
Run-time Voltage Hopping for Low-power Real-time Systems
Seongsoo Lee and Takayasu Sakurai

Center for Collaborative Research and Institute of Industrial Science
University of Tokyo, Japan

{cupid,tsakurai}@iis.u-tokyo.ac.jp

Abstract
This paper presents a novel run-time dynamic voltage scaling

scheme for low-power real-time systems. It employs software
feedback control of supply voltage, which is applicable to off-the-
shelf processors. It avoids interface problems from variable clock
frequency. It provides efficient power reduction by fully
exploiting slack time arising from workload variation. Using
software analysis environment, the proposed scheme is shown to
achieve 80~94% power reduction for typical real-time multi-
media applications.

1. Introduction
Over the past several years, reduction of power consumption

has been emerged as a key technology in VLSI system design,
especially for portable and battery-powered systems such as a
digital cellular phone. Dynamic voltage scaling (DVS) [1] is one
of the most promising approaches in power reduction, where
supply voltage can be dynamically reduced to the lowest possible
extent that ensures proper operation, when the required
performance of the target system is lower than the maximum
performance. Significant power reduction is possible with the
DVS scheme, since dynamic power of CMOS circuits, which
dominates total power consumption, is proportional to the square
of the supply voltage.

Recently, extensive studies have been carried out on the
hardware implementation of the DVS scheme [2][3]. A ring
oscillator, which is a replica of the critical path of a system under
consideration, is used to model the CMOS circuit delay for given
supply voltage. Output frequency of ring oscillator is compared
with desired clock frequency, and supply voltage is adjusted by
frequency-voltage feedback loop [2]. However, this hard-wired
approach does not provide efficient control of supply voltage,
because voltage-frequency modeling of critical path as ring
oscillator is not accurate, nor flexible. Furthermore, this approach
cannot be applied to off-the-shelf processor, because critical path
is not accessible outside of the chip.

Moreover, in the DVS scheme, system clock frequency can
have arbitrary values, which may cause interface problems to
exchange data. Especially, this interface problem becomes serious
for peripherals or other systems at different clock frequencies.

Another important issue in the DVS scheme is voltage
scheduling, i.e. how to determine and schedule the supply voltage
for efficient power reduction. Various voltage scheduling methods
[4]-[7] have been proposed for real-time systems, based on the
following observations.

In real-time systems, the utilization of the processor is
frequently less than 1 even if all tasks run at their worst-case
execution time (WCET), meaning that there is always some slack
time. Moreover, workload of each task may vary from time to
time, which results in another kind of slack time. These slack
times can be exploited to lower the supply voltage. In this paper,
we denote them as worst-case slack time and workload-variation
slack time, respectively.

However, most of the conventional voltage scheduling methods
[4]-[6] exploit only worst-case slack time for power reduction,
since they assume that all tasks run at their WCETs. This is
overcome by Shin and Choi [7] where both worst-case and
workload-variation slack times are exploited. Nevertheless, this
approach cannot fully exploit workload-variation slack time,
because it controls supply voltage on task-by-task basis.

In this paper, we propose a new DVS scheme called run-time
voltage hopping (RVH). It has the following features [8]: (1)
relationship between clock frequency and supply voltage is
measured by experiment and is stored as a lookup table in the
device driver, (2) it controls clock frequency and supply voltage
by software feedback, which can be easily adopted for various
targets, (3) it avoids interface problems by exploiting discrete
levels of clock frequency as fCLK, fCLK/2, fCLK/3… where fCLK is
the master (=highest) system clock frequency, and (4) it fully
utilizes workload-variation slack time by partitioning a task into
several pieces, which we call timeslots, then dynamically
controlling supply voltage on timeslot-by-timeslot basis.

2. System Architecture
Figure 1 shows the conventional DVS system architecture.

Supply voltage is controlled by hard-wired frequency-voltage
feedback loop, using ring oscillator as a replica of critical path.
All chips operate at the same clock frequency and the same supply
voltage, which are generated from ring oscillator and voltage
regulator. However, this approach has the following problems.
(1) Even in a same chip, critical path may be different along

supply voltage, meaning that circuit delay of ring oscillator
should have much margin to cover this variation. In this case,
however, supply voltage increases, which results in less
efficient power reduction.

(2) Since fabrication process technology is different for each
chip, circuit delay characteristics may differ a lot, meaning
that all chips should be custom-designed to have same
voltage-frequency relationship for efficient power reduction.

(3) This approach cannot be applied for off-the-shelf processors,
since ring oscillator cannot be inserted into ready-made chips.

(4) In the multi-processor system, it is desirable to control
supply voltages separately for each processor, which is
impossible in this approach.

Moreover, in the conventional DVS scheme, system clock
frequency can have arbitrary values, which may cause serious
problems for synchronous data transfer with peripherals or other
systems running at different clock frequencies. For example, two

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

DVS-oriented systems running at 60 MHz and 49.99 MHz can
exchange data only at 10kHz. Similar problems may also occur in
the multi-processor system or shared-memory system. Especially,
conventional DVS scheme has difficulty in employing
synchronous DRAM (SDRAM), which is one of the most popular
memory devices.

These problems can be solved if (1) the supply voltage is
controlled not by hard-wired feedback but by software feedback,
(2) supply voltage is determined based on physical voltage-
frequency relationship of each chip, and (3) system clock
frequency is restricted to discrete levels. In this paper, we propose
a new DVS system architecture, as shown in Figure 2.

Power controller has on-chip DC-DC converter and frequency
synthesizer. It generates only fCLK, fCLK/2, fCLK/3, … to avoid
interface problems, where fCLK is the master clock frequency.
Device driver has two lookup tables: one for voltage-frequency
relationship of the target processor, and the other for transition
delay to change clock frequency and supply voltage. These lookup
tables are established by measuring the physical characteristics of
the chips. For example, voltage-frequency relationship is
determined as maximum values among Shmoo plots of all chips in
the system. Hardware operation of the proposed system
architecture is described as follows.
(1) Desired clock frequency is determined by the proposed

voltage scheduling method, which is to be explained in the
next section.

(2) Desired supply voltage is looked up from the device driver.
(3) Target processor sets these values into power controller by

sending control codes. After that, target processor stops
running, and waits while clock frequency and supply voltage
are settling down to steady state. Duration of this transition
time is looked up from the device driver.

(4) Power controller changes clock frequency and supply voltage.
After that, target processor restarts running.

The proposed system architecture is very flexible and can be
extended to various applications. For off-the-shelf processors,
power controller is implemented as a separate chip, and the power
controller is administrated via target processor’s I/O port. For
custom-designed processors, power controller is embedded in the
processor. For multi-processor system or efficient power
reduction, power controller has multiple DC-DC converters and
common frequency synthesizer, and device driver has individual
lookup table for each chip. In this case, simple level converters
are employed, because logic thresholds of each chip are different
due to different supply voltages.

3. Voltage Scheduling
As explained in Section 1, there are two kinds of slack times

inherent in real-time systems, i.e. worst-case slack time and

workload-variation slack time. The former one exists when a real-
time system is designed such that utilization, which is computed
based on WCETs of tasks, is lower than 1. The latter one exists
when the execution time of each task deviates from its WCET.

Consider two periodic tasks τ1(20,20,10) and τ2(30,30,10) as
shown in Figure 3, where τi(Ti,Di,Ci) is characterized by period Ti,
deadline Di, and WCET Ci. As shown in Figure 3(b), most of the
conventional voltage scheduling methods [4]-[6] exploit only
worst-case slack time, because they assume that tasks always run
at their WCETs. This problem is partly overcome in [7].
Nevertheless, workload-variation slack time cannot be fully
exploited as shown in Figure 3(c), because it performs voltage
scheduling on task-by-task basis, i.e. supply voltage cannot be
dynamically controlled inside a task.

One possible solution is partitioning a task into several pieces,
which we call timeslots, and considering them as sequentially
executed tasks. Seeming to be simple at a glance, however, this
approach is impractical from the following problems.

All timeslots have the same period and deadline as original task,
meaning that they are released at the same time. Otherwise, these
parameters should be updated on every context switching, which
is impractical. In [7], supply voltage can be lowered only if there’s
no other task that was already released, meaning that supply
voltage can be lowered only for the last timeslot, as shown in
Figure 3(d). Therefore, power reduction is not significantly
improved, or even degraded.

These problems can be solved if (1) supply voltage is controlled
such that each task finishes its execution within its WCET, and (2)
supply voltage is controlled on timeslot-by-timeslot basis inside
each task, independent of other tasks. One simple solution is
embedded voltage scheduling, where supply voltage is controlled
in the application program, not in the operating system (OS). As
shown in Figure 3(e), this approach significantly improves power
reduction. In this paper, we propose a new voltage scheduling
method, which is summarized as follows.
(1) A task is divided into N timeslots. Following parameters are

obtained through static analysis [9] or direct measurement.
·TWC, TWCi: WCET of whole task and ith timeslot
·TRi: WCET from (i+1)th to Nth timeslots

(2) For each timeslot, target execution time TTAR is calculated as
TTAR = TWC - TWCi – TACC – TTD, where TACC is accumulated
execution time from 1st to (i-1)th timeslots, and TTD is
transition delay to change clock frequency and supply
voltage.

(3) For each candidate clock frequency fj, = fCLK/j (j=1,2,3…),
estimated maximum execution time Tj is calculated as Tj =
Twi×j., where fCLK is the master clock frequency. If fj is not
equal to clock frequency of (i-1)th timeslot, Tj = Tj + TTD.

(4) Clock frequency fVAR is determined as minimum clock
frequency fj whose estimated maximum execution time Tj
does not exceed target time TTAR, as shown in Figure 4.

∑∑∑∑ Switching
Power Supply

fERRfDESIRE

Desired
Frequency
Register

+ -

Ring
Oscillator

fVAR

Memory Chip

Peripheral Chip

I/O Chip

　　　　　　　　　Processor
　　　　　　　　　　　Core

VVAR

Voltage Regulator

Processor System Bus

Interface with
External
Systems

Software

fVAR

∑∑∑∑ Switching
Power Supply

fERRfDESIRE

Desired
Frequency
Register

+ -

Ring
Oscillator

fVAR

Memory Chip

Peripheral Chip

I/O Chip

　　　　　　　　　Processor
　　　　　　　　　　　Core

VVAR

Voltage Regulator

Processor System Bus

Interface with
External
Systems

Software

fVAR

Figure 1: Conventional DVS system architecture.

Processor System Bus

Processor Core

Software

VVAR

fVAR

Device
Driver

Power Controller

Memory Chip

Peripheral Chip

I/O Chip

Interface with
External
SystemsDC-DC

Converter
Frequency
Synthesizer

Processor System Bus

Processor Core

Software

VVAR

fVAR

Device
Driver

Power Controller

Memory Chip

Peripheral Chip

I/O Chip

Interface with
External
SystemsDC-DC

Converter
Frequency
Synthesizer

Figure 2: Proposed DVS system architecture.

(5) Supply voltage VVAR is determined from lookup table.
Steps (1)-(2) are performed at compile-time, while steps (3)-(5)

are performed at run-time. Voltage scheduling is performed
independent of other tasks, meaning that it is not affected by
preemption or interrupt. Note that given task always finishes its
execution within its WCET from following observation. If worst-
case occurs, ith timeslot runs at fVAR, and all after (i+1)th timeslot
run at fCLK. In this case, total execution time is TACC (from 1 to (i-
1)th timeslot) + TWCi × fCLK/fVAR(ith timeslot) + TTD (transition
delay from fVAR to fCLK) + TRi (from (i+1)th to Nth timeslot), which
does not exceed TWC (WCET of given task).

4. Performance Evaluation
In this paper, three typical real-time applications were tested, i.e.

MPEG-4 SP@L1 video encoding, MPEG-2 MP@ML video
decoding, and RCR-STD27 vector-sum-excited linear prediction
(VSELP) speech encoding, which are going to be the killer

applications for portable and battery-powered systems.
To evaluate performance improvement of the proposed scheme,

these applications were programmed as a single task whose period
and deadline are equal to its WCET, where conventional DVS
approaches [4]-[7] cannot lower supply voltage at all. In this case,
the only way for power reduction is processor shutdown, which is
quite less efficient than lowering supply voltage.

Above target applications can be easily regarded as a single
task. For example, MPEG-4 application performs video encoding
at 15 frame/s, which can be programmed as a single task with
period, deadline, and WCET of 1/15 second. We measured the
execution time and WCET of every timeslot by running the target
application programs on Pentium II processor platform. Based on
this timing information, we assumed a virtual processor, which
completes these applications just at their deadlines. Voltage
scheduling was emulated based on this virtual processor.

Voltage-frequency relationship was obtained from f -1 ∝ V/(V-
VTH)α [10] where master supply voltage VDD, threshold voltage
VTH, and velocity saturation index α are assumed to be 2.5V, 0.5V,
and 1.3. Overhead of embedded voltage scheduling was measured
to be less than 0.01% of total workload, which is negligible.
Number of timeslots N is 33, 30, and 40 for MPEG-4, MPEG-2,
and VSELP applications, respectively. Power efficiency is turned
out to be quite insensitive for a wide range of VDD, VTH, α, and N.

Figure 5 shows power consumption of the proposed scheme.
This power consumption is normalized by PFIX, which is the
power consumption of non-DVS, non-shutdown processor. Power
consumption of ideal voltage scheduling [6] is also calculated
using post-simulation analysis, which is used as a lower bound. It
is unfeasible in real-time systems, because it determines supply
voltage of a given task from its actual execution time. In this
simulation, all conventional DVS approaches in [4]-[7] have same
power consumption, because they can use only processor
shutdown for power reduction.

From Figure 5, it is seen that power consumption of the
proposed voltage scheduling method is about 6~20% of non-DVS,
non-shutdown processors, while those of conventional approaches
and lower bound are 20~49% and 3~10%, respectively. Only two
(= f, f/2) discrete levels of clock frequency are sufficient, meaning
that the proposed scheme is very simple, in both hardware and
software. Power efficiency degrades as transition delay of power
controller increases, because the target processor stops its
execution during transition delay. However, this degradation is
not serious when transition delay lies within the practical range.

Figure 6 shows the power consumption for various VTH and
VDD, when VTH = 0.2~0.5V, VDD = 0.5~2.5V, and the transition
delay TTD = 500µs. Power consumption is independent of

(e)
0 60 t 0 60 t30 30

fτ1

fτ2

fτ1

fτ2

P P

fτ1

fτ2

fτ1

fτ2

worst-case slack time workload-variation slack time

(a)

fτ1

fτ2

fτ1

fτ2

(b)

(when all tasks run at their WCETs) (when all tasks run at ½ of their WCETs)

P P

P P

fτ1

fτ2

fτ1

fτ2

(c)

P P

0 60 t 0 60 t30 30

0 60 t 0 60 t30 30

0 60 t 0 60 t30 30

(d)
0 60 t 0 60 t30 30

fτ1

fτ2

fτ1

fτ2

P P

(e)
0 60 t 0 60 t30 30

fτ1

fτ2

fτ1

fτ2

P P

fτ1

fτ2

fτ1

fτ2

worst-case slack time workload-variation slack time

(a)

fτ1

fτ2

fτ1

fτ2

(b)

(when all tasks run at their WCETs) (when all tasks run at ½ of their WCETs)

P P

P P

fτ1

fτ2

fτ1

fτ2

(c)

P P

0 60 t 0 60 t30 30

0 60 t 0 60 t30 30

0 60 t 0 60 t30 30

(d)
0 60 t 0 60 t30 30

fτ1

fτ2

fτ1

fτ2

P P

Figure 3: Slack times and voltage scheduling methods. (a) No voltage
scheduling, (b) voltage scheduling in [4]-[6], (c) voltage scheduling in
[7], (d) voltage scheduling in [7] (4 timeslots), and (e) proposed voltage
scheduling (4 timeslots), where fτi and P denote clock frequency of task τi
and power consumption of processor, respectively.

1 2 3 4 N…

TWC = WCET of given task
TR1

TR2
TR3

TR4

31 2

TTD

TTD

TTD

TTAR TTDTACC

Tj

fVAR = f1 = fCLK

WCET

fVAR = f2 = fCLK/2

fVAR = f3 = fCLK/3

fVAR = f4 = fCLK/4

T1 = TTD+TWC3

T2 = TTD+TWC3×2

T3 = TWC3×3

T4 = TTD+TWC3×4

If clock frequency
for previous
timeslot was f3…

If clock frequency
for previous
timeslot was f3…

1 2 3 4 N…

TWC = WCET of given task
TR1

TR2
TR3

TR4

31 2

TTD

TTD

TTD

TTAR TTDTACC

Tj

fVAR = f1 = fCLK

WCET

fVAR = f2 = fCLK/2

fVAR = f3 = fCLK/3

fVAR = f4 = fCLK/4

T1 = TTD+TWC3

T2 = TTD+TWC3×2

T3 = TWC3×3

T4 = TTD+TWC3×4

If clock frequency
for previous
timeslot was f3…

If clock frequency
for previous
timeslot was f3…

Figure 4: Determination of clock frequency.

individual VTH or VDD, but it is approximately linear function of
VTH/VDD. It is seen that the proposed scheme works correctly for a
wide range of VTH and VDD.

5. Conclusion
A novel run-time dynamic voltage scaling scheme is proposed

for low-power real-time systems. It can be easily applied to
various targets including off-the-shelf processors, by employing
software feedback control of supply voltage and device driver
from physical measurement of voltage-frequency relationship. It
avoids interface problems between DVS-conscious systems by
exploiting discrete clock frequency of fCLK, fCLK/2, fCLK/3, … It
fully exploits slack time arising from workload variation by
partitioning a task into several timeslots and performing run-time
supply voltage control on timeslot-by-timeslot basis. When
applied to three real-time multi-media applications, the proposed
scheme is shown to achieve 80~94% power reduction compared
to non-DVS, non-shutdown processors. Currently, extensive
studies are in progress on the hardware implementation.

Acknowledgements
The authors thank to Dr. Y. Shin for his valuable comments. This
research was partly supported by Mirai-Kaitaku Project.

References
[1] A. Chandrakasan and R. Brodersen, Low Power Digital CMOS

Design, Kluwer Academic Publishers, 1995.
[2] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic

voltage scaled microprocessor system,” Proceedings of IEEE

International Solid-State Circuits Conference, pp. 294-295, 2000.
[3] V. Gutnik and A. Chandrakasan, “An efficient controller for variable

supply-voltage low power processing,” Proceedings of IEEE
Symposium on VLSI Circuits, pp. 158-159, 1996.

[4] F. Yao, A. Demers, and S. Shenker, “A scheduling model for
reduced CPU energy,” Proceedings of IEEE Annual Foundations of
Computer Science, pp. 374-382, 1995.

[5] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivastava,
“Power optimization of variable voltage-core based systems,”
Proceedings of Design Automation Conference, pp. 176-181, 1998.

[6] T. Ishihara and H. Yasuura, “Voltage scheduling problem for
dynamically variable voltage processors,” Proceedings of IEEE
International Symposium on Low Power Electronics and Design, pp.
197-202, 1998.

[7] Y. Shin and K, Choi, “Power conscious fixed priority scheduling for
hard real-time systems,” Proceedings of Design Automation
Conference, pp. 134-139, 1999.

[8] S. Lee and T. Sakurai, “Run-time power control scheme using
software feedback loop for low-power real-time applications,”
Proceedings of Asia and South Pacific Design Automation
Conferences, pp. 381-386, 2000.

[9] S. Lim, Y. Bae, G. Jang, B. Rhee, S. Min, C. Park, H. Shin, K. Park,
and C. Kim, “An accurate worst case timing analysis for RISC
proecssors,” Proceedings of IEEE Real-time Systems Symposium, pp.
97-108, 1994.

[10] T. Sakurai and A. Newton, “Alpha-power law MOSFET model and
its application to CMOS inverter delay and other formulas,” IEEE
Journal of Solid State Circuits, vol. 25, no. 2, pp. 584-594, Apr.
1990.

Transition Delay TTD (ms)
0.0 0.2 0.4 0.6 0.8 1.0

N
or

m
al

iz
ed

 P
ow

er
 P

/P
FI

X

0.00

0.05

0.10

0.15

0.20

0.25

0.30

proposed: 2 levels (f,f/2)
proposed: 3 levels (f,f/2,f/3)
proposed: 4 levels (f,f/2,f/3,f/4)
proposed: infinite levels
lower bound
conventional approaches

Transition Delay TTD (ms)
0.0 0.2 0.4 0.6 0.8 1.0

N
or

m
al

iz
ed

 P
ow

er
 P

/P
FI

X
0.0

0.1

0.2

0.3

0.4

0.5

proposed: 2 levels (f,f/2)
proposed: 3 levels (f,f/2,f/3)
proposed: 4 levels (f,f/2,f/3,f/4)
proposed: infinite levels
lower bound
conventional approaches

Transition Delay TTD (ms)
0.0 0.2 0.4 0.6 0.8 1.0

N
or

m
al

iz
ed

 P
ow

er
 P

/P
FI

X

0.0

0.1

0.2

0.3

0.4

0.5

0.6

proposed: 2 levels (f,f/2)
proposed: 3 levels (f,f/2,f/3)
proposed: 4 levels (f,f/2,f/3,f/4)
proposed: infinite levels
lower bound
conventional approaches

(a) (b) (c)

Transition Delay TTD (ms)
0.0 0.2 0.4 0.6 0.8 1.0

N
or

m
al

iz
ed

 P
ow

er
 P

/P
FI

X

0.00

0.05

0.10

0.15

0.20

0.25

0.30

proposed: 2 levels (f,f/2)
proposed: 3 levels (f,f/2,f/3)
proposed: 4 levels (f,f/2,f/3,f/4)
proposed: infinite levels
lower bound
conventional approaches

Transition Delay TTD (ms)
0.0 0.2 0.4 0.6 0.8 1.0

N
or

m
al

iz
ed

 P
ow

er
 P

/P
FI

X
0.0

0.1

0.2

0.3

0.4

0.5

proposed: 2 levels (f,f/2)
proposed: 3 levels (f,f/2,f/3)
proposed: 4 levels (f,f/2,f/3,f/4)
proposed: infinite levels
lower bound
conventional approaches

Transition Delay TTD (ms)
0.0 0.2 0.4 0.6 0.8 1.0

N
or

m
al

iz
ed

 P
ow

er
 P

/P
FI

X

0.0

0.1

0.2

0.3

0.4

0.5

0.6

proposed: 2 levels (f,f/2)
proposed: 3 levels (f,f/2,f/3)
proposed: 4 levels (f,f/2,f/3,f/4)
proposed: infinite levels
lower bound
conventional approaches

(a) (b) (c)
Figure 5: Normalized power consumption for (a) MPEG4, (b) MPEG-2, and (c) VSELP.

VTH/VDD

0.20 0.25 0.30 0.35 0.40

N
or

m
al

iz
ed

 P
ow

er
 P

/P
FI

X

0.00

0.05

0.10

0.15

0.20

0.25

0.30

MPEG4 video encoding
MPEG2 video decoding
VSELP speech encoding

Figure 6: Power consumption for various VTH and VDD.

