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Abstract 
This paper presents a novel run-time dynamic voltage scaling 

scheme for low-power real-time systems. It employs software 
feedback control of supply voltage, which is applicable to off-the-
shelf processors. It avoids interface problems from variable clock 
frequency. It provides efficient power reduction by fully 
exploiting slack time arising from workload variation. Using 
software analysis environment, the proposed scheme is shown to 
achieve 80~94% power reduction for typical real-time multi-
media applications.  

1. Introduction 
Over the past several years, reduction of power consumption 

has been emerged as a key technology in VLSI system design, 
especially for portable and battery-powered systems such as a 
digital cellular phone. Dynamic voltage scaling (DVS) [1] is one 
of the most promising approaches in power reduction, where 
supply voltage can be dynamically reduced to the lowest possible 
extent that ensures proper operation, when the required 
performance of the target system is lower than the maximum 
performance. Significant power reduction is possible with the 
DVS scheme, since dynamic power of CMOS circuits, which 
dominates total power consumption, is proportional to the square 
of the supply voltage. 

Recently, extensive studies have been carried out on the 
hardware implementation of the DVS scheme [2][3]. A ring 
oscillator, which is a replica of the critical path of a system under 
consideration, is used to model the CMOS circuit delay for given 
supply voltage. Output frequency of ring oscillator is compared 
with desired clock frequency, and supply voltage is adjusted by 
frequency-voltage feedback loop [2]. However, this hard-wired 
approach does not provide efficient control of supply voltage, 
because voltage-frequency modeling of critical path as ring 
oscillator is not accurate, nor flexible. Furthermore, this approach 
cannot be applied to off-the-shelf processor, because critical path 
is not accessible outside of the chip. 

Moreover, in the DVS scheme, system clock frequency can 
have arbitrary values, which may cause interface problems to 
exchange data. Especially, this interface problem becomes serious 
for peripherals or other systems at different clock frequencies. 

Another important issue in the DVS scheme is voltage 
scheduling, i.e. how to determine and schedule the supply voltage 
for efficient power reduction. Various voltage scheduling methods 
[4]-[7] have been proposed for real-time systems, based on the 
following observations. 

In real-time systems, the utilization of the processor is 
frequently less than 1 even if all tasks run at their worst-case 
execution time (WCET), meaning that there is always some slack 
time. Moreover, workload of each task may vary from time to 
time, which results in another kind of slack time. These slack 
times can be exploited to lower the supply voltage. In this paper, 
we denote them as worst-case slack time and workload-variation 
slack time, respectively. 

However, most of the conventional voltage scheduling methods 
[4]-[6] exploit only worst-case slack time for power reduction, 
since they assume that all tasks run at their WCETs. This is 
overcome by Shin and Choi [7] where both worst-case and 
workload-variation slack times are exploited. Nevertheless, this 
approach cannot fully exploit workload-variation slack time, 
because it controls supply voltage on task-by-task basis. 

In this paper, we propose a new DVS scheme called run-time 
voltage hopping (RVH). It has the following features [8]: (1) 
relationship between clock frequency and supply voltage is 
measured by experiment and is stored as a lookup table in the 
device driver, (2) it controls clock frequency and supply voltage 
by software feedback, which can be easily adopted for various 
targets, (3) it avoids interface problems by exploiting discrete 
levels of clock frequency as fCLK, fCLK/2, fCLK/3… where fCLK is 
the master (=highest) system clock frequency, and (4) it fully 
utilizes workload-variation slack time by partitioning a task into 
several pieces, which we call timeslots, then dynamically 
controlling supply voltage on timeslot-by-timeslot basis. 

2. System Architecture 
Figure 1 shows the conventional DVS system architecture. 

Supply voltage is controlled by hard-wired frequency-voltage 
feedback loop, using ring oscillator as a replica of critical path. 
All chips operate at the same clock frequency and the same supply 
voltage, which are generated from ring oscillator and voltage 
regulator. However, this approach has the following problems. 
(1) Even in a same chip, critical path may be different along 

supply voltage, meaning that circuit delay of ring oscillator 
should have much margin to cover this variation. In this case, 
however, supply voltage increases, which results in less 
efficient power reduction. 

(2) Since fabrication process technology is different for each 
chip, circuit delay characteristics may differ a lot, meaning 
that all chips should be custom-designed to have same 
voltage-frequency relationship for efficient power reduction. 

(3) This approach cannot be applied for off-the-shelf processors, 
since ring oscillator cannot be inserted into ready-made chips. 

(4) In the multi-processor system, it is desirable to control 
supply voltages separately for each processor, which is 
impossible in this approach. 

Moreover, in the conventional DVS scheme, system clock 
frequency can have arbitrary values, which may cause serious 
problems for synchronous data transfer with peripherals or other 
systems running at different clock frequencies. For example, two 
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DVS-oriented systems running at 60 MHz and 49.99 MHz can 
exchange data only at 10kHz. Similar problems may also occur in 
the multi-processor system or shared-memory system. Especially, 
conventional DVS scheme has difficulty in employing 
synchronous DRAM (SDRAM), which is one of the most popular 
memory devices. 

These problems can be solved if (1) the supply voltage is 
controlled not by hard-wired feedback but by software feedback, 
(2) supply voltage is determined based on physical voltage-
frequency relationship of each chip, and (3) system clock 
frequency is restricted to discrete levels. In this paper, we propose 
a new DVS system architecture, as shown in Figure 2. 

Power controller has on-chip DC-DC converter and frequency 
synthesizer. It generates only fCLK, fCLK/2, fCLK/3, … to avoid 
interface problems, where fCLK is the master clock frequency. 
Device driver has two lookup tables: one for voltage-frequency 
relationship of the target processor, and the other for transition 
delay to change clock frequency and supply voltage. These lookup 
tables are established by measuring the physical characteristics of 
the chips. For example, voltage-frequency relationship is 
determined as maximum values among Shmoo plots of all chips in 
the system. Hardware operation of the proposed system 
architecture is described as follows. 
(1) Desired clock frequency is determined by the proposed 

voltage scheduling method, which is to be explained in the 
next section. 

(2) Desired supply voltage is looked up from the device driver. 
(3) Target processor sets these values into power controller by 

sending control codes. After that, target processor stops 
running, and waits while clock frequency and supply voltage 
are settling down to steady state. Duration of this transition 
time is looked up from the device driver. 

(4) Power controller changes clock frequency and supply voltage. 
After that, target processor restarts running. 

The proposed system architecture is very flexible and can be 
extended to various applications. For off-the-shelf processors, 
power controller is implemented as a separate chip, and the power 
controller is administrated via target processor’s I/O port. For 
custom-designed processors, power controller is embedded in the 
processor. For multi-processor system or efficient power 
reduction, power controller has multiple DC-DC converters and 
common frequency synthesizer, and device driver has individual 
lookup table for each chip. In this case, simple level converters 
are employed, because logic thresholds of each chip are different 
due to different supply voltages. 

3. Voltage Scheduling 
As explained in Section 1, there are two kinds of slack times 

inherent in real-time systems, i.e. worst-case slack time and 

workload-variation slack time. The former one exists when a real-
time system is designed such that utilization, which is computed 
based on WCETs of tasks, is lower than 1. The latter one exists 
when the execution time of each task deviates from its WCET. 

Consider two periodic tasks τ1(20,20,10) and τ2(30,30,10) as 
shown in Figure 3, where τi(Ti,Di,Ci) is characterized by period Ti, 
deadline Di, and WCET Ci. As shown in Figure 3(b), most of the 
conventional voltage scheduling methods [4]-[6] exploit only 
worst-case slack time, because they assume that tasks always run 
at their WCETs. This problem is partly overcome in [7]. 
Nevertheless, workload-variation slack time cannot be fully 
exploited as shown in Figure 3(c), because it performs voltage 
scheduling on task-by-task basis, i.e. supply voltage cannot be 
dynamically controlled inside a task. 

One possible solution is partitioning a task into several pieces, 
which we call timeslots, and considering them as sequentially 
executed tasks. Seeming to be simple at a glance, however, this 
approach is impractical from the following problems. 

All timeslots have the same period and deadline as original task, 
meaning that they are released at the same time. Otherwise, these 
parameters should be updated on every context switching, which 
is impractical. In [7], supply voltage can be lowered only if there’s 
no other task that was already released, meaning that supply 
voltage can be lowered only for the last timeslot, as shown in 
Figure 3(d). Therefore, power reduction is not significantly 
improved, or even degraded. 

These problems can be solved if (1) supply voltage is controlled 
such that each task finishes its execution within its WCET, and (2) 
supply voltage is controlled on timeslot-by-timeslot basis inside 
each task, independent of other tasks. One simple solution is 
embedded voltage scheduling, where supply voltage is controlled 
in the application program, not in the operating system (OS). As 
shown in Figure 3(e), this approach significantly improves power 
reduction. In this paper, we propose a new voltage scheduling 
method, which is summarized as follows. 
(1) A task is divided into N timeslots. Following parameters are 

obtained through static analysis [9] or direct measurement. 
·TWC, TWCi: WCET of whole task and ith timeslot 
·TRi: WCET from (i+1)th to Nth timeslots 

(2) For each timeslot, target execution time TTAR is calculated as 
TTAR = TWC - TWCi – TACC – TTD, where TACC is accumulated 
execution time from 1st to (i-1)th timeslots, and TTD is 
transition delay to change clock frequency and supply 
voltage. 

(3) For each candidate clock frequency fj, = fCLK/j (j=1,2,3…), 
estimated maximum execution time Tj is calculated as Tj = 
Twi×j., where fCLK is the master clock frequency. If fj is not 
equal to clock frequency of (i-1)th timeslot, Tj = Tj + TTD.  

(4) Clock frequency fVAR is determined as minimum clock 
frequency fj whose estimated maximum execution time Tj 
does not exceed target time TTAR, as shown in Figure 4. 
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Figure 1: Conventional DVS system architecture. 

Processor System Bus

Processor Core

Software

VVAR

fVAR

Device
Driver

Power Controller

Memory Chip

Peripheral Chip

I/O Chip

Interface with
External
SystemsDC-DC

Converter
Frequency
Synthesizer

Processor System Bus

Processor Core

Software

VVAR

fVAR

Device
Driver

Power Controller

Memory Chip

Peripheral Chip

I/O Chip

Interface with
External
SystemsDC-DC

Converter
Frequency
Synthesizer

 
Figure 2: Proposed DVS system architecture. 



(5) Supply voltage VVAR is determined from lookup table. 
Steps (1)-(2) are performed at compile-time, while steps (3)-(5) 

are performed at run-time. Voltage scheduling is performed 
independent of other tasks, meaning that it is not affected by 
preemption or interrupt. Note that given task always finishes its 
execution within its WCET from following observation. If worst-
case occurs, ith timeslot runs at fVAR, and all after (i+1)th timeslot 
run at fCLK. In this case, total execution time is TACC (from 1 to (i-
1)th timeslot) + TWCi × fCLK/fVAR(ith timeslot) + TTD (transition 
delay from fVAR to fCLK) + TRi (from (i+1)th to Nth timeslot), which 
does not exceed TWC (WCET of given task). 

4. Performance Evaluation 
In this paper, three typical real-time applications were tested, i.e. 

MPEG-4 SP@L1 video encoding, MPEG-2 MP@ML video 
decoding, and RCR-STD27 vector-sum-excited linear prediction 
(VSELP) speech encoding, which are going to be the killer 

applications for portable and battery-powered systems. 
To evaluate performance improvement of the proposed scheme, 

these applications were programmed as a single task whose period 
and deadline are equal to its WCET, where conventional DVS 
approaches [4]-[7] cannot lower supply voltage at all. In this case, 
the only way for power reduction is processor shutdown, which is 
quite less efficient than lowering supply voltage. 

Above target applications can be easily regarded as a single 
task. For example, MPEG-4 application performs video encoding 
at 15 frame/s, which can be programmed as a single task with 
period, deadline, and WCET of 1/15 second. We measured the 
execution time and WCET of every timeslot by running the target 
application programs on Pentium II processor platform. Based on 
this timing information, we assumed a virtual processor, which 
completes these applications just at their deadlines. Voltage 
scheduling was emulated based on this virtual processor. 

Voltage-frequency relationship was obtained from f -1 ∝  V/(V-
VTH)α [10] where master supply voltage VDD, threshold voltage 
VTH, and velocity saturation index α are assumed to be 2.5V, 0.5V, 
and 1.3. Overhead of embedded voltage scheduling was measured 
to be less than 0.01% of total workload, which is negligible. 
Number of timeslots N is 33, 30, and 40 for MPEG-4, MPEG-2, 
and VSELP applications, respectively. Power efficiency is turned 
out to be quite insensitive for a wide range of VDD, VTH, α, and N. 

Figure 5 shows power consumption of the proposed scheme. 
This power consumption is normalized by PFIX, which is the 
power consumption of non-DVS, non-shutdown processor. Power 
consumption of ideal voltage scheduling [6] is also calculated 
using post-simulation analysis, which is used as a lower bound. It 
is unfeasible in real-time systems, because it determines supply 
voltage of a given task from its actual execution time. In this 
simulation, all conventional DVS approaches in [4]-[7] have same 
power consumption, because they can use only processor 
shutdown for power reduction. 

From Figure 5, it is seen that power consumption of the 
proposed voltage scheduling method is about 6~20% of non-DVS, 
non-shutdown processors, while those of conventional approaches 
and lower bound are 20~49% and 3~10%, respectively. Only two 
(= f, f/2) discrete levels of clock frequency are sufficient, meaning 
that the proposed scheme is very simple, in both hardware and 
software. Power efficiency degrades as transition delay of power 
controller increases, because the target processor stops its 
execution during transition delay. However, this degradation is 
not serious when transition delay lies within the practical range. 

Figure 6 shows the power consumption for various VTH and 
VDD, when VTH = 0.2~0.5V, VDD = 0.5~2.5V, and the transition 
delay TTD = 500µs. Power consumption is independent of 
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Figure 3: Slack times and voltage scheduling methods. (a) No voltage 
scheduling, (b) voltage scheduling in [4]-[6], (c) voltage scheduling in 
[7], (d) voltage scheduling in [7] (4 timeslots), and (e) proposed voltage 
scheduling (4 timeslots), where fτi and P denote clock frequency of task τi 
and power consumption of processor, respectively. 
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Figure 4: Determination of clock frequency. 



individual VTH or VDD, but it is approximately linear function of 
VTH/VDD. It is seen that the proposed scheme works correctly for a 
wide range of VTH and VDD. 

5. Conclusion 
A novel run-time dynamic voltage scaling scheme is proposed 

for low-power real-time systems. It can be easily applied to 
various targets including off-the-shelf processors, by employing 
software feedback control of supply voltage and device driver 
from physical measurement of voltage-frequency relationship. It 
avoids interface problems between DVS-conscious systems by 
exploiting discrete clock frequency of fCLK, fCLK/2, fCLK/3, … It 
fully exploits slack time arising from workload variation by 
partitioning a task into several timeslots and performing run-time 
supply voltage control on timeslot-by-timeslot basis. When 
applied to three real-time multi-media applications, the proposed 
scheme is shown to achieve 80~94% power reduction compared 
to non-DVS, non-shutdown processors. Currently, extensive 
studies are in progress on the hardware implementation. 
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Figure 5: Normalized power consumption for (a) MPEG4, (b) MPEG-2, and (c) VSELP. 
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Figure 6: Power consumption for various VTH and VDD. 



 


