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RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS
AND CONVOLUTION QUADRATURE

CH. LUBICH AND A. OSTERMANN

Abstract. We study the approximation properties of Runge-Kutta time dis-
cretizations of linear and semilinear parabolic equations, including incompress-
ible Navier-Stokes equations. We derive asymptotically sharp error bounds and
relate the temporal order of convergence, which is generally noninteger, to spa-
tial regularity and the type of boundary conditions. The analysis relies on an
interpretation of Runge-Kutta methods as convolution quadratures. In a dif-
ferent context, these can be used as efficient computational methods for the
approximation of convolution integrals and integral equations. They use the
Laplace transform of the convolution kernel via a discrete operational calculus.

1. Introduction

The objectives of the present paper are twofold:
• It gives an error analysis of Runge-Kutta time discretizations of parabol-

ic equations.
• It introduces a new class of computational methods for the approxima-

tion of convolution integrals, based on Runge-Kutta methods.
The reason for treating these apparently unrelated topics in a single paper is
that they both rely on a discrete operational calculus of Runge-Kutta methods
in such a way that separation of the second topic would only minimally reduce
the length of the article while implying a substantial loss of perspective.

Section 2 introduces and studies Runge-Kutta based convolution quadrature
methods approximating integrals of the form

/ k(t-t)g(r)dr,        f>0.
Jo

Like the multistep methods in [16], they require (only) the Laplace transform
of the kernel k(t) to be known. The kernel may be weakly singular, may have
components with different time scales, and need not itself be known explic-
itly. Such an approximation of convolution integrals is important in integral
equations arising, e.g., as feedback systems in control engineering, as bound-
ary integral equations for various types of initial-boundary value problems, and
in viscoelasticity. The methods proposed here can be used for the numerical
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106 CH. LUBICH AND A. OSTERMANN

solution of such integral equations in much the same way as those of [16]. A
potential advantage of the present methods is that they can combine good stabil-
ity properties with high order1 (cf. the discussion of Runge-Kutta vs. multistep
methods in the stiff ODE case [9]).

In §3 we study Runge-Kutta time discretizations of linear parabolic equations.
Of special interest here is the way in which spatial regularity and boundary con-
ditions determine the temporal approximation properties of the method. Such
a relationship, which is not present in multistep methods, has first been ob-
served in the pioneering thesis of Crouzeix [3]. The approximation properties
of Runge-Kutta methods for inhomogeneous linear differential equations with
unbounded operators have further been studied in [4, 1]. More recently, it has
been shown in [19] that noninteger orders of convergence are usually attained.
In the present paper, asymptotically sharp error bounds are given both in terms
of the data and of the solution. For example, for the inhomogeneous heat equa-
tion, the temporal approximation order turns out to be in general higher for
homogeneous than for time-dependent nonhomogeneous boundary conditions
(by 1), higher for Neumann than for Dirichlet boundary conditions (by \ ),
and higher when the error is measured in space in the L2 norm rather than
the maximum norm (by \ ). In the worst of these cases, the order of conver-
gence equals the stage order plus 1, given sufficient temporal smoothness of the
solution.

In §4 we give error bounds of Runge-Kutta methods applied to semilin-
ear parabolic equations, under assumptions which include the incompressible
Navier-Stokes equations. The results obtained are similar to those for the lin-
ear case studied in §3. As in that section, the ideas and techniques of §2 play
an important role throughout our analysis. We are not aware of previous work
giving convergence estimates of Runge-Kutta time discretizations of the Navier-
Stokes equations (except for backward Euler and Crank-Nicolson, see [11] and
references therein). A convergence analysis of multistep methods for nonlin-
ear parabolic equations under the present assumptions has been given in [17].
Runge-Kutta time discretizations under assumptions different from ours have
been studied in [2, 21] (see further [12, 13] for modified Runge-Kutta methods).

Section 5 contains proofs related to error estimates in terms of the data.
We conclude this section by introducing some terminology. A Runge-Kutta

method applied to an initial value problem

y' = f(t,y),     y(0) = yo,
with a step size A > 0 yields at t„ = nh an approximation y„ , given recursively
by

m

Y„i =yn + hY <*ijf(tn + Cjh , Ynj)       ii=l, ... ,m),

cd ':'
v„+i = yn + h Y bjfitn + Cjh, Ynj).

7=1

'For example, the I2 circle condition theorem (Theorem 2.3 in [5]) for nonlinear convolution
equations can be shown to hold for algebraically stable Runge-Kutta methods. There is no order
barrier for such methods, in contrast to ^-stable multistep methods.
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RUNGE-KUTTA METHODS 107

The Runge-Kutta method has order p if the error of the method after one step,
when applied to ordinary differential equations with sufficiently differentiable
right-hand side, satisfies

(1.2) yx -y(h) = 0(hp+x)   ash^O.

The method has stage order q if the error of the internal stages is, for all
i = I, ... , m,

(1.3) Y0i-y(clh) = O(h"+x),

or equivalently, if

(1.4) Y,a>Jcj~l = f   for A = 1,...,<?.
7=1

In the following we use the notation

(1.5) & = iaij)?j=l,       bT = (bx,...,bm),       l = (l,...,l)r.

A Runge-Kutta method is called A(8)-stable if I - z& is nonsingular in the
sector |arg(-z)| < 8 , and if the stability function

(1.6) R(z)=l + zbT(I-z@yx\

is bounded by

(1-7) l*(z)|<l    for|arg(-z)|<0.
The method is called strongly A(8)-stable if it is ^(ö)-stable and in addition
has an invertible Runge-Kutta matrix S, and the limit of the stability function
at infinity,

(1.8) R(oo)= l-bT(g-x\,

has absolute value strictly smaller than l.2 Well-known examples are the Radau
IIA methods (see [9]). These methods have further

(1.9) b,=ami       (i=\,...,m),

which implies R(oo) = 0.

2. RUNGE-KUTTA-BASED CONVOLUTION QUADRATURE METHODS

We are interested in approximating the convolution

(2.1) u(t)= j k(t-T)g(x)dx,        t>0.
Jo

In many applications, it is the Laplace transform K(s) of the kernel (the transfer
function in control engineering terminology) rather than the kernel itself which is
known a priori, or is of a simple form. The quadrature methods to be described
below use only K(s) and are given by a discrete block convolution, which allows
for the use of fast Fourier transforms for an efficient approximation of (2.1 ) for

2In the literature, there exist different variants of strong ;4(0)-stability [3, 4, 2]. The above
definition is slightly stronger than all these and has been chosen to allow for a briefer statement of
our results.
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108 CH. LUBICH AND A. OSTERMANN

many values of /. We assume that the following sectorial condition is satisfied
by K(s) (cf. [16]):
.» -. K(s) is analytic in a sector |arg(.s-c)| <n-<j> with <f> < f, c £

R, and is bounded there by \K(s)\ < M-lsy for some p>0.
Then the kernel k(t) can be represented by the Laplace inversion formula as

(2.3) k(t) = ±-.j K(X)ektdX,

where Y is a contour parallel to the boundary of the sector, oriented with
increasing imaginary part. It follows from (2.2) that k(t) is analytic in some
sector containing the positive real axis, exponentially bounded for t -* oo , and
with k(t) = 0(^_1) as t -> 0, so that k(t) may be weakly singular. Conversely,
every such kernel has a Laplace transform satisfying (2.2) for some <p < f.

Inserting (2.3) into (2.1) and interchanging integrals, we get

(2.4) u(t) = ^- f K(X)yx(t)dX,2ni Jr
where y^it) = J0' ex^'~^gir) dx is the solution of the initial value problem

(2.5) y' = Xy + g,       y(0) = 0.
The basic idea now is to discretize this differential equation by a Runge-Kutta
method, insert the approximate solution into (2.4), and use Cauchy's integral
formula to simplify the resulting expression. We then get the following descrip-
tion of the convolution quadrature method.

Proposition 2.1. Consideran m-stage Runge-Kutta method satisfying (1.9), and
suppose that all eigenvalues of the matrix S are in the open sector |argA| <
n - 4>, with </> of (2.2). When y^(t) in (2.4) is replaced by the Runge-Kutta
approximation (1.1) of (2.5), then one gets at t = (n + \)h the approximation

m     n

(2.6) un+x =hY Y w"-»' jg(tv + cjn)>
7=0 f=0

where the quadrature weights (wnX, ... , wnm) form the last row of the m x m
matrix Wn given as the nth coefficient of the generating function

(2.7) hf,WHr = K (yp) ,
«=o ^        '

with

(2.8) A(Í)=(W+T^1Z/)     .

As will be described below, the quadrature weights can be computed effi-
ciently to arbitrary precision using fast Fourier transform techniques.

Proof. We consider the generating functions
oo oo oo

y(Q = 5>i",    y it) = Y YnC",    G(Q = Y GnC ,
n=0 n=0 n=0
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RUNGE-KUTTA METHODS 109

etc., with Yn = (YHj)fmi and G„ = (*(*„ + c;A))£, . From (1.1) with fit, y) =
hy + git) we have

Y(Q = ly(Q + hX@Y(Q + h<$G(Q,
(C-x-l)y(C) = hXbTY(Q + hbTG(Q.

Inserting y(Q from the second equation into the first one gives

'/ - hX\bT^— - hXS\ 7(C) = A UbT-^-= + ̂ ) G^ '

that is,

(2.9) YiO=(^p--l)    G(C).

If (1.9) is satisfied, then yn+x = Ynm , and hence y(£) is the last component of
T(C). Otherwise, we get

(2.10) y{Q = ^hbTm^m_xyG{Q^

Substituting the numerical solution into (2.4), we get for the approximation the
generating function

tf<0 = ¿/r*(A)(^U)~'G(C)<«,
which by Cauchy's integral formula reduces to

(2.11) u{Q = K(^1^G{q.

It follows from (2.7) that
n

(2.12) Un = (Uni)tx =hY Wn-VGV .
v=0

If (1.9) holds, then un+\ is the last component of U„ , and so u„+x is given by
(2.6). In general, we get from (2.10)

(2.13) uiQ = j^hb^K (^1) GiQ.   □

The above derivation indicates how to obtain error estimates for the approx-
imation u„ of uitn): One studies the error of the Runge-Kutta method applied
to the linear differential equation (2.5) with X varying on the unbounded con-
tour T, and then integrates along Y over the error multiplied by KiX). This
leads to the following result.

Theorem 2.2 (Convergence of convolution quadrature methods). Assume (2.2),
and consider a Runge-Kutta method of order p and stage order q which is
strongly A(8)-stable with 8 > tp. Then the error of the convolution quadrature
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110 CH. LUBICH AND A. OSTERMANN

(2.6) ior that given by (2.13), if condition (1.9) is not satisfied) is bounded for
h < ho isufficiently small) by

<i
\un - uit„)\ <Chp-Y(l+ C~P) • \g{l)(0)\ + C(hp + Ai+,+"|logA|)

1=0

Y |g(/)(0)| + max \gWt
\,l=Q+l

If p > q + I, the error of the internal stages Un¿ given by (2.12) satisfies for
i = I, ... , m

\Un, - u(tn + c,h)\ < Ch«+X • ( ¿(1 + fn+'-q-x) • |g(')(0)| + max |^+1>(t)| ) .
\/=o °-T-'" /

The constants C and ho depend only on the Runge-Kutta method, on the con-
stants in (2.2), and on the length of the time interval. In particular, they are
independent of n and h with nh < T, and of g £ Cp[0, 71. If c < 0 in (2.2),
then the bounds hold uniformly over the whole half-line [0, oo), and ho can be
chosen arbitrarily.

The proof of (2.14) is deferred to §5. We omit the proof of the error estimate
for the internal stages.

The error is thus 0(hp) + 0(/i?+1+/i|log/z|) on any finite interval bounded
away from 0. One may thus have a noninteger order of convergence. If one
wishes to get high convergence order also near 0, then one might add to u„
a correction term of the form h Yl'Jl=x ù>njg(Cjh), where the weights w„j are
constructed such that the quadrature becomes exact for polynomials of degree
q. Then the error is 0(hp) + 0(hq+x+,l\logh\) uniformly on every finite interval
[0, T] (cf. Corollary 3.2 in [16] for an analogous construction in the multistep
case).

For the m-stage Radau IIA method the above assumptions are satisfied with
p = 2m - 1, q = m , and with 8 = | (see [9]).

Implementation and numerical example. To compute the quadrature weight ma-
trices W„ , one approximates the Cauchy integral

hw» = ^-[   c-n-lK(A(C)/h)d¡:

by the trapezoidal rule:

-n L~l
hwn « ^ Y Km,)/h)e-2«MlL,

/=0

with Ci = pe2n,llL . Assuming that the values of K are computed with precision
e, one gets as in [16, §7], that the error in hWn (0 < n < N) is 0(%/E) if L = N
and pN = \fe, and the error is O(e) if L > 7V|loge| and p = e~yh, with y > c
of (2.2). Using fast Fourier transforms, the weights are computed in 0(L log L)
operations.
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RUNGE-KUTTA METHODS 111

We have used the 1-, 2-, and 3-stage Radau IIA methods to approximate the
convolution integral

L eT dx = e' ' trfsft.
o y/n(t - x)

The Laplace transform of the kernel k(t) = (nt)~xl2 is K(s) = s~xl2. For the 1-
and 2-stage methods, Theorem 2.2 predicts the full convergence order 1 and 3,
respectively, while for the 3-stage method the error is bounded by 0(/z4 5|log h\).
These asymptotic bounds are confirmed by numerical experiments. At / = 4
we obtained the following results.

• 2-stage Radau IIA method:

h       relative error    relative error/ A-

1 6.410-3 6.4,0-3

1/2 9.6,0-4 7.7,0-3

1/4 1.4,0-4 8.6,0-3

1/8 1.8,o-5 9.4,o-3

1/16        2.4,0-6 9.9,o-3

• 3-stage Radau IIA method:

h       relative error     relative error/h4S

1 1.4,0-4 1.4,o-4

1/2 8.4,0-6 1.9,0-4

1/4 4.5,0-7 2.3,o-4

1/8 2.3,0-8 2.6,0-4

1/16 l.l,o-9 3.0,o-4

For stability investigations, bounds for the coefficients Wn of (2.7) are all-
important. The following result has a multistep analogue in Lemma 7 of [ 17],
or Lemma V.7.11 in [9].

Lemma 2.3. Under the assumptions of Theorem 2.2 (now also when p = 0 in
(2.2)), the coefficients of K(A(Q/h) = h¿ZZoW"C" satisfy for h < h0 (suffi-
ciently small)

\\rV„\\ <C- (nh)"-x -eynh   for n > 1,

and for n = 0 the same bound holds as for n = 1. The constants C, y, and
ho depend only on the method and the constants in (2.2).  They can be chosen
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112 CH. LUBICH AND A. OSTERMANN

independent of 0 < p < Const. Moreover, if c < 0, then also y < 0, and the
result holds for arbitrary ho .

The proof uses Cauchy's integral formula

*»     *(^)=¿/>>(^H~v
the following lemma, and bounds for the stability function R(z).

Lemma 2.4. Under the foregoing assumptions we have
oo

(A(C) - z)~x = S(I - z@Yx + YR(z)n~l(I - z@Yx\bT(I - z@)-xÇn .
n=l

Proof. By (2.8) we have

(A(C)-z)-' = ^ + ^1^.(7-2^ + ^1^))     .

With E = I + (I- z<g)-xzlbT we get

(A(C) - z)~x =U + T-T^lZ,r) * Í1 - W7 - ^)_I * (7 - z^)"' •

and we note that
00 00

(i - o(/ - ce)-x = (i - 0 YE"tn =l+E^" -£"-1)^ •
n=0 «=1

We have

£2 = 7 + 2(7 - z@)~xz\bT + (7 - z@)~xz\ • [bTiI - z@)~x z\\ ■ bT.

By (1.6), the term in square brackets reduces to R(z) - 1, and hence

E2 = I + (I- z@Yxz\bT(l + Riz)).

By induction, we get

E" = I + (7 - z@Yxz\bT • (1 + Riz) + ■■■ + Riz)"-1).

This gives further

lbTEn = lbT + l(7?(z) - l)bTil + ■■■ + 7?(z)"-') = Riz)"lbT

and
S(En -E"-x) = R(z)"-X • z€(I - z@Yx\bT.

Inserting this into the above expressions for (A(£) - z)~x gives the stated re-
sult.   D
Proof of Lemma 2.3. With Lemma 2.4 available, the proof is now similar to
that of Lemma 7 in [17]. We note that there exists 0 < p < 1 such that

(2.16) |7?(z)|<max(|ez/2|,/?)   for |arg(-z)| < 8' < 8,

and
(2.17) |jR(z)| < e2|z|    for|z|<r, r sufficiently small.
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RUNGE-KUTTA METHODS 113

From (2.15) and Lemma 2.4 we have for n > 1

Wn = -L / K(X) ■ R(hX)n~x(I - hMYx\bT(I - hM)~x • dX.
2ni Jr

For nh < 1 we substitute w = nhX and replace the resulting integration con-
tour nhY by an equivalent contour Yx which is independent of nh, has a
positive distance to the origin, and, apart from a compact subset near the ori-
gin, is again contained in a sector |arg(-u>)| < 8' < 8. We then have, using
(2.2) in the second inequality,

2n yri I    \nhJ\       \nJ (

<(«r^/rMM--|«(f)'
(1 + H/h)2     nh

[l + \w\/n)2
\dw\.

The above bounds of 7?(z) show that the remaining integral is bounded inde-
pendently of n . This gives the result for nh < 1. The result for nh > 1 follows
directly with a contour Y which is parallel to the boundary of the sector, using
the bounds (2.16) and (2.17).   □

We give a further lemma similar to Lemma 2.4. It is related to the explicit
representation of the coefficients in formula (2.13).

Lemma 2.5. If the Runge-Kutta matrix & = (a,;) is invertible, then

^^- = YRioor-bT^-x-c.
n=0

Proof. We write

^-^P- = bTS~xiI - C(7 - lbT£-x)Yx = bT(S-x ¿(7 - lbT0-x)nÇn.
^ n=0

The formula
bT€'xiI - \bTg-x) = Rioo) • bT@~x

then implies the desired result.   D

In the present section we have tacitly assumed that Kis) is a complex-valued
function. Obviously, all the results remain valid if K(s) is operator-valued from
one Banach space into another, and | • | is interpreted as a suitable norm. This
generalization will actually be used in the following sections.

3. Linear parabolic equations

In this section we derive error bounds for Runge-Kutta time discretizations of
linear parabolic equations. Our analysis will be based on an abstract formulation
of parabolic equations within the framework of analytic semigroups.

For this, let X be a Banach space. We denote by || • || its norm as well as
the induced operator norm. We consider a linear initial value problem on X :

(3.1) y' + Ay = g(t),        y(0) = y0.
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114 CH. LUBICH AND A. OSTERMANN

Here, -A is the generator of an analytic semigroup, i.e., A is a densely defined
closed operator on X satisfying

(3.2)      ||(5 + ^)_1|| < -—¡-r    for |arg(s - c)\ < n - <f>, with some </><—.

The real number c may be arbitrary, but it simplifies the presentation to assume
(3.2) with c = 0. Then fractional powers of A are well defined, and the results
below are valid uniformly over the whole half-line. All results of this section
remain valid for arbitrary c > 0 if fractional powers of A are replaced by
those of A + ci, and if the constants are allowed to grow exponentially with
the length of the time interval.

It is well known [20, §7.3] that if P(x, d) is a strongly elliptic differential
operator, then the partial differential equation

-^ + P(x, d)u = g(x, t),        X£Si,  t>0,

with appropriate initial and boundary conditions, can be interpreted in the
form (3.1)—(3.2) on 1 = Lp(Sl), for 1 < p < oo. Also, finite element or finite
difference spatial discretizations of such equations often satisfy (3.2), uniformly
in the meshwidth Ax .3

Convergence results for one-step time discretizations of equations (3.1) (un-
der varying assumptions on the unbounded operator A) were derived in [3, 4,
1, 15], and more recently in [19]. Closely related to our results are those of [1],
where it is assumed that -A generates (only) a Co-semigroup. The stronger
assumption (3.2) of an analytic semigroup permits us to obtain stronger esti-
mates. Time discretization of the homogeneous equation ((3.1) with g = 0)
has been studied under the assumption (3.2) in [15]. An important stability
estimate of [ 15] is

(3.3) \\R(-hA)"|| < Const,        «>0,
valid for the stability function R(z) of strongly A(8)-stable methods with 8 > 4>
(see also Theorem 3.5 in [18]). This bound will be used repeatedly in the
following.

We first give a numerical analogue of the "variation of constants" formula

(3.4) y(t) = e-'Ayo + f e~^Ag(x) dx.
Jo

We recall that the analytic semigroup {e~'A} is defined by formula (2.3) with
K(s) = (s + A)~x . The following lemma states that the Runge-Kutta solution
of (3.1) is identical to the convolution quadrature discretization of (3.4). This
establishes the connection to the previous section and will serve as a basic tool
in the sequel.
Lemma 3.1 (Discrete variation of constants formula). Consider a Runge-Kutta
method for the solution of (3.1) and suppose that all eigenvalues of S are in the

3See, e.g., [22] for the case p = 2 . We do not know of references showing (3.2) in LP , p ^ 2 ,
for finite element discretizations. When taking the maximum norm, the constant M may grow like
|logAx| in two space dimensions (cf. [22, Chapter 5]): There, Theorem 1 is actually valid in an
open sector containing the positive half-axis t > 0 , implying (3.2) with M growing logarithmically
with Ax . The constants appearing in our error bounds below are proportional to M .
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sector |argA| <n-(¡>, with tf> of (3.2). Then the numerical solution yn and the
internal stages Yn = (Yni)"lx are given by

n

Yn = Vnyo + hYwn-vGv,
v=0

n k
yn+x = Ri-hA)"+xy0 + bTä~x Y R(oc)"-kh Y Wk-VGV ,

k=0 v=0

with G„ = igitn + c,A))™,. Here, Wn are the coefficients o/(2.7) with Kis) =
(5 + A)~x, viz., Wn = *Vni-hA), with *F„(z) denoting the nth coefficient on the
right-hand side of Lemma 2.4, and Vn =<&ni-hA), with <P«(z) = (7- zS)~x\ •
Riz)".
Proof. Consider first the homogeneous equation (3.1) with g = P. Then yn =
Ri-hA)"y0, and Y„ = (I + ß ® hA)~x(\ ® I)y„ = Vny0 follows from the
definition of the method.

Next, for zero initial values the result for the internal stages follows from
the first part of the proof of Proposition 2.1 (down to formula (2.9)), with X
formally replaced by —A . Lemma 2.4 (with -hA substituted for z) gives the
above expressions of W„. The stated formula for yn+x follows from (2.10)
with Lemma 2.5.

Linearity finally gives the general result.   D

With the above interpretation of the Runge-Kutta solution, we can apply
Theorem 2.2 to get an asymptotic error bound in terms of the data. This almost
gives the following result.

Theorem 3.2 (Error estimates in terms of the data). For an initial value problem
(3.1)—(3.2), consider a Runge-Kutta method of stage order q and order p >q+l,
which is strongly A(8)-stable with 8 > </>. Let the real numbers a > 0 and ß > 0
be such that y0 £ D(Aa) and A~xgl-I)(t) £ D(A^) for 0 < I < p and all t > 0.
Then the error is bounded for h < ho by

\\yn-y(t„)\\<C(l+tan-p)-hp-\\Aayo\\
9

+ ChP-Y^+ tßn~"+l) • Uß-lg{l)(0)\\
1=0

+ C(hp + h"+x+ß\logh\)

. I Y M/,-,i(/)(0)||+ max ||^-y>(T)|| ] .

Remark. In the above formula, ß might also depend on the order / of the time
derivative. Theorem 3.2 shows mainly the influence of spatially rough data on
the temporal approximation. We have not taken compatibility conditions into
account, which make the solution smooth from t = 0 onwards (see Theorem 3
in [1] for a result of that type in the context of Co-semigroups). The formula-
tion of Theorem 3.2 has been chosen such that the result is also applicable to
nonhomogeneous boundary conditions (see the discussion following Theorem
3.3 below).
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Concerning the proof of Theorem 3.2, we note that for a = 0 the result
follows directly from Theorem 1.1 in [15] (for the homogeneous equation), and
for 0 < ß < 1 it follows with Theorem 2.2 of the present paper (for zero initial
conditions), applied with K(s) = (s + A)~xAx~ß , which is bounded by (see,
e.g., [10, §1.4])

\\(s + AYxAx-ß\\ <C'\s\~ß,        \args\ <n-(f>.

The case of ß > 1 requires a modification in the proof of Theorem 2.2 and is
given in §5.

The following result improves slightly on the bounds of [19], where the same
fractional order of convergence was obtained under stronger regularity assump-
tions.

Theorem 3.3 (Error estimates in terms of the solution). For an initial value
problem (3.1)—(3.2), consider a Runge-Kutta method of stage order q and order
p > q + 1, which is strongly A(8)-stable with 8 > <f>. Let ß be a nonnegative
real number such that q + 1 + ß < p and y^+x+l\t) e D(Aß-') for 0 < I < ß
and all t. With integer p defined by p - 1 <q+l+ß<p,the error is bounded
by

\\yn-y(tn)\\<C-h"+x+ß- Y  max ||^-y*+1+/)(0ll7=t °*t<t.

+ c ■ hp • ̂ p\o)\\ + £ \\/p+x\t)\\dt^ .

For q + 1 + ß = p the bound remains valid with p = p and with an additional
factor log« in front of the first term, or alternatively with \\Aß~ly^+x+l\0)\\ +
/q" ||^-y?+2+/)(i)|| dt instead of the above maximum.

Consider the heat equation, where A = -A on a smooth region SI, equipped
with appropriate boundary conditions, is taken as an unbounded operator on
L2(Sl). Given sufficient smoothness of the solution, it is in general the con-
dition y(Q+l\t) £ D(Aß) which restricts the actual order of convergence. The
attainable exponent ß depends on the type of boundary conditions. Its deter-
mination relies on the characterization of the domains of fractional powers of
second-order elliptic operators given in [7] (and [8]).

(i) Homogeneous Dirichlet boundary conditions. In the case of a smooth
solution, the homogeneous boundary conditions are also satisfied by y(í+1)(í),
and one has y(q+x\t) £ D(A5l4~£) for arbitrary e > 0, but it is not contained
in the domain of higher powers of A, unless unnatural boundary conditions
Ay = 0 on dSl are satisfied. Theorem 3.3 is thus applicable with ß = | - e.

(ii) Homogeneous Neumann boundary conditions. Here one can take ß =
l~e for any e > 0.

(iii) Nonhomogeneous Dirichlet boundary conditions. A standard technique
in the analysis of nonhomogeneous boundary conditions consists in subtracting
the effect of the boundary term and then considering the corresponding inhomo-
geneous equation with homogeneous boundary conditions. Time discretization
by a Runge-Kutta method is however not invariant under this transformation
of the problem, because the resulting inhomogeneity involves a time derivative
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(unless the boundary values are constant in time). An alternative way is to re-
state the heat equation with boundary data bit) on dSl in the form considered
in [14]:
(3.5) A-xy' + y = Gbit),        yiO)=y0,
where A = -A, equipped with homogeneous Dirichlet boundary conditions,
and G is the solution operator of the nonhomogeneous boundary value problem

Aw = 0   inQ,        v = b   on<9Q.
The solution of (3.5) is given by the semigroup formula

(3.6) yit) = e-'Ay0 + I Ae-{t~t)AGb(x) dx.
Jo

The standard Runge-Kutta time discretization of the heat equation with nonho-
mogeneous Dirichlet boundary conditions yields exactly the Runge-Kutta con-
volution quadrature discretization of formula (3.6) according to Lemma 3.1.
Since yit) does not satisfy the homogeneous boundary conditions, the solu-
tion derivatives are in general not in the domain of A. Assuming sufficient
smoothness, one has y(9+l)(i) e D(Axl4~e) for e > 0, but in general it is not in
D(AX/4). So we can use Theorem 3.3 with ß = i - e .

(iv) Nonhomogeneous Neumann boundary conditions. By a similar reasoning,
one gets here ß = \- e for e > 0.

The order reduction is thus considerably more severe for nonhomogeneous
than for homogeneous boundary conditions, and more severe for Dirichlet than
for Neumann boundary conditions. Numerical experiments (cf. [23, 19]) have
confirmed the convergence rates given by Theorem 3.3 with the above values
of ß . We remark that the same exponents ß are obtained for general second-
order, uniformly strongly elliptic differential operators on smooth domains when
they are considered as unbounded operators on L2(SÏ) [7]. However, when
taken as operators on LT(Sl) (1 < r < oo), then ß varies with r : Theorem 3.3
holds with ß < Yr and ß < \ + j-r in the case of time-dependent nonhomo-
geneous Dirichlet and Neumann boundary conditions, respectively, and with a
ß higher by 1 for the corresponding homogeneous boundary conditions. (See
[8, Théorème 8.1'], and also the discussion and numerical experiments for the
one-dimensional heat equation in [19].)
Proof of Theorem 3.3. By possibly reducing p, we may assume p = p in the
following.

(a) We consider first the defect when the exact solution values are inserted
into the Runge-Kutta scheme:

m

dm = y(tn + Cih) -y(t„) -hY<*ijy'(t„ + cjh),
7 = 1

m

dn+\ = y(tn+l) - y(tn) ~ hY V('n + CJh) ■
7=1

By Taylor expansion and the definition of the stage order q , we have (assuming
here for simplicity that all c, £ [0, 1])

dni=    Y   Sik) -hk -y{k\tn) + hp •  f"Kl(L^IL\y^){t)dt,
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where
(m k \

Yai^-x-cf)/ik-iy.,

and where k¡ is a bounded Peano kernel. Similarly, we have
r'n+i

dn+x=hpjt"+lK^-1^y^X\t)dt.

(b) For the error e„ = yn - y(tn) we thus get the recursion

en+x = Ri-hA)en - hbT ® Ail + h@ <B> ¿0~'7)„ + dn+x,
with Z)„ = idni)"l{. By (3.3), the powers of Ri~hA) are uniformly bounded.
This gives immediately that the contribution from the integral remainder terms
in d„i and dn+x is 0(AP) as required. It remains to study the expressions

en%=hk-Yrnk2vi-hA).y^itl/)
i/=0

= h"+x+ß • Y r(nklv(-hA)(hA)k-«-x-ß ■ A"+x+ß-ky(k\tv),
!/ = 0

where
(3.7) rnk\z) = R(z)n • zbT(I - z@Yxà[k) ,

with SW = (<5,w)£!.
(c) For k < p-l <q+l+ ß we have, provided that a:=q+l+ß-k>0,

r{k)(-hA) ■ ihAYa = ^-. f(z + hAYx • R(z)n • zbT(I - z@Yxa{k) • (-z)~a ■ dz
¿Til  Jy

with contour Y: |arg z\ = n — <j>. The order conditions for order p ,

bT€lck-x =bTß'-xck/k,       k + l<p

(with ck = (ck)%x), show that

zbTiI-z@Yx8{k) = Oizp-k+x),        z^O.

With the arguments of the proof of Lemma 2.3 (with is + A)~x satisfying (3.2)
in the role of Kis)), the presence of the factor |z|p-i:+1 • |z|_a = \z\p~q~ß for
z near 0 gives the same power of l/n in

tk),   , .,   ,, ,*_„„  .     C\r^i-hA)-ihAYa\\<
nP-4-p

For q + 1 + ß < p, it is thus majorized by an absolutely summable sequence,
and so we get

Ik^'ll <C-h"+x+ß • max \\A"+x+ß-ky^(t)\\,
0<t<l„

which is the desired estimate.
lfq+l + ß=p, then we only have a bound by C/n, which yields an

additional factor log n in the bound of e„   ■
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If a = 0, i.e., k = p - 1 = q + I + ß , then the above integral is no longer
convergent. The remedy is to consider instead the sequence f„ '(—hA) with
rf\z) = [7?(z)" - Ä(oo)"] • zbT(I - z@Yxè^ , which differs from r{k)(-hA)
by an absolutely summable sequence. One then gets a convergent integral rep-
resentation, with R(z)n replaced by R(z)n - R(oo)n , and the result follows as
before.

(d) For A = p we use a trick of Brenner et al. [1]: With

<j(z) = zbT(I - z^Yl3{p)/[l - Riz)],

we write
n

en!i = n" •Efi(-y)""t/ - R(-hA)] ■ oi-hA) ■ y<*\tv)
v=0

= hp ■ oi-hA)

y^itn) + Y R{-hA)n-v /     y(p+x)(t) dt - R(-hA)n+xy(p)(P)
v=i Vi

Since a(z) is a rational function which is bounded on the sector |arg(-z)| < 8 ,
we have ||cr(-Ä^)|| < Const. This estimate and the uniform power bounded-
ness of Ri~hA) now show that e(¿] = 0(hp) as required.   D

In the following section we will need an error estimate also for the internal
stages:

Lemma 3.4. For an initial value problem (3.1)—(3.2), consider a Runge-Kutta
method of stage order q and order p > q + 1, which is strongly A(8)-stable with
8 > <j). The error of the internal stages is bounded for i = I, ... , m by

\\Yni - y(t„ + ah)\\ < C • h"+x ■ (||v(«+1)(0)|| + jf" \\y{g+2)it)\\ dt

Proof. With the notation of the previous proof, the internal error vector E„ =
(Yni — yitn + Cih))1Lx is given by the equation

(7 + hS ® A)En = D„ + t®en.

The matrix multiplying E„ has a uniformly bounded inverse, and both Dn and
e„ are bounded by expressions of the form of the right-hand side of the desired
inequality (take p = q + 1 in Theorem 3.3 to see this for e„). This implies the
stated result.   D

When equation (3.1) comes from a spatial semidiscretization of a parabolic
PDE, then one would like to compare the completely discrete solution to the
PDE solution rather than that of the semidiscretization. We are thus led to
consider a perturbed equation

(3.8) u' + Au = g(t) + d(t),       u(P) = u0.

Here, u may be a projection of the PDE solution onto the finite-dimensional
approximation space, in which case d represents the spatial truncation error.
To obtain an estimate of y„ - u(t„), we split

v„ - u(tn) = (yn - vn) + ivn - un) + (w„ - uitn)),
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where un denotes the Runge-Kutta solution of (3.8), and v„ that of the same
perturbed differential equation, but with initial value v0 = y o ■ Then u„-u(t„)
can be bounded using Theorem 3.3, and v„ - un = R(-hA)"(yo - Uo), which by
(3.3) is bounded by a constant times the initial error. By linearity, e„ := vn -y„
is the Runge-Kutta solution of
(3.9) e' + Ae = d(t),       e(0) = 0.
This is bounded in the following stability lemma.
Lemma 3.5. Assume that A satisfies (3.2), and that the Runge-Kutta method is
strongly A(8)-stable with 8 > <p. Then

(i) He,!! < C • log« • maxo<,<,„ \\A~xd(t)\\ ;
(ii)  Hey < Ç • maxo<f<tlI \\A-x+*d(t)\\, 0 < e < 1 ;

(iii) IK|| < C • i\\A-ld~{0)\\ + J0'" \\A~xd'(t)\\ dt).
The same bounds are valid for the internal stages Eni.
Proof. By Lemma 3.1, the internal stages E„ = (En¡)f=x satisfy, with D„ =
(d(tn + cA))»,,

n

En = hYWn-»Dv
i/=0

We note that WnAx-£ are the coefficients of (2.7) with K(s) = is + A)~x AX~E,
which is bounded by (see, e.g., [10, §1.4])
(3.10) \\is + AYxAx-c\\<C-\sY*,        |arg5|<7r-rj7,
with a constant independent of e e [0, 1]. It follows with Lemma 2.3 that

(3.11) WnAx-£\\<C-[in + l)hf-x,
and hence the bounds (i) and (ii) follow for E„ , and with Lemma 3.1 also for
e„.

The proof of (iii) is obtained with a variant of the trick of [1] used already
at the end of the proof of Theorem 3.3. We have

hWo = hiê ® 7)(7 + 3 ® hA)~x = <S>(-hA) -iI®A~x),
where O(z) = z(7 - zS)~x is bounded on the sector |arg(-z)| < 8, so that
||C>(-A/4)|| is uniformly bounded. It follows that

||Ä^o7)„||<C-||(7®^-1)D„||<C-   max   \A~Xdit)\.í„</</„+|
For n > 1 we have Wn = ^fn(-hA) with

4Vz) = Riz)"~xil - z<SYx\bT(I - zS)~x = ¥(z) • Riz)"-1 ■ * ~^(z) ,
z

where the rational matrix-valued function

*(*) = i_^(z)(7 - ^)"'^r(l - ^)"'

is bounded on the sector, so that H^-A-d)!! < Const. We thus have
n-l n-l

h Y Wn-VDV = V(-hA) ■YR(-hA)""/~l(I - R(-hA)) • (I ® A~X)DV ,
i/=0 t/=0

and rearranging the last sum leads to the desired bound.   D
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4. Nonlinear parabolic equations

In this section we study error estimates of Runge-Kutta methods applied
to semilinear parabolic equations. In particular, incompressible Navier-Stokes
equations are covered by our assumptions.

On a Banach space X where || • || denotes the norm as well as the induced
operator norm, we consider the initial value problem

(4.1) y' + Ay = g(t,y),       y(P)=y0.

Here, -A is the generator of an analytic semigroup, with spectrum to the left
of the origin:

(4.2) ||(i + ^4)_1|| < -——    for |argsl < n -</>, with some </><-.

For the nonlinearity g, it is assumed that there exist real numbers a and y < 1
such that the following local Lipschitz condition is satisfied for every r > 0 :
(4.3)
\\g(t, u) - g(t, v)\\a-y < l(r) • ||w - w||Q    for ||u||a < r,  \\v\\a <r, P<t<T,

where || • ||Q denotes the norm
(4.4) ||«||0 = pai;||.

Studies of existence, uniqueness, and regularity of solutions of semilinear prob-
lems can be found in [20], and references therein.

We now turn briefly to the most prominent example of such equations. For
further examples and theory, we refer to [10].

Incompressible Navier-Stokes equations [6]. On a bounded two- or three-
dimensional smooth domain Si and for positive times t > 0, we consider

(4.5) ft+(u.V)u-Au + Vp = f,
V-w = 0,

with Dirichlet boundary conditions u = 0 on dSl, and initial conditions
u = Uo at t = 0. This is to be solved for the velocity u = (ux, u2)(x, t)
(or u = (ux, u2, u$) in three dimensions) and the pressure p = p(x, t), given
the force term / = f(x, t). Let X be the divergence-free subspace of L2(Sl)d
(d = 2 or 3) defined as the closure of the set of smooth functions on Si with
vanishing divergence and support contained in Si. Let further P denote the
orthogonal projection of L2(Si)d onto X . Applying P to the differential equa-
tion eliminates the pressure p , and one has the differential equation on X,

(4.6) ^- + P(u-V)u-PAu = Pf.

The Stokes operator A = -PA with Dirichlet boundary conditions satisfies
(4.2). The nonlinearity satisfies the Lipschitz condition (4.3) for any y > j in
the case of two space dimensions, and for any y > | in the three-dimensional
case, for both a = y and a = \ . Note that for a = \ one has the Dirichlet
norm ||u||,/2 = ||Vu||lj .
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Under time discretization by a Runge-Kutta method, equations (4.5) and
(4.6) give identical semidiscrete solutions. This invariance is still valid for the
analogous transformation of finite element spatial discretizations of (4.5).   D

The numerical result obtained by a Runge-Kutta time discretization will be
compared to the solution of a perturbed equation

(4.7) u'+ Au = g(t,u) + d(t).
This is again motivated by the situation when (4.1 ) is a spatial semidiscretization
of a parabolic PDE: There, u(t) is taken as a projection of the solution of the
PDE into the finite-dimensional approximation space, and d(t) represents the
spatial truncation error. Another instance of (4.7) is when (4.1) does not have
a smooth solution, but there exists a smooth function u with small defect d.

There is the following error bound in the case that (4.7) has a solution on an
interval [0, T] which is sufficiently smooth in time.

Theorem 4.1 (Convergence of Runge-Kutta methods for semilinear parabolic
equations). For an initial value problem (4.1)-(4.3), consider a Runge-Kutta
method of stage order q and order p > q+l, which is strongly A(8)-stable with
8 > 4>. Then there exists a unique numerical solution yn (0 < nh < T) for
sufficiently small step sizes h < ho, whose error is bounded by

(4.8) \\y„ - u(tn)\\a < C(u) • «?+l + C - \\y0 - u(0)\\a + C ■ log« • max ||rf(i)||a-i
0<t<t„

with C(u) = C • (||w(«+1)(0)||Q + Jo" \\u^+2\t)\\adt). This estimate is satisfied
for t„ = nh < T provided that the expression on the right-hand side is bounded
by a sufficiently small constant c. The constants ho, C, and c depend only
on the constants in (4.2) and (4.3), on T, and on maxo</<r ||"MIU - They are
otherwise independent of A, and independent of « and h with nh < T.

We remark that the term involving d(t)  could be replaced by any of the
expressions of Lemma 3.5, taken in the norm || • ||a .

Proof, (a) Let us first assume that the numerical solution yn and the internal
stages Y„ = iYni)f=l exist for 0 < nh < T, with ||T„;||a < 2max0<(<r ||«(0IU •
For sufficiently small step sizes, this will be verified at the end of the proof.

By the discrete variation of constants formula (Lemma 3.1) we then have
n

(4.9) Y„ = V„yo + h Y Wn-vg{Yv),
i/=0

where we have denoted giYn) = (g(tn + c¡h, F«/))^,, and Vn and Wn are
defined as in Lemma 3.1.

(b) For U„ = (u(t„ + Cih))™=l we get the representation
«

(4.10) Un = Vnu(0) + hY Wn_v(g(Uv) + Dv) + En,
i/=0

with g(Un) = (g(tn + ah, Uni))f=l and Dn = (d(tn + Cih))™=x . Here, E„ =
(P'ni)ILx K tne error °f tne mternal stages of the Runge-Kutta method when
applied to the linear equation

(4.11) v' + Av = tpit),    with initial value u(0),
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where the inhomogeneity is chosen such that the exact solution is u(t). This
identity follows by applying the discrete variation of constants formula to the
perturbed Runge-Kutta schemes obtained by inserting u(t) into the Runge-
Kutta formulas for both equations (4.1) and (4.11). Note here that the defect,
from inserting the exact solution values into the Runge-Kutta method, depends
only on the solution u, but not on the form of the equation.

(c) We observe that W„Ay are the coefficients of the generating function (2.7)
with K(s) = (s + A)~xAy, which is bounded by

(4.12) \\(s + AYxAt\\ < Const >\s\*-1,        \args\ < n - </>.
It thus follows from Lemma 2.3 that

(4.13) \\W„A7\\<C-[(n + l)hYy,        n>0.
With the Lipschitz condition (4.3) we get therefore (with r = 2 maxo</<7-||w(i)IU)

n

iiy» - c/«iu < ch • /(r)£[(n +1 - u)hyy -\\yv- uv\\* + \\F«\\a,
¡y=0

where

F„ = Vn ■ (y0 - u(0)) + hY Wn-vT>v + En .
i/=0

Since y < 1, a discrete Gronwall inequality gives us

(4.14) \\Yn - Un\\a < C • max \\F„\\a.
0<u<n

(d) We thus have to estimate  F„ .    Since R(-hA)  is uniformly power-
bounded, we have

\\Vniyo-uiO))\\a<C-\\yo-uiO)\\a.
The error of the internal stages En of the linear problem (4.11) is estimated
using Lemma 3.4 (with || • ||a in the role of the norm used there):

||£„IU<C(M)-A«+1,
with C(w) of the same form as in (4.8). For the remaining term in F„ we note
that Lemma 3.5 gives

n

h Y Wn-VDV
v=0

With these bounds for Fn , the inequality (4.14) gives the bound (4.8) for the
internal stages Y„ .

(e) To get the estimate also for the numerical solution yn itself, we use again
the variation of constants formula of Lemma 3.1 to get

n k
yn+x = Ri-hA)n+xyo + bT€~xh Y R(oo)"-k Y Wk-vg(Yv)

k=0 i/=0

and
n k

u(tn+x) = R(-hA)"+xu(0) + bT^xYR(°o)n~khYWic-^(Uv) + Dv) + e„+x,
k=0 v=0

<C-logn- max ||í/(í)|L-i
0<t<tn
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where en+x is the error of the method applied to the linear equation (4.11),
which by Theorem 3.3 is again bounded as E„ above. We now use the obtained
error estimates of the internal stages, treat the inner convolution in (4.20) and
(4.15) in the same way as in parts (c) and (d) above, and recall that |7?(oo)| < 1 .
This gives the desired error bound (4.8) for y„ .

(f) It remains to prove the unique existence of the numerical solution in a
neighborhood (with respect to the || • ||Q norm pointwise in time) of the exact
solution u. Using the arguments of part (c) of the proof, we see that for small
step sizes h the mapping

(Yn)Lo" [hYwn_vg(Yv)\ (Nh<T)
\    v=0 / n=o

is for a sufficiently large exponent a (independent of h) a contraction in the
exponentially weighted maximum norm

|||T||| :=  max    max   ||exp(-a • (/„ + Cih))Yni\\a,
0<n<N i=l ,...,m

with Lipschitz constant p < 1 uniformly in A in the ball

|||y||| < 2 max \\e-alu(t)\\a.
0<t<T

For 111(7^)^0111 sufficiently small, fixed point iteration in (4.9) with initial iter-
ate (C/„)^=0 gives therefore the unique existence of a numerical solution with
the properties assumed in part (a) of the proof.   D

Under slightly stronger assumptions the order of convergence can still be
raised. In addition to (4.3) we require for every r > 0 :

(4.15)
dg

g(t,u)-g(t,v)--^(t,y)-(u-v)
la-l

< l>ir)-i\\y-u\\a + \\y-v\\a).\\u-v\\a
for max(||«||Q, ||w||Q, ||v||Q) < f. This condition is again satisfied for the Navier-
Stokes problem.
Theorem 4.2 (Refined error estimate). 7« addition to the conditions of Theorem
4.1, we assume (4.15) and p >q + 2. If ß < 1 is such that u{q+x\t) £ D(Aa+ß),
then the error is bounded for t„ < T by

\\yn - u(t„)\\a < Cß(u) ■ h«+x+ß + Cx(u) • h"+1
(4-16) + C • \\y0 - u(0)\\a + C ■ log« • max ||</(0lla-i

0<t<t„

with Cß(u) = C-maxo<t<T\\u^+x)(t)\\a+ß and Cx(u) = C ■ (||u<«+2>(0)||Q +
Jo'" IIm(?+3)(0IU^0- P°r ß - 1 the estimate is valid with an additional factor
log« in front of the first term. The estimate holds under the assumption that the
right-hand side of the inequality and hQ • (maxtn<t<t„+] ll"(<?+l,(0IU)2 are bounded
by a small constant.

Remark. For parabolic PDEs with homogeneous boundary conditions that have
a sufficiently smooth solution, the inclusion u(t) £ D(A) implies u(<7+1)(0 £
DiA), and the above estimate is thus applicable at least with ß = 1 - q . Re-
turning to the Navier-Stokes equation with homogeneous Dirichlet boundary
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conditions, we have a sufficiently smooth solution u(q+X)(t) £ D(A5/4 £) for
any e > 0 (cf. [7, 8]). Theorem 4.2 can thus be applied with a = ¿ and
ß = $-e.
Proof of Theorem 4.2. We concentrate on those aspects which go beyond the
proof of Theorem 4.1. We therefore restrict our attention to the case d(t) = 0,
M(0) = yo in (4.7), and we ignore the dependence on / in g(t, y).

(a) Let us denote the defect
m

dni = U(tn + CiK) - Uitn) -hY Wit,, + Cjh),
7=1

m

dn+x = «(í„+i) - Uitn) -hYbju'(tn + Cjh).
7=1

We have

dni = d*ni + d*n; s Si • h«+xu^x\tn)/q\ + h"+x j'n+' Ki (^Y1) "(<?+2)(0dt,

with S, = Yl'jLx aijc<j - c1+l/(Q + 1) > an<i witn a bounded Peano kernel k, . A
similar representation is valid for d„ , with q + 2 instead of q .

(b) We study the defect when

%i = Uit„ + Cih) - dni, 9n = u(t„)
are inserted into the Runge-Kutta method. With f(y) = -Ay + g(y) we have

m

Yni-yn-hY"uAYnj)
7=1

TO TO

= h Y atjAdnj + hY «o [■?("('« + cjh)) ~ g(Ynj)],
7=1 7=1

TO

9n+\ -yn-hYbjf(Ynj)
7=1

m to

= hY bjAdnj + hY bj[g(u(tn + cjh)) - gi?ttj)] + d„+l.
7=1 7=1

By the discrete variation of constants formula, we get
n

% = Vny0 + hY W„-Vg(%) + F„
v=0

with
n n n

Fn = hY Wn-VADV + hY Wn-v[g(Uv) - g(%)\ + Y Vn-Vdv ,
v=0 v=0 v=l

where Y„ = (7«,)^, and Dn = idni)'¡Lx , and the notation is otherwise that
employed in the proof of Theorem 4.1. As in part (c) of that proof, it follows
that the difference to the numerical solution is bounded by

||F„-?„||a<C. max ||7v||Q.
0<i/<«
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We will show that this is Oihq+x+ß) as in the bound stated in the theorem.
(c) The difficulty in the estimation is contained in the first and second term

in F„ , because D„ is only Oihq+x). However, with S = iS¡)m=l we have by
Lemma 2.4

Wn(S®I) = *¥n(-hA)(S®I),
where again for « > 1

V„(z) = 7?(z)"-'(7 - zÉf)-'lAr(7 - z@Yx .

Since p > q + 2, the order conditions give bTS = 0, and therefore
C

11^(^11 < l + |z| \Riz)

From the additional factor  z  we get with the proof of Lemma 2.3 (with
is + A)~xAx~ß in the role of Kis), and using (4.12)) the factor 1/« in

\\hWniS®Ax-ß) < ^L(nh)ß-X = -^
n n2~P

hß.

For ß < 1 we have therefore, with D* = (d*i)m=x and d*ni defined in part (a)
of the proof,

A Y wn-,ADl
u=0

<C-hq+x+ß- max \\u«>+x\t)\\a+ß,
0<í<í„

whereas for ß = 1 there is an additional factor log «
(d) By (4.3) we have

dy (u(t„))v <C
a—y

for all v in the domain of Aa , and so we get as in part (c)

Ag+l)(t)L+ß
dy{hYW"-^Mtv))D*

i/=0
< C-hq+x+ß max ||

0<t<t„

By condition (4.15), the Taylor remainder is bounded by

g(Un)-g(Y„)-^(u(tn))-Dn <c
a-l

hq+x •   max
tn<t<t„+,

(9+1) (0
and it follows from (4.13), used with y = 1, that the discrete convolution of
the sequence {hWn} with this remainder term is bounded in the || • ||a norm
by C • log « times the right-hand side of the above inequality.

(e) The remaining terms in F„ are shown to be bounded as needed by the
arguments used in the proof of Theorem 4.1. As in part (e) of that proof, the
estimate of y„ - u(t„) =yn-yn follows with the variation of constants formula,
once a bound of the desired type has been established for Yn-Yn .   D

Remark. The same order of convergence as in Theorem 3.3 (possibly beyond
hq+2, if the regularity of the solution allows it) can be obtained also in the
semilinear case, if one assumes conditions like (4.15) also for higher deriva-
tives of g. This can be shown by studying the coefficients in the asymptotic
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«-expansion of the internal stages of the method, of which d*ni in the forego-
ing proof is actually the first term. We omit the details, which become very
technical.

5. Proof of error estimates in terms of the data

We begin with the proof of Theorem 2.2.  The proof of Theorem 3.2 will
then follow by a slight modification at the end of the section.

We recall the convolution quadrature
n

Un=hYWn-vGv,

(5.1)v       ' n k

un+x = bT@~x Y P(oc)"-kh Y Wk-VGV,
k=0 v=0

with G„ = (g(tn + c,A))^,, and quadrature weights Wn defined by (2.7).
By linearity, we may treat each of the terms in the Taylor expansion of g at

0 separately:

(5.2) git) = Y ^g{!)(0) + jT ^x-yg(P){t -x)dx.

For the Taylor polynomial we will show below:

Lemma 5.1. Theorem 2.2 is valid if g(t) is a polynomial of degree at most p- 1.

To treat the remainder term in (5.2), we will again use Lemma 5.1, combined
with the fact that the application of the quadrature method commutes with
convolution:

Lemma 5.2 (Peano kernel representation). If g(0) = g'(0) = ■■■ = g(p~x\P) =
P, then the convolution quadrature (5.1) can be written in the form

U„= ["  Vh(x)g(p\tn-x)dx,

Un+X =   /       Vnix)g(p)itn-X)dx,
J — oo

where the "Peano kernels'" are given by

Vh(t) = hYwnP(t-nh),
n>0

n>0 \k=0

with

vh(t) = hbT£~x Y [ £ R(^)"-krVk j Pit - nh),

(t + CihfY'YP(t) =
(P-1) / ,=i

for all real t. Here, xp+~~l = (max(r, O^"1 .
Proof. The result is obtained by using the associativity of convolution.   D
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We note that V„(tn) and v„itn) are just the results of the convolution quadra-
ture method used with git) = tp~x/ip - 1)!. Hence, Lemma 5.1 gives with
vit) = ¡'kit - x)xp~xUp - l)\dx the error bound

\vhit) -v(t + h)\< Cihp + hq+x+p\logh\) + Chptp+X.
This holds in fact for all t, not only gridpoints: For / between gridpoints,
V/iit) can be interpreted as the result of the convolution quadrature used with a
shifted polynomial git) = it - ch)p~x/ip - 1)!, and Lemma 5.1 applies again.
Since the exact solution can be written as

uit)= [ vix)g^it-x)dx,
Jo

the desired estimate of Theorem 2.2 follows. It remains to prove Lemma 5.1.

Proof of Lemma 5.1. (a) A computation similar to that in part (b) of the proof
of Theorem 3.3 shows that the error of the Runge-Kutta method, when applied
to y' = Xy + t'/l\, yiO) = 0, is given by

en=X-l-xiRihX)n -enhl)

(5'3) -  Íhk"trlk\_v(hX)Xk-'-xY{-^,
k=q+l        v=l k=0

with r„k\z) of (3.7). We now treat the two terms in the above formula sepa-
rately.

(b) We show that

<chp(i + Cl~p).(5.4) / K(X)X~l-x(R(hX)n - enhx) dX

Here the integration contour Y is that of (2.3), possibly replaced by an equiva-
lent one that is bounded away from the origin. We split this contour into three
parts:

(i) |A| < Const: In this situation, \R(hX)"\ as well as \e"hx\ are uniformly
bounded for nh <T. Using

n-l
R(z)n - enz = (R(z) - ez)YR^)n~X~Ve"z -

i>=0

we see that the integral over this part of Y is 0(hp).
(ii) h < \hX\ < 1  and | arg A | = n - <p: Here we have with z = hX that

|7?(z)| < \eKZ\ for some positive k . This implies
\R(z)n -enz\ <C\zpeKnz\.

Hence the integral is bounded by a constant times

\X\-p-'-x\hX\p\eKnhx\\dX\ < Chp(l+tnl+'~p).
IXÇ.T: \X\>1

(iii)  |AA| > 1  and |argA| = n - <j>:  In this case both R(z) and ez  have
absolute value bounded strictly below 1, hence

\R(z)n -enz\ <Cp"

j■h.e
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for some p < 1. Thus, the integral is bounded by

cl \X\-fl-'-xpn\dX\ = Oih^+lpn),
JxeT: \l\>l/h

which is 0(hptp+l~p).
(c) We finally show that

n-l l-k

(5.5)
Y hk f KiX)Yrnklx.v{hX)Xk-^Y^f

k=q+l       JT v=0 k=0

< CihP + A«+1+"|logA|),

where r„k\z) is given by (3.7). First we note that Xk~lYlK~=oßtv)K/K\ as well
as

(5.6)        Y \rnklx.v(z)\ = ^py * \zbTV - z<$Yxik€ck-x - ck)/k\\

(once more with z = hX) are bounded on the integration contour. By the order
conditions, we have

bTiI-z@Yxik@ck-x -ck) = Oizp~k)   forz^O.

Again we split the contour into three parts:
(i) |A| < Const : From the foregoing formula we obtain an estimate 0(hp).
(ii) A < |AA| < 1 and |argA| =n-<f>: Here |Ä"(A)| = Oi\X\-p), and (5.6) is

Oizp~q). Therefore, we get the estimate

C Y hk í |A|-"-1|AA|í'-*|í/A|,        í + l<A</,
k=q+l        J^r- i<W<1/''

which for p - k - p - 1 < -1 is Oihp). lfp-k-p>0,we have

hk f \X\-»-x\hX\p-k \dX\ < hk+/i f \XYX \dX\

and thus the required bound is 0(hq+x+p-\logh\).
(iii) |A>1| > 1 and |argA| = n-cp: Here |^(A)| = 0(|A|-"), and therefore

the integral is bounded by a constant times

¿A*/ |Ar*-VA|,
k=q+i     JW:W>W

which is 0(hq+x+»).   D

Proof of Theorem 3.2 (continued). Here again, it is sufficient to show the de-
sired result for the homogeneous equation, and for the equations with zero
initial values and polynomial inhomogeneity of degree not exceeding p - 1,
with coefficients #(/)(0) such that A~lg^(0) £ D(Aß).

(a) The error for the homogeneous equation is [(R(-hA)" - e~nhA)A~a] •
Aayo. The operator in square brackets has an integral representation (5.4) with
K(X) = (A + A)~x (so that p = 1 by (3.2)), and with a in the role of / + 1.
The bound in (5.4) then gives the result.
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(b) The error of the method applied to the equation with inhomogeneity
gW(0)-t'/l\ is

en = cpnih,-A)Ax-ß-Aß-xg«\0),
where tpnih, A) is given by the right-hand side of formula (5.3). The operator
(Pn(h, -A)Ax~ß is the sum of two terms which have an integral representation
as in (5.4) and (5.5), with K(X) = (X + A)-]Xx~ß . Hence the bounds of the
previous proof apply, with p = ß .   D
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