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RUNGE-KUTTA APPROXIMATION
OF QUASI-LINEAR PARABOLIC EQUATIONS

CHRISTIAN LUBICH AND ALEXANDER OSTERMANN

En l'honneur de Michel Crouzeix à l'occasion de son cinquantième anniversaire

Abstract. We study the convergence properties of implicit Runge-Kutta meth-
ods applied to time discretization of parabolic equations with time- or solution-
dependent operator. Error bounds are derived in the energy norm. The con-
vergence analysis uses two different approaches. The first, technically simpler
approach relies on energy estimates and requires algebraic stability of the Runge-
Kutta method. The second one is based on estimates for linear time-invariant
equations and uses Fourier and perturbation techniques. It applies to A(9)-
stable Runge-Kutta methods and yields the precise temporal order of conver-
gence. This order is noninteger in general and depends on the type of boundary
conditions.

Introduction

In this paper we investigate the approximation properties of implicit Runge-
Kutta methods applied to time discretization of parabolic equations with time-
or solution-dependent operator. Apart from some results in Crouzeix's thesis
[3], this appears not to have been studied previously. There are, however, a
number of papers dealing with the backward Euler or Crank-Nicolson method,
and a few papers studying multistep methods. These papers fall into two groups,
depending on whether the results are obtained from1

(A) estimates for linear time-invariant equations coupled with perturbation
techniques [3, 18, 21, 26], or

(B) energy estimates, e.g. [7, 27] (cf. also [14]).
Both approaches turn out to be useful also in the context of Runge-Kutta meth-
ods, and to offer different merits. They work with different assumptions about
the equation (A: resolvent bounds, B: Gârding's inequality) and require dif-
ferent stability conditions on the part of the methods (A: ^(ö)-stability, B:
i?-stability or algebraic stability). When they apply, energy estimates provide
far simpler stability and convergence proofs. It seems, however, that they do
not yield the noninteger temporal convergence order which is actually observed
in computations and can be explained via approach (A). When it comes to mod-
ified Runge-Kutta methods, in particular linearly implicit methods [24], there
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602 CHRISTIAN LUBICH AND ALEXANDER OSTERMANN

is usually no alternative left to choosing (A). So we have found it worthwhile
to present both approaches in this paper (also because (B) is quite short).

In § 1 we use energy estimates to derive error bounds for algebraically stable
Runge-Kutta methods applied to a class of quasi-linear parabolic equations, or
to their spatial semidiscretizations in the method of lines. Our treatment here
is certainly influenced by the classical paper of Douglas and Dupont [7], where
the Crank-Nicolson method is studied. As algebraic stability has been tied to
energy estimates since its introduction by Burrage and Butcher [1] and Crouzeix
[4], a result like our Theorem 1.1 is possibly without surprise to the experts in
the field. We note, however, that the somewhat related /^-convergence theory
of Frank et al. [8] does not apply to the equations studied here and, moreover,
would only predict a smaller temporal convergence order than does Theorem 1.1
(q instead of q + 1, where q is the stage order of the Runge-Kutta method).

An approach of type (A) is followed in the remaining §§2 to 5. It is different
from Crouzeix's [3] approach to linear parabolic equations with time-dependent
operator. Crouzeix uses a theorem of von Neumann and perturbation tech-
niques to show step-by-step stability of ^-stable methods and then obtains con-
vergence by accumulating local errors similarly to the convergence proofs for
nonstiff ordinary differential equations. Notwithstanding its merits, that result
yields only suboptimal orders of convergence, it does not give error bounds in
the energy norm, and it does not apply to ^4((9)-stable methods with 6 < n/2.

In §2 we derive some new stability estimates for strongly A(9)-stable Runge-
Kutta methods applied to linear parabolic equations with constant operator.
Generating functions, Parseval's formula, resolvent bounds, and techniques
from [23] and [26] are the tools in this stability analysis.

In §3 we consider parabolic equations with time-dependent operator. The
estimates of §2 are such that they extend to the time-dependent case in a very
simple way (Lemma 3.1), by taking up an idea of Savaré [26], who recently
studied multistep methods for such equations. Convergence results are then
presented in Theorems 3.2 and 3.3. The temporal order of convergence in the
energy norm is min(p, q + I + ß), where p denotes the (nonstiff) order and
q the stage order of the Runge-Kutta method, and ß depends on the spatial
smoothness of the solution and on the boundary conditions. In the case of time-
dependent strongly elliptic second-order operators, we get the following values
of ß when the error is measured in temporally discrete versions of the L2(Hx)f)
Lf°(Ll) norm: With homogeneous Dirichlet boundary conditions, we have
ß = | - e for arbitrary e > 0, in the sense of an error bound C(e) ■ h9+x+il4~e,
which can probably be sharpened to C• hq+x+3l* -\lo%h\r with a small power of
the logarithm. In the case of Neumann boundary conditions we get ß = | - e
in 1 space dimension, and ß = \-e in 2 and more space dimensions. Periodic
boundary conditions yield the full order p (always assuming sufficient temporal
and spatial smoothness of the solution). We observed the sharpness of these
convergence orders in our numerical experiments. Cf. also [25] and [23], where
fractional convergence orders for linear and semilinear equations with constant
operator are studied.

Section 4 extends these results to quasi-linear equations. For solution-
dependent strongly elliptic second-order operators, we still get the results
sketched above in 1 and 2 space dimensions, but our assumptions lead to some
problems in 3 space dimensions.
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RUNGE-KUTTA APPROXIMATION OF QUASI-LINEAR PARABOLIC EQUATIONS 603

Finally, §5 shows that the results of §§2 to 4 extend to variable stepsizes under
mild restrictions on the time step sequence.

We conclude this section by recalling some terminology (cf. [2, 12]). A Runge-
Kutta (RK) method applied to an initial value problem

u' = F(t, u),        u(0) = uo,

with a stepsize h > 0 yields at t„ = nh an approximation u„ given recursively
by

m m

un+i = u„ + hY bj U'nj,     Uni = un + hY a¡j Unj,
7=1 j=l

U'ni = F(tn + Cih, Uni)      (i = 1., •.., m).

The Runge-Kutta method has order p, if the error of the method, when applied
to ordinary differential equations with sufficiently differentiable right-hand side,
satisfies u„-u(t„) = 0(hp) as h -» 0, uniformly on bounded time intervals. We
always assume p > 1. The method has stage order q, if Y™= i aijcj~l = c¡/k
for k = I, ... , q and all i. In the following we will use the notation

<S = (aij)fJmX,    bT = (bx,...,bm),    l = (l,...,l)r.

A Runge-Kutta method is called A(6)-stable, if I - z(g is nonsingular in the
sector | arg(-z)| < 6 , and if the absolute value of the stability function R(z) =
1 + zbT(I - z(SYx\ is bounded by 1 for | arg(-z)| < 6 . The method is called
strongly A(6)-stable, if it is ^(ö)-stable and in addition has an invertible Runge-
Kutta matrix S, and the limit of the stability function at infinity, R(oo) —
1 -bTS~ ' 1, has absolute value strictly smaller than 1. The Runge-Kutta method
is called algebraically stable if the matrix (b¡a¡j + bjüji - bibj)f j={ is positive
semidefinite and all weights b¡ are positive.

Throughout the paper, C will denote a generic constant which takes on
different values on different occurrences.

Energy Estimates

1. a convergence result for algebraically stable rk methods

In this section we use energy estimates to derive a convergence result for
algebraically stable Runge-Kutta methods applied to the initial value problem

(1.1) u'+ A(u)u = f(t),       u(0) = u0.

The setting of this equation is as follows: Let H and V be (real, separable)
Hubert spaces with norms | • | and || • ||, respectively, such that V is embedded
densely and continuously in H. The norm on the dual space V is denoted by
|| • ||. • We identify H and its dual H', so that V c H = H' c V, and the
duality ( • , • ) between V and V coincides on H x V with the scalar product
of H. We assume that, uniformly for all u e V, the bilinear form associated
with the linear operator A(u) : V -> V satisfies the Gàrding inequality

(1.2) (A(u)v,v)>a-\\v\\2-c-\v\2,    foru,veV
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604 CHRISTIAN LUBICH AND ALEXANDER OSTERMANN

with a > 0 and c > 0, and is bounded by

(1.3) \(A(u)v , w)\ < M -IMHMI   for u,v,w£V.
Further we assume that there is a subset S of V such that the following Lip-
schitz condition is satisfied: For every ô > 0, there exists L = L(ö, S) such
that

(1.4) \\(A(v) - A(w))u\\» < ô • \\v - w\\ + L • \v - w\   forueS, v , w e V.

Example (cf. [7]). On a smooth domain Ci c Rd, consider the quasi-linear
parabolic equation

du      v^    d   (    .  ,      .. du \      ., _    - ^
9t = ^Wi{aiÁU{X't))dx-j)+nX'th       x^0<t^T

1,7=1 ' '

with Neumann boundary conditions

d r,

Ynraij(u(x,t))-^ = 0,       xedCl, 0< r < 7\
iJ=X J

where (n\,..., nf)(x) denotes the normal vector. The coefficient functions
a¡j : R —» R are assumed to be bounded and Lipschitz bounded, and the matri-
ces (a¡j(p)) (p e R) are uniformly positive definite. The variational formula-
tion of this problem is of the form ( 1.1 ) on H = L2(Q) and V = H1 (Ci), with
operators A(u) : V —» V defined by

(A(u)v,w) = J   Yaijiuix))--Qj--^'dx-

This satisfies (1.2) and (1.3). Condition (1.4) holds with

S = S(r) = lu eHx(Cl): sup\Vu(x)\ <r\,
I xeQ J

because for u e S(r) and v , w , cp e V we have

I,, Yiauivix)) - a¡j(w(x)))~.JL.dx
i,i

<l'\v-w\Li-r-\\tp\\Hi,

where / denotes a Lipschitz constant of the functions a¡j( • ). This example is
readily extended to include first-order terms, or to Dirichlet or mixed boundary
conditions.   D

We have the following convergence result.

Theorem 1.1. Consider the initial value problem (1.1 )—( 1.4). Let {u„} c V be
a Runge-Kutta solution obtained with an algebraically stable method of stage
order q and order p > q + 1 having an invertible coefficient matrix S and
\R(<x>)\ < 1 ■ If equation (1.1) has a solution u(t) e S for 0 < t < T, with
temporal derivatives u^+x^ eL2(0,T;V) and w(?+2> € L2(0, T\ V), then for
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RUNGE-KUTTA APPROXIMATION OF QUASI-LINEAR PARABOLIC EQUATIONS 605

sufficiently small stepsizes h (restricted only by the constants in ( 1.2)-( 1.4)), the
error is bounded for Nh <T by

N

(1.5) n=0
u(t„)\\2+ max \u„-u(t„)\2

0<n<N

<C-(h"+x)h2 ( /   ||«(,+1)(r)||2rfi+ /   \\uW>(t)\\ldt
\Jo JO )

The constant C depends on the Runge-Kutta method, on the constants in (1.2)-
(1.4), and on T.
Remarks, (a) Theorem 1.1 generalizes to variable stepsizes. The proof makes
no essential use of constant stepsizes, in contrast to the proofs in §§2 to 4.

(b) Theorem 1.1 has an obvious extension to the situation where the constants
in (1.2) and (1.3) are allowed to depend on ||w|| and to deteriorate with growing
||w||. (The constant C in (1.5) then depends also on sup0<í<r ||w(i)||.) For
example, the incompressible Navier-Stokes equations in dimension 2 and 3
then fit into the framework. Moreover, /(f) in equation (1.1) can be replaced
by f(t, u) satisfying a local Lipschitz condition \\f(t, v) - f(t, w)\\* < Ô-
\\v - w\\ + L(S, r)-\v - w\ for ||t>|| + \\w\\ < r. This is often satisfied for
first-order nonlinearities. Of course, the operator A may also depend on t.

(c) Equation (1.1) can also result from space discretization of a parabolic
initial-boundary value problem, with conditions (1.2)—(1.4) holding uniformly
in the meshwidth. In this situation, it is more interesting to compare the fully
discrete solution to the solution of the PDE rather than that of the spatial
semidiscretization. A projection û(t) of the PDE solution onto the finite-
dimensional approximation space then satisfies a perturbed equation (1.1):

û' + A(û)û = f(t) + d(t),       û(0) = u0 + e0,
where d(t) is the spatial truncation error. If u(t) is in S and sufficiently
smooth, then the difference between the Runge-Kutta solution un of equation
(1.1) and û(t) is bounded by

N

¿y]l|M«-"(MII2+ max \u„-û(t„)\2
*~T Kn<Nn=l ~  ~

(N     m \

B + \eo\2 + \R(<x>)\ • h ■ INI2 + h Y Y IW« + c'h)W*    >
n=0 1=1 /

where B is the expression on the right-hand side of (1.5), with u replaced by
û. The proof of this estimate is a simple extension of the proof of Theorem
1.1. Errors resulting from the inexact solution of the nonlinear Runge-Kutta
equations can be bounded similarly.

(d) In finite dimension, the existence of a numerical solution can be shown un-
der the method assumption of [6, Thm. II.5.4]: There exists a positive diagonal
matrix D suchthat Dé+@TD is positive definite (cf. also [12, Ch. IV. 14]). Us-
ing condition (1.2), one shows that the iteration U'n[l) + A(U^)U^ =
f(tn + Cjh) maps some ball into itself and one applies Brouwer's fixed-point
theorem. Uniqueness is obtained from condition (1.4) only if there exists a
numerical solution with internal stages [/„, e S, which is not guaranteed in
general.
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606 CHRISTIAN LUBICH AND ALEXANDER OSTERMANN

Proof of Theorem 1.1. The proof combines arguments that are familiar from
5-stability theory and from energy estimates for the time-continuous case.

(a) For brevity, we denote the solution values  [/„,- = u(tn + c¡h), Ù'ni =
u'(tn + Cjh), and un = u(t„). We then have

m m

Uni = Ün + hY aU Ù'nj + Dni ,      Ün+i=Ün+hY bJ Ù'nj + dn+l ,
j=l j=i

where the defects are of the form

Dni = W jtn*\i(*-^\é«+x\t)dt,

dn+i=h«+xjttn+\(^y«+»(t)dt

= -¥ Í"+1k'V-^-\é«+x\t)dt

with bounded Peano kernels /c, and k (for simplicity we assume that all c¡ e
[0, 1]). Here we have used Taylor expansion and the definition of the stage
order q and the order p > q + 1. We note for later use that, by the Cauchy-
Schwarz inequality,

N    m N

(1.6) hYY\\D-i\\2 + hY.^d^\\2 + \\dn^lh\\l)<C-B,
n=0y=l n=0

where B denotes the expression on the right-hand side of (1.5).
(b) The errors Eni = Uni - Uni, E'ni = Uni - U'ni, and e„ = u„ - ü„ thus

satisfy

(1.7a)

(1.7b)

(1.7c)

E'ni + A(Uni)Eni = -(A(Uni) - A(Üni))Ü„i,
m

Eni =en + hY aUE'nj - Dni ,
7 = 1

en+i =en + hY biKi - dn+i
i=i

We take the square of the //-norm in (1.7c) to obtain
m |2 /

(1.8) \en+iV = en + hY biE'm
i=i

-2{dn+i,en + hY b,E'ni ) + \dn+i \2.
i=i

We estimate the three terms on the right-hand side separately. Expressing en
by equation (1.7b), we have

en + h Y b¡K,
(=1

= \e„ |2 + 2hYbi (E'ni,Eni + Dni)
i=i

+ h2 Y Y,ib>bj - b.a.j - b^,) ■ (E'ni, E'nj).
1 = 1 7 = 1
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As the method is algebraically stable, the last term is nonpositive.   For the
middle term we note that by (1.7a) we have (omitting all the subscripts n, i)

(E',E + D) = -(A(U)E, E) - (A(U)E, D) - ((A(U) - A(Ü))Ü, E + D).
Using conditions (1.2)—(1.4) (note that Uni = u(t„ + c¡h) e S by assumption),
we can bound this by

(E',E + D)<-a- \\E\\2 + c■ |£|2 + M• \\E\\ • \\D\\ + (S\\E\\ + L\E\) ■ \\E + D\\
and hence, for sufficiently small S,

(E>,E + D)<-^.\\E\\2 + C.\E\2 + C.\\D\\2.
The second term in (1.8) is estimated as

m

dn+i ,en + hY biKi
(=1

<\\dn+i\\t-\\en\\ + \\dn+i\\-hYbi\\E'ni\U
i=i

1 1
< ^<5||e„||2 + -h/S • HAWAII2 + Chô-Y \\Enj\\2 + Ch/S ■ \\dn+i\\2 ;1 ;=i

with a small ô . Here we have used the bound
m

-'«7II >(1-9) \\E'ni\U<C-Y\\En
7=1

which is a consequence of equation (1.7a) and conditions (1.3) and (1.4). Fi-
nally, the last term in (1.8) is bounded by

\dn+i|2 < \\dn+i ||. • \\dn+i|| < \h• \\dn+i||2 + l-h • \\dn+i/h\\l.
Putting all these estimates together, we have shown (note that b¡ > 0 for all i)

m

\en+i\2-\en\2 + aß-h-Ybi\\Eni\\2
/=i

m

(l.io) <c/i(î-|k«ll2 + CA^|£:,nil
i=l

+ Ch Y IIAnll2 + Ch ■ (\\dn+i ||2 + \\dn+i/h\\l).
i=i

(c) From equations (1.7b, c) we infer

en+i =R(oo)-en + bT0-x(En + Dn)-dn+i,

and since |/î(co)| < 1, this implies
N N    m N

(1.11) h Y \\en+i II2 <ChYY WE»i + D"'W2 + Ch E Hrf«+il"n+lll   •
«=0 n=0 i=l n=0

(d) Summing the inequalities (1.10) from n = 0 to N and inserting (1.6)
and (1.11), we get

N    m N    m

(1.12) ^+1|2 + /i^^||£m||2<C^^|^,|2 + C.ß.
n=0 i=l n=0 i=l

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



608 CHRISTIAN LUBICH AND ALEXANDER OSTERMANN

We next estimate
\Eni\2<\ô-\\Eni\\2 + \ô-x.\\Eni\\l

and bound ||^m'||* > using the triangle inequality in (1.7b), the continuity ||e„||,
< C • \e„\ of the inclusion H c V , and the estimate (1.9):

m

II4..II. <C-\e„\ + ChY\\Enj\\ + \\Dni\\.
j=i

Hence,
N    m N    m N

(1.13) hYY\E^2^^i2+ch2iô)-hT.T,\\E"i\\2+chll\e"\2+c-B-
n=0 i=l n=0 7=1 n=0

We insert this bound into (1.12) to get (again for a suitable choice of ô)
N

\eN+i\2<ChY\en\2 + C-B,        0<Nh<T,
«=o

and the discrete Gronwall inequality now gives us

\e„\2<C-B,        0<nh<T.
We insert this estimate back into (1.13), and (1.13) back into (1.12), and so
obtain

N    m

hYY\\Em\\2<C-B.
n=0 1=1

This bound inserted into (1.11) finally gives us
N

hY\\tn+i\\2<C-B,
n=0

and the theorem is proved.   D

Fourier and Perturbation Techniques

2. Stability estimates for linear time-invariant equations

In this section we derive some estimates for Runge-Kutta methods applied
to equations with constant operator

(2.1) u' + Au = f(t),     u(0) = u0   (t>0).
We study this equation in a Hubert space framework of analytic semigroups (cf.,
e.g., Kato [15, Chs. VI and IX], Lions [19, Chs. IV and VI], and Lasiecka [16]),
emphasizing the role of resolvent bounds. On a (complex, separable) Hubert
space H with scalar product ( • , • ) and norm | • |, let -A be the generator
of a bounded analytic semigroup that has 0 in its resolvent set. In other words,
A : D(A) c H —> H is a densely defined closed linear operator whose resolvent
is bounded by

(2.2) \(X + A)-x\H^H<Y^r\x\    tor\argX\<n-<p (<P<^) ■
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RUNGE-KUTTA APPROXIMATION OF QUASI-LINEAR PARABOLIC EQUATIONS 609

We consider a second Hubert space V c H with norm || • || and assume that

(2.3) V = D(AX'2) = D(A*X'2)   with equivalent norms,

where as usual the norm on D(AXI2) is given by ||w||0(^i/2) = |^41/2v|. In partic-
ular, Axl2 and A*xl2 are isomorphisms between V and H. It follows that the
sesquilinear form defined by (Au, v) = (Axl2u, A*xl2v) for u e D(A), v e V
extends to a bounded sesquilinear form on V x V, and consequently A ex-
tends to an isomorphism from V to its conjugate linear dual V which we
again denote by A :
(2.4) A : V —> V' is bounded and invertible.
The norm on V will be denoted by || • II* • We always identify H and //', so
that
(2.5) V c H = H' c V, with duality (v', v) = (v', v) for v' € H, v e V.
From (2.2) we get the bounds

(2.6) IKA^rWiT^,
P + í4)~!IIk.-k»<*2

for \argX\ < n - <p , where A/i and M2 can be chosen to depend only on the
constants in (2.2) and (2.3).

Remark. On finite time intervals, all our results remain valid if, for some c > 0,
the operator A + ci instead of A satisfies conditions (2.2) and (2.3).

Examples. For A a second-order strongly elliptic differential operator on a
bounded domain Cl with Neumann boundary conditions (not necessarily self-
adjoint), A + ci satisfies for suitable c > 0 the above assumptions on H =
L2(Q) and V = Hx (Cl). The bound (2.2) is well known, and condition (2.3) fol-
lows with the help of, e.g., Theorem 1.4.8 in Henry [13], or Lions [20]. The as-
sumptions are equally met for Dirichlet boundary conditions (with V = H0X (Cl))
and mixed boundary conditions. The conditions can also be verified for finite
element discretizations of such operators, uniformly in the gridsize.   D

We will now give stability bounds for Runge-Kutta solutions of equation
(2.1). It is convenient to split the problem into the two special cases where
either m0 = 0 or f(t) = 0. The general case then follows by superposition.

Lemma 2.1. Consider equations (2.1)—(2.3) with uq - 0. Let the Runge-Kutta
method be strongly A(8)-stable with 6 > cp. Then, the numerical solution (u„)
and the internal stages (U„¡) are bounded for h > 0 by

N N    m N    m

(2.7)    hY\\un+i\\2+hYY\\u^\2^c-hY,Y,\\f^+c'h)\\2
n=0 n=0 i=l «=01=1

for every N > 0. The constant C is independent of h, N, and f.
Proof, (a) We consider the generating functions

00 00 00

u(0 = E"«+iC",  u(C) = Yu*zn> E(o = YF»Çn>
n=0 n=0 n=0
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610 CHRISTIAN LUBICH AND ALEXANDER OSTERMANN

with U„ = (U„i)^=l, F„ = (f(t„ + Cih))™=l. A calculation yields (see Lemma 3.1
of [23]) that they are related by2

(2.8a)

(2.8b)

with A(C)

(2.9)

mo-(^+A
bTtg-x"(0 = l-R(oo)H

F(Q,

no
+ j^jlbT) x. We will show in part (b) of the proof thatl-f

(IK <c,      |C|<1.

Then, using Parseval's formula in (2.8a) gives us the desired estimate for the
internal stages Uni. Since |/?(oo)| < 1, Parseval's formula used in (2.8b) yields

N N    m

£>»+iH2< ConstEEll^'H2
n=0 n=0 i'=l

and hence the bound (2.7).
(b) It remains to show (2.9). Let |Ç| < 1, C ̂  1 • We have

(2.10) (A(0/h + A)-x = ^r.J(z/h + A)-x.(z-A(Qrxdz,

where y is a union of bounded contours that enclose the eigenvalues of A(£).
The formula of Lemma 2.4 in [23],

c(2.11)   (A(Q-z)~x =S(I-zS)~x + -.(i - zé)~xib' (i - zay\-R(z)C
shows that the eigenvalues of A(£) are either eigenvalues of @~x or satisfy
R(z) = 1/Ç. By ^(ö)-stability, they are all in the sector |argz| < n - 6 <
n - cp. Moreover, for Ç bounded away from 1, all eigenvalues of A(Q are
bounded away from 0. These eigenvalues can be enclosed by bounded contours
in | arg z\ < n - cp that stay a fixed positive distance away from the eigenvalues,
so that on these contours (A(Ç) - z)~x is uniformly bounded for |C| < 1. By
the bound (2.6), the contribution of these eigenvalues in equation (2.10) thus
gives us uniformly bounded operators from (V')m to Vm for |£| < 1.

It remains to study the contribution of the eigenvalue z(Q near 0 occurring
for C near 1. Hence, let z(Q be defined by R(z(Q) = 1/Ç for Ç near 1, with
z(l) = 0. By ^(Ö)-stability, | argz(Ç)| < n - d for |Ç| < 1, £ near 1. Formula
(2.11) shows that

(A(C)-z)-' = ^M + 0(l), z — z(Q, C near 1,z(C)-z
where the residue Res(z) = (/ - z&Yx\bT(I - z@)~x fR'(z) is bounded for z
near 0 (since R'(0) = 1). Therefore, the contribution in (2.10) of the contour
7o encircling z(Q is equal to

J_
27TI(2.12) -j(z/h

1 Jy<s
+ AT1 • (z - A(C))-1 dz = (z(C)/h + A)~x « Res(z(C)).

2As in (2.8a), we often write A({) instead of A(£) igi Iy , and A instead of Im ® A .
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Again by (2.6), this is uniformly bounded as an operator from (V')m to Vm
for C near 1 with |£| < .1.   D

The following lemma shows that, pointwise in time in the //-norm, the so-
lution is again bounded as in Lemma 2.1. For different pointwise estimates, cf.
Lemma 3.5 of [23].
Lemma 2.2. Under the assumptions of Lemma 2.1, we have for all « > 0

(2.13) |u„+,|2+   max   |f7„,|2 < C- hYY W» + c'h^* ■

Here, C is again independent of n, h, and f.
Proof, (a) We start from the inequality

n

(2.14) K+1|2 < 2^ \(uv+i - uv , tt„+i)|,
i/=0

which holds for arbitrary sequences (un) with «o = 0.  Inserting uv+i - uv
from the Runge-Kutta method and using the duality (2.5), we obtain

K+.|2<2¿
i/=0

h Y bi(-AUvi + f(tv + ah)), uv+i
i=i

By the Cauchy-Schwarz inequality, this implies

K+1|2<2 [hY
v=0

Ybi(-AUvl + f(tv+Cih))
1=1

2\ V2

¿ElK+ilP
1/2

v=0

By the bound (2.4) and Lemma 2.1, each of the sums on the right-hand side
is bounded by a constant times the right-hand side of (2.7). This shows that
|m„+i|2 is bounded as stated in (2.13).

(b) To prove the estimate for the internal stages, we note that U„ = (Unt)1li
is given from the Runge-Kutta formulas as

Un = (I + h@® A)~x(h(?Fn + \un).

Since the eigenvalues of S are all in the interior of the sector | argA| < n - <p ,
it follows from (2.2) that (/ + h(S <8> A)~x is uniformly bounded as an operator
from Hm to Hm . We also have the resolvent bound

(2.15) ||(A + ^)-1||//4_K-<C-|/ir1/2,     \ar%X\< n-cp.

This follows from (2.6) via \(X + A)~xw\2 < \\(X + A)~lw\\m • ||(A + ^)-1u;|| <
C-|A|_1 -|M|2 for w e V . Now, (2.15) implies that (I+h^®A)~x is bounded
by 0(h~x/2) as an operator from (V')m to Hm . Hence, we have

\Uni\2<C>  \\un\2 + hY\\f(tn+Cjh)\\l

As we know already that |w„|2 is bounded by (2.13), this gives the desired
bound also for the internal stages U„¡.   U

A dual version of Lemma 2.2 is the following.
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Lemma 2.3. Under the assumptions of Lemma 2.2, we have for all N > 0

(N N    m \XI2 N    m

hY\\»n+i\\2+hYY\\uni\\2)   <c-hYY\f(t"+c'h)\
n=0 «=0 i=l / n=0 i=l

with a constant as in (2.13).
Proof. The result relies on a duality argument as in [26, Claim 2.8]. For the
internal stages, we have to bound the mapping lxN(Hm) -» ll¡(Vm) : (Fn)%=0 h->
(Un)%=0 . This has the same operator norm as its adjoint lj/(V'm) -» l^(Hm) :
(En)n=o *~* iUn)%=o ' which is given by the following scheme, derived by taking
adjoints in (2.8a):

Û„ = büH - h(@T <8> A*)Ün + hSTFn ,
m„_i =ü„ -h(lT ®A*)Ün + hlTFn,    üN = 0.

In the same way as in Lemma 2.2, one obtains the bound (2.13) for the dual
variables:

N    m

max   max \Üni\2 < C • h V V \\Fni\\l,
0<n<N Ki<m *-^ *-^

- n=d 1=1

i.e., the required bound for the adjoint mapping. We thus get the bound (2.16)
for the internal stages (Un¡), and the result for (w„+1)^=0 then follows from
equation (2.8b) via Parseval's formula.   D

Next we consider equation (2.1) with f(t) = 0. Then the Runge-Kutta
solution is just u„ = R(-hA)"uo . It is known from Le Roux [17] (cf. also [5])
that R(-hA) is uniformly power-bounded if R(z) is the stability function of
a (strongly) yl(0)-stable method and A satisfies (2.2). Hence,

\u„\ < C • \uq\   for n > 0.

For the /2-norm in time/ F-norm in space we have the following estimate:

Lemma 2.4. Consider equations (2.1)—(2.3) with f(t) = 0. Let the Runge-Kutta
method be strongly A(9)-stable with 6 > cp . Then, the numerical solution and
the internal stages are bounded for all N > 0 by

N N     m

(2.17) hY\\Un+i-R(oo)n+xuo\\2 + hYY\\U»'W2^C-\u«\2-
n=0 n=0 i=l

The constant C is independent of h and N.

Remark. Note that h^2^=0\\un+i\\2 < C• |«o|2 if R(oo) = 0. In this case one
has also ||w„|| < C- (nh)~x¡2- |un| for « > 1 , see [22, formula (3.31)].

Proof of Lemma 2.4. The generating functions satisfy (cf. (2.8))

(2,8a) m) = (m+Aym_L_^

(2.18b) «(C) = , _   '        (ftf-1 C/(0 + ü(oo)»o).
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(3.2) p + ¿(/))-i|^<_^_   for \arèX\< n - cp (cp<^),

Using the identity

(219) ^»U     *"'*v       ; 1-.Ç      l-Ä(co)C
which is verified by multiplying both sides with A(Ç)_l = & + j^lbT, we
rewrite (2.18a) in the form of (2.8a) with Fn = (#"„.)£, := ¿?~'l 'Ä(oo)" -w0//i •
For the internal stages we thus get the bound (2.17) by applying Lemma 2.3 with
F„i in the role of f(t„ + c¡h), noting once more |/?(oo)| < 1. The result for
the sequence (un+i - R(oo)n+Xuo) then follows by using Parseval's formula in
(2.18b).   D

3. Linear equations with time-dependent operator

We consider time discretization of the initial value problem
(3.1) u'+ A(t)u = f(t),     u(0) = u0   (0<t<T).
Extending the setting of §2 to the time-dependent situation, we assume that the
densely defined closed operators A(t): D(A(t)) c H —► H satisfy conditions
(2.2) and (2.3) uniformly in 0 < t < T :

M
1 + W

with M independent of t, and
(3.3) V = D(A(t)x/2) = D(A(t)*x/2)   with equivalent norms, uniformly in t,
where V is assumed not to depend on t. Of course, A(t) then also satisfies
(2.4) and (2.6) uniformly in t. In addition, we assume

(3.4) \\A(t)-A(T)\\v>*-v<L-\t-T\,        0<r<t<T.
Example. Consider the second-order strongly elliptic differential operator (d¡ :=
d/dXi) A(t)u = ¿Zi j di(a¡j(x, t)djU) + £,- b¡(x, t)d¡u + c(x, t)u with smooth
bounded coefficients on a smooth bounded domain Q, equipped with Neumann
boundary conditions. We take this as an unbounded operator on H = L2(Cl).
While D(A(t)) depends on t through the boundary conditions du/dnA(t) =
Y^ij n¡aij(x, t)djU = 0, the space D(A(t)x¡2) = V = Hx(Cl) is independent of
the'problem coefficients (cf. Lions [19, Ch. VI.l]), and [20, §6].
Lemma 3.1. On finite time intervals (0 < nh < Nh < T < co), the estimates of
Lemmas 2.1-2 A remain valid for the Runge-Kutta solutions of equations (3.1)-
(3.4) with time-dependent operator.
Proof. The proof is a discrete analogue of the following surprisingly simple
proof of an estimate for the exact solution of equation (3.1). We learnt this
from Savaré's paper [26], where time discretization of equation (3.1) by linear
multistep methods is studied. Consider equation (3.1) rewritten in the form

(3.5) u' + A(l)u = f(t)   with f(t) = f(t) + (A(l)-A(t))u(t)
for a fixed 1 > t. For the time-invariant equation with operator A(t), we have
the estimate (cf. [16, §4])

(3-6) jf ||M(0ll2 dt < C (\uo\2 + jf ||/(0ll2 dt\
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with C independent of 7. To bound the term containing /, one uses (3.4)
and a partial integration:

/' \\(A(t) - A(t))u(t)\\l dt < f L2(l - t)2\\u(t)\\2 dt
Jo Jo(3.7)

= ^2L2(l-t)^\\u(T)\\2d^dt.

Hence, w(t) = j0 ||i»(t)||2í/t satisfies an inequality of the form to which Gron-
wall's lemma applies. This provides an estimate (3.6) with the data / instead
off.

The above arguments carry over to the discrete case without difficulty: Lem-
mas 2.1 and 2.4 establish the discrete version of (3.6), partial summation re-
places the partial integration in (3.7), and a discrete Gronwall lemma then yields
the desired estimates. We omit the details.   D

If the solution of (3.1) is sufficiently smooth in time, one has the following
convergence result.

Theorem 3.2. For an initial value problem (3.1)—(3.4) consider a Runge-Kutta
method of stage order q and order p > q + 1 that is strongly A(6)-stable with
6 > cp. If k<«+1> € L2(0, T; V) and u^"+2^ e L2(0, T;V), then the error is
bounded for Nh <T by

0<n<N
(3.8)       "=0

11

hY\\un - u(tn)\\2 + max \un-u(tn)\2

< C ■ (h"+x)2 ■ í í   \\u^+x)(t)\\2dt+ Í  ||M<9+2)(r)||2d/j .

The constant C depends on the Runge-Kutta method, on the constants in (3.2)-
(3.4), and on T.
Proof. Let us first assume that the operator A is time-independent. The general
case will be treated at the end of the proof.

(a) For the errors en+x = un+i-u(tn+x) and En = (Eni)f^x with Eni = Uni-
u(tn + c¡h) we have the recursion

(I + h£®A)E„ = le„-D„,
en+i =en- h(bT <8> A)E„ - dn+i,

where d„+i and Dn = (Dni)f=x are the defects obtained by inserting the exact
solution values into the Runge-Kutta scheme. We recall that these defects satisfy
the bound (1.6). The generating functions

e(Q = Yen+iC, E(C) = YEnC,
n=0 n=0

oo oo

</(C) = 2>»+iCB, z>(í) = EA,í"
n=0 n=0

(3.10) "=° "t
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are then related by (cf. (2.8))

(3.11a) E(0 = -^f + AylAf (0(0 + ̂ (0),

(3.1 lb) e(C) = T-±-^(bT&-x(E(0 + D(Q) - d(Q).

Using the identity (2.19), we rewrite (3.11a) as
(3.12)

E{Q+D{Q=m+AYlAD(0-m+AY1 *-'i wo
y  h J vw     V  h J     l-/?(oo)C    h    '

By (2.4) and (2.9), the operator (A(Q/h + A)~xA is uniformly bounded on Vm
for |C| < 1 • By (2.9) and |/?(oo)| < 1, the expression multiplying Çd(Ç)/h is a
uniformly bounded operator from V to Vm . Thus Parseval's formula applied
to (3.12) gives

N    m /     N    m N-l \

(3.13)     hYY\\E»'\\2^c(hY,Il\\D»i\\2+hY,\\d^/h\\2).
n=0 i=l \    n=0 i=l n=0 J

and by (1.6) this is bounded by the right-hand side of (3.8). Parseval's formula
used once more in (3.1 lb) then yields the desired bound for h J]^ \\en+i \\2 .

(b) The pointwise estimate in the //-norm follows as in the proof of Lemma
2.2 with uv , Uvi replaced by ev , Evi, using the second formula of (3.9) and
the estimate (3.13) of the internal stages.

(c) For the time-dependent case, we use the ideas of Lemma 3.1. With fixed
A = A(t) for a suitable 1, we write the error recursion as
„.., (/ + ha ® A)En = le„ - Dn + h<£Fn ,
(3.14) T Ten+i =e„- hb1 % AEn - dn+i + hb1 Fn
with Fni = (A - A(t„ + Cih))Eni. This gives for the generating functions a
combination of (2.8) and (3.11):

! sic,=. (m+Ay m (D{Q+x«)+(m+Ay m.
Hence, Parseval's formula can again be applied, yielding

n     m /       n     m n-l

ä££ii/?„ii2<c [hYY\\D"\\2 + hY,wd^ih\\2
v=0 1=1 V      v=0 1=1 v=0

n     m \

+h y Y wA -A^+«vfv-vWZviW2 ■
i/=0 1=1 /

Partial summation of the last term (with A = A(tn+i)) and the application
of a discrete Gronwall lemma yield an I2 bound of the form (3.13) for the
internal stages. This leads to the desired bound for hj^o Ikn+ill2 as in part
(a). The pointwise bound in the //-norm is proved as in part (b), using the
second formula of ( 3.14).   D

Assuming more spatial regularity, we obtain an improved temporal order of
approximation.
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Theorem 3.3 (Refined error estimate). In addition to the conditions of Theo-
rem 3.2 let p > q + 2. We further suppose that the regularity assumptions
M(«+2) G l2(0, T; V) and m("+3' 6 L2(0, T; V) hold. If ß € [0,1] is such
that D(A(t)xl2+P) is independent of t (with uniformly equivalent norms) and
APu^+V e L2(0, T; V), then the error is bounded for Nh < T by

N

hY\\un - uiln)\\2 + max |w„ - w(r„)|2
n=0 -

(3.16) <C-(h"+x+P)2- f \\Aßu^+x\t)\\2dt
Jo

+ C-(h*+2)2- (f   \\u{i+2)(t)\\2dt+ [  \\u{«+i)(t)\\ldt\ .

Again, the constant C depends only on the Runge-Kutta method, on the constants
in (3.2)-(3.4), and on T.
Remark. The restriction to ß < 1 is not essential. If A(t) depends smoothly
on t as an operator from V to V and if higher temporal derivatives of u
satisfy some regularity assumptions as in Theorem 3.3, then the convergence
order is min(p, q + 1 + ß). We do not prove this extension of Theorem 3.3.
The proof uses similar ideas but becomes very technical.

Example. We consider again a second-order strongly elliptic differential opera-
tor with time- (and space-) dependent smooth coefficients on a smooth bounded
domain Cl, equipped with appropriate boundary conditions. We take it as an
unbounded operator on H = L2(Cl). The attainable value of ß in Theorem
3.3 relies on the characterization of the domains of fractional powers of elliptic
operators given by [9] and [10]:

(i) Homogeneous Dirichlet boundary conditions. For a < 5/4 (and a >
1/2) we have D(A(t)a) = H2a(Ci) n H0x(Cl) with uniformly equivalent norms.
However, for a > 5/4 an element v e D(A(t)a) has to be such that A(t)v
vanishes on the boundary, and hence D(A(t)a) depends in general on t for
a > 5/4. We next consider the condition Aßu(q+X)(t) e V or equivalently
M(9+i)(i) g D(A(t)l/2+ß). A smooth function over Cl that vanishes on the
boundary is in D(A(t)5'4~E) = H5'2-2e(Cl)nH0x(Cl) for arbitrary e > 0. This is
sharp unless further (unnatural) boundary conditions are satisfied. In the case
of a temporally and spatially smooth solution, Theorem 3.3 is thus applicable
with 1/2 + ß = 5/4 - e , i.e, ß = 3/4 - e.

(ii) Homogeneous Neumann boundary conditions du/dnA^ =
£, ,• n¡a¡j(x, t)djU = 0. In 2 and more space dimensions, D(A(t)a) = H2a(Cl)
for a < 3/4, but for larger values of a the domain depends on t through
the boundary conditions. These do not depend on t in dimension 1, and then
D(A(t)a) is independent of t for a < 7/4. On the other hand, a smooth func-
tion satisfying the boundary conditions is in D(A(t)1lA~E) for arbitrary e > 0.
The time derivatives of a smooth solution satisfy the boundary conditions only
if they do not depend on t, hence in dimension 1. Otherwise, the solution
derivatives are in D(A(t)i/4~e). We can thus use Theorem 3.3 (or the exten-
sion mentioned in the above remark) with /? = 5/4 - e in 1 space dimension
or when the coefficients a¡j do not depend on t on the boundary, and with
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ß = 1/4 - e otherwise in higher dimension. The latter value of ß is also
obtained with nonhomogeneous Neumann boundary conditions.

(iii) Periodic boundary conditions. Here we have for all a that D(A(t)a) is
independent of /, and a smooth solution is in D(A(t)a) together with its time
derivatives. Hence, in this case the above remark gives us the full convergence
order p .

Remark. While the above values of ß are sharp for the energy norm, they are
not necessarily optimal for error estimates in the L2 (Í2)-norm. In fact, we can
also consider A(t) as an unbounded operator on the space H = H~x(Ci) with
D(A(t)) = H0x(Cl), in the case of Dirichlet boundary conditions. We then have
V = L2(Ci) and D(A(t)xl2+<i) = D(A0(t)ß), where A0(t) is the same differential
operator viewed as an unbounded operator on L2(Cl). Hence we can choose
ß = 5/4 - e (larger by 1/2) in this case, to obtain an estimate

\hY\\Un-u(tn)\\lm\        =0(A«+1+5/4-')

for smooth solutions. In [23] such an estimate was shown pointwise in time
for equations with time-independent operator. We do not know if this can be
achieved in the time-dependent case.

Proof of Theorem 3.3. We concentrate on those aspects that go beyond the proof
of Theorem 3.2.

(a) We first consider the estimates in the F-norm for the time-invariant
situation. Since p > q + 2, the defect in (3.9) can now be rewritten as

Dni = h»+x ■ôru^+x\tn) + h<l+x i'"' ki (t-^L) é"+2\t)dt,
(3 17) Jt" V '

d„+i=h«+2j K[i-±Ly^)(t)dt

with bounded Peano kernels k and k¡ and with

. / m \ m

(3.18) Sj = j-^ l(q + l)Y W) - ci+l     satisfying Y M = 0.

We shall show that the estimate (3.16) also holds for h ]£ \\Eni + A,,||2. The
desired bound for J2 \\en\\2 then follows from (3.11b). We start from identity
(3.12). By (3.17), the term coming from d(Q is bounded as needed. It thus
remains to consider the contribution of

G(Q:=(^ + Ay\D(Q=<^f+Ay\x-ß.AßD(Q.
Using the estimate (see, e.g., [13, §1.4])

(3.19) IKX + Ar'A'-eWv^vKC-m-e,    \argX\<n-tp,
we obtain from the representation as a contour integral (2.10) that ||C7(Ç)|| <
C • hß ■ \\AßD(C)\\, uniformly for all Ç with |£| < 1 that are bounded away
from 1. For C near 1 (cf. proof of Lemma 2.1) one eigenvalue z(Q of A(Ç)
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gets close to 0, and such an estimate can no longer be inferred. To overcome
this problem, we use equation (2.12) and the identity

bT(I - z@)~x =bT + zbTa(I - zS)~x.

The contribution of the eigenvalue z(Q to G(Q is thus (with z = z(Q for
short)

{¡+A)-AM^l.brD{fí

+ (l+A)-A<->,>. *'-'« - ->y - *>" -A'DJO.

For the first term, we use that (z(Q/h + AyxA is bounded as an operator on
Vm for C near 1 with |£| < 1, whereas the second term can be bounded via
(3.19) as before. This yields

(3.20) ||G(C)|| < C• hf. \\AßD(Q\\ + C • \\bTD(Q\\,
now valid uniformly in |£| < 1. We finally apply Parseval's formula and use
(3.18) for bTD„.

(b) We next verify the pointwise estimates in the //-norm. As in the proof
of Theorem 3.2, we start from

n

\en+iI2 < 2 Y \i - hibT ® A)(I + ha® A)~x\ev, ev+l)
v=0

+ (h(bT <8> A)(I + ha® A)~XDV , ev+i) - (dv+\, ev+x)\

and use the Cauchy-Schwarz inequality. This yields immediately the bounds for
the first and the third term. The second term is split as

(bT ® A)(I + ha ® A)~xDu
m

= Y biADvi - hß(bT 0 A)(I + ha® A)~xa ® (hA)x~ß ■ AßDv ,
i=i

and since (3.19) shows that (/ + hS <g> A)~xa ® (hA)x~ß is bounded as an
operator on Vm , we obtain the desired bounds as in part (a).

(c) In the time-dependent case, we start from (3.12) and (3.15), which shows

£(0+.({)=.(^+,)-'T^^+(^)+,)-'(f(i)+,(0),

with
Fni = (A - A(tn + Cih))(Eni+Dni)

and
Kni = A(t„)D„i + (A(tn + ah) - A(t„))Dni.

The term coming from K(Q can be bounded as in part (a), using the Lipschitz
boundedness (3.4).   The rest of the proof is then identical to part (c) of the
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preceding proof. For the pointwise estimate in the //-norm, we use (2.14) with
un replaced by en , further

m

en+i =e„-hY biA(tn + c¡h)(Eni + Dni)

(3.21) ,=1
+ h Y bi(A(tn + c¡h) - A(tn))Dni + A(tn)bTDn - dn+i

1=1

and the above estimate for J2 \\Em■ + A¡,||2 .   D
Remark. Concerning spatial discretization, the remark (c) after Theorem 1.1
applies verbatim to the present situation, with B now given by the right-hand
side of (3.8) or (3.16) for û instead of u. This follows by linearity and using
Lemma 3.1 to treat the perturbations.

4. Quasi-linear equations

We now consider equations with solution-dependent operator,

(4.1) u' + A(u)u = f(t),     u(0) = u0   (0<t<T).
We use the framework of §2 and consider again a Hilbert space triple V c H =
H' c V . For v e V, let A(v) : D(A(v)) c H -* H be a densely defined closed
linear operator. Conditions (2.2) and (2.3) are assumed to hold uniformly for
v varying in bounded subsets of V, viz.,

(4.2) \(X + A(v))-x\H^H<j^-^    for\argX\<n-cp [cp<^),

(4.3) V = D(A(v)x'2) = D(A(v)tX'2)   with equivalent norms.

Then A(v) also satisfies the bounds of (2.4) and (2.6) uniformly for v in
bounded subsets of V. We further assume that the following local Lipschitz
condition is satisfied: For all <5 > 0 and all r < oo, there exists L = L(ô, r)
such that

(4.4) \\A(v) - A(w)\\v^y <ô- \\v-w\\ + L-\v-w\   for \\v\\ < r, \\w\\ < r.
Example. Consider a second-order strongly elliptic differential operator A(v)
with smooth coefficients a¡j(v(x)) etc. over a smooth bounded domain Cl c
Rd , equipped with Neumann boundary conditions. In 1 space dimension, tak-
ing H = L2(Cl) and V = Hx(Cl) c C(Cl) gives well-defined operators A(v),
v € V, that satisfy the above conditions. In particular, condition (4.4) is ob-
tained from the estimate

\\A(v) - A(w)\\v^v < sup \a(v(x)) - a(w(x))\,
xeii

using the local Lipschitz boundedness of a and the imbedding Hs(Cl) c C(Cl)
for s > 2 together with the bound [19, Prop. IV.4.1]

\\v\\h' <S-\\v\\Hl +Cs(S)>\v\L2   for v eHx(Cl) and s < 1.

This choice of H and V is no longer possible in 2 dimensions. Here, it
can be shown that our conditions are met when the differential operator is
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considered as an unbounded operator on the Sobolev space H = Hs(Ci) with
0 < s < 1/2, with V = Hs+x(Ci). The lower bound on s originates from
Sobolev's inequality in the requirement V c C(Cl). The upper bound comes
from condition (4.3), because for values of s > 1/2 the Neumann boundary
conditions (which depend on the coefficients a¡j(v(x))) enter into D(A(v)xl2).
Note that for 5 < 3/2 one has Hs(Ci) = D(A0(v)s/2), where A0(v) is the
same differential operator taken as an unbounded operator on L2(Ci). In 3
space dimensions, there is a conflict between the Sobolev inequality for V and
condition (4.3), so that the 3-dimensional quasi-linear Neumann problem falls
outside our framework.

The situation is more favorable for the Dirichlet problem, for which condi-
tion (4.3) is less stringent. Here one can take H = //¿(Q) and V = Hs+x(Cl) n
H0x(Cl) (and hence V = Hs~x(Ci)) with 0 < s < 1 in 2 space dimensions, and
still with s = I in 3 dimensions.   D

We have the following convergence result for the case that the solution of
(4.1 ) is sufficiently smooth in time.

Theorem 4.1 (Convergence of Runge-Kutta methods for quasi-linear parabolic
equations). For an initial value problem (4.1)-(4.4) consider a Runge-Kutta
method of stage order q and order p > q + 1 that is strongly A(6)-stable with
dxp. Ifu(i+V e L2(0, T; V) and m(«+2' e L2(0, T; V), then for sufficiently
small stepsizes h there exists a unique numerical solution u„ (0 < nh < T)
whose error is bounded by

N
Ä V" ||w„ - w(i«)||2 + max \u„-u(t„)\2

'—' 0<n<N

(4-5) ~* .    - t
< C• (h"+x)2- ( f   \\u(q+x\t)\\2dt+ j  \\u^+2)(t)\\ldt) .

The constant C depends on the Runge-Kutta method, on the constants in (4.2)-
(4.4), on sup0<KT-||w(i)||, and on T.
Proof. Let us assume for a moment that the numerical solution un and the
internal stages C/„, exist for 0 < nh < T and that

(4.6) l!tf„.||<r
with r = 2sup0<Kr||w(0ll ■ ^0T sufficiently small stepsizes h, this will be
verified at the end of this proof.

(a) For a concise notation, we abbreviate the exact solution values by U„¡ =
u(tn + c¡h), ü„ = u(tn) and we set

(4.7) . sfn=diag(A(Uni),...,(Unm)).

In this notation, the errors En¡ = Um—Um and en = un-ü„ of the Runge-Kutta
method applied to (4.1) are related by

(/ + hasfn)E„ = \en + MFn - Dn,
en+i =e„- hbTssfnEn + hbTFn - dn+i(4.8)
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with F„i = (A(Uni) - A(Um)) • U„i and with the defects Dni and dn+i. Recall
that these defects satisfy the bound (1.6). Lemma 3.1 and Theorem 3.2 now
give the following /2-bound on the error (cf. (2.7) and (3.13)):

N N    m / N    m
2

HI*
n=0 n=0 1=1 \ n=0 i=l

N    m N-l

(4.9) hY \\en+i\\2 + hYY\\E»'W2^C- \BN + hYY\\F"

with

(4.10)      BN = hYYïïD»'\\2+hY,\\d»+i/h\\2+hJl\\dn^\2-
n=0 1=1 n=0 n=0

The rest of the proof is to show that the left-hand side of (4.9) can actually be
bounded already by Bn ■

(b) We thus have to estimate Fni. This is the moment where condition (4.4)
comes into play. Since the internal stages are bounded by assumption (4.6), we
conclude that

\\Fni\\l<(ô\\Eni\\ + L\Eni\)2.r2
and further

(4.11) ||Fm-||2 < 2r2á2||£„,||2 + Ar2L2(\Eni + Dni\2 + \Dni\2).

(c) We next establish a bound for \E„i + Dni\. For technical reasons, we
regroup (4.8) as

(4 12) (I + ha® A(Ü„))(E„ + D„) = len + hSFn + hS ® A(ün)D„
[ '    ' +h(a®A(ün)-aK)En.

Since the operator (I + h€ ® A(u„))~x  is uniformly bounded on Hm and
bounded by 0(h~xl2) from (V')m to Hm (see Proof of Lemma 2.2), we obtain

\Em + Dni\2 < C •    \en\2 + hY \\Enj + A(ün)D.,711*
y=i

m

+ h\\a® A(ün) - asf„\\2v,m^vm Y \\Enj\2
j=x

and by applying (4.4) to ||^(ön) - A(Ùni)\\v'^v also
(4.13)

(mm m

\e„\2 + hY WEnjWl + hY \\E>nj\\2 + h*Y WEnj\a
7=1 7=1 7=1

(d) Next we consider the second equation of (4.8). Recalling the tech-
niques of the proof of Lemma 2.2 part (a) and substituting each occurrence
of EEII^/II2 or Lililí2 by (4.9), one finds

(4.14) \en+i\2<C- [Bn + hYYW^'W2) >
V i/=0 i=l /
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which is the same bound as for the /2-norm. We then insert (4.14) into (4.13)
and use the estimate (4.11). This results in

\Em + Dni\2 <C-lBn+hYY\E»J + Dvj\2 + hih2 + Ôl) E E WE
\ v=07=1 v=0 7=1

for i=l, ... ,m . The application of a discrete Gronwall inequality now gives
the bound

(n     m

Bn+h(h2+s2)YY\\E»j\i2
v=0j=l

(e) We finally insert (4.15) into (4.11), and (4.11) into (4.9). Since ö can be
chosen arbitrarily small, we obtain

N N    m

h y ik»+iil2+h Y Y iifyii2 <C-B*>
n=0 n=0 1=1

and by (4.15), (4.14) also
max |en+i|2+ max    max   \Eni\2<C'BN.

0<n<N 0<n<N i=l,...,m

These are the desired bounds that lead to the estimate (4.5) in the same way as
in Theorem 3.2.

(f) It remains to prove the (local) uniqueness and existence of the numerical
solution as well as the bound (4.6) for the internal stages. We use a fixed point
argument.

First we will show that the iteration
(4.16)

m

U!Ü+1) = un-hY au (A(U^)Unj+l) - f(tn + cjhj) ,        i=l,...,m,
j=i

is a contraction with respect to the weighted norm

\\\Un\\\=   max   max(||[/„/H,/r'/2|C/,,/1)
1=1 ,...,m

in a ball (with respect to the ||| • ||| norm) around 1 • u„ of a fixed, sufficiently
large radius. The proof that the iteration maps the ball into itself for small h
uses arguments similar to the proof of contractivity, and is therefore omitted.
To show contractivity, we consider the difference of two sequences U„ + and
Vn(k+X). We denote this difference by E{„k+l) = U{k+X) - V„{k+X), and like in (4.7),
we write for short sf(U„) = diag(^(i7nl), ... , A(U„m)). We then have

(I + ha® A(Un))E„k+X) = ha(tf(Vn{k)) -tf(U{nk)))Vnik+l)
+ h(6 ® A(U„) - @$t (U{nk)))E„k+l) .

Recalling the uniform bounds on (I+ha®A(un))~x and the Lipschitz condition
(4.4), and using that Vn(k+X) is again in the ball, we get

\F(k+x)\\ < Cl^ni       II ̂  c (ô>    max   \\Enk)\\ + Lhx'2-h-x'2   max   \Enk)\)
\      7=1,..., m        ' 7=1,..., m       '   j

+ C.(t5 + LÄ1/2).|||«y^)-lun|||- .max_||£<5+1)
7=1,..., m

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RUNGE-KUTTA APPROXIMATION OF QUASI-LINEAR PARABOLIC EQUATIONS 623

and the same bound for h~xl2 • \Enk+x^\. Thus, the recursion satisfies

lll^ifc+1)lll<c.(¿ + x.A1/2). infill,
and hence is a contraction for S and h small enough. This proves the unique-
ness of the numerical solution in the ball.

It remains to show the existence of a fixed point. For this we take U$ -
u(t„ + c¡h) as starting value for the iteration and use |||w„ - w(i„)||| < C-hxl2,
which follows from parts (a)-(e) of the proof (with q = 0). From the identity

(I + h^®A(u(t„)))(U(nl,-UnV')(1) r(0h

= !•(«„- u(t„)) - A(£*W) -a® A(u(tn)))(Un(0), 7(D Ui0))-D„

one deduces as above that

ulx)-ur\\\<chxi2.
Thus, if h is small enough, the iterates remain bounded by 2sup0<í<:r||«(í)||
in F-norm and converge to a fixed point U„ satisfying (4.6).   G

Under slightly stronger assumptions, we obtain—as in the linear case—a
higher temporal order of convergence. In addition to (4.2)-(4.4) we now assume
that for all r > 0 there exists L = L(r) such that

(4.17)
dAA(v) - A(w) -—(u)[v - w] < L-(\\u-v\\ + \\u-w\ \v-w\

for max(||w||, ||i>||, ||u;||) < r. This, together with (4.4), implies the estimate

\dA.
(4.18) du (v)[w] <C-\\w\

uniformly for v and w in bounded subsets of V. Let further ß e [0, 1 ] be
suchthat D(Axl2+ß(v)) is independent of v (with uniformly equivalent norms)
and

(4.19)
ñ A

Aß.—(u(t))[w]u(t) < C-H^wll,        0<r<7\

uniformly for w G D(Axl2+ß).

Theorem 4.2 (Refined error estimate for quasi-linear equations). In addition
to the conditions of Theorem 4.1 we assume p > q + 2, (4.17) and (4.19).
We further suppose that the regularity assumptions w<«+2' e L2(0, T; V) and
M(«+3) g l2(Q, T; V) hold. If Aßu^+X^ e L2(0, T;V), then the error is
bounded for Nh < T by

(4.20)

hY\\un - u(t„)\\2 + max \u„-u(t„)\2
n=0 -

<C-(hq+x+ß)2- f   \\Aßu(9+X)(t)\\2dt
Jo

+ C ■ (hq+2) • ( [   \\u{<l+2)(t)\\2dt+ [   ||m(9+3)(/)||2^
\Jo Jo j
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Again, the constant C depends only on the Runge-Kutta method, on the constants
in (4.2)-(4.4), (4.17), (4.19), on sup0<(<r ||«(0||, and on T.
Example. Consider again the example of solution-dependent strongly elliptic
second-order operators from the beginning of this section. We compare the
situation to that of the example after Theorem 3.3. In 1 space dimension,
Theorem 4.2 gives us the same noninteger convergence order as Theorem 3.3.
Condition (4.19) is not restrictive for spatially smooth solutions. In 2 space
dimensions, we still get the same values of ß by choosing H = Hs (Ci) with a
small s > 0. For the Dirichlet problem in 3 dimensions, taking H = H¿ (Ci)
allows us to choose ß = 1/4 - e. For periodic boundary conditions, Theorem
4.2 gives us ß = 1, but we expect that here again the full order p can be
obtained under reasonable assumptions on the derivatives of A .
Proof of Theorem 4.2. We use the same notation as in the proof of Theorem
4.1. The main idea now is to show that under the present assumptions, the
bounds (4.9), (4.14), and (4.15) also hold if ||£„,-|| is replaced by \\Eni + Dni\\
and if È, ||Z>„,-||2 is replaced by T.A\hßAßDni\\2 + || £;¿>,£m||2 • The rest is
then identical to the preceding proof.

(a) We start again with (4.8), written as

(4 21)        (/ + Msin)xrEn + Dn) = le" + M*n + MKn + MSn '

en+i =en- hbTsf„(En + D„) + hbTFn + hbTKn + hbTS„ - dn+i

with F„i = (A(Üni-D„i)-A(Uni))-U„i and with Sni=A(üR)Dni+%(ün)[Dm\Ün.
The remaining term, namely

Km = (A(Üni) - A(Uni - Dni) - %¡¡(ü„)[Dni]) • Uni

dA ~
+ -Q^(Ün)[D„i] - (Eni + Dni + Um ~ Ü„ - D„¡)

+ (A(Üni)-A(ün)).Dni
satisfies by (4.17), (4.18), and (4.4) the bound

(4.22) \\Kni\\l<C.h2-(\\Dni\\2 + \\Eni + Dni\\2).
The recursion (4.21) admits by Lemma 3.1 and Theorem 3.3 instead of (4.9)-
(4.10) the (sharper) bound

N N    m / N    m \

(4.23) hY¥n+i\\2 + h YY WE"'+D"i ii2 <c- [BN + hYY\\F"'\\2) >
n=0 n=0 1=1 V n=0 1=1 /

where, owing to (4.22),
N    m

BN = hYYwhßAßD^2+hH Yb>Dni
i=l

2

(4 24) "=0 ,=1 "=0N    m N-l N
+¿3EEii£"i+D»<ii2+AEiKWAii2+/*Eii4<+ii

n=0 i=l n=0 «=0

Note that F„, is bounded by

(4.25) \\Fni\\l < 2r2ô2\\Eni + Dni\\2 + 4r2L2\Eni + Dni\2.
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(b) To establish the bound for \Eni + D„¡\, we use the identity

(/ + h@ ® A(ün))(En + D„) = le„ + haPn + h@Kn + h@Sn
+ h(6 ® A(ü„) - Ss¿n)(En + Dn),

further (4.23), the uniform boundedness of (I + ha®A(ü„))-xS®(hA(ün))x~ß
on Vm and (4.19). This gives
(4.26)

\Eni+Dni\2
(m m m

\en\1 + hY\Wnal + hY\\hßAltDnj\? + h*Y\\E»J + D*fl1
7=1 7=1 7=1

(c) From the second line of (4.21) one obtains with the same techniques as
in the preceding proof

Bn + hYY\\F»i\\2)   ■
v=0 i=l /

With the bounds (4.23), (4.25)-(4.27) available, one continues as in the proof
of Theorem 4.1.   D
Remark. The remark (c) after Theorem 1.1 about space discretization applies
also to the present situation, with B now given by the right-hand side of (4.5)
or (4.20) with it instead of u. Also remark (b) after Theorem 1.1 about the
generalization from /(f) to f(t, u) applies to Theorem 4.1, and to Theorem
4.2 with additional assumptions on df/du.

5. Variable time steps
The proofs of the results of the foregoing sections used in an essential way

the assumption of a constant time step h. There is, however the following
extension to variable stepsizes.
Theorem 5.1. The lemmas and theorems o/§§2-4 remain valid for Runge-Kutta
solutions obtained with stepsize sequences {h„} satisfying

N

(5.1) $>n+i/^-ii<c,
n=0

(5.2) ch<h„<h,       0<n<N,
with a positive constant c.
Remark. Condition (5.1) is familiar from the convergence analysis of linear
multistep methods for ODEs, see [ 11, Thm. HI.5.7]. Condition (5.2) may appear
rather restrictive. However, if there is a finite subdivision of the integration
interval into subintervals on which stepsizes of different scales are used, then
one can apply Theorem 5.1 separately on each of the subintervals.

We do not give a proof of Theorem 5.1, but only indicate how the variable
stepsize version of Lemma 2.1 comes about. The basic idea is again that of
Lemma 3.1. To simplify the presentation further, we consider here only the
backward Euler method

Wn+l - Un
h„+i + Aun+i=fn+l,      "0 = 0.
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We rewrite this as
Un+l - Un   .    A
-7-r An+lUn+l - Sn+l

with An+i = (h„+i/h)-A, gn+i = (h„+i/h)-fn+i, or again as (cf. (3.5))

-^- + ANU„+i = gn+l + (AN - A„+i) - Un+l ■

By Lemma 2.1 and condition (5.2), we now have
N N N

h Y hm2 < ch Y n/»iiî + ch E ii^ - An\\2v^v\\un\||y-i^V — ■nn\\V'^V\\un\
n=l n=l n=l

Using partial summation and the definition of A„ , and noting that

(hN-hnV     ihN

we get for all /V

W2 < 2^±^M =: an

hY\\Unf <ChY\\fnt + CY^-hY\\Uvf .
n=\ n=l n=l v=l

By (5.1), (5.2), we have Y^a„ < C, and hence a discrete Gronwall-type inequal-
ity gives

aEii«„ii2<c/2¿ii/„ii2,
n=l n=\

which is the desired result.
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