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Abstract

This thesis presents experiments on run-up of solitary waves on a beach of 10◦

inclination. The purpose of this study is to find out what causes the lower
maximum run-up heigths in experimental results compared with results from
numerical models that are based on dispersive long wave theory and full potential
theory. The experimental work includes the surface elevation, the velocity field
close to the beach and tracing of the moving shoreline. It is found that the main
devitation from theory appears in the later stage of the inundation. And the
conclusion made is that the descripencies between theory and experiment are
most likely due to viscous effects in the boundary layer.
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Chapter 1

Introduction

1.1 Previous work and motivation

The run-up of waves on beaches is an important topic for the understanding and
prediction of coastal impact of tsunamis. Tsunamis are sea waves most often
generated by earthquakes or landslides, and they are considered long waves with
small amplitude. Tsunamis travel with high speed over long distances. As they
reach the coast, the amplitude of the wave is gaining and the wave travels in-
land potentially causing large property damage and loss of life. For example,
the tsunami in Japan in mars 2011 caused thousands of deaths and widespread
destruction.

Solitary waves have often been used in experiments concerning tsunami investig-
ations. The advantage of studying solitary waves is that they are easy to generate
in a wave tank. Also the waves are easy to reproduce as they are described by
a single parameter, for example the amplitude. A shortcoming in using solit-
ary waves when investigating tsunamis, is that they are, unlike tsunamis, both
nonlinear and dispersive. Regardless, the investigation of the run-up of solitary
waves plays an important role in the validation of numerical simulations and the
understanding of the physics of the run-up.

The run-up of solitary waves have been investigated for decades and is an im-
portant topic. The theory applied has traditionally been long wave theory and
the viscosity has been neglected. Pedersen & Gjevik [1] have presented a nu-
merical model based on the Boussinesq equations for the simulation of run-up
of non-breaking solitary waves. They compared the model with experimental
data on a relatively steep beach (inclination of ≥ 20◦) and found good agree-
ment with experimental results for inclinations of > 20◦. For an inclination of
20◦ the numerical model overpredicted the maximum run-up height compared
to the experimental results. Pedersen & Gjevik also found that the agreement

1



2 Chapter 1. Introduction

between numerical results and theoretical results where dependent of the equi-
librium depth, observing the best agreement for deeper water. They suggested
that these effects where caused by surface tension and frictional effects. Syn-
olakis [2] studied run-up of breaking and non-breaking solitary waves on plane
beaches with focus on maximum run-up heights and wave breaking. He derived
an analytical run-up law based on an approximate solution of the nonlinear shal-
low water theory for prediction of maximum run-up height of solitary waves, and
validated the formula with experimental results for different beach inclinations
and wave amplitudes and found that the agreement was satisfactory. Synolakis
also found that the increase in R/d with A/d, where R is the run-up height d is
the equilibrium depth and A is the amplitude of the incident wave, is smaller for
breaking waves than for non-breaking waves. Li & Raichlen (2001) [3] studied
run-up of non-breaking waves on a beach with inclination of 25.7◦. They derived
a nonlinear solution to the shallow water equation, including higher order terms
than the solution derived by Synolakis [2]. The results revealed that the agree-
ment was good, but that the theory overestimated the tip of the run-up tongue.
Li & Raichlen (2002) [4] investigated non-breaking and breaking solitary wave
run-up on a beach with inclination of 3.8◦. Most of the waves were breaking,
but the results revealed a tendency of overprediction in maximum run-up height
according to the numerical results. The data also revealed an increasing R/d with
increasing depth when A/d was kept constant. Jensen et al [5] investigated run-
up of solitary waves on a beach of 10.54◦ inclination and compared the maximum
run-up height with a Boussinesq model and the run-up law from Synolakis [2].
They found that for the smallest incident wave the experimental results agreed
well with the theory, but that the long-wave theories overestimated the run-up
heights for the higher waves. Sælevik [6] investigated run-up of solitary waves
on a straight beach with inclination of 10◦ and composite beach with change in
the 10◦ inclination to 4◦ at a vertex point above the equilibrium water level. He
compared the measured run-up heights for the straight beach with the Boussinesq
equations and found that the results from the Boussinesq equations gave consist-
ently lower run-up values compared with the experimental results. Sælevik also
did PIV measurements in the flow during run-up and the results revealed the
appearance of a boundary layer in the region close to the beach.

The articles mentioned above investigate various aspects of the run-up process,
but they all have shown that the maximum run-up height in the experimental
results is smaller compared to the numerical and analytical prediction. Sugges-
tions are made that the viscous effects causes this deviation. So far no work has
been done on trying to include the viscous effects in the numerical models.

Even though the boundary layer underneath a solitary wave during run-up has
not been documented in the literature, investigations of the boundary layer un-
derneath a solitary wave propagating on constant depth has been performed. Liu
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et al [7] investigated the boundary layer under a solitary wave propagating at
constant depth in a wavetank and found that the boundary layers was laminar
and flow reversal started in the boundary layer as the flow at the outer edge of
the boundary layer began to decelerate. No separation was observed and the
agreement between numerical and experimental results were excellent. Sumer et

al [8] investigated solitary wave boundary layers, simulated by solitary motion in
an oscillating water tunnel. They found that transition to turbulence occurs at a
Reynolds number Recr = 5×105. The boundary layer is laminar for Re < 2×105,
and at the range 2× 105 < Re < 5× 105 a regular array of vortices emerges near
the bed. Liu et al also found that the flow reversal is delayed quite substantially
with increasing Reynolds number

This thesis further investigates the run-up of a solitary wave on a sloped beach.
The main target is to find out what causes the overprediction of the maximum
run-up height in the theoretical results compared with experimental results. In
this study the beach has an inclination of 10◦ and there are five different incoming
waves generated. The five waves have different amplitude to depth ratio A/d =
[0.0977, 0.195, 0.292, 0.388, 0.481] where A is the amplitude and the equilibrium
depth d is kept constant at 20.0 cm.

1.2 Contents of the thesis

In Chapter 2 a brief introduction of the theory applied in the numerical models
are presented. The three main theories are potential theory, dispersive nonlinear
long wave theory and boundary layer theory. A short description of Lagrangian
and Eularian representation of particle motion in a fluid is also given, as well as
the different wave regimes and the governing equations of the theories applied.
At the end of the chapter a description of the numerical models applied are
presented.
Chapter 3 and 4 covers the experimental work. In Chapter 3 the incoming waves
are described and the surface elevations and velocity fields of the run-up are
investigated. The experimental setup for these investigations are given in section
3.2. The investigation of the surface elevation is performed with ultra sonic
wave gauges that are placed at different positions at the beach. The positions
of the gauges, the results from the measurements and the comparison with the
numerical models are presented in section 3.3. To find the velocity fields inside
the flow during run-up PIV-technique is used and a description of this technique
is introduced in section 3.1, while the different field of views and the results from
the measurements and comparison with numerical models are presented in section
3.4. The results from the PIV measurements reveal that there are instabilities
in the flow during run-up. Stability of boundary layers are discussed in section
3.4.1.
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Chapter 4 covers the tracing of the moving shoreline. In sections 4.1 and 4.2
the experimental setup and the method for postprocessing the data is presented.
The results and comparison with the numerical models are given in section 4.3.
The tracing of the moving shoreline reveals that the surface tension influences the
start of the inundation, and this is further investigated in section 4.3.1 and 4.3.2.
Finally, a summary of all the results, the discussion of these and the conclusion
is given in Chapter 5.



Chapter 2

Theory

The theory applied in this thesis is potential theory, nonlinear long wave theory
and boundary layer theory. In order to find a mathematical description of the
flow, it is suitable to divide the flow field into an outer region where the flow is
inviscid and an inner region, the boundary layer, which includes the viscosity.

2.1 Lagrangian and Eularian representation

There are two different ways to describe the particle motion in the fluid, Lag-
rangian and Eulerian representation. Lagrangian representation describes the
trajectory of each particle in the fluid, with the particle position x at a time t
as a function of the initial particle position x′ at time t0. The Eulerian repres-
entation describes the whole velocity field. A more detailed description is given
in Kundu & Cohen [9]. The most commonly used is the Eulerian representation,
although in some cases Lagrangian representation is preferable. Each representa-
tion might be transformed into the other. The theory presented in this chapter is
two-dimensional flow using the Eulerian representation in a Cartesian coordinate
system, while the numerical models for the inviscid flow presented in section 2.7,
uses the Lagrangian representation.

2.2 Governing equations

There are two basic equations to describe a fluid flow, namely the Navier-Stokes
equation

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p −∇gz + ν∇2u (2.1)

and the continuity equation
∇ · u = 0, (2.2)

when u = ui+ vj + wk is the vectorial velocity field, ρ is the density of the fluid,
p is the pressure in the fluid, g is the acceleration due to gravity and ν is the
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kinematic viscosity of the fluid.
The Navier-Stokes equation describes the conservation of momentum and is valid
when the fluid is Newtonian. The continuity equation describes the conservation
of mass and is valid as long as the fluid is considered to be incompressible.

2.3 Wave regimes

Gravity water waves are often classified into two separate groups. The waves
may be described as either short waves in deep water such as wind generated
ocean waves, or long waves in shallow water, such as tidal waves and tsunamis.
Short waves on deep water identified as having a small wavelength to depth ratio,
λ/d ≪ 1, where λ is the wavelength and d is the depth. When λ/d ≫ 1 the waves
are described as long waves in shallow water. The advantage of this classification
is that one can neglect terms in the governing equations that turns out to be
small due to these assumptions. The waves are also often described as either
linear or nonlinear waves, depending on the ratio between the amplitude A and
the equilibrium depth d or the amplitude and the wavelength λ. In deep water,
waves are considered linear when A ≪ d. In shallow water, waves are considered
linear when A ≪ λ. The linearity simplifies the equations even more.

2.4 Potential theory

One approach to describe the fluid flow field in a run-up is using potential theory.
Potential theory is based on the assumption of irrotational motion in an inviscid
fluid. In this case, the velocity field u may be represented as the gradient of
a scalar potential, u = ∇φ. The advantage of using this representation is its
simplicity, as the velocity potential consists of a single scalar unknown from which
all three velocity components may be computed. The potential must satisfy the
Laplace equation ∇2φ = 0, which expresses the conservation of mass and arises
from the continuity equation. Together with Bernoulli’s pressure equation and
boundary conditions, the equations read

∇2φ = 0, 0 < z < η (2.3)

∂η

∂t
+

∂φ

∂x

∂η

∂x
− ∂φ

∂z
= 0, z = η (2.4)

∂φ

∂t
+

1

2
(∇φ)2 + gz = 0, z = η (2.5)

∂φ

∂z
= 0, z = −d (2.6)

η is the free surface, x is the horizontal axis and z is the vertical axis with z = d
at the free surface in equilibrium depth. A more detailed description of the
derivation is given in Newman [10].
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2.5 Dispersive nonlinear long wave theory

The waves generated in the laboratory are considered to be dispersive nonlinear
long waves which means that the nonlinear terms and the deviation from hydro-
static pressure have to be included in the equations.
A classical way to derive a set of equations for the nonlinear long wave problem is
described by Gjevik [11]. The approach is to scale the momentum and continuity
equations with a typical depth H , a typical wavelength l and a designation for
the amplitude α. The long wave parameter ǫ is defined as ǫ ≡ H2

l2
and is supposed

to be small. The equations are averaged over depth and terms of order ǫ and α
are retained while terms of higher order are neglected. This leads to the well
known boussinesq equations

ūt + ηx + αūūx − ǫ[
h

2
(hū)xxt −

h2

6
ūxxt] + O(ǫ2, αǫ) = 0 (2.7)

ηt + (hū)x + α(ηū)x = 0 (2.8)

where u = 1
h+αη

∫ αη

−h
udz is the horizontal velocity component averaged over depth,

and η is the surface elevation.
These equations are valid for variable depth, include dispersion and nonlinearity
and can be solved numerically with proper boundary conditions.
The Lagrangian long wave model presented in section 2.7 differs from equations
(2.7) and (2.8) in the sense the the equations are fully nonlinear and include
terms of order O(αǫ), see Jensen et al [5].
In particular cases, nonlinearity and deviation from hydrostatic pressure are of
the same order, and the tendency to wave breaking due to nonlinearity and
dispersion due to the non-hydrostatic pressure counterbalance each other. The
wave occurring is nonlinear long waves with constant velocity and unchanged
shape, so called Solitary waves.

2.6 Boundary layer theory

Close to the beach, the fluid viscosity can not be neglected and at the beach
there is full adhesion. This will affect the velocity field and thus influence the
maximum run-up height. The use of the laminar boundary-layer equations are a
celebrated approach to this problem, as described by White [12]. In the derivation
of the laminar boundary layer equations a flow with free stream velocity U = U i
passes a thin body of length L is considered. Assuming that the boundary layer
is laminar and that the Reynolds number Re = UL

ν
is high, there exists a thin

boundary layer near the beach. The first step to the solution is to scale the
momentum- and continuity equation with x∗ = x

L
, z∗ = z

L

√
Re, t∗ = tU

L
, u∗ = u

U
,

w∗ = w
U

√
Re and p∗ = p−p0

ρU2 , where ∗ denotes dimensionless variables. Evaluting
the governing equations and assuming that the Reynolds number is large the
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laminar boundary layer equations reads:
Continuity equation:

∂u∗

∂x∗
+

∂w∗

∂z∗
= 0 (2.9)

x-component momentum equation:

∂u∗

∂t∗
+ u∗∂u∗

∂x∗
+ w∗∂u∗

∂z∗
= −∂p∗

∂x∗
+

∂2u∗

∂z∗2
(2.10)

z-component momentum equation:

0 =
∂p∗

∂z∗
(2.11)

As seen from equation 2.11, the pressure distribution is uniform across the bound-
ary layer, and the pressure distribution in the outer, inviscid flow can be used in
the boundary layer. The expression for the pressure field is found from Eulers’
pressure equation and reads

−∂p∗

∂x∗
=

[

∂U∗

∂t∗
+ U∗∂U∗

∂x∗

]

z=0

, (2.12)

when U∗ = U(x,t)√
gH

. In addition to the pressure distribution, we need to match
the outer solution with the boundary layer solution which gives us the boundary
condition u(x, z → ∞, t) → U(x, t). Together with the non-slip condition at
the bottom and proper initial and inlet conditions, the equations can be solved.
These equations are valid as long as the Reynolds number is large, but when the
Reynolds number becomes too large, (typically O(105)), the laminar solutions
becomes unstable and transition to turbulence occurs.

2.7 Numerical models

There are two different models applied to the investigation of the outer region
in the solitary wave run-up problem. One is the Lagrangian long wave model
and the other is the boundary integral model. The models are based on invis-
cid theory and Lagrangian description of the fluid flow. The advantage of the
Lagrangian description is that the boundary conditions at the moving shoreline
becomes easier to implement.
The theory applied for the Lagrangian long wave model is a version of the
Boussinesq equations that are fully nonlinear but have only standard disper-
sion properties. A detailed description of this model is presented in Pedersen &
Gjevik [1], Jensen et al. [5] and Pedersen [13].
The boundary integral model (BIM) is based on full potential theory, and solves
the Laplaces equation with a free surface. A detailed description of the model
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is given in Appendix A, and the model is also presented and tested in Pedersen
[14].
The boundary layer model is nonlinear and uses the velocities found from the
BIM or Boussinesq model as a boundary condition. A detailed description of the
model for the boundary layer is given in Appendix B, where the model also is
tested.



Chapter 3

Surface elevations and velocity

fields

To be able to conclude what causes the reduced run up height there are three
different aspects of the flow investigated, the surface elevation, the velocity field
and finally the moving shoreline. They all have the same incoming solitary wave,
but otherwise they are independent of each other. The solitary waves are charac-
terized by their amplitude and in total there are five different waves generated,
A/d = [0.0977, 0.195, 0.292, 0.388, 0.481], where d is the equilibrium depth and
A is the amplitude of the incoming wave. Hereafter, these will be referred to as
case 10, 20, 30, 40 and 50, and are visiualized in figure 3.1. None of the waves
show any sign of breaking.
In this chapter, the investigations of surface elevation and velocity field using
well known methods are presented. The tracing of the moving shoreline has not,
known the the author, been done before and is presented in chapter 4. In all
experiments there are three runs performed, and the data is averaged. The two
reasons for doing this is, firstly to make sure that the repeatability of the incom-
ing waves is satisfying and secondly, averaging the data smooths out unwanted
noise. The results from the experiments is compared with theory for case 10, 20
and 30. The numerical models do not cover case 40 and 50.
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Figure 3.1: Incoming solitary waves, measured at x=-2.045 m
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3.1 Particle image velocimetry (PIV)

Particle image velocimetry is a commonly used method in the experimental in-
vestigation of fluid dynamics. The fluid is seeded with neutrally buoyant tracer
particles with the assumption that the particles will follow the flow. Velocities
are determined by taking two images separated by the timestep ∆t. The displace-
ment ∆x of the particles during ∆t is measured and the velocity is calculated by
u = ∆x

∆t
.

PIV measurements requires a light source, usually a pulsed laser, that is shaped
with an optical device into a two dimensional light sheet. The measurements also
requires a recording device, usually a digital camera, which collects images of the
particles as they pass through the light sheet.
There are two typical implementations of PIV: Single exposure multiple image
and multi exposure single image. An autocorrelation technique is used to de-
termine the velocities in multi exposed single images, while a cross-correlation
technique is used for the single exposed multiple images. Cross-correlation is
more accurate and is the one that will be discussed in this section.
In order to find the velocity in the field of view (FOV), cross correlation between
two images is performed. The first step to this analysis is to divide the images of
size X×Y pixels into two interrogation windows of size M×N pixels, with several
particles in each interrogation window. When this is done, a cross correlation
beetween the two interrogation window pair in the image pair is performed. The
cross correlation function is defined as (see Sveen and Cowen [15])

R(s, t) =
1

N2

N−1
∑

i=0

N−1
∑

j=0

F ′
I,J(i, j)F ′′

I,J(i + s, j + t), (3.1)

When F ′ is the first image of the image pair, and F ′′ is the second, F ′
I,J is the

interrogation window considered in the first image and F ′′
I,J is the corresponding

interrogation in the second image, i, j is the pixel location within subwindow and
s, t is the lag at which the cross-correlation is being computed.
The result is a correlation plane, which consists of three different contributions,
namely the correlation of the mean background intensities, correlation of the
mean and the fluctuating intensities and correlation of the fluctuating intensities.
It is the last mentioned that contains the displacement peak which also is the
highest, and the others are considered as noise. The ratio between the displace-
ment peak and the rest of the plane will provide information about the signal to
noise ratio.
In order to evaluate the degree of match between the interrogation window pat-
terns, and the signal to noise ratio, the correlation calculated in equation (3.1)
needs to be normalized, the normalized cross covariance function is defined as
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(see Sveen and Cowen [15])

R̄(s, t) =
1

N2

∑

i

∑

j [F
′(i, j) − F̄ ′][F ′′(i + s, j + t) − F̄ ′′]2

∑

i

∑

j([F
′(i, j) − F̄ ′]2[F ′′(i + s, j + t) − F̄ ′′]2)1/2

(3.2)

When F̄ ′ = mean(F (i, j)) and F̄ ′′ = mean(F ′′(i + s, j + t)). After the normaliz-
ation, the height of the correlation peak is a good measurement of the quality of
the correlation. The value will be in the range 0 to 1, with 1 indicating a very
high degree of match between the interrogation windows.
One important thing to notice is that if the displacement is larger than N/2
pixels, the correlation peak will alias the location −(N − ξ) where ξ is the actual
displacement. If the displacement is bigger than N, the correlation peak will be
the result of two uncorrelated interrogation windows, and thus will be a random
noise peak.
Since the correlation peak is larger than one pixel [15], it is useful to be able
to determine the correlation peak in sub-pixel position to avoid peak-locking. A
three-point sub-pixel estimation are generally sufficient. There exists several es-
timators, but the most commonly used is Gaussian fit, which performs best with
all particle diameters. Another approach to avoid peak-locking is to use con-
tinuous windowshift, which means that one dynamically shift the interrogation
window until the subpixel displacement is identically zero.
The resulting velocity field will contain spurious vectors, that need to be de-
tected and excluded from the result. There are three fundamental approaches
to validate the vectors, Signal-to-noise ratio filtering, global filtering and local
median filtering. The signal-to-noise ratio filtering is done by simply determine
a threshold value of the ratio between the first correlation peak (signal) to the
second correlation peak (noise). Usually, this threshold value is in the range of
1.2 to 1.5. The global mean filtering means that one compare one singel vector,
with the whole ensemble of vectors in the field. If the vector considered is “very”
different from the mean of the whole ensemble, it is considered to be an outlier.
In the local median filtering the vector is compared with the median of its closest
neighbors and excluded if it is “very” different. The deviation accepted in the
global and local filter is determined by the user with a threshold value.
More detailed descriptions of the PIV technique are found in Sveen & Cowen [15]
and M. Raffel et al [16].
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3.2 Experimental setup

The experimental work is done in the wave tank at the Hydrodynamics Labor-
atory at the University of Oslo. The tank is 25 m long, 0.5 m wide and 1 m
deep. The tank walls and bottom are made of glass. The beach is mounted 5.97
m from the wave paddle, and the beach/still water intersection is located 7.10
m from the paddle. A schematic view of the beach is shown in figure 3.2. The
wave paddle is a vertical piston type, the wave generation procedure is explained
in Jensen et al [5].
Two coordinate systems are introduced. Firstly, a (x,y)-coordinate system with
x-axis in horizontal direction and x=0 at the beach/still water intersection and
the y-axis in vertical direction with y=0 at the still water level is introduced.
Secondly, a (s,z)-coordinate system with s-axis parallel to the beach with s=0 at
the beach/still water intersection and z-axis orthogonal to the beach with z=0
at the beach. The water depth is 20.0 cm in all experiments. The beach has an
angle of inclination of θ = 10◦ and is made of PETG.
The beach is slightly deformed perpendicular to the traveling direction of the
flow. It is concave between s=0 m and s= 0.70 m, with a discrepancy of 0.10 mm
to 1.45 mm, and the maximum discrepancy is located at s=0.80 m. It is convex
between s=0.90 m and s=2.30 m, with a discrepancy of 0.1 mm to 0.4 mm, and
the maximum discrepancy is located at s=2.30 m. In addition, the beach is de-
flected during the inundation due to the weight of the water, and this is most
pronounced at the lower end of the beach. The maximum deflection recorded is
1.4 mm in FOV1 for case 50.
The surface elevation is measured by non-intrusive ultrasonic wave gauges (Ban-

Figure 3.2: Schematic side view of the wavetank

ner U-Gage S18). The concept of this type of gauges is that the ultrasonic sensors
emit one or multiple pulses of ultrasonic energy, which travel through the air at
the speed of sound. A portion of this energy reflects off the target and travels
back to the sensor. The sensor measures the total time required for the energy to
reach the target and return to the sensor. The distance D to the surface is then
calculated from D = ct/2 where c is the speed of sound in air and t is the transit
time for the ultrasonic pulse. The sensing range is from 30 mm to 300 mm, with
a maximum angle to the target of 10o, and outside this range the results are not
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reliable. The accuracy is about 1/10 of a mm when the sensor are vertical to the
surface, the accuracy decreases with increasing angle and when the angle is 10
degrees the accuracy of the gauges is about 1 mm. The accuracy of the gauges
are carefully checked, presented in Appendix C. In all, four gauges are used set
to sample at 200 Hz.

The recording device for PIV is a Photron SA5 with a 1024×1024 pixels resolu-
tion and a framerate of 2000-5000 fps, depending of the celerity of the incoming
wave. Tracer particles are 50 µm polyamid spheres. As light source, a Quantronix
Darwin Duo pulsed laser giving 15 mJ energy output at 3000 Hz. The camera was
located outside the tank, parallel to the beach. The laser was located underneath
the tank creating a light sheet oriented tangentially to the traveling direction of
the flow.
To be able to compare the experimental results with theory, both the gauges and
the PIV system where synchronized with the paddle using a trigger system with
t=0 at the paddle start.
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3.3 Surface elevation, measurements and results

There are four ultra sonic wave gauges used in the investigation of the surface
elevation. One gauge is placed in the deep water region and is used to control
the quality of the incoming wave, control the equilibrium depth and as input for
the numerical models. The other three gauges are placed at different positions at
the beach. Gauge 2 is placed near the beach/still water intersection while gauge
3 and 4 are placed further up the beach.
Since the validity range and accuracy of the gauges are limited by the angle to
the target, the position of the gauges are carefully evaluated with respect to the
shape of the wave at the thought gauge position. This evaluation is made by
using results from numerical simulations of case 10, 20 and 30 and doing a visual
inspection of how the incoming wave evolves with time at the thought position.
The simulations reveals that the run up tongue becomes thin and nearly paral-
lel to the beach further up the beach as vizualised in figure 3.3. On this basis,
Gauge 1 and 2 where placed perpendicular to the free surface, while gauge 3
and 4 where placed perpendicular to the beach. The positions of the gauges
reads x = [-2.045 m, 0.149 m, 0.353 m, 0.623 m], where x=0 is at the beach/still
water intersection. A schematic view of the gauges positions is shown in figure 3.4
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Figure 3.3: Surface profile for case 30 at maximum inundation (BIM)

There are drop outs in the data due to steepness of the incoming waves. Those
areas are interpolated with linear interpolation, also the data from the gauges
are filtered with a Savitzky-Golay filter to exclude noise. The software used for
the interpolation and the filtering is matlab. The raw data and the result from
filtering and interpolation for case 50 is shown in figure 3.5.

The results are presented in figure 3.6-3.10. As seen in figure 3.6, 3.7 and 3.8 Case
10, 20 and 30 have excellent agreement with the boundary integral model (BIM)
and the Boussinesq model (Bouss) for the incoming wave at at the position of
gauge 1, even though the Boussinesq model reveals some distortions at the tail.
At the position of gauge 2, 3 and 4 the models do not give the same results,
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Figure 3.4: Schematic side view of the ultra sonic gauges positions

the Boussinesq-model have a higher surface elevation than the boundary integral
model, and the deviation increases with the amplitude of the incoming wave.
For case 10, figure 3.6, both the time and amplitude in the experimental results
shows very good agreement with theory at the position of gauge 2. Further up
the beach, the wave does not reach gauge 3.
For case 20, figure 3.7, both the time and amplitude shows very good agreement
between the BIM model and the experimental results at the position of gauge 2
and 3. At the position of gauge 4 on the other hand, the amplitude match of the
experimental result is best with the Boussinesq model and the models are ahead
the wave considering the time.
For case 30, figure 3.8, both the time and amplitude shows good agreement
between the BIM model and the experiment at all gauge positions.
From these results, it seems like the theory and the experiments agree well in the
start of the inundation, and the discrepancies are more pronounced in the later
stage of the run-up considering the surface elevation.
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Figure 3.5: Case 50, Gauge 1. Left: Raw data. Right: The data is interpolated and
filtered.
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Figure 3.6: Case 10. Upper left: Gauge 1, Upper right: Gauge 2, Lower left: Gauge 3
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Figure 3.7: Case 20. Upper left: Gauge 1, Upper right: Gauge 2, Lower left: Gauge
3, Lower right: Gauge 4
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Figure 3.8: Case 30. Upper left: Gauge 1, Upper right: Gauge 2, Lower left: Gauge
3, Lower right: Gauge 4
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Figure 3.9: Case 40. Upper left: Gauge 1, Upper right: Gauge 2, Lower left: Gauge
3, Lower right: Gauge 4
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Figure 3.10: Case 50. Upper left: Gauge 1, Upper right: Gauge 2, Lower left: Gauge
3, Lower right: Gauge 4
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3.4 PIV measurements and results

There are three different field of views (FOV) considered, herafter referred to
as FOV 1, 2 and 3. FOV 1 is 5.6×5.6 cm with center of the image located at
s=0.082 m and the light sheet (focal area) is in the middle of the tank. FOV 2
is 2.3×2.3 cm with center of the image located at s=0.075 m and the light sheet
is located 5 cm from the wall closest to the camera. FOV 3 is 3.3×3.3 cm with
center of the image located at s=0.81 m and the light sheet located 5 cm from
the wall closest to the camera.
Digilow was used for the image processing, see Dalziel [17], and the size of the
interrogation window was 32×8 pixels with 50% overlap. The size of the in-
terrogation window is chosen is based on the assumption that the variations in
velocities are larger in the vertical direction than in the horizontal direction. This
is why we need a finer resolution in the vertical direction. In the postprossesing,
between 5% and 25% of the calculated vectors where rejected, and the results are
considered reliable.
To be able to transform the pixel coordinates to the world coordinates, a co-
ordinate system is recorded in the start of each experiment. Due to deflection of
the beach in FOV1, the coordinate system is time-dependent and the coordinate
system is recorded during the whole inundation. FOV1 is mainly used as a safety
check to the results from FOV2.
In the laminar regime the data from three runs over an ∆s is averaged to smooth
the data. In the unstable regime, no smoothing is applied.

The model for the outer inviscid fluid that is used as boundary condition for the
computation of the boundary layer is the BIM model. The Boussinesq model
shows good agreement with the experiments for case 10 but for case 20 and 30
deviation from both the experiments and the BIM model is revealed.

As seen in figure 3.11-3.15 there is a well defined laminar boundary layer with
thickness 3-4 mm close to the beach for all cases in FOV2. The apperance of
a boundary layer will cause a reduced onshore volume flux during inundation
in comparison with inviscid theory. The thickness of the boundary layer and
the shape of the boundary layer agrees well with the theory for case 10, 20 and
30. Considering the outer flow, there are discrepancies between experiment and
theory. The outer velocities in the theoretical result are smaller than the outer
velocities in the experimental results, and it seems like the theoretical results are
ahead of the experimental results with respect to the time. This deviation is
decreasing with time, see figure 3.16-3.18.
The flow inside the boundary layer reverses before the outer flow does, in the
same manner as observed by Liu et al [7] underneath a solitary wave propagating
on constant depth. The early flow reversal in the boundary layer is visualized in
figure 3.12 at t=6.9 s, where it is clear that the outer flow still is moving in the
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positive s-direction, while the boundary layer has started the reversal. Sælevik [6]
found the same phenomena in his study of run-up of solitary waves and suggested
the the early reversal in the boundary layer was caused by the gravity acting at
the fluid with low velocity due to to the non-slip condition at the beach boundary.
The flow reversal in the boundary layer will affect the flow in the sense that the
z-component of the velocity will increase in the negative z-direction and this will
cause draining effects on the flow.

There are instabilities in the boundary layer during the run-up for case 30, 40 and
50, showing what might appear to be a transition to turbulence. This assumption
is based on visual observation from the PIV-recordings.
Case 50 is very unstable, and in some of the runs in FOV1 there is a clear tend-
ency of turbulence, which has not been observed in FOV2. The instabilities in
FOV1 might be induced by the deflection of the beach during inundation which
demonstrates how labile the flow is. An example of this instabilities i illustrated
in figure 3.19, where the velocity field is plotted at the same time instant for two
different runs.
In FOV3, the visual inspection reveals instabilities in case 30, 40 and 50. These
instabilities seems to be generated inside the boundary layer and is spreading to
the outer flow. Velocity profiles of case 30 in FOV 3 is shown in figure 3.20 and
the boundary layer is not well defined.
The z-component of the velocity field also yields some information of the stability
in the flow. Figure 3.21 shows the z-component of case 30 in FOV2, where the
flow is laminar. The experimental results agrees well with the theory, even though
there are some discrepancy at t=5.7s. Figure 3.22 shows the z-component of the
velocity in FOV3 where it is clear that the flow is unstable, with both positive
and negative velocities. The positive velocities are unexpected and would not
appear in a laminar flow. These fluctuations in the z-component of the velocity
is also found in case 40 and 50, case 50 is visualized in figure 3.23.

An interesting observation is that the boundary layer for case 30, 40 and 50
is laminar in FOV2 during both run-up and run-down while instabilities are
recorded in FOV3. This means that the flow is stabilizing during run-down and
the boundary layer again becomes stable and laminar before it reaches FOV2.

3.4.1 Stability of boundary layers

In the discussion of stability of laminar boundary layers, the Reynolds number in
the flow is an essential parameter. The Reynolds number is defined Re ≡ Ul/ν,
where U is the characteristic velocity in the flow and l is the characteristic length
scale. If the Reynolds number of the outer flow is larger than a critical Reynolds
number, ReC , the boundary solutions become unstable and transition to turbu-
lence occurs.
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In order to find a critical Reynolds number for the run-up of solitary waves, we
need to look for similar investigations found in the literature. The Falkner-Skan
wedge-flow described by White [12] investigates a constant outer flow passing
a wedge, which is similar to the run-up of solitary waves in the sense that the
outer flow is non-parallel to the wall, or in our case the beach. The Falkner-Scan
wedge-flow has a critical Reynolds number ReCfs = 5.4 × 104. One should keep
in mind that the Falkner-Scan wedge-flow solution does not include gravity, and
that in the run-up of solitary waves the outer flow is transient.
Sumer et al (2010) [18] investigated the boundary layer under solitary waves
propagating on constant depth. They defined the Reynolds number Re = (aU0m/ν)
where a is half of the stroke of the water particle displacement in the outer flow
and U0m is the horizontal velocity in the outer flow. They report a critical Reyn-
olds number of ReCsw = 5× 105. In this case the outer flow is transient, but the
depth is constant.
It is reasonable to expect that the critical Reynolds number in our case is within
the range of ReCfs and ReCsw.

To find the Reynolds numbers in the solitary waves generated in the laboratory,
an estimation of l and U is needed. For l it is natural to use the x-component
of the maximum inundation length, which results in lx = Rcotθ, where R is the
maximum run-up height and θ is the angle of the beach. U is approximated by
the assumption that the flow is dominated by gravity and given as U =

√
2gR.

The run-up heights are given in chapter 4. This gives Reynolds number

Re =

√
2gRRcotθ

ν
(3.3)

Equation 3.3 gives the specific Reynolds numbers given in table 3.1. One should
keep in mind that these Reynolds numbers are roughly estimated, but they reveal
that the generated waves are in a critical regime.

Case Re
10 3.68 × 105

20 1.19 × 106

30 2.27 × 106

40 3.57 × 106

50 4.97 × 106

Table 3.1: Reynold numbers of the solitary waves
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Figure 3.11: Velocity profiles of u for case 10 FOV2, averaged over ∆s=0.5 cm
from s=0.065 m to s=0.070 m
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Figure 3.12: Velocity profiles of u for case 20 FOV2, averaged over ∆s=0.5 cm
from s=0.064 cm to s=0.069 m
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Figure 3.13: Velocity profiles of u for case 30 FOV2, averaged over ∆s=0.4 cm
from s=0.065 cm to s=0.069 m
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Figure 3.14: Velocity profiles of u for case 40 FOV2, averaged over ∆s=0.5 cm
from s=0.065 m to s=0.070 m
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Figure 3.15: Velocity profiles of u for case 50 FOV2, averaged over ∆s=0.5 cm
from s=0.065 m to s=0.070 m
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Figure 3.16: Case 10, Outer velocity FOV2
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Figure 3.17: Case 20, Outer velocity FOV2
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Figure 3.18: Case 30, Outer velocity FOV2
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Figure 3.19: Velocity fields in FOV 1 case 50, at time 6.0 s. Right: Run 1, Left:
Run 2
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Figure 3.20: Velocity profiles of u for case 30 FOV3, at s=0.803 m
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Figure 3.21: Velocity profiles of w for case 30 FOV2, averaged over ∆s=0.4 cm
from s=0.065 m to s=0.069 m
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Figure 3.22: Velocity profiles of w for case 30 FOV3, at s=0.803 m
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Figure 3.23: Velocity profiles of w for case 50 FOV3, at s=0.803 m



Chapter 4

Tracing of the moving shoreline

The tracing of the moving shoreline is important since it will reveal where during
the inundation the experiment and theory differs, which provides useful inform-
ation for the conclusion of what causes the lower maximum run-up heights in
experimental results compared with theoretical results.

4.1 Experimental setup

The recording device for the tracing of the moving shoreline is a Photron APX
with 1024×1024 pixels resolution and framerate of 250-1000 fps, depending of
the incoming wave. The camera is mounted above the beach with the same
inclination as the beach to avoid any unfavorable effects in the images that are
to be processed. As lightsource a Dedolight 400D is used. The water is dyed
with green color and a white PVC-film is attached on top of the beach to achieve
a marked difference between the beach and the wavefront. An ultra sonic wave
gauge is placed at x=-2.045 m and used to check the incoming wave and as input
to the numerical model, a detailed description of the gauge is given in section 3.2.
The setup is visualized in figure 4.1. The camera and the gauge is is synchronized
with the wave paddle using a trigger system with t=0 as the paddle start.
To cover the whole inundation phase the camera is moved along the beach which
results in several field of views for each case with 2 centimeters overlap in between
them, and with a separate coordinate system for each field of view. The maximum
inundation length is also checked visually and marked at the beach, as a safety
check to the results from the recordings.
To make sure that the quality of the beach do not affect the inundation, a set
of experiments with the PVC-film attached underneath the beach instead of on
top of the beach is recorded. Due to unfavorable shadow effects the quality of
the images is reduced and only the start of the inundation is recorded. The
maximum inundation length is visually checked. The results agrees well with the
results from the experiments with PVC-film attached on top of the beach and
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the conclusion is that the PVC-film does not affect the results.

Figure 4.1: Experimental setup

4.2 Measurements and postprocessing

For the processing, a script written in matlab is used. The script uses the images
as input and gives the timesteps and the median position of the shoreline as out-
put. The main feature in the script is the function edge. This function takes a
grayscale image as input and returns a black and white image, with white pixels
where the function detects edges and black pixels elsewhere. There are several
methods for this function, and the one used is canny which finds the edges in the
input image by looking for local maximum values of the gradient of the image.
The method applies two threshold values to the gradient, a high threshold for low
edge sensitivity and a low threshold for high edge sensitivity. The high threshold
is found with the function graythresh, which computes a global threshold value
from the input image. The low threshold is 0.4 times the high threshold. Edges
found by the weak threshold value are only included in the output image if they
are connected to strong edges. In some of the images the illumination has been
unfavorable and a threshold value found manually had to be used.
To avoid noise in the image, objects that are relatively small and weak (marks on
the beach or particles in the water, for example) are filtered out by the function
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imopen before the edges are detected. Noise that is not detected by imopen is
efficiently sorted out by taking the median of the edges found, since the noise
always is smaller than the actual wavefront. In figure 4.2 the input image and
the detected edges are visualized.
Finally, the median pixel position of the wavefront is converted into centimeters
with the function cp2tform and linear transformation. The transformation re-
quires control pair points, which are found from the recorded coordinate system.
The output files contains two columns, one with time and one with the median
position of the wavefront.
The matlab script is presented in Appendix D.

Figure 4.2: Left: Input image. Right: Detected edges

Figure 4.3: Case 50 at maximum inundation

As seen in figure 4.3, there is a transverse variation of the shoreline. This is
most pronounced in the late stage of the inundation phase and is probably due
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to the deformation of the beach, mentioned in section 3.2. During the rest of the
inundation it is within a few millimeters and considered negligible. The largest
effect of this phenomena is displayed in case 50, seen in figure 4.4 and figure 4.5,
where the maximum and minimum s-positions of the shoreline are plotted with
the median position at selected instances of time. In table 4.1 median, maximum
and minimum values of the shoreline position at the maximum inundation for
each case are presented. It should be noted that the field of view is varying from
28.5×28.5 cm, in the field of view closest to s=0, to 17.7×17.7 cm in the field of
view located at the maximum inundation of case 50. Hence, only the center of the
shoreline is captured since the wavetank is 0.5 m wide and the actual minimum
values of the shoreline position are probably even smaller.
It should also be noted that the repeatability is good for case 10, 20 and 30
throughout the inundation. But for case 40 and 50 the results reveals that the
repeatability in the later stage of the inundation is poorer, the maximum inund-
ation for case 40 differs 6 mm between the runs and for case 50 the maximum
inundation differs 26 mm between the runs.
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Figure 4.4: Case 50. Median, maximum and minimum position of the shoreline
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Figure 4.5: Case 50. Median, maximum and minimum position of the shoreline
at the later stage of the inundation
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4.3 Results

The results of the tracing from the moving shoreline is visualized in figure 4.6-4.10.
As visualized in figure 4.6-4.8, the discrepancies between theory and experiment
is most pronounced in the later stage of the inundation. The run-up heights
are given in table 4.2, where the run-up height is given as the inundation length
times sinθ, where θ is the inclination of the beach, and the deviation is calculated
by the formula (|experimental-theoretical|/theoretical)×100. The measured run-
up heights are significantly smaller than the theoretical ones and the deviation
increases with the amplitude of the incoming wave as seen in table 4.2.
The figures also reveal that the start of the inundation in the experimental results
are delayed compared with theory. This effect is most pronounced in case 10, but
the effect is also present in case 20 and case 30. The start of the inundation for
case 10, 20 and 30 are visualized in figure 4.11-4.13. The delay in the start of the
inundation is most likely due to surface tension. The surface tension is a constant
property of the fluid and will affect the smaller waves with less momentum in a
larger scale than it will affect the incident waves with larger amplitude. Once
the wave has started the inundation, the velocities in the wave are larger than in
the theoretical models, and for case 20 the wave catches up with the results from
the BIM model at t=6.18 s, before it separates again at t=6.28 s. In case 30 the
wave catches up with the results from the BIM model at t=5.57 and is ahead of
the theory a short while before it separates at t=5.80 s.
There are two observations in this investigation that implies that the main reason
to the discrepancies between the experimental results and the theory considering
the maximum run-up height is the viscous effects inside the boundary layer. As
presented in table 4.2 the deviation increases with increasing amplitude of the
incoming wave. As mentioned in section 3.3 the run-up tongue becomes long and
thin for the larger waves and the viscous effect will have a larger influence on the
flow during run-up. Also, the surface tension causes a delay in the start of the
inundation, but for case 20 and 30 the wave catches up with theory after a short
time which implies that the delay only affects the the start of the inundation and
not the maximum run-up height.
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Figure 4.6: Case 10. Inundation
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Figure 4.7: Case 20. Inundation
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Figure 4.8: Case 30. Inundation
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Figure 4.9: Case 40. Inundation
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Figure 4.10: Case 50. Inundation
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Figure 4.11: Case 30. Start of inundation



44 Chapter 4. Tracing of the moving shoreline

5 5.2 5.4 5.6 5.8 6 6.2 6.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time  [s]

In
u

n
d

a
ti
o

n
  

[m
]

 

 

Exp

Bouss

BIM

Figure 4.12: Case 20. Start of inundation
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Figure 4.13: Case 30. Start of inundation
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Inundation (cm) R/A
Case A/d median max min median max min

10 0.0977 34.9 35.1 34.6 3.10 3.12 3.07
20 0.195 75.6 75.8 75.0 3.37 3.38 3.34
30 0.292 116.4 116.7 115.6 3.46 3.47 3.44
40 0.388 157.4 157.6 155.9 3.52 3.53 3.49
50 0.481 196.8 197.1 194.7 3.55 3.56 3.51

Table 4.1: Median, maximum and minimum values of the shoreline position at
the maximum inundation

R/A Deviation Deviation
Case A/d Exp Bouss BIM Bouss (%) BIM (%)

10 0.0977 3.12 3.66 3.69 14.8 15.5
20 0.195 3.38 4.02 4.05 15.9 16.5
30 0.292 3.47 4.22 4.24 17.8 18.2
40 0.388 3.53 - - - -
50 0.481 3.55 - - - -

Table 4.2: Maximum run-up heights, experimental and numerical models
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4.3.1 Start of inundation

To be able to collect more information about the delay in the start of the inund-
ation, a new set of experiments are performed. A high speed camera is placed
outside the wavetank, with a small angle towards the shoreline to exclude un-
favorable effects from the full adhesion at the wall. As lightsource a Dedolight
400D is used which is placed outside the tank at the deep water region and dir-
ected towards the shoreline. When the wavefront gains height before the start of
the inundation, a shadow from the wave is thrown at the beach and the shadow
is used as a measurement of the height of the wavefront. Figure 4.14 shows the
wavefront of case 10 0.05 seconds before the wave starts to climb the beach. To
obtain a relation between the length of the shadow and the height of the wave a
small block is placed in the focal area and the shadow from the block is meas-
ured. This provides a linear relation between the waveheight and the length of
the shadow. The images are manually processed by measuring the length of the
shadow in pixels and then converting the pixels to meter.
In addition to the camera, two gauges are placed at positions x=-0.01165 m and
x=0 m, hereafter referred to as gauge 2 and gauge 3, set to sample at 200 Hz.
Gauge 2 serves the purpose to check the wave before it starts to climb the beach,
and the results have revealed good agreement with theory. As observed in section
3.3, the BIM model is the model that performs best. Gauge 3 serves as a quality
check for the results from the images. The data from gauge 3 are influenced by
the angle of the beach, which causes an uncertainty in the results.
The results from the images are plotted in figure 4.15 revealing that the wave
is gaining height before it starts to climb the beach. These results confirm the
assumption that it is the surface tension that causes the delay of the inundation,
since the height of the wavefront decreases with increasing amplitude of the in-
cident wave. Results from gauge 3 is given in table 4.3 together with the results
from the images for comparison. The results from gauge 3 differs slightly from
the results from the images, and this is most likely caused by the uncertainty of
the gauge due to the angle at the target (see section 3.2).
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Case A/d Time [s] Images [mm] Gauge 3 [mm]
10 0.0977 6.10 3.2 3.1
20 0.195 5.89 2.9 3.2
30 0.292 5.44 2.4 2.7

Table 4.3: Measured height of the wavefront at the time instant the wave start
to climb the beach

Figure 4.14: Case 10 t=6.05s, 0.05 seconds before the wave starts to climb the
beach
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4.3.2 Surface tension

Since the delay of the start of the inundation is caused by the surface tension, an
investigation of the surface tension is performed by Dr. D. Laskovski. The surface
tension is measured in both the colored water that is used in the experiments and
pure water and found to be 71.7mN/m in both cases. The contact angle between
the water and the beach is measured, given in table 4.4 The conclusion made
by Dr. Laskovski is that both liquids wet the PVC far greater than the PETG
substrate and that the colored water is forming some form of repulsion with the
white film compared to the water. This may be related to the porosity of the
white film with respect to the dye or the surface energies. These results suggest
that the best scenario for large run-up would be pure water on PVC.

No further work is done in the investigation of the surface tension and contact
angle.

Beach Contact angle
colored water pure water

PETG 73◦ 73◦

PVC 65◦ 61◦

Table 4.4: Contact angles
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Conclusion

5.1 Discussion and conclusion

In this thesis, run-up of solitary waves have been investigated. The focus has
been to investigate the reasons for the deviation between theory and experiments
considering the maximum run-up height. To provide insight in possible reasons
for the deviation, the surface elevation at the beach, the velocity fields close to
the beach and tracing of the moving shoreline during the inundation have been
investigated.
Due to the viscosity in the fluid there exists a thin boundary layer in the region
close to the beach. To be able to include the boundary layer in the numerical
models, the flow is divided into an outer inviscid region and an inner viscous
region. Two separate models are used to describe the outer flow, the Boundary
integral model (BIM) which is based on full potential theory and the Boussinesq-
model which is based on dispersive non-linear long wave theory. It is revealed
that the BIM-model is the one that performs best. In this chapter, the discussion
is based on the BIM-model as the model, for comparison with theory for the outer
flow and as boundary condition for the boundary layer computations.

In the investigation of the surface elevation, it is found that the agreement
between experiments and theory is excellent at the deep water region. The ex-
perimental results agree well with theory in early in the inundation phase. At
the later stage of the inundation there are some discrepancies between theory and
experiments.

The investigation of the velocity fields reveals that there are well defined bound-
ary layers in all the cases in FOV2, located near the still water/beach intersection.
The boundary layer will cause a reduced onshore volume flux during the inund-
ation in comparison to theory for an inviscid flow, which will cause lower run-up
height. The boundary layer stays laminar and well defined in FOV2 through-
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out the run-up and run-down. It is found that flow reversal starts earlier in
the boundary layer than in the outer flow. A consequence of the reversal in the
boundary layer is that the z-component of the velocity will increase in negative
z-direction and there will arise a draining effect in the wave, which further re-
duces the run-up height. In comparison to theory, discrepancies in the velocities
in the outer flow is revealed. The velocities in the outer region are larger than the
ones predicted by theory. One explanation might be the delay at the start of the
inundation caused by the surface tension which in turn causes larger velocities in
the wave early in the inundation. If this was the cause, the discrepancies would
be more pronounced in case 10 than in case 20 and 30 but this is not the case
and the discrepancies remains unexplained.
There are instabilities in the flow during the run-up. For case 50, there are in-
stabilities in FOV1, located in the middle of the tank at the lower end of the
beach. These instabilities is not observed in FOV2. A suggestion is that case
50 is very labile, and that the deflection of the beach during inundation causes
these instabilities. In case 10, 20, 30 and 40 the boundary layer appears to stay
laminar and stable in both FOV1 and FOV2.
Further up the beach, in FOV3, case 30, 40 and 50 reveals flow instabilities while
case 10 and 20 do not reach the camera. Visual observation of the recorded im-
ages reveals that the flow is laminar in the tip of the wave, and that after a short
while instabilities are generated in the boundary layer, spreading out to the outer
flow. These instabilities might appear to be a display of transition to turbulence.
It is reasonable to assume that the turbulent energy dissipates during run-down
and the boundary layer stabilizes again before it reaches the lower end of the
beach.
The observed instabilities will most likely affect the run-up height but the manner
in which it will is not determined.

The tracing of the moving shoreline reveals that the discrepancies between the-
ory and experiments is most pronounced in the later stage of the inundation,
but that there also are discrepancies in the start of the inundation caused by the
surface tension. The start of the inundation is further investigated and it is found
that the wavefront gains height before it starts to climb the beach. This causes
a delay in time in the experimental results compared to theory which is most
pronounced in case 10. Once the wave starts to climb the beach, the shoreline
velocity is larger than the velocity predicted by the numerical models, and in case
20 and case 30 the wave catches up with theory after a short while before it sep-
arates from it again. It is not likely that the delay caused by the surface tension
affects the maximum run-up height, but it does affect the velocity in the flow at
the early stage of the inundation. The deviation between theory and experiments
in the later stage of the inundation is most likely due to the viscous effects in
the boundary layer. The viscosity affects the waves with higher amplitude more
than it does the waves with smaller amplitude since the higher amplitudes causes
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a long and thin run-up tongue. The results reveal that the deviation between
experiment and theory, with respect to the R/A ratio, increase with increasing
amplitude of the incident wave.

Based on the results from the experiments, one might assume that the inviscid
models’ over-prediction of the maximum run-up height mainly is caused by the
viscous effects in the boundary layer. The surface tension affects the inundation
in the early stage, but it is not likely that it affects the maximum run-up height.

5.2 Suggestions for further work

To be able to further investigate the boundary layer, for instance to do calcula-
tions of the dissipation and drag, the quality of the vectors need to be improved.
The seeding in the PIV measurements where not optimal and should be improved,
either by using smaller particles or by applying PTV instead of PIV. During the
postprocessing, between 75% and 95% of the vectors where good quality and
the results are considered reliable for the purpose of detecting and visulizing the
boundary layers. It would be of great interest to determine where the instabilites
in the boundary layer appear during inundation, and also investigate if these in-
stabilities appear in case 10 and case 20 as well. The observed instabilites seem
to be the apperance of turbulence, and it would be interesting to find the mean
velocity in the flow and determine the fluctuations in the velocity field. It would
also be interesting to investigate how the instabilites affect the maximum run-up
height. Observing the outer velocity in the flow at the start of the inundation,
discrepancies between theory and experiment are displayed. This is unexpected
and should be further investigated.



Appendix A

A note on a BIM model made for

runup

This chapter is copied from the intranet at the University of Oslo and is written
by Geir K. Pedersen

Introduction

This note is a brief description of a full potential flow model with particular
adaptations to moving shorelines. The model is closely related to the higher order
technique of [19, 20], while the formulation differs from the standard references
[21, 22, 23]. However, while these references employ high order polynomials
for interpolation along the contour we use cubic splines. This makes inclusion
of boundary conditions simpler and does allow for the inclusion of a moving
shoreline in particular.

At the shoreline point we assume analyticity which in principle excludes cases
with contact angles larger than 90◦. Also some other features, such as the numer-
ical integration procedure along the contours, differ from the references. Bound-
ary integral methods are not efficient for the computation of very thin swash
tongues that evolve during runup/withdrawal of higher waves. This is ironical
since the flow may be so simple that even the shallow water equations are un-
necessarily complicated (see [5]). The proximity of the surface and the bottom
parts of the contour requires a smaller time step relative to the grid spacing and
a higher order numerical integration than in deeper water. A runup value should
then only be accepted if a systematic refinement sequence of at least three grids,
with the the same integration rule, produce consistent results and point to at
least three correct digits.

53
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A.1 A boundary integral method

In the fluid the motion is governed by the Laplace equation

∇2φ = 0 for − h < z < η.

At the free surface (z = η) the Bernoulli equation is expressed as

Dφ

Dt
− 1

2
(∇φ)2 + η = 0 (A.1)

The kinematic condition at the surface is written in the Lagrangian form

Dη

Dt
=

∂φ

∂z

Dξ

Dt
=

∂φ

∂x
,

where (η, ξ) is the position of a surface particle. At rigid boundaries (bottom or
sidewalls) we have

∂φ

∂n
= 0,

where n denotes the direction normal to the boundary.
This model is related to the high order technique of [20]. However, to allow more
flexible boundary conditions, as sloping beaches, the high order polynomials are
replaced by cubic splines for the spatial interpolation between nodes. Accordingly
the order of the temporal scheme is reduced to third order accuracy. The key
features then become

• Lagrangian particles are used along the free surface. At other boundaries
both fixed and moving nodes may be employed

• Cauchy’s formula for complex velocity (q = u − iv) is used to produce an
implicit relation between the velocity components along the surface

αiq(zp) = PV

∮

C

q(z)

zp − z
dz (A.2)

where α is the interior angle. Following [20] the integral equation (A.2) is
rephrased in terms of the velocity components tangential and normal to the
contour, denoted by u(s) and v(s), respectively. Invoking the relation

u(s) − iv(s) = eiθ(u − iv),

where θ is the angle between the tangent and the x-axis, we then obtain

αi(u(s)
p − v(s)

p ) = eiθpPV

∮

C

u(s) − iv(s)

zp − z
ds. (A.3)
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For rigid boundaries, where the normal velocity is known, the real com-
ponent of this equation is imposed, while the imaginary component is used
at free surfaces, where us is known from the integration of the Bernoulli
equation. The equation set is established by collocation in the sense that
zp runs through all nodes to produce as many equations as unknowns (see
figure A.1).

• Cubic splines for field variables – solution is twice continuously differentiable

• Combination of Taylor series expansion and multi-step technique used for
time integration. This allows for variable time stepping. For instance, φp

is advanced one time step n to n + 1 according to

φ(n+1) = φ(n)+∆t(n)

(

Dφ

Dt

)

(n)

+
1

2
∆t2(n)

(

D2φ

Dt2

)

(n)

+
1

6

∆t3(n)

∆t(n−1)

(

D2φ

Dt2 (n)
− D2φ

Dt2 (n−1)

)

.

The last, backward difference both increases the accuracy and stabilize the
scheme. The first temporal derivative of φ is obtained from the Bernoulli
equation. We then also obtain the local derivative, ∂φ

∂t
, that is used to define

a boundary value problem for the temporal derivatives of the velocity. This
is identical to the problem for the velocities themselves, given by (A.2) or
(A.3) with u and v replaced by their local time derivatives. Formulas like
the one above are applied to the other principal unknowns ξ and η.

• Special treatment of corner points; invocation of analyticity.

• Like most models of this kind some filtering is required in the nonlinear
case to avoid growth of noise. A five point smoothing formula is applied to
this end.

In sum we have a “moderately high order” method that is lower order compared
to the method [20], but at the same time less restricted at the boundaries.
The computational cycle consists of the following main steps

1. We know velocities (and more) at t. Time stepping by discrete surface
condition give φ (potential) and particle positions at the surface for t + ∆t

2. φ at surface yields the tangential velocity at the surface

3. Crucial step: Tangential velocity at surface and bottom condition (normal
velocities) yield equations for the other velocity component through the
integral equation (A.3) that is equivalent to the Laplace equation

4. ∂φ/∂t is obtained from the Bernoulli equation (A.1). The tangential com-
ponent of the temporal derivative of the velocity is then obtained, in analogy
to step 2, and the linear equation set from step 3 is solved with a new right
hand side to obtain the remaining component of ∂v/∂t.
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zp = xp + iyp

∇2φ = 0

C

Figure A.1: Definition sketch of computational domain in BIM method

5. The Bernoulli equation is differentiated, materially, with respect to t and
D2φ
Dt2

is computed.

6. Now the first and second order Lagrangian derivatives of φ, ξ and η are
computed at t + ∆t and the cycle may repeat itself.

The whole problem is then posed in terms of the position of the fluid boundary
and the velocity potential there. Values of velocities within the fluid may be
obtained by choosing zp as an interior point and put α = 2π in the Cauchy
relation (A.2), which then provide explicit expressions for up and vp. In the linear
case the procedure is substantially simplified since the geometry is constant and
matrices involved in the third step may be computed and factorized only once.
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A note on a nonlinear boundary

layer model

This chapter is copied from the intranet at the University of Oslo and is written
by Geir K. Pedersen

B.1 Introduction

This is a description of method for laminar boundary layer computations. It
is assumed that the outer velocity U is extracted from potential flow model or
measurements. This is then used as boundary conditions for the boundary layer
equations which are discretized by the Crank-Nicholson method for the linear
part and a combination of upstream differences and backward time stepping for
the nonlinear terms. The grid is generally non-uniform, with finer resolution close
to the no-slip boundary, and the technique is validated through comparison with
analytic solutions and grid-refinement studies.

B.2 Boundary layer equations on a beach

We introduce a (s, z)−coordinate system with the s−axis defined positive up-
wards along the beach and the z−axis orthogonal to the beach. We put s = 0
at the equilibrium shoreline on the beach. The s- and z-components of the flow
outside the boundary layer U(s, z, t) and W (s, z, t), respectively, are supposed
known, either from observations or numerical simulations. According to [6], as
well as potential flow simulations, the z variation of U is very weak in the swash
flow. The flow in a viscous boundary layer, (u, w), is then governed by the fol-
lowing momentum equation

∂u

∂t
+ u

∂u

∂s
+ w

∂u

∂z
=

[

∂U

∂t
+ U

∂U

∂s

]

z=0

+ ν
∂2u

∂z2
, (B.1)
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where the terms within the bracket correspond to the gravity component along
the shore and pressure gradient which is assumed equal to that of the outer flow.
The continuity equation is

∂u

∂s
+

∂w

∂z
= 0 (B.2)

The no-slip boundary conditions is

u(s, 0, t) = w(s, 0, t) = 0 (B.3)

and the following matching condition must also be fulfilled

[u(s, z, t)]z>>δbl
= U(s, 0, t) (B.4)

where δbl is the boundary layer thickness. For the linearized version the boundary
value problem given by equations (B.1) through (B.4) closed form solutions may
be obtained when the outer flows specified as polynomials of time.

B.3 Numerical computation of boundary layers

B.3.1 Application of the boundary value model to runup

Outer flow fields are extracted from the inviscid models. The Lagrangian solutions
are interpolated onto an equidistant, Eulerian grid along the beach, which extends
the whole swash zone, including an extra section on the wet side of off-shore side
of the equilibrium shoreline position. An example of the resolution: for solitary
waves of amplitude 0.1d to 0.3d (d is depth of wave tank) incident on 10◦ beach
typically from M = 50 to M = 400 points have been applied on the beach
yielding increments, ∆s, in the range 0.22 cm ≤ ∆s ≤ 1.52 cm. The temporal
resolution equals that of the inviscid simulation with time increments down to
∆t ≈ 0.0004 sec. At a given time only a subset of the Eulerian grid is within the
swash zone. During runup new grid points must be included, while points are
removed during withdrawal.
In the principle the velocity of the outer flow should have been evaluated at the
bottom z = 0. However, even though this value may be extracted from the
Boussinesq solution [5] we instead use the depth averaged value. The difference
is in general very small. The forcing term (within brackets on right hand side)
of the momentum equation (B.1) then becomes F (s, t) ≡ ∂U

∂t
+ U ∂U

∂s
, where U is

the depth averaged velocity from the Boussinesq model, or the bottom velocity
from the BIM model.

B.3.2 Scaling

As the boundary layer method is formulated and implemented in software it
may accept input in any consistent scaling, for instance SI units. However, it is
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convenient to work with dimensionless variables with the depth d as length scale
and the shallow water wave celerity

√
gd as velocity scale. This is the scaling

which is used in the Boussinesq and BIM models. The momentum boundary
layer equation then reads

∂u

∂t
+ u

∂u

∂s
+ w

∂u

∂z
=

[

∂U

∂t
+ U

∂U

∂s

]

z=0

+
1

Re

∂2u

∂z2
, (B.5)

where Re = d
√

gd
ν

is a kind of wave-tank Reynolds number. It should be noted
that this is not comparable to the standard Reynolds numbers used for stating
stability limits for Blasius profiles. In short, the dimensionless kinematic viscosity
coefficient is 1/Re.

B.3.3 The discretization

A z interval [0, B] is discretized by the grid {zi} such that zi are given in increasing
order with z0 = 0 and zN = B. Generally B corresponds to 2 cm. In the s, z
plane we thus have a M ×N . Generally the grid is non-uniform in the z direction
to allow for a finer resolution close to the boundary z = 0. We identify the local
grid increments

∆zi+ 1

2

= zi+1 − zi, ∆zi =
1

2
(zi+1 − zi−1).

Defining w
(n)
k,i ≈ w(s0 + (k − 1)∆s, zi, n∆t), where ∆t is the time increment, we

discretize the heat equation (B.1), using the Cranck-Nicholsen method for the
linear parts and upwind/backward representation for the nonlinear parts

u
(n+1)
k,i − u

(n)
k,i

∆t
+ u

(n+1)
k,i [

∂u

∂x
]
(n)
k,i + w

(n)
k,i

u
(n+1)
k,i+1 − u

(n+1)
k,i+1

2∆zi
=

Q
(n+ 1

2
)

k,i+ 1

2

− Q
(n+ 1

2
)

k,i− 1

2

∆zi
+ F

(n+ 1

2
)

k ,

(B.6)
where

Q
(n+ 1

2
)

k,i+ 1

2

= ν

(

u
(n+1)
k,i+1 + u

(n)
k,i+1 − u

(n+1)
k,i − u

(n)
k,i

2∆zi+ 1

2

)

,

and [∂u
∂x

] denotes the upwind difference. If an upwind difference involves a value
that is not defined, a downwind difference is used instead. The pressure term,
F , is consistent with the nonlinear terms on the left hand side of (B.6). As a
consequence the outer flow can be exactly reproduced by the discrete momentum
equation. The boundary conditions become

u
(n+1)
k,0 = 0, u

(n+1)
k,N = U

(n+1)
k , (B.7)
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while w is obtained from the continuity equation according to

w
(n+1)
k,i =

i−1
∑

j=0

∆zj+ 1

2

u
(n+1)
k+1,j + u

(n+1)
k+1,j+1 − u

(n+1)
k−1,j − u

(n+1)
k−1,j+1

2∆s
(B.8)

If k is adjacent to a non-defined s-node (either dry or outside the grid on the
seaward side) one sided derivatives are used for u in this expression. When
all quantities at time n is known, (B.6) and (B.7) yield a set of M , or less,
independent tridiagonal equations for the nodal values for u at time n + 1.
When the shoreline surpasses a new grid point, say m, the row k = m is included
in the computation and initial conditions set to u

(n)
m,i = U

(n)
m .

The linear version of (B.6), corresponding to the Crank-Nicholson method, is of
second order accuracy and is unconditionally stable. When ν and w are set to zero
the discretization corresponds to a second order integration along characteristics.
For the combined equation we may no longer claim second order accuracy, but no
instability has been encountered. The critical parameter for the accuracy is ∆s
and the main source of error is linked to the moving shoreline. This is discussed
in somewhat more detail below.

B.3.4 Grid generation

Non-uniform grids, with smoothly varying distribution of nodes, are readily con-
structed by means of a mapping from a an enumeration coordinate, ζ , to z

z = z(ζ), z(0) = 0, z(N) = B,

An approximate local grid increment is then ∆z(ζ) = dz
dζ

We desire a finer grid
at z = 0 than at z = B and define stretch factor, S, as the ratio between the
corresponding increments

S =

dz(n)
dζ

dz(0)
dζ

.

Several distribution functions, f , have been tested, without significant differences
in the performance. Two simple nonuniform grids are found as

Quadratic z = aζ + 1
2
bζ2 a = 2B

(S+1)N
b = a(S−1)

N

Exponential z = a
b

(

ebζ − 1
)

a = bB
S−1

b = ln S
N

We have mainly employed with S = 4.

B.3.5 Performance

The computations of the boundary layer flow depends on the accuracy of the
inviscid simulation in the first place, on the resolution of the extracted outer
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flow field (∆s) and the vertical resolution in the boundary layer model (N and
S). Concerning the modelling of the boundary layer itself there are three main
problems that are all linked to the shoreline

1. At the shoreline he physical model of a viscous layer and an outer inviscid
flow is not correct. First, in our model the thickness of the boundary layer
at a position s grows in proportion to

√

t − t0(s), where t0 is the time when
the shoreline reaches s. In the swash zone the inviscid flow depth will grow
in proportion to t− t0(s). Hence, for small t− t0 the boundary layer will be
thicker than the flow depth. Secondly, and more fundamentally, the vicinity
of the moving shoreline is governed by some kind of contact point dynamics,
where the fluid particle at the shoreline is stuck to the beach, while new
fluid presumably is rolled onto the beach during runup. We have not been
able to measure any details in the dynamics of the fluid tip and it is beyond
modeling at present. Still, only a short distance from the shoreline we do
observe a regime with laminar boundary layer motion in the experiments.

2. Also in the linear approximation the initial evolution of the boundary layer
is abrupt and thus difficult to reproduce accurately by a numerical tech-
nique. However, with the resolutions employed the accuracy in the linear
solutions are very good even for quite small times. The next point is more
crucial.

3. New grid rows are included in the boundary layer computations in a step-
wise manner according to the shoreline motion. At the instant a new row
is introduced the velocity is initialized from the outer flow. Consequently
there will be a strong along-shore velocity gradient in the boundary layer
with a correspondingly large vertical velocity component. This is a plaus-
ible mechanism from a physical point of view and it leads to a much faster
growth of the boundary layer in the non-linear than in the linear descrip-
tion. However, the mechanism is hard to catch accurately in the numerical
model.

In line with the last point the nonlinear solutions are hardest to obtain accurately
and the critical parameter is ∆s. Therefore we will show some details on the evol-
ution of the boundary value profiles for the most nonlinear case A/d = 0.295 in
figure B.3.5. At first glance the profiles may look very similar for all times. How-
ever, a closer scrutiny reveals a marked deviation for the earliest time displayed,
corresponding to a slower boundary layer growth for the coarser resolutions. Later
the deviations are diminished. Overall, this indicates that the smallest ∆s is ad-
equate.
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u(m/s)

z(mm)

Figure B.1: Velocity profiles for A/d = 0.295 at x = 1.05 m. Long dashes,
short dashes and solid lines correspond to ∆s = 1.52 cm, ∆s = 0.76 cm and
∆s = 0.38 cm, respectively. The times are (in seconds) 6.35, 6.55, 6.75, 6.95, 7.35
and 7.70. Since the outer flow is retarded for the range of times displayed, the
graphs are ordered from right to left with increasing t.

B.4 Linear test problems

In this section we neglect the nonlinear terms in (B.1). The boundary layer
equations then become the standard heat equation with a source term F :

∂w

∂t
= ν

∂2w

∂z2
+ F (z, t), (B.9)

where the unknown have been renamed to w. We observe that s does not enter
the equation, but may appear only as a parameter.

B.4.1 Separation of discrete equation

For F = 0 the heat equation (B.9) inherits the simple damped harmonic solutions

w = eαteikz, α = νk2.

For uniform resolution the corresponding solutions for the discrete problem, (B.6),
read

w
(n]
j = eαn∆teikj∆z,

2

∆t
tan

(

α∆t

2

)

= ν
4

∆z2
sin2

(

k∆z

2

)

.

This relation always yields a non-negative value for α which implies unconditional
stability. Assuming small α∆t and k∆z we obtain the damping relation

α = νk2

(

1 − ∆z2

12
k2 − ∆t2

12
ν2k4 + O((k∆z)4, (α∆t)4)

)

. (B.10)
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Thee is no cancellation of spatial and temporal errors. However, comparable
errors due to time and space dicretization occurs when

∆z2 ∼ ν2k2∆t2.

Assuming the boundary layer thickness, D, to be of order 1/k we find

∆t

∆z
∼ D

ν
. (B.11)

This indicate a small time step at the early stages of boundary layer evolution
and a much larger step when the boundary layer is well developed. There is
absolutely no principal problem employing a variable time step with (B.6), but
this is not yet generally implemented.

B.4.2 Test problem

The Crank-Nicholson method, as employed in (B.6) is one of the standard tech-
niques for solution of the heat equation. Still, the implementation must be verified
and the performance tested for a relevant boundary value problem. The similarity
solution for constant outer velocity is such a problem.
For U(t) ≡ 1 and F ≡ 0 we have the simple similarity solution

w(z) =
2

π

z

2
√

νt
∫

0

e−s2

ds. (B.12)

As t → 0 the solution becomes discontinuous. Naturally, this feature cannot be
captured by the finite difference model. Still, this abrupt onset of the boundary
layer is relevant for the swash zone in run-up on beaches and it is crucial that
the model rapidly produce a reasonably good solution even though the very first
phase of the boundary layer evolution is beyond its capacity.
The criterion (B.11) now yields

∆t

∆z
∼
√

t

ν
.

Of course, for fixed grid increments and small t the power expansion leading to
(B.10), and thereby to (B.11), becomes inappropriate. Formally, a relative error
measure , E, of (B.10) become

E =
∆z2

48νt
+

∆t2

192t2
,

where the factors in the denominators are speculative, but they are hardly less
appropriate than 1. For a given resolution the above expression may tell at
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Figure B.2: Simulations of similarity profiles for t = 0.2 s and t = 2 s. Times and
lengths are given in seconds and meters, respectively. Analytical and numerical
results are marked by "an" and "num" respectively.

which t we may hope to obtain reasonable numerical results. Still, boundary
layer development is an accumulative process and the inadequacy of the numerical
procedure in relation to the initial discontinuity in the velocity profile may prevail
for quite some time after the local error measure E becomes small.
Preferably, an error analysis should be based on the particular solution (B.12)
instead of simple harmonics. However, even though local discretization errors
may readily be estimated it is a challenging task to link this to errors in the
solution itself, particularly in view of the singularity at t = 0. Hence, we resort
to numerical testing, for now.
If the figures B.2 and B.3 results for a moderately large and a large time are
displayed. We immediately observe that the similarity solution is reproduced
well.

• For t = 0.2 s we observe that convergence appears to more sensitive to ∆t
than to E.

• For t = 2.0 s the given size of ∆z for the exponential grid may not be
relevant since the smallest ∆z is listed in the caption.

• For the finer grids there is a striking similarity between the errors for t =
0.2 s and t = 2 s. This indicate that error is dominated by the errors
produced in the abrupt start which then are diffused outward.
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Figure B.3: Errors in simulations of similarity profiles. Times and lengths are
given in seconds and meters, respectively. For the exponential grids a strech
factor S = 5 is employed.



Appendix C

Quality of the gauges

To check the quality of the signal of the gauges, the gauges are set to sample
for 2 seconds over a calm surface. The height above the surface is systematic-
ally varied so that the gauges record different amplitudes and should confirm the
displacement of the gauge. The incoming signal is evaluated, given in the tables
below. σ is the standard deviation, x̄ is the mean vaule of the signal, conf.int
is the confidence interval of the signal and deviation is the deviation from the
specific amplitude. The unit is centimeter.

Gauge 1
amplitude σ x̄ conf.int (95%) deviation

5 0.0055 4.9705 [4.9695 4.9715] 0.0295
4 0.0047 3.9784 [3.9775 3.9792] 0.0216
3 0.0047 3.0056 [3.0048 3.0065] -0.0056
2 0.0059 2.0065 [2.0054 2.0076] -0.0065
1 0.0047 1.0060 [1.0052 1.0069] -0.0060
0 0.0050 0.0168 [0.0159 0.0177] -0.0168
-1 0.0052 -0.9767 [-0.9776 -0.9758] -0.0233
-2 0.0059 -1.9618 [-1.9628 -0.9607] -0.0382
-3 0.0078 -2.9703 [-2.9717 -2.9689 -0.0297
-4 0.0060 -3.9696 [-3.9706 -3.9685] -0.0304
-5 0.0014 -4.9761 [-4.9764 -4.9759] -0.0239
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Gauge 2
amplitude σ x̄ conf.int (95%) deviation

5 0.0018 4.9741 [4.9738 4.9745] 0.0259
4 0.0212 4.0092 [4.0053 4.0130] -0.0092
3 0.0035 2.9845 [2.9838 2.9851] 0.0155
2 0.0032 1.9776 [1.9770 1.9782] 0.0224
1 0.0031 0.9562 [0.9557 0.9568] 0.0438
0 0.0032 -0.0581 [-0.0587 -0.0576] 0.0581
-1 0.0033 -1.0309 [-1.0315 -1.0303] 0.0309
-2 0.0028 -2.0714 [-2.0719 -2.0709] 0.0714
-3 0.0034 -3.0665 [-3.0671 -3.0659 0.0665
-4 0.0042 -4.0743 [-4.0751 -4.0736] 0.0743
-5 0.0015 -4.9802 [-4.9804 -4.9799] -0.0198

Gauge 3
amplitude σ x̄ conf.int (95%) deviation

5 0.0031 4.9589 [4.9583 4.9594] 0.0411
4 0.0033 3.9803 [3.9797 3.9809] 0.0197
3 0.0035 2.9845 [2.9838 2.9851] 0.0155
2 0.0030 1.9691 [1.9686 1.9696] 0.0309
1 0.0032 0.9583 [0.9577 0.9589] 0.0417
0 0.0033 -0.0542 [-0.0548 -0.0536] 0.0524
-1 0.0043 -1.0436 [-1.0444 -1.0428] 0.0436
-2 0.0034 -2.0596 [-2.0602 -2.0590] 0.0596
-3 0.0037 -3.0813 [-3.0819 -3.0806] 0.0813
-4 0.0042 -4.0814 [-4.0822 -4.0807] 0.0814
-5 0.0016 -4.9880 [-4.9883 -4.9877] -0.0120

Gauge 4
amplitude σ x̄ conf.int (95%) deviation

5 0.0115 4.9454 [4.9433 4.9475] 0.0546
4 0.0243 3.9668 [3.9624 3.9712] 0.0332
3 0.0178 2.9520 [2.9488 2.9552] 0.0480
2 0.0090 1.9495 [1.9479 1.9512] 0.0505
1 0.0064 0.9379 [0.9367 0.9390] 0.0621
0 0.0077 -0.0684 [-0.0698 -0.0670] 0.0684
-1 0.0037 -1.0892 [-1.0899 -1.0885] 0.0892
-2 0.0033 -2.1086 [-2.1092 -2.1080] 0.1086
-3 0.0030 -3.1088 [-3.1094 -3.1083 0.1088
-4 0.0100 -4.1145 [-4.1163 -4.1127] 0.1145
-5 0.0008 -4.9920 [-4.9921 -4.9918] -0.0080
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Also, the quality of the signal due to the angular position of the target is evalu-
ated. The gauge is set tho sample for 2 seconds with zero amplitude, the angle is
controlled with a digital level and is variated by changing the angle of the gauge.
The result is given in the table below, where adj.deviation is the deviation ad-
justed with the increased distance to the surface due to the angle.

Gauge 1
angle σ x̄ konf.int (95%) deviation adj.deviation

0 0.0087 -0.0158 [-0.0174 -0.0142] 0.0158 0.0158
1 0.0089 -0.0108 [-0.0124 -0.0092] 0.0108 0.0040
2 0.0045 -0.0378 [-0.0387 -0.0370] 0.0378 0.0105
3 0.0122 -0.0092 [-0.0114 -0.0070] 0.0092 -0.0523
4 0.0048 -0.0487 [-0.0496 -0.0478] 0.0487 -0.0607
5 0.0043 -0.1420 [-0.1428 -0.1412] 0.1420 -0.0291
6 0.0046 -0.2387 [-0.2395 -0.2379] 0.2387 -0.0081
7 0.0049 -0.2145 [-0.2153 -0.2136] 0.2145 -0.1219
8 0.0043 -0.2871 [-0.2879 -0.2864 0.2871 -0.1532
9 0.0043 -0.4418 [-0.4426 -0.4410] 0.4418 -0.1166
10 0.0045 -0.5530 [-0.5538 -0.5522] 0.5530 -0.1381



Appendix D

Matlab code

Tracing of the moving shoreline

function shore_trac()

jpegfiles = dir(’run4_lower_000*.jpg’);

numfiles = length(jpegfiles);

mydata = cell(1,numfiles);

impos = cell(1,numfiles);

filt = cell(1,numfiles);

bwdata = cell(1,numfiles);

edgepos = cell(1,numfiles);

tid = cell(1,numfiles);

edgepixel = cell(1,numfiles);

[x,y]=meshgrid(1:1024,1:1024);

base = [10 2;12 2;14 2;16 2;10 -2; 12 -2;14 -2;16 -2];

input = [583 512;582 439;582 367;582 294;438 512;438 440;438 367;437 295];

tform = cp2tform(base,input,’linear’);

[u,v]=tforminv(tform,x,y);

t = 5.5;

for k=1:numfiles

mydata{k} = imread(jpegfiles(k).name);

impos{k} = graythresh(mydata{k});

filt{k} = imopen(mydata{k},strel(’disk’,20));

bwdata{k} = edge(filt{k},’canny’,impos{k});

69



70 Appendix D. Matlab code

tid{k} = t;

t = t+1/250;

idx = find(bwdata{k}==1);

edgepos{k} = median(u(idx));

edgepixel{k} = median(y(idx));

end

pos = cell2mat(edgepos);

pospix = cell2mat(edgepixel);

tid2 = cell2mat(tid);

fid = fopen(’utfil_case10_run3_coord1’,’w’);

for i=1:numfiles

fprintf(fid,’%f %f\n’,tid2(i),pos(i));

end

fclose(fid);

fid = fopen(’utfil_case10_run3_coord1_pix’,’w’);

for i = 1:numfiles

fprintf(fid, ’%f\n’,pospix(i));

end

fclose(fid);
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