to stop
in step two can be based upon a minimum gain from the
current iteration (once an iteration improves the total so-
lution by a lesser amount than a chosen threshold, we de-
cide to stop) and/or by a maximum number of iterations.
Besides cost factors based solely on the mapping of a pro-
cess to a tile, an assignment should be awarded a bonus
for proximity to the process’ neighbours in the application
graph. This stimulates locality, causing the communica-
tion routes, assigned in the next step, to likely be short.
Moreover, we again prevent immediate inadherence in the
next step, by only considering tiles for a process that have
sufficient communication resources to facilitate the pro-
cess’ communication requirements, at least, locally.
3. Assign channels to paths. For the concrete realization
of step three, the channels are sorted by non-increasing
throughput. Next, iteratively for each channel, a corre-
sponding path is determined, taking into account the loads
resulting from the previously mapped channels. The sort-
ing is done to increase the probability that a heavy de-
manding channel gets assigned a better path. In each it-
eration for a given channel, a shortest path between the
source and destination tile of the channel has to be de-
termined, where only those paths through the interconnect
are taken into account which still have enough capacity for
the throughput requirement of the current channel.



This method assures that all channels are mapped onto
paths through the interconnect that can guarantee the re-
quired throughput. Adding this mapping of the channels
to the mappings from the previous steps results in an ad-
herent spatial mapping.
4. Check application constraints. The last step checks
the QOS constraints. When any such constraint is violated,
the spatial mapping is infeasible and feedback should be
given to earlier steps to try and improve upon those char-
acteristics of the mapping that violate the constraint(s).
Should no constraint be violated, the spatial mapping is
feasible. We use a data flow analysis for this check, that is
beyond the scope of this paper. Instead, we reference [11].
When we decide we have time to look for improvements of
this solution, possible points of improvement should also
be identified here and fed back into the first step (keep-
ing the current mapping in mind, should the feedback only
result in infeasible results and feasible mappings that are
worse than the current best solution).

In general, the production of feedback immediately trig-
gers a new iteration, to prevent that multiple changes influ-
ence the mapping process. In other words, if any step fails
to find a satisfactory result, it immediately generates feed-
back so that ‘higher’ steps may generate a more suitable
result.
It is important to realize that this proposed iterative hi-

erarchical approach differs significantly from simple local
search methods and global-local search methods that are of-
ten used in heuristics. The feedback from a lower level may
result in a completely different mapping on a higher level in
a next iteration.

4. Case: HIPERLAN/2

In order to illustrate the above with an example, an im-
plementation and mapping of a HIPERLAN/2 receiver is
described in this section.

4.1. Application Level Specification

The receiver’s decomposition into communicating pro-
cesses is shown in the KPN in Figure 1. The control part of
the receiver application is included for completeness, but it
is not part of the data stream. Orthogonal Frequency Divi-
sion Multiplexing (OFDM) applications are based on (MAC)
frames of OFDM-symbols, which, in turn, consist of sam-
ples (complex numbers). In the HIPERLAN/2 case, frames
consist of 500 symbols and every symbol consists of 80 32-
bit complex numbers. The control part only comes into play
briefly at the beginning of each frame, while all other pro-
cesses in the KPN operate on every OFDM symbol.
The last three processes have been grouped to form one

process. Not only do they fit well together in a single imple-
mentation, but treating them separately needlessly length-
ens this example. The numbers shown on the edges of this
KPN indicate the number of 32-bit complex numbers per

Remainder

Prefix
removal

Freq. off.
correction

Inverse
OFDM

Equali-
zation

Phase off.
correction

Demap-
ping

CTRL

64 64

52

5248

80

b

Figure 1. Decomposition of a HIPERLAN/2 re-
ceiver

symbol coming in at each process. The size of the output
of the HIPERLAN/2 receiver (b), depends on what ‘mode’
the receiver is in. The standard defines seven modes, that
only differ with regards to the demapping (hence the in-
put from the control process, which selects the demapping
type). Depending on the chosen demapping type, the out-
put can be between 2 bits (BPSK) and 64 bits (QAM64) per
sample. Thus the minimum output is 12 bytes and the max-
imum is 384 bytes (per OFDM symbol). One OFDM symbol
is fed into the application once every 4µs.
The graph describing functional dependencies of the pro-

cesses and the QOS constraints together form the Applica-
tion Level Specification (ALS).

4.2. Implementations

Given a set of implementations of the processes in Fig-
ure 1, the spatial mapping algorithm can now choose imple-
mentations, map them to concrete tiles, route the commu-
nication channels through the interconnect and construct a
CSDF graph of the entire receiver. The description of any
implementation should include a CSDF graph, describing
its behaviour correctly and in as much detail as is relevant.
As stated above, many processes can be described as a sin-
gle CSDF actor. Table 1 lists implementations of the pro-
cesses in Figure 1, where the numbers come from design-
time analyses and profiling. The phases described in the
table are the phases of the CSDF actors corresponding to the
implementations. In this table the notation for the inputs
〈0, a, b10〉 means: in phase 1, 0 tokens are read, in phase
2, a tokens are read, and in phase 3 through 12, b tokens
are read at every phase (the superscript is a shorthand for
the number of phases with equal parameters). For exam-
ple: the inverse OFDM on the ARM has 3 phases; in phase
1, 64 tokens are read, 0 tokens are written and the WCET is
66 clock cycles; in phase 2, 0 tokens are read, 0 tokens are
written and the WCET is 4250 cc; in phase 3, 0 tokens are
read, 64 tokens are written and the WCET is 54 cc.
Control-flow has been omitted from this table, but will

be taken into account in the verification process. Note that



Table 1. Available implementations
Phasesa Avg. energy

[nJ/symbol]Input
[token]

Output
[token]

WCET
[clockcycles]Process PE type

Prefix removal ARM 〈82, 〈8, 0〉8〉 〈02, 〈0, 8〉8〉 〈1818〉 60
MONTIUM 〈180, 0〉 〈017, 164〉 〈181〉 32

Freq. off. correction ARM 〈8, 0, 0〉 〈0, 0, 8〉 〈18, 32, 18〉 62
MONTIUM 〈164, 02〉 〈02, 164〉 〈166〉 33

Inverse OFDM ARM 〈64, 0, 0〉 〈0, 0, 64〉 〈66, 4250, 54〉 275
MONTIUM 〈164, 053〉 〈065, 152〉 〈164, 170, 152〉 143

Remainder ARM 〈52, 0, b〉 〈0, 0, b〉 〈54, 2250, b + 2〉 140
MONTIUM 〈152, 0, 0 〈0, 0, 1b〉 〈152, 73 − b, 1b〉 76

aWe use the notation 〈xn, ym〉 to denote n + m phases, where the value for the first n phases is x and for the lastm phases is y.

R R R

R R R

R R R

ARM1 MONTIUM2

Sink MONTIUM1

A/D ARM2

Figure 2. MPSOC layout

the input and output token counts are in terms of samples
(i.e. one token corresponds to one complex number). The
execution times given in the table are in terms of clock cy-
cles.

4.3. Hardware

A few notes are required on the hardware of the test
environment. The HIPERLAN/2 receiver is mapped to a
MPSOC, consisting of ARMs with cache and a coarse grain
reconfigurable type of tile, namely MONTIUMs [4].
The interconnect consists of a NOC with routers that pro-

vide guarantees with regards to provided throughput and
maximum latency[5]. All tiles have their own Network
Interface (NI) to connect to the NOC, but the NOC side
of that interface is the same for every tile. The routers
in the NOC have buffered inputs and round-robin arbitra-
tion on the output, which imposes a maximum latency of
4 clock cycles. For brevity, a homogeneous NOC is con-
sidered here, implying that every step in a communication
path has the same behaviour and, thus, the same description
in the CSDF graph.
The hypothetical MPSOC used for this example has two

MONTIUMs and two ARMs. Figure 2 shows a possible
MPSOC layout with these specifications. The tiles with-

out labels in this figure are tiles of types not relevant to this
example. The tile labelled ‘A/D’ is the source of all the
incoming data. The tile labelled ‘Sink’ is the tile that has
to receive the stream flowing out of the HIPERLAN/2 re-
ceiver.

4.4. Mapping
We go about the mapping as described in Section 3. In

this example, the ‘Inverse OFDM’ process is the most desir-
able. Thus, it is assigned to its preferred tile type, being a
MONTIUM. Likewise, the ‘Remainder’ process is assigned
a MONTIUM. At this point, both MONTIUMs are occupied
and thus, the available implementations for the MONTIUM
architecture can no longer be assigned to a tile. This means
that all these implementations are ignored from here on. As
such, both remaining processes only have ARM implemen-
tations and are thus chosen per default.
In the second step, the chosen implementations need

to be assigned to specific tiles. Table 2 shows the itera-
tions of the algorithm in step two, that lead to the final
implementation-to-tile assignment. Swaps can, of course,
only occur between tiles of the same type. The sum of all
Manhattan distances of the application (the cost column)
can increase or remain the same for any iteration. When this
happens, that choice is rejected and another is evaluated.
As a last step in the mapping process, step three performs

incremental routing. This means the channels from the ALS
are routed incrementally with a point-to-point shortest path
algorithm. Only those lanes in the NOC that can guarantee
sufficient throughput are considered. Figure 3 shows the re-
sulting CSDF graph. This graph can be checked (with [11])
to see whether the mapping suffices to meet the QOS con-
straints laid down in the ALS (step 4 of the spatial mapper).
The buffer sizes Bi are calculated by the algorithm used in
step 4. When they are smaller than the buffers reserved by
the implementations, no further action is required. When
they are larger, an attempt should be made to allocate the



Table 2. Processor assignment iterations in step 2
ARM MONTIUM

Iter. 1 2 1 2 Cost Remark
- Pfx.rem. Frq.off. Inv.OFDM Rem. 11 Initial (greedy) assignment
1 Frq.off. Pfx.rem. Inv.OFDM Rem. 11 No improvement, revert
2 Pfx.rem. Frq.off. Rem. Inv.OFDM 9 Improvement, keep
3 Frq.off. Pfx.rem. Rem. Inv.OFDM 7 Improvement, keep

No further choices

A/D

1

R

4

R

4

Pfx.

〈1818〉
R

4

R 4R

4

Frq.

〈18, 32, 18〉
R

4

R

4

iOFDM

〈164, 170, 152〉
R

4

R

4

Rem.

〈152, 73 − b, 1b〉
R

4

R 4R

4

Sink

1

4 4 B1 4
4

4B244

B3

4 4 B4 4
4

4x

Figure 3. Final CSDF graph (production and
consumption rates omitted to prevent clutter)

additional required buffer size on the tiles the consuming
actor is mapped onto. If this additional buffer capacity can
not be allocated, the mapping is inadherent and the spatial
mapper should iterate. The buffer capacity of the Sink actor
(x) is fixed by the specification of Sink.

4.5. Implementation

We have implemented the algorithm on an ARM. The
total code size of the implementation (compiled with GCC
3.2.1 eCosCentric, no explicit optimization switches) is 137
kB. Running the HIPERLAN/2 example through it on an
ARM926 running at 100 MHz took less then 4 ms. Peak
data memory usage was 110 kB.

5. Conclusions and future work

We have presented an algorithm for run-time spatial
mapping of streaming applications to MPSOCs. Criteria
(adherence, adequacy and feasibility) were introduced for
qualitative comparison of spatial mappings. Our algorithm
to implement spatial mapping was described and shown to
guarantee that solutions found are verifiable for feasibility.
To our knowledge, no benchmarks exist to compare spa-

tial mappings quantitatively. These benchmarksmust be de-

veloped. They should include far more complex real-life ex-
amples than the HIPERLAN/2 case used in this paper and
synthetic cases based on the class of applications that can
reasonably be expected for MPSOCs in the future.
In the current work, feedback can only be given based on

the feasibility analysis of step four of the algorithm. When
earlier steps fail to find a solution, feedback information
should be produced with which a new attempt can be made.

References
[1] S. Banerjee, E. Bozorgzadeh, and N. Dutt. Parlgran: par-

allelism granularity selection for scheduling task chains on
dynamically reconfigurable architectures. In ASP-DAC ’06:
Proceedings of the 2006 conference on Asia South Pacific
design automation, pages 491–496, 2006.

[2] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete.
Cycle-static dataflow. IEEE Transactions on Signal Process-
ing, 44(2):397–408, 1996.

[3] W. J. Dally, U. J. Kapasi, B. Khailany, J. H. Ahn, and A. Das.
Stream processors: Progammability and efficiency. Queue,
2(1):52–62, 2004.

[4] P. M. Heysters. Coarse-Grained Reconfigurable Proces-
sors – Flexibility meets Efficiency. PhD thesis, University
of Twente, The Netherlands, 2004.

[5] N. Kavaldjiev. A run-time reconfigurable Network-on-Chip
for streaming DSP applications. PhD thesis, University of
Twente, 2006.

[6] A. Kumar, B. Mesman, B. Theelen, H. Corporaal, and H. Ya-
jun. Resource manager for non-preemptive heterogeneous
multiprocessor system-on-chip. In Proc. on Embedded Sys-
tems for Real Time Multimedia, pages 33–38, Oct. 2006.

[7] S. Martello and P. Toth. Knapsack problems: algorithms and
computer implementations. John Wiley & Sons, Inc., 1990.

[8] O. Moreira, J. D. Mol, and M. Bekooij. Online resource
management in a multiprocessor with a network-on-chip. In
Proc. of SAC ’07, pages 1557–1564, 2007.

[9] G. Smit, A. B. Kokkeler, P. T.Wolkotte, P. K. F. Hölzenspies,
M. D. van de Burgwal, and P. M. Heysters. The chameleon
architecture for streaming dsp applications. EURASIP Jour-
nal on Embedded Systems, 2007:78082, 2007.

[10] L. Smit, J. Hurink, and G. Smit. Run-time mapping of appli-
cations to a heterogeneous SoC. In Proceedings of the 2005
International Symposium on System-on-Chip, pages 78–81,
Nov. 2005.

[11] M.Wiggers, M. Bekooij, and G. Smit. Efficient computation
of buffer capacities for cyclo-static dataflow graphs. In Proc.
of DAC ’07, pages 658–663, 2007.


