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SYNOPSIS

Distributions of run-up are calculated by assigning to
each individual wave in an irregular wave train a run-up va-
lue according to Hunt's formula, The use of this formula per-
mits a normalization of the run-up in such a way that the
run-up distributions are independent of slope angle, mean wa-
ve height and mean wave period, Expressions aré derived for
the probability density and the distribution function of the
run-up and of the wave steepness for arbitrary joint distri-
butions .of wave height and period, Explicit results are ob-
tained fér wind waves by assuming wave heipht and period
squared fo be jointly Rayleigh distributed with arbitrary de-
gree of correlation, Empirical data from the laboratory are
discussed, These lend support to some of the main premises
used and results obtained, A few ficld measurements of run-up
distributions are presented; the Hayleigh distribution appears

to fit these data.
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Definition

Chézy coefficient (eqo 2.7)

coefficient in run-up formula (eq, 8Ué)

mean water depth

base of natural logarithms

complete élliptic integral of the second kind of modu-
lus #

probability density

distribution function (cumulative probability)
hypergeometric function

acceleration due to gravity

value assumed by H’

wave height: max, (crest) height minus min, (trbugh)
height of the water surface between two successive
zero up-crossings | |

mean height df the highest 1/3 of the waves

normalizZed wave height: H = AOOV

‘modificd Bessel functions of the first kind

of order zero resp, one
Jacobian
parameter of the bivariate Rayleigh distribution
modified Bessel functions of the third kind of
order zero resp, one

/
value assumed by [w

. 2

wave length in deep water: L, = ;7'/&#

. I a
normalized deep-water wave length: L, :ZO/CL
probability of exceedance, in % (subscript)

/
value assumed by R
run-up: max, height above mean water level ‘reached
by a wave which runs up a slope
run-up of a wave with A=A, and 7= 7,
3
normalized run-up (eq. 3.3)
’
value assumed by S
stecepness: S = /ﬂ/[a
Yy oz / Iy
normaliZzed steepness: :3;=/Z/2°
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Symbol Definition

7 wave period: time interval between two successive zero

up-crossings of water surface

t\i

)

mean period of the highest 1/3 of the waves

period of spectral component with maximum energy den-
sity in frequency domain

magnitude of mean wind velocity

a thickness of the uprush

angle of slope with respect to the horizontal

gamma functjion ‘

Dirac's unit impulse "function"

spectral width parameter

I S T NN

coefficient of linear correlation between 4 and L,

Auxiliary constants and variables: 7%, ~%;’ /&-é x, ;5 z, r

A bar denotes average value,

i




INTRODUCTION
Background

The run-up of waves is often an important factor in the de-
sign of shore structures. Many studies have been made to determi-
ne it as a function of the characteristics of structure and wa-
ves, bhoth from a theoretical and an empirical point of view, First
the theoretical approach will be very briefly considered,

In all analytical theories for wave run-up known to the au-
thor (e,g., Pocklington, 1921; Miche, 1944) the fluid is assumed
to be non-viscous, and, in most of these, the motion to be irro-
tational, These theories cannot be expected to be applicable in
the case of waves breaking on a sloping structure, which is often
the case to be considered, For an approximate analytical descrip-
tion of breaking waves in shallow water, the long-wave theory mugl
be used, as was first done by Stoker (1948)., A review of the me-
thod, including recent additions, has been given by Amein (1966),

~The run-up of breaking waves is found by numerical integration of
the differential equations, generally by means of the method of
characteristics, In most cases the propagation of a bore advancing
into water at rest is dealt &ithq In a few cases the run-up of pe-
riodic waves has been calculated (Amein, 1966; Daubert and Warlu-
zel, 1967). It seems likely that this procedure could also be used
to calculate the run-up of irregular waves, These waves would then
have to be simulated by suitably chosen boundary conditions, How-
ever, such a procedufe would be rather laborious, In this paper a
different approach is used, which, in contrast with the preceding
methods, is not based on principles of fluid dynamics, It resem-
bles the method used by Saville (1962), to be described in the
folloyinga

Saville assumes that the distribution of run-ups of an irre-
gular wave train can be calculated by assigning to each individual
wave the run—up’vulue of a periodic wave train of corresponding
height and period, This will henceforth be referred to as the "hy-
pothesis of equivalency"™. A similar hypothesis has been widely
)used to compute distributions®of.wave forces on piles,

It should be noted that the hypothesis of equivalency does

"
not necessarily imply that each individual wave causes a run-up
equal to the run-up 6f the corregponding uniform wave train, In

fact, it does not even imply that corresponding to each wave an




identifiable run-up exists, The assumption is rather weaker, as

it pertains to the distribution of wave heights and periods on

the one hand, and of run-—-ups on the other hand, In other words, it

’ 2 s
pertains to averages of many values, rather than to individual va-
lues,

In order to apply the hypothesis of equivalency one has to

know the run-up of periodic waves, and the joint distribution of

the wave height (H) and period (7). Saville uses the run-up data
obtained previously By him (1956), as published by the B.E.B.
(1961), and the joint distribution of 4 and 7 proposed by Bret-
schneider (1959) for the case when these are stochastically inde-
pendent, The resulting run-up distributions have to be calculated

numerically for each combination of slope angle and wave steepness.,

OQutline of contents

The approach used in this paper is similar to the one used by
Saville, as far as the hypothesis of equivalency is concerned., How-
ever, this hypothesis is elaborated differently. By considering on-
ly waves which break on the slope, a simple analytical expfgsalun
can be used for the run-up of periodic waves (Hunt,1959)0 This will
be dealt with in chapter 2, The use of this expression obviates the
need to compute the run-up distribution aneﬂ‘forﬂeachfcombinatidﬁ'df
wave steepness and slope angle, Furthermore, it permits the trans-
formation from joint distribution of height and period, into the
distribution of run-up, to be carried out analytically, This trans-
formation is carried out first for an arbitrary distribution of H
and 7‘Zin chapter 3, and subsequently for specific distributions,
This is done in chapter 4 for wind waves with a bivariate Rayleigh
distribution of 4 and 7'zand arhitrary degree of correlation, and
in chapter 5 for sweil with a negligible variation in period,

In order to be able to estimate the fraction of the waves
whicﬁ is breaking on the slope, the distribution of wave steepness
is determined in the chapters 6 and 7, Exact solutions are obtained
for.waves with the same joint distribution of H and,'TQas used in
the chapters 4 and 5. In chapter 8 some empirical run-up distribu-
tions are presented and discussed. A brief summary and some conclu-
sions and recommendations are given in the chapters 9 and 10,

It has been attempted throughout to state clearly which as-




sumptions are being used in the various stages of the develop-
ments. Details of algebra and calculus have been omitted for the

sake of brevity,
RUN-UP OF PERIODIC WAVES BREAKING ON A SLOPE

Numerous experiments have been carried out to détermine the
run-up of periodic waves, It appears from these experiments that
there are considerable differences in the run-up of waves which
break on the slope and those which do not break, For breaking wa-
ves for instance, the run-up ihcreasés'with increasing slope angle,
while the reverse is true for non-breaking waves. Whether or not
the waves break on the slope depends largely on the slope angle G£)
and the wave steepness, Iribarren and Nogales (1949) give the fol-
lowing formula for the slope corresponding to a regime halfway be-

tween no breaking and complete breaking:
. e

| g R
%%V"'C(Cf =S\ /A (2.1)
7 Vzgz
7 is the wave period, /4 the wave height and??,the acceleration due

to gravity, Substituting the following expression for. the deep~water

wave length
VL el

/ .27 0/ .

&
B

=2 4 (2.3)

SRLE

Breaking occurs when the given value of‘/ﬂkoexceeds (H/QLr. This
will mostly be the case if wind waves impinging on gently sloping
walls are considered, For example, the steepest slope of coastal
dikes in the Netherlands is 1:3, The corresponding critical steep-
ness according to eq. 2.3 is about 0.02, The design waves have
Steepnesseé well in excess of this value, This was the main reason
for considering breaking waves only in this paper,

Hunt (1959) has given the following formula for the run-up of

N

periodic waves breaking on a smooth slope: .
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in the ft-sec system, Z;is”the height above M.W.L. rcached by a wa-

ve which runs up the slope, Restorlng dimensional homogeneity by

substitution of;;: 32.2 ft/sec" eq, 2,4 may be written as

>

.y TW 'Zéa/mb(. (205)

I

R

or as

R

n

\/f/éo o (2.6)
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Bq. 2.4 is based on measurements made at the Waterways Experiment
Station in Vicksburg, Miss, aﬁﬁ at the Beach Erosion Board in Wa-
shington, D.C, According to Hunt, the criterion of Iribarren and
Nogaleé (eq. 2, 3) is adequafe to delineate the trang]tlon from brea-=
king to no breaking,

Hunt's formula is purely empirical, and it is not known why the
formula is as it is, It would be desirable to gain some insight into
its structure, To this end the following interpretation is offered,

The formula applies to waves breaking on the slope., The initial
velocity of the water particles in the tongue which runs up the slo-
pe must be of the same order of magnitude as the particle velocities
in the breaking wave, i,e,, 5%6955)_ The motion is periodic, with
period 7, and the run-up time is &/7). If it is assumed that the
shape of the velocity-time curve does not significantly depend on
the characteristics of slope and waves, then the displacements along
the slope are expected to be 5ﬁ(7— *); and the vertical displace-
ments. among which the run-up, to be 577' 1@%9 This agrees with
eq, 2.5, except for a factor cosa, which is almost 1 for gentle slo-
pes, The dlfference is unimportant, as the reasoning given above ap-
plies to gentle slopes only, and is stated in terms of orders of
magnitude,

A run-up formula similar to Hunt's has becen derived by Wagner
(1968) from a differential equation describing the motion of the

mass of water which runs up the slope:

R ={'{/_A_CM &rf_{(__—é' \//72@%2?4/[ (2.7)
//1ﬁ9z% Y L JJtC:Z




The coefficients %{ and %Z are unknown constants, / is the wave-

length in the depth dx 2% is a thickness of the uprush, and Cis a
Chezy-coefficient for the slope, No details are given about the
differential equation or about the method of solving it,

For smooth slopes, the factor in parenthese$ is almost. 1, The
experimental value of 15 for the median run-up averaged over the
flume width is given as 0,971, If in addition the following rela-

tionship is substituted:
L, o/ cotd 2amd (2.8)
L ,

then eq, 2,7 becones

D

/( o / L s s iRy :

which for not-too-steep slopes is almost the same as Hunt's formu-

TR o.g 7/ VHL, tn o (2.9)

la,

RUN~UP DISTRIBUTION OF BREAKING WAVES WITH ARBITRARY JOTNT DISTRI-
BUTION OF A/ AND /. ‘

Analytical solution

The derivations in this chapter are based on the hypothesis
of equivalency, and on the hypothesis that Hunt's formula can be
applied to the waves, The latter hypothesis implies that the run-
up distribution is not significantly affected by the fact that not
all the waves break on the slope.(The fraction which does not break
is estimated in chapter 7.) Accordingly, the run-up distribution
will be determined by assigning to each wave with height # and

deep-~water length Zo a run-up given by

/?-_. ‘//72; Z{a/m,o(_ (9_06) ‘

It should be noted that //,,4 and tane appear in.product form
only., This has the advantage that the run-up can be so normalized
as to make the shape of its distribution independent of the charac=
teristics of waves and slope, The. variables will be normalized as

follows:




H a‘——-/-e/—- s (3.1)
A
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(3.2)

N
°

and

i

R/ R '
VAL e ,<
in which a bar denotes average (expected) value, Substitution of

eq. 2,6 into eq, 3.3 gives
R _VH'L! (3.4)

Thus, the normalized run-up distribution equals the dizstribution of
V;FZZ , which in turn may be found by a transformation of the joint
distribution of 4 and [: , which is assumed to be known in the pre-
sent context, This transformation may be carried out in a number of
ways, The method presented here is believed to be rather straight-
forwvard., A more formal procedure will be used in chapter 6 for sol-
ving a similar problem,

Throughout this paper, stochastic variables will be denoted by
capital letters, and'particular values which they may assume by lo--
wer case letters, with omission of primes and indices, i

/
ot L7F /) he the int ¢ A oana [/

1 PN
L 7Tt ey 11T JULis 7/ aliw L oy $

defined by

/b/’O/é[% <H'<Hr b and 4//<L°/<//ic¢[/]=/£/{/}d[[a// (5.5)

hnlo-
AU

e

ity dens

o

o

L
et

4~y o
l/ly v

o ! /7 . . 0 . "
Because A and L» are positive quantities,

7[/‘{,{) 0 it A<o or L<o (3.6)

il

The expression in the right-hand member of eq, 3.9 is called a pro-
bability element, The probability that A’ and Z: simultaneously
assume values % and -Z in a certain ared of the 76—{7p1ane is de-

termined by summing the corresponding probability elements, i,e, by
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integrating %79? f9 over the area of the *7{-1/ plane under con-
gideration, This will be used in the following,

The cumulative probabilitv‘@f 72 denoted by ?Q?Q
the probablllty'[vQ’ KJ Substitution of eq, 3.4 gives

Flr) = prob VAL < r] (3.7)

This probability in turn may be determined by integration of f(#iio
with respect to 7{ and 1( for all values thereof which fulfill the
inequality VyA£ €/

- [ ) Ll 8)

2l £ L #o-
which VEP ¢ ~

From figure 1 and eq, 3,6, it can 2
be seen that the integration of -
;(%@ 4{) must be carried out o-

ver the hatched area bordered by

the hyperbola 4L~ /-* and by the
straight lines % -0 and‘ £=0:

- A

&0)
(e} -
T/ \ / 77 /f Nsr o 2 L0
r(r) = | A% # (#,-AL) oL -
Z / (3.9)

Differentiation with respect to ,~ yields the probability'dehsity
of R': 7

£ () .:-‘3259 “ (3,10)

which gives
co

Fo = 2r [ LA

(o]

;)o[-f (3.11)

The eqs, 3,9 and 3,11 represent the, formal solution to the problem
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of determining the run-up distribution from a known joint distri-
bution of wave height and period, if Hunt's formula is applied to
individual waves, These expressions are valid for arbitrary #73349,
In the next two chapters specific functions will be substituted for
f(%flf) ., Before this is done, however, a graphical method of es-
timating F(r) from discrete data on wave heights and periods is

presented,

Graphical solution for discrete data

In this section it will be assumed that a scatter diagram is
available of wave height vs, period. The problem is to compute an
estimate of the associated run-up distribution, if for individual

waves the run-up is given by Hunt's formula:
R . O.l—/T\/ﬂ?—/L/ Z‘a/nog k T (2.5)

A practical solution to this problem is suggested by the analyti-
cal derivation in the preceding section, On a trénsparant sheet of -
paper a family of curves is drawn, along each of which 7 VH is con-
stant,(On double-log paper such curves will be straight lines,) This
sheet is used as an overlay over the given scatter diagfamb By sim-
ply counting the totalynumber of‘points of the scatter diapgram be-
tween consecutive pairs of curves 7r}¢7c: constant, the number of
anticipated run-ups in certain classes can be determined; the cumu-

T Leansamd Ty mavininm v
oe 1ouna oy mummatlano

ok

lative distributbtion can nex

. RUN-UP DISTRIBUTIONS OF WIND WAVES WITH A BIVARIATE RAYLEIGH DIS-
TRIBUTION OF A AND L,

The Bivariate'Rayleigh distribution

It is generally known that wind wave heights are very nearly
Rayleigh—distributgd, According to Bretschneider (1959) the same
is true for the periods squared of wind waves, Based on this obser-
vation, Bretschneider assumes that the joint distribution of heights

and periods squared is some type of bivariate Rayleigh distribution,




However, such a distribution was unknown to him, Only in the cases
when A and 7 % are stochastically independent resp, 100%.correla-
ted was Bretschneider able to use the joint disfribution, gince 1in
both cases it is completely determined by the marginal distributions,
Uhlenbeck (1943) and Rice (1944) in their work on signal sta-
tistics derive the joint probability density for two values of the
envelope of a narrow band random noise signal, separated by a cer-
tain time interval, The resulting distribution may be called the bi-
variate Rayleigh distribution, although this is not done by Rice (who

even in the one-dimensional case does not mention Rayleigh)a

The probability density of two variables 4’ and L: , which are
jointly Rayleigh distribuated, and of which the mean value is equal

to one, is given by

: g X L”
bt g £ JFTTE pie 4 gy 0
g JE? e\ R g _ ,

for 7f and 1(;<9; %YC%Z1<)=O for Zeor i¢<:0n JC is the modified Bésw

gsel funetion of the first kind of order zero, The distribution has
one parameter Zf , which fulfills the inequality €] < 1, This para-— -
meter is not in general equal tp o, the coefficient of linear cor-

relation between //{and Z;, which ig defined by
'L — 7

Vi Vi

The relationship between p and Z has been dealt with elsewvhere

/O

(4.2)

(Battjes, 1969), It is shown graphically in figure 2.

The application of eq. 4,1 to wind waves would imply that a

certain fraction of the waves has a steepness exceeding the limit

imposed by the process of breaking, This has been conmsidered for

the case /o'=0 by Saville (1962), who found that the fraction of
breaking waves is generally of the order of a few percent at most,
The steepness distribution to be derived in the chapters»6 and 7
permits a similar check for fqéo, in which case the values were
found to be ecven smaller than those given by Saville, The effect

of a limiting steepness will not be taken into consideration in the

following,
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4,2 Derivation of the run-up distribution

The probability density of R’ will now be determined by sub-

stitution of eq,%;1 into eq, 3,11: Yy
£
<o I A*

k4

£ - »°

2 /_%z

I(z%9 4o S, (1.3)

By substituting

/—_{z (}i,l})
and
x - Z _ (4,5)

/o KR

the integral can be written as

/—6*%/:2_2/.,-6.—;? ) Lt

This integral may be found in a table of Laplace transtforms: (Abrd—
mowitz and Stegun, 1965), Tt is equal to /«: () ; where /%‘15 th
modified Bessel function of the third kind of order zZero, Substitu-

tion in eq, 4,3 gives Lhe probablllty denalty of the run~up as
g h oy ot

. \/,:z. A
7[‘/’~_...’Z 7 (” ) !
(7) T f{ /{2)/1/ (4.6)
a graph of which is shown in figure 3 for six values of 1? from 0O
to 1, which have been so seclected as to give equal inerements of the
coefficient of correlation,/o .

The cumulative distribution may be found by integration of

F(r) ;
F(#) =////”70[/’* o | (5.7)

=N

In order to carry out the integration it is convenient to transform
to the variable % defined by eq, 4.5, Becanse X is a single-~valu~
ed function of +# , and vice versa, the following relationship holds;:

!

Fixim] = Ffreof (1.3

: VR
. ]).,,:,5':;‘: et
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Therefore,
Fle)dx = f//’)a//’b or £ () = £ gﬁ N ) (4.9)

substitution of which into eq, 4,6 gives
£x) =(/—’{9JC_Z; (’{a:)/\i(a:) (%,10)
The cumulative probability'is

P - ¢-49) o T ) I () ol (hoit)

The following formulas for derivatives of JT and ‘/f‘holﬂ:

A ) - - A (2) [ Iz

(2.12)

/2,’/g(z)}l_—.~ z/l: (=) /Z.Z: [z)fl_—_‘ z_/: (%)

in which a prime denotes differentation with respect to Z (Abramo-
witz and Stegun, 1965), Using these relationships, eq., 4.11 way be

integrated by parts, with the result
ey ot~ x L () (x) — £zl Hx)F () (4.13)

Substitution of eq., 4,5 in the right hand member of eq. 4.13 yields
F(r) , Which ig depicted in figﬁre 4 for selected values of & .
Eq. 4,13 becomes

For) = /- —7-21’—2/5/772”7 it 4 0. (a.1n)

This correspoyds to the case of zero correlation between A 'ana 4; .
which, for the bivariate Rayleigh diétribution, implies stochastic
independence of }/,and L; o

When %?: 1, x is unbounded for all ,y¢o, as follows from eq. 4.5,
The same 1s true for the Beésel functions in eq. 4.13, Therefore, eq.
4.,1% cannot be used as it stands if 46: 1, Using asymptotic expansiong

/
of the Bessel funétions,it may be showﬁ that
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2 A
F(f)g_,/_/_;gi@ it A (5.15)
2
so that
S g

Fery = /- it 4. (4,16)

This is the one-~dimensional Rayleigh distribution, as expected:
. . . e
ﬁf: 1 corresponds to r=1 (see figure 2), which means that 4 and
’ . . . . . ’ Z /
4, are linearly dependent, This in turn implies A/'= . bhecause

they are identically distributed, Eq., 3.4 then bhecomes

R — Vwy - H /! it £ =1 (4,17)

so that the dlglrlbutlon of R becomes equal to that of // or ‘L
i.e, equal to the Rayleléh distribution,
The mean of the normalized run-up can be found as a moment of

the joint distribution of 4’ and L!
R HL YA =/ ) @Z)éff/fzfja//a// (4,18)

Substituting eq, 4.1 and carrying out the integration yiélds

T Fbtin®) o

35— is the hypergéometric function (Middleton, 1960),

This expression reduces to

AN woss it A0 (i)

in which

and to

r -, it A= 1 (4,21)

~The associated cumulative probabilities are 0,535 and 0.54h res-
pectively, i,e. approximately 0.54 in both cases, It is assumed that

this value will also hold for other values Of‘ﬂ{o




An inspection of figures 3 and 4 shows that the width of the
run-up distribution increases as o increases, According to Bret-
schneider (1959), p= 0 occurswhen the sea is fully developed, whi-
le p= 1:is considered to be a limiting value which is more nearly

approached in a young sea,

At this stage it may be useful to revert briefly to non-norma-
lized variables, As an example, the value exceeded by 2% of the run-
ups will be counsidered for the limiting cases =0 and p= 1. Ente-
‘ring figure 4 with the value 7= 0.98 and reading the corresponding

values of / gives

EZ, = 1,78 . if p=0
(4.22)
/ . . _
R, =2.23 if p=1
Substitution of eq., 3.3 gives
R, = .98 VHL, tan « it p=0
| (&.23)

R

2

i

2.23VHI tanx it p- 1
If # and 7%are Rayleigh distributed, the following reclationships
hold. : '

-7—:&"0.961/}—% . . (11024)

and

/ = O. 63 /L///s
. (4.25)

in which Al is the average of the highest 1/3 of the wave heights,
Substitution of eqs, 2,2, 4,24 and 4,25 into.eqs, 4,23 yields final_

ly:

R, = o0.60 7’% frriot if /é= 0

(4,26)




Comparison with Saville's work

Saville (1962) gives run-up distribution curves which are ha~
sed on the goint distribution of A and ngiven by Bretschneider
(1959) for the case when the marginal distributions are of the Ray-
leigh type, and 4 and 72are stochastically independent, This dig-
tribution is the same as given by eq. 4.1 if 2= 0, The run-up dis-
tribution given by eq. 4,14 may therefore be compared with Saville's
results, Such a comparison cannot be carried out directly because the
run-ups have been normalized in different ways, The normalization

factor used by Saville is R, , the run-up of a periodic wave with
‘ )89 1o

- height A% and peried 7% , i.,e, the meankoi the highest 1/3 of the

waves, which in this case (zero correlation) equals 7 ., Values of

R%/0¥% were obtained from the run-up curves published by the B,.E.B,

(1961)0 These curves are based on the same data as vsed by Hunt, The

factor used here is V}?[: én»“x, i.e. the run-up, according to Hunt's

formula, of a periodic wave with height M and deep-water length Z; .
Two questions should be distinguishedin comparing the run-up

distributions& | A

(a) What is the value of the normalization factor for given waves
and slope?

(b) How is the normalized run-up distributed?

The first question in fact mutually compares Hunt's formula and the

run-up curves used by Saville, Such a comparison is not relevant he-

re, Both normalization factors will therefore be based on the same

relationship ween run-up, waves, and slope, Using Hunt's formuia,

the ratio of the normalization factors becomes:

\/ > % {a/’i“ :\ /AVJK.% - (u.27)
V Zlaxnoc A ow T2

Substitution of eqs, 4,24 and 4,25 gives ) =1.22, With the use of

this conversion factor, Saville's curve for tanw= 1:6 and AZ//‘é =
0.22 ft/se02 has been plotted in figure %. This curve appears to be
in very cloge agreement with eq, 4,14, whicli is also shown in the fi-
gure.‘Saville's’curves for the steeper slopes (not shown here) are
somewhat different, predominantly in'the range of low run-up values,

This will be investigated further in chapter K 7,

»
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RUN-UP DISTRIBUTION OF SWELL

In this chapter waves will be considered of which the heights
are Rayleigh-distributed, while the variation in periocds is neglec~
ted, This model is approximately applicable to old swell, It repre-
sents a degenerate case of the general joint distribution of A’ and
L: , because Z: = 1 with a probability of 100%, One can proceed

formally as before by writing for the joint probability density

LR L) - L) 5 (=) (5.1)

in which %rféj ig the wmarginal probability defisity of Hg and & is
Dirac's unit impulse "function", and by substituting this into eqs,

3,9 and 3,11, A more direct method is to revert to eq, 3,42
/ I ' '
R —\VH'L -
‘ | (3.4)

which in this case becomes

RV w o (5.2)

2
It follows that B’ is Rayleigh~distributed (eq, 4,16), so that the

distribution function of R’ can bé written down at once seshss—arg,

befe v
v, Y
72_.[/’):: /- e ‘
(5.3)
from which the probability density is found by diffecrentation as
Pl 2 --;_7{:/’6/ ’ ’
FO) =mr e (5.4)

The mean value of the normalized run-up in this case ig T =
@7bjw [‘(57@0 &= 0.96; the mean square value is of course 1, The
functions given by eqs. 5.3 and 5.4 aré depicted in figures % and
3; respectively, l

From an inspection of all the curves in these figures it is
clear that the shape of the'run~up digtribution varies more or less
monotonically with the wave age, The widest spread (greatest vari-
ance) occurs with a very young sea, the smallest spread with an old
swel}, while the distribution corresponding to fully developed wind

waves 1s approximately halfway between these extremes,




STEEPNESS DISTRIBUTION OF WAVES WITH ARBITRARY JOINT DISTRI-
BUTION OF 4 AND L,

It has been pointed out in chaptér 2 that Huat's run-up for-
mula is not applicable to waves of which the steepness ESEAOQois
less than f%r given by eq., 2.3, Like A4 and Lo, S is a stochas-—
tic variable, The distribution of this variable will be determined
in order to be able to estimate the fraction of the waves to which
Hunt's formula could be applied,

It is worth noting that the peak horizontal inertia wave force

on a fixed body is proportional to AVTzif the wave is in deep wa-
ter, The same is true for the vertical force in water of any depth,
Thus, the distributiocn of these peal forces, if suitably normalized,
is the same as the distribution of the normalized steepness, to be
determined in thebfollowingo

The steepness S will be normalized as follows:

g’ s #IL, | (6.1)
AL AL, )

)
I

or
ES, = __fz; : (6.2)

The distribution of S can be obtained from %Y%ﬂ-{) by cxactly the
same procedure as was used in chapter 3 for the determination of
FT(F)‘ . A more formal procedure is to use the standard technique
forvthe transformation of one bivariate probability dénsity into an-
othéro The wave steepness should be one of the two variables of
which the joint probability density is fo be found, The other one is
a dummy variable which will be eliminated afterwards, It can be chow~
gsen at convenience,

Let %Ygf,{g be transformed into é‘(;ﬂ f) , in which = {;2
and 'the dummy variable ¢ is some function of 4 and —{79 An aste-
rigk is used to distinguish the two probability densities, The *

transformation is given by

f

| Lla4) = A(A, ) (6.3)
[T]



- 19 -

in which  is the Jacobian:

T_ a(et) |3 3% (6.1)
o(#, 1) ¢ o¢
2% 24
(Cramer, 1966), Choosing +¥= 1ﬂgives J = /_f Therefore,
Ll ) o LE (A L) - LAl L) o5

The probability density of S’can now be found as a marginal proba-

bility density of 7{[4) /)

" =/7§ (4, 4) ol (6.6

or

/(4)_.;/3”%’/4//3 L)t £6.7)

Integration with respect to -7 yields the cumulative probability:

o= [t [l Yt .

which may be transformed 1nto

/Z_(/J) /o(// f[’g /)GM (6.9)

This would have been obtained at once with the procedure gsed in

chapter 3.

 :STEEPNESS DISTRIBUTION OF WIND WAVES WITH A BIVARIATE RAYLEIGH

DISTRIBUTI1ON OF A AND [, .

Derivation of the distribution

Substitution of the bivariate Rayleigh probability density

(eq, 4.1) into eq, 6,7 gives"

co 7 /7"4
2 3 ¥, £z -
o) -zt = | L e / _{zf)o// (7.1)
By subsgtituting
| PR ’fzz = (7.2)
and /-
» [+ a* (7.3)




eq, 7.1 becomes

%’4 e é‘dz (7.4
(@) - 2%4 /# (4) oy (7.4)

The sign of the uwpper limit of integration must equal the sign of
%

For large 1 & L(?)gejyy@\ , so that the integral converges
only if ]p) > 1 (Watson, 1966), Eq, 7.3 may be rewritten as

| pl = 257+ |
Lﬁl . (7v5)

The numerator is always > 1 except for 7= 1, in which case its va+
lue is 1, The denumerator is at most 1, Thus, only ifﬂ|ﬂ€’a 7 =1
does the integral fail to converge, This is to he expected, as {15/
= 1 implies /%QL: (see page 14), so that in that case S’ assumes
the value 1 with a probability of 100%, The corresponding probabili-
ty density is zero for all ~4#£ 1 and is unbounded for = 1, 1t is

described by Dirac's unit impulse function:

()= §(-1) if =1 (7,6)
The distribution function is the unit step function centered at -7=
1, '
If I<€f <1, then bbl)l for all - , and the integral in eq, 7.%
is bounded, Tt has been evaluated using section 13,2 from Watspn
(1966)

, with the result

-/:///)z £ 7 (14 %

o {o%n (o gty s2e 7 1%kt (7.7)

This reduces to

/(/«9“ “"_——“(/+4z)z, it 4-0 (7.8)
{ka) has been plotted ,in figurc 6 for selected values of ﬂ(.a
Integration of /YQU given by eq, 7.7 yields the distribution

function:

. .
Fro) - 7/ ; - for 1€ <1 (7.9)

2f g7 (2 yK) o221}
This equation is §1so valid for €] = 1, in‘which case it repre-

sents the unit step function centered at 7= 1,
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Eq, 7.9 reduces to

F(4)=__~49~ S T

/42 T (7,10)
The co-cumulative probability (probability of exceedance) is
/
1) = oo it 40 (7.11)

Graphs of 7{%0 are given in figure 7, inspection of which shows
that the distribution is not very sensitive to variations of p if
‘p is small (< 0.4, for instance), This means that the simple expres-
sions given by eqs, 7.10 and 7.11 can be used as-an approximation in
cases of low linear correlation between 4/ and L, ,

It is evident from figure 7 as well as from eq, 7.9 that the me=
dian of the steepnes; disﬁrihution does not depend on p ; it is al-
ways 1,

The mean steepness has been evaluated as a moment, of f(%}f)t

5. W - [ [ (o) Fea it (7.1

Substitution of the bivariate RBayleigh probability density (eq, I, 1)

and evaluation of the integral gives
5 - £(#)
’ (7.13)

the compleﬁe elliptic integral of the second kind of modulus 1f° Uti~
lizing the relationship between # and p given in figure 2, S7 has

been plotted‘as a function of f7 in figure 8,

The steepness distribution of swell having the distribution of
H' and LL described in chapter 5 need not be considered separately:
it is equal to the digtribution of hﬂ(Rayleigh) because Z:is assumed
to beloonstantq For purposes of comparison, it has also been plotted

in the figures 6 and 7,

K

The distribution functions depicted in figure 7 may be used to
estimate the fraction of the waves for which Hunt's formula would
(not) be applicable, As an example, the values used by Baville in the
computation of the curve shown in figure 5 will be takcen: tanea= 1:06,

‘ o
zero correlation between A and 7 , and ﬁ%//zgz = 0,22 fi/sec”, which

)

covresponds to EVZ:, = 0,025, Trom cq, 2.3, Eif 0019(1/6)2 = 00,0053,
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Therefore, s; = 090053/00025 = 0,21, From figure 7 or from eq, .,
7.10 it can be seen that }7(0,21) = 0,04 if p= 0, which implies
that in this case Hunt's formula would be applicable to 96% of the
waves, For a 1:3 slope and the same mean wave steepness this value
drops to 59%, However, the curve computed by Saville for this case
differs at most 10% from the curve for the -1:6 slope, or from eq,
bo1l4, Thisg indicates that the effect of a few non-breaking waves is

relatively weal

Comparison with Bretschneider's and Saville's work

@

- Bretschneider (1959) in his work on wave variability considered
the wave steepness, [e did not determine its distribution but only

the mean value, with the result

S Zop z-/ (7.14)
which is also shoyn in figure 8, Oniy for £ = 0 and L =1 do
Bretschneider's‘equation and eq, 7.,1% give the same values, Bretsch-
neider's derivafionvis based on knowledge of the marginal distribu-
tions of A4 angd L, alone (RaYleigh), and on the assumption that the
mutual regressions of H and Zowould be linear, It has been shown
elsewhere (Battjes, 1969) that the assumption of linear regression
is incompatible with the assumption of a bivariate Rayleigh distri-
bution,pexcept in the limiting cases P=0and p = 1, Therefore,

only in these limiting cases ig exact agreement between eqs, 7.13

“and 7-14% to be expected, For intermediate valueg of P the differen-—

ce is at most 5%,

Based on the H-T distribution given by Bretschneider in the
tase o = 0, Saville (1962) calculated thevwave steepness: distribu-
tion numerically, His result has been compared with the exact solu-
tion given by eq, 7.10 above, which was derived on the same premi-.
ses, The agreement appeared to be quite good in almost the whole

range of the distribution, Only the extreme lower and upper tails

were found to deviate noticeably from eq, 7.10,
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8 EMPIRICAL RUN-UP DISTRIBUTIONS

8,1 Introduction

Before proceeding to the presentation and discussion of some
empirical data, it is recalled that the derivation of the run-up

distribution of wind waves has been based on the following premi-

ses:

I The run-up distribution can be determined by assigning to
each individual wave a run-up equal to the run-up of a peri-
odic wave train of corresponding height and period,

I1  The run-up of periodic waves breaking on the slope is given

by Hunt's formula,

IIT The fact that not all the waves brecal on the slope has a ne-
~gligible effect on the run-up distribution, '
Iv H and [, have a bivariate Rayleigh distribution,

The second of these premises will in the present context be
considered as an empirically established fact, The others are a
priori considered to be hypothetical, and in need of chenking,
Hypothesis II1 is more nearly valid for the steeper waves and the
gentler slopes, because the fraction of the waves which is not
breaking ‘is then very small, |

In the following two sections, empirical data from the la-
boratory and the field will be presented, Only the labdratory da-
ta can be used to check some of the hypotheses I through IV, or .
combinations thereof, The field data will be presented for their

intrinsic interest., Such data are almost nonexistent,

8,2 Laboratory data

“In 1939 run-up experiments were carried out at thé Delft Hy-
draulies Laboratory, in behalf of Zuiderzee Works, The Netherlands,
The run-ups of irregular waves on various slopes were measured
(Wassingp 1958)D The waves were generated by a combinatioh of
wind and a bulkhead with a periodic motion, As a result, the mo-
del waves were not natural wind waves on a small scale, This is
evidenced by the fact that the measured wave height distribution
is much narrower than the Rayleigh distribution, The deviation
from natural conditions is even greater for the wave periods,

which in the model varied but very little, Because of dHis it is




not useful to compare the measured run-up distributions with tho~-
gse derived in this paper on the basis‘of hypothesis IV,The measu-
rements can, however, be used to check to a certain extent the va-
lidity of the hypotheses (I + II + III), This check will be carried
out in two stages, First the magnitude of the median run-up ( Rg)
is considered, and after that the shape of the run-up distribution,
as given by the values R41/85b? in which 2 1is the probability of
exceedance in % (=100 (/-F) },

Two series of measurements were made, In each series the cha-
racteristics of the incident waves were kept constant, and the
run-up was measured on 7 different slopes, with tan e« ranging from
0,1 to 0,4, The waterdepth (0.35 m), the mean'wavé period (1 sec),
and the mean wave length (1,40 m) were the same im both series, The
wave periods varied very little and will here be considered to be
constant, The wave height was 0,10 m resp, 0,07 m, Li is not clear
from the original report how this height had been defined; for this
reason it will here be called the nominal wave height,

According to. the hypothesesto be tested, the ratio

'ﬁ;: = %F;o
0.9 %?féwm tan «

should be constant, The value of the constant cannot be predicted

(8,1)

because of the uncertainty with respect to ﬁ{mmqa Experimental va-

lges are listed in Table 1,

H@ﬁm (cm) —5 10 7 10 7
~taneC R‘fo Rs‘o R :o R:’—o
R (cm) (cm) - -
0,1 L7 | 3,7 1,17 1,11
0,15 6.9 5.7 . 1.5 0 1,14
0,2 9.3 8,1 1,16 1,21
0,25 11,8 9.3 1,18 1,12
0,286 15,4 13,4 1,35 1,40
0,335 15,8 15,2 1.19 1,19
0.4 17,5 15,4 1,09 1,15

Table 1




The agreement between fE:o values in two colums for the same va-
lue of tan« (horizontally) is good, and confirms- the assumed pro-
portionality of R and %ﬁo The agreement between,R;DVﬂlues with-
in one column (vertically) is fairly good; this confirms the pro-
portionality of R and tanx , Only the two points for tan « =
0,286 (= 1:3%) deviate considerably from the others, Apart from
these two, all measured values of )Q;)are grouped quite closely
around the mean value 1,15, with a maximum deviation of approxima-
tely 5% only, This means that for these experiments the variation
of the median run-up with wave height and slope angle is adequate-
ly expressed by Hunt's formula, Whether or not this is also the
case for r&nwup values with a different probability of exceedance
can be investigated by comparing 72””ﬂQ5b with Vfaz/kéb , which
accordintho the hypotheses to be tested should be equal to each
-other for all 7, because 7" was assumed to be constant, Such a
comparison has been given in figures 9% and Db for Agwm%x U, 10 i
and 0,07 m respectively for values of 7t from 50 to 2, The plotted
points represent values whiph have been obtained by averaging over
the different slope angles in each series, The shape of the wave
height distribution is also shown, .

There appears to he a fair agreement hetween -Ekt/Rso dhd
V'Hn/”% for the waves with AQMn: 0,10 m (figure 9%) and a very
good agreement for the waves with /ﬁwM? 0,07 m (figure 9b)° This
lends support to the hypotheses (I + II + III).

Van Qorschot and d'Angremond (1968} have carried out run-up
experiments with irregular waves, Disposition éf a programmed wa-
ve board enabled them to generate waves with prescribeﬁ energy
density spectra, In addition, a wind witﬁ a mean'velocity of up to
3 m/sec was blown over the water surface, One test was run in
which the waves were generated entirely by wind, with a mean velo~
city of approximately 8 m/seco The effect of the spectral shape on
the wave run-up was the main bbject of the study, in particular-“ y
the effect of the spectral width, The value of the speectral width
parameter € , introduced by Cartwright and Longuet-Higgins, was
0,22 for the wind-generated waves and varied from 0,34 to 0,59

for the others,The widest experimental spectrum was chogen gimi-
1€ 2
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lar to the widest spectra which had been measured with a wave pole
in the North Sea off the Dutch coast in a depth“of approximately
15 m,

The values of € were computed after cutting off the high-
frequency tail of each spectrum at the frequency where the energy
density was 5% of the maximum value, As a result, the actual € -
values are considerably underestimated, The computed values there-
fore have comparative significance only, rather than absolute sig-
nificance, This is of no concern,‘however, as in this application
there is no compelling reason to use just € as a measure of the
spectral width,

In addition to ¢ o the following parameters were varied (the
- experimental range is given in parentheses ); '?9 the period of the
3pec£ral component with maximum energy density (Oo7l‘sec - 106§<
sec); A% s the significant wave height (3 7 cm o~ 173, 6 Cm);

A%/& 7%, a wave stecpness (4,0 x 1077 - 19 .2 x 10 3 c{/ e
relative waterdepth (1,7 x 10~ -2 8,1 x 107 ), and taneca,the slo~
pe (1:4 and 16}, | v 'v

The most important results obtained by van Qorschot and d'An-
gremond, and the interpretations thereof in the context of this
paper; can be summarised as follows:

- The effect on the run-up of wave height, wave period and slope
angle is adequately expressod by a Hunt-type formula with a pro-

portionality factor which depends on 7 and €

R, = C.e) TVt toan« )

This implies that the shape of the run-up distribution is signi-

(

{
{0,

[\3

ficantly affe(fed by € only, not by either the wave steepness, the

relative waterdepth or the slope angle, This is in agreemént with

bypotheses (I + II + II1} if the additional agsumption is made. .

that the shape of the ﬁ#J'wdistribution isbdetermined by the spec-

tral shape,

- The width (splead) of the run-up distributions increases with €,
i,e, with the width of the energy Spectrumo

~ The run-~up distributionsy computed on the basis of hypothesis T,
the measured #H-7-distribution, and the run~up data from the
B.E,B, (1961), agreed falI]Y well with the measured dlstrlbutlm
ons,

This proves that hypothesis I can lead to ugeful results,
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Some run-up distributions measured by van Qorschot and d'An-
gremond have been replotted in figure 10, The corresponding € -va-
lues range from 0,22 (windwgenerated waves) to 0,57, so that almost
the entire experimental range of € (0,22 - 0,59) is represented in
the figure, The distributions given by eqs, 4,14 and 4,16 abo%eg
for the limiting cases = 0 and £ =1, are also shown, It ap-
pears that the range of run-ups predicted on the basis of hypothe~
ses I through IV agrees with the range of experimental run-ups of
waves with spectra which varied from narrow to wide, Although this
agreement does not prove each of the hypothesescorrect, it does at

least indicate that the end results are not unreasonable,

FField data

In this section some prototype run-up distributions will be
presented which have been measured by Zuiderzce Works of the Ne-
therlands, The anthor had access to the original data for the pﬁrw
pose of analysis,

The measurements stem from a time (1943~19&4) when wave meters
in the field were not availableo It is therefore not possible to _ -
relate the magnitude of the run-ups to those of the incident waves,
Only the shape of the run-up distribution will be dealt with,

The measurements were carried out on a dike of the IJdssellake
(figure 11), This is essentially a tideless hody 6f water with

depths of approximately 5 m; the maximum fetch at the points of ob-
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the absence of astronomical tide, a statistically steady state is
more often approached, and longer lasting, than on a seacoast, This
permits rather long measuring times, depending mainly on the dura-
tion of the local wind, The measurement time for the data to be pre-
sented was from I hr to 3 hr, which corresponds to approximately
1000 to 3000 observations per series,

~The location of the two points of observation and a sketch of
the dike'cross7sections Are shown in figure 11, The narrow bern
which is present near mean lake level is for purposes of dike con-
struction, The broader berm at an elevation of + 1,7 m has been in-
stalled for purposes of rgh—up reduction,

At the selected sites the dike facing was divided in a series
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of numbered areas of equal vertical increments (appr, 0,2 m), The
number of run-~ups reaching each numbered arca was tallied manually,
A summary of the environmental conditions during the measurec-
ments is given in table 2, Z[ ig the absolute value of the mean wind
velocity, and M,W,L, is the mean water level, referred to the datum

level NAP which is indicated in figuie 11,

wind velocity .3 site A ; site B
direc— M.W.L, "M W.L.

no date /L-C .| tion 25'0 ‘ R5°
» (m/s) ~ 7 (m) (m) (m) ()
1| 9-8-47% 13 | WNW-W ~0,12 | 0,34 ~0,18 | 0,24
2130-8-4% | 15 - 18|WSW-W | - =0,10 | 0,31 ~0,05 0,38
3|15-9-47% 13 SW -0,07 | 0,36 -0,09 0,46
4y {15-9-17% 15 |wsw ~0,21 | 0,36 ~0,21 | 0,56
5120-9-43% | 13 - 17|SSW-8 ~-0,05 0,40 -0,10 0,65
6|22-1-44 | 20 - 25| Ssw 40,05 | 0,45 +0,05 | 0,50
7|15-3-un | 15 - 20| waw ~0,05 | 0,48 Mo;b5 0,50

8| 3-5-4lL 15— 20 |WNW-W +0,20 0,43 - e
9l7-11-4u | 20 - 25| w +0,40 | 0,85 £0,40 | 1,00
10[7-11-44 | 20 - 25| W +0,50 | 1,02 +0,50 | 1,08

yvery gusty; frequently more than 25 to 30 m/seco

Table 2

Distributions of R/Rﬂ>have been plotted on Rayleigh paper in the
figures 12 and 1% for site A and Site B, respectively. Only those
‘series have been included in which the run-ups did not reach  the
high berm, It is evident that almost all of these distributions are
very well described by a Rayleigh distribution, Exception should be
made for series no, 7, site A, in which case the data are spread
much more than a Rayleigh distribution, This is possibly due to the
fact that the wind on that occasion was particularly gusty, as in-
dicated in table 1, This wind blew almost perpendicular to the di-

ke at site A, where the anomalousg distribution was measured,
5 " )
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In interpreting the distributions given in the figures 12 and .
13, particularly the fact that they have almost the same shape,
it should not be forgotten that the wave generating conditions,in
terms of fetch, depth and mean wind velocity, did not differ . ..
greatly from one series to another, Another factor which hasg some
effect is the berm at approximately M,W.L, This berm probably
causes an increase of the gpread in the run-up values, compared
with the run-up on a plane slope, because the effect of a berm
near M,W,L, 18 to reduce smaller run-ups more . than larger run-
ups, For this reason it is expected that the distfibution of run~
up on plane slopes will be narrower than the Rayleigh distributie .
on, for the same wave(conditions ag, prevailed in the measurements
presented in figures 12 and 13,

In figure 14 some distributions are given in which an apprem
ciable fraction of the run—ubs exceeded the high berm, The effect
of the berm on the run-up distribution is quite conspicuous; Pri-
marily the run-ups above the berm are reduced, with the result
that the total Spréad is less than in the case when the berm is

not reached by the run-up,
SUMMARY AND CONCLUSIONS

Distributions of run-up of breaking waves are derived by as-
signing to individual waves in-an irregular wave train-a run-up
value according to Hunt's formula, The potential Validity’of this
approach is confirmed by comparison with laboratory data, Expli~
cit expressions for the run-up are obtained for waves of which the
heights and periods squared have a bivariate Rayleigh distributi-_
on, The extremes of this distribution for a value 1 resp, 0 of the
correlation coefficient p supposedly are limiting cases for a
young sea resp; a fully developed sea, The assumption of a bivari-
ate Rayleigh distribution has not in the present study been chec~
ked separately, However, the range of run~ups calculated on the
basis of this aésumption, with o varying from 0 to 1, appears to
agree with the range of experimental values for waves with energy
density spectra ranging from narrow to wide,

Some prototype run~up distribhutions are presented, These had

been measured on a dike of the IJssellake in the Netherlahdso The




variation of wave generating conditions in this lake is very limi-
ted, This is probably the reason why the run-up distributions are
remarkably similar in shape; they are very well described by a Ray-
leigh distribution, The measured run-ups are affected by a berm
near M., W,L, It is believed that the effcct of such a berm is to in-
crease the widtﬁ of the distribution,

A general expression is derived for the distribution of steep~
ness of waves with an arbitrary joint distribution of heights and
periods squared, This expresgsion is subsequently evaluated for the
special case of a bivariate Rayleigh distribution, The resulting
distribution function has a strikingly simple form when p = 0,
This simple form may be used as an approximation to the actual dis-

tribution function for small o (less than 0,4 for instance),

10 RECOMMENDATIONS

The following studies pertaining to the problems of variabili-
ty of waves and run-up are recommended; '

- A statistical study of wind wave records to check the hypothesis

of a bivariate Rayleigh distribution for H and /,

- Field measurements of run-up, preferably on a plane and fairly
smooth slope, Needless to say, measurements of the incident wa-
ves and other environmental factors should be included,

- An exploratory study of the feasibility of numerical computation
of run-up distributions, k
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the limiting wave run-up {resp, overtopping) which can
be allowed in view of the stability of the structure, Very little
is known about this problem, although it is of fundamental impor-—

tance in the design of many types of shore structures.
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