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RUNGE-KUTTA METHODS
FOR PARTIAL DIFFERENTIAL EQUATIONS

AND FRACTIONAL ORDERS OF CONVERGENCE

A. OSTERMANN AND M. ROCHE

Abstract. We apply Runge-Kutta methods to linear partial differential equa-
tions of the form u¡(x, t) =5?(x, d)u(x, t)+f(x, t). Under appropriate as-
sumptions on the eigenvalues of the operator 5C and the (generalized) Fourier
coefficients of /, we give a sharp lower bound for the order of convergence of
these methods. We further show that this order is, in general, fractional and
that it depends on the //-norm used to estimate the global error. The analysis
also applies to systems arising from spatial discretization of partial differential
equations by finite differences or finite element techniques. Numerical examples
illustrate the results.

1. Introduction

In this paper we study the order behavior of Runge-Kutta methods applied
to certain classes of partial differential equations. As the order of the method
will play an essential role throughout this paper, we start by summarizing some
basic results related to this concept.

Consider the initial value problem (ode)

(1.1) y' = f{t,y),      y(to)=yo,
and a so-called one-step method for its numerical solution. Starting from the
initial value yo, such a method constructs an approximation, say yx, to the
exact solution y(to + h) for some step size h (for Runge-Kutta methods, see
(2.2) below). The local error le is defined as the difference between numerical
and exact solution after one step

(1.2) LE = yt-y(to + h).

A method is said to have (classical) order p if

(1.3) LE = &(hp+x)       for/z^O.

Suppose that / in ( 1.1 ) as well as the numerical method satisfy a Lipschitz con-
dition. Then the difference between the exact and numerical solution is seen
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404 A. OSTERMANN AND M. ROCHE

to be (f(hp), uniformly on bounded intervals for sufficiently small h . In this
case we call the method convergent of order p. Estimates (1.3) are obtained
by expanding the local error as a Taylor series in h, which implies that p is
an integer. For stiff problems the behavior LE « Chp+X is observed for very
small values of h only. This is due to the Lipschitz constant of (1.1), which
is large in the presence of stiffness and which is involved in the estimate (1.3).
Uniform convergence results can however be obtained for certain subclasses of
(1.1) containing problems of arbitrary stiffness. This is the case for stiff differ-
ential equations satisfying a one-sided Lipschitz condition (5-convergence, see
[3, 4, 8]) or for singularly perturbed problems [9].

The aim of the present paper is to give sharp orders of convergence for im-
plicit Runge-Kutta methods applied to certain classes of partial differential equa-
tions. As differential operators are unbounded, equations of this type can be
considered as infinitely stiff. Convergence results for such equations were de-
rived in [1, 2, 6, 7, and 12]. Our approach, however, differs significantly and
allows us to prove uniform convergence of order <f(ha), where a is not nec-
essarily an integer. Order results for Rosenbrock-type methods can be obtained
by similar techniques. The authors elaborated this in [15]. The order of mul-
tistep methods applied to nonlinear parabolic problems has been investigated
by Le Roux [13] and more recently by Lubich [14]. Order results for explicit
Runge-Kutta methods are given in [18].

A short overview of the present paper is as follows:
In §2 we apply Runge-Kutta methods to linear partial differential equations

(pde) and summarize some basic properties of these methods. Section 3 con-
tains the main result of the paper. Its proof will be given in §4. We will show
that the order of Runge-Kutta methods, applied to the pde (2.1) is, in general,
fractional and q + 2 at least ( q denoting the stage order of the method). In §5,
we prove covergence in sequence spaces, which leads to a deeper understand-
ing why fractional orders occur. In addition, we generalize to nonhomogeneous
boundary conditions. In §6 we will give a nice geometrical interpretation of
fractional orders as superposition phenomena and thus reinterpret the results
of §§3 and 5. We finally discuss the implications of our results to ode systems
coming from semidiscretization of parabolic differential equations.

2.  RUNGE-KUTTA METHODS FOR LINEAR PDE'S

We consider the following linear partial differential equation
ut(x,t)=S?(x,d)u(x,t) + f(x,t), x£Çl,    0<t<T,
u(x, 0) = uq(x), xeQ,

with homogeneous boundary conditions. Here, Q is an open and bounded
subset of Rd with sufficiently smooth boundary öQ, and Jzf(x, d) denotes
a differential operator, densely defined in L2(Q) with spectrum contained in
{z £ C ; Rez < 0}. In order to put (2.1) into the more general framework of
an abstract initial value problem in L2(Q), we consider the (unbounded) linear
operator 5? : L2(Çl) w L2(Q)

&a = &(-,d)a       for a £ D{&)
with its domain

D{&) = {a£ L2(Q) ; &{., d)a £ L2(Q) and 38 a = 0}.
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RUNGE-KUTTA METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS 405

The derivative &(•, d)a as well as the boundary condition 38a are understood
in the distributional sense. For example, for an elliptic differential operator of
order 2m with homogeneous Dirichlet boundary conditions we have (in the
standard notation of Sobolev spaces)

D(5?) = H2m(Çl)nH0m(n).

Considering u and f as functions of / with values in the Hubert space L2(Q),
equation (2.1) may be rewritten as

,2V) u'(t)=^u(t) + f(t),        0<t<T,
u(0) = uo.

The unknown function u(t) will be approximated for t = tn:= nh by a Runge-
Kutta method, step by step through the recursion

(2.2a) un+x =u„ + hY, bii&U? + f(tn + ah)),
¿=i

where the internal stages U" (i = X, ... , s ) are defined by
5

(2.2b) C//1 = uH + h J2 a^SfUJ + f(tn + cjh)).
j=i

Here, h > 0 is the step size, s the number of stages, and b¡, a¿j, c¡ the
(real) coefficients of the Runge-Kutta method. For notational convenience, we
introduce some well-known abbreviations:

bT = (bx,... ,bs),       ck = (ckx,... ,cks)T,
/ n.      n,   \

(2.3) an    ■■    flu
A--       : :   1 ,       1 = (1,... , l)reRs

öjl      •••      O-ss ■

The following conditions (simplifying assumptions, see [5, p. 214] or [10, p.
203]) on the Runge-Kutta coefficients play an important role throughout the
paper,

(2.4) C(q):        Ack~x = ^ck,        k=X,...,q.

The highest possible value q in (2.4) is called the stage order of the considered
Runge-Kutta method. Condition C(q) says that the quadrature formula with
weights an , ... , a¡s is of order q in the interval [0, c¡]. Note that collocation
methods with 5 stages satisfy C(s). The stability function

(2.5) R(z)=X + zbT(l-zA)~ll

associated with the Runge-Kutta method is a rational function of z . A Runge-
Kutta method is called Astable, if its stability function satisfies \R(z)\ < X in
the negative complex half-plane C~ = {z £C; Rez < 0}.

Further, consider the following rational function, depending on the coeffi-
cients of the Runge-Kutta method and on the stage order q,

(26) mz)jr{l_ZÁ)-y>    kAc^       (ork¡t

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



406 A. OSTERMANN AND M. ROCHE

A similar function plays an important role for obtaining 5-convergence results,
see [3]. It is evident that the condition C(q) implies Wk(z) = 0 for X < k < q .
In the formulation of the convergence results we shall refer to these conditions

(2.7) Wk(z) = 0       for 1 < k < q.
For many important Runge-Kutta methods, such as Gauss, Radau, and Lobatto
methods, q given by (2.7) is just the stage order (2.4). In general, however,
condition (2.7) is weaker than C(q), take for example the SDIRK methods
treated in [19].

Note that for q + X < k < p - X the function Wk(z) can be rewritten as

(2.8) Wk(z) = zp-k~x Wk(z),        with Wk(0) + 0.

This follows from the expansion (/ - zA)~x = I + zA-\-  around z = 0, the
order conditions

bTAlck -kbTAl+xck~x =0,        0<l<p-k-X,     X<k<p-X,

and from R(z) = X + z + (f(z2) for small z (for p > X ). Most convergence
results of the paper are based on the following assumptions (cf. [4] and [7] for
similar concepts):

(2.9a) I - zA   is regular in C- ,
(2.9b) bTz(I-zA)-x    is bounded in C" ,
(2.9c) Wk(z)   is bounded in C~ for q+ 1 < k <p- X.
Note that condition (2.9) is satisfied for many well-known Runge-Kutta meth-
ods, such as the implicit midpoint rule, the trapezoidal rule, or RadauIIA and
LobattoIHC methods. For a differential operator ¿¡f(x, d) with spectrum con-
tained in {z £ C ; |arg(z)| > n - Û} for a certain û with 0 < û < n/2,
condition (2.9) can be weakened to

(2.10a)        I - zA   is regular in Sê = {z £ C ; | arg(z)| > n - Û},
(2.10b) bTz(I-zA)~x    is bounded in S9,
(2.10c) Wk(z)   is bounded in 5Ö for q + X < k < p - X.
Note that Gauss methods satisfy (2.10) but not (2.9) for s > 3. A condition
similar to (2.9) has been pointed out already by Brenner et al. (formula (2.6)
in[l]).

For a detailed description of Runge-Kutta methods applied to ordinary dif-
ferential equations, we refer to standard textbooks [5, 10, 11]. The application
to partial differential equations from the ode viewpoint is treated in [17]. A
more abstract analysis can be found in [1].

3. Model problem and order results for Runge-Kutta methods
Our analysis relies heavily on an operational calculus involving fractional

powers of 5? . One possible setting for this is the theory of analytic semigroups.
Such an approach was used in [15]. Here we will remain in a more classical
framework based on spectral properties of the operator 5? . Our point of view
is a slight generalization of a standard assumption in spectral theory, namely
-5f is selfadjoint, positive definite and has a compact inverse.
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We therefore consider the class of partial differential equations given by (2.1 )
where we assume that

(3.1a)    ¿2f(x, d) has a pure point spectrum [X\, Xi, X^, ...} with Re Xk < 0

and that the eigenfunctions <pk satisfy the following properties:1
(i) They form a basis of L2(Q), so that any y/ £ L2(Q.) can be expressed by

the (generalized) Fourier series
oo

(3.1b) V = Ylll/k(Pk       in L2(Çl);
k=l

(ii) The mapping

f L2(Q) - I2
Vk<Pk    *r*    (Wk)

(i.e., one-to-one and continuous in both directions). By I2 we denote, as usual,
the Hubert space of sequences (Wk)k>i f°r which £ IVkl2 < °o •

Note that (3.1c) implies the existence of two positive constants Cx and C2
such that every y/ = Y^i VkVk m L2(Q) satisfies

(oo \  '/2 / oo \ '/2

El^l2)     <ll^ll^(n)<C2i^|^|2j     .

Assumption (3.1) will mainly be used to handle functions of the operator S?.
Given a single-valued function g(z), we may define the operator g(J¿?) by
defining it on the spectrum, i.e.,

oo

(3.3a) g{&)¥ = Y,g(h)Vk<Pk       for all ¥ £ D(g(3>))
k=i

with its domain

(3.3b) D(g(J7)) = U = JT/¥ktpk £ L2(Q) ; {g(Xk)¥k) £ l2\ .

If g(z)  is bounded in a sector S1 containing the eigenvalues of Jz?, then
D(g(S?)) = L2(Q) and

\\g{&M\ = ^g{h)Vk<Pk
k=l

< ^ Ikll sup|^(z)

by (3.2). Thus, we have proved the following lemma which will be of great use
later:

Lemma 1. Let g(z) be bounded in a sector containing the eigenvalues of Sf
and the origin. If Sf satisfies (3.1), then g(hJîf) is bounded, independently of
h.   D

The above definition can easily be extended to define fractional powers of
the operator ¿if :

'Some authors call such a set a Riesz basis, e.g. [22].
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408 A. OSTERMANN AND M. ROCHE

Let v be any real number. We cut the complex plane along the positive
real axis, represent z uniquely by rexp(ip) with 0 < p < 2n and set z" =
r" exp(ipu). Thus, z" becomes single-valued, and the above definition (3.3)
applies.

A canonical example for (3.1) is the one-dimensional self adjoint operator
(Sturm-Liouville eigenvalue problem)

(3.4) 2e(x,d)u=~ (a(x)^j - b(x)u.

The reader should keep this in mind as a typical problem of the form (2.1).
We further suppose that the solution u and the source function / of (2.1)

satisfy the following regularity assumption:
(35) u£C+x([0,T],L2(Q)),

f£Cp([0,T],L2(Q)).
We now define a property 3°(u), depending on a real number v . It will serve
to characterize the order of the Runge-Kutta method (2.2) in terms of the dif-
ferential operator and the Fourier coefficients of the source function. Let || • \\u
denote the following weighted L2-norm:

/ oo \ 1/2

\\¥\i=r£(\xkr\wk\)2\  ■

Now, for J? and / of (2.1) satisfying (3.1), we say that 3°(v) holds (for a real
number v ) if and only if there exists a constant C such that for all t £ [0, T]

(3.6a) 3>(v):        \\fi\t)\\v < C,        0<j<p.
As the domain of 2'v is just the set of all ip £ L2(Q.) such that ||(£/||„ < oc , we
have the following equivalent characterization of 3^(v) in terms of D(5?v) :

(3.6a')        3>(u):        fU)(t) £ DL2"')   for aXX t £ [0, T] and 0 < ; < p.
Note that (3.6a' ) implies the existence of a constant C such that

(3.7) ||^Wa)(0llmin(,,p-,)<C, 0<J<P.
This formula, which will be very useful in the proof of Theorem 2 below, can
be deduced from (3.6) as follows:

(i) It holds for v = 0, since by (2.1) and (3.5), ^u^(t) = u<-J+V(t)-ßj){t) £
L2(Q.), for 0<j<p.

(ii) If v £ (0, 1], then (3.7) holds for j = p by (i). For j <p - X one uses
uU+i)(t) e D{&), which yields

&U{j)(t) = UU+X\t) - fU)(t) £ D(Sfv).

(iii) Similarly, if v £ (/, / + 1], where / is a positive integer, (3.7) holds
for j > p - / because it holds for 0 < v < I, and for j < p - I - 1  since
«(j+1i(/)£fl(y'+1).

We also refer to the supremum of all real numbers v with 3s(u) and denote
it by
(3.6b) I7 = sup{i/ GR; 3°(v) holds}.
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As fU)(t) € L2(Q), we always have 3°(v) with v = 0. Further, 3°(v) implies
3°(p) as long as p < v . Note, however, that 3°(v) in general does not hold.
(This can be seen by the canonical example Xk = -n2k2 and fk= X/k, which
yields v = 1/4.) The value of v strongly depends on the asymptotic behavior
of the eigenvalues Xk of the operator ¿2?(x, d). The asymptotic distribution
of the eigenvalues is known for many classes of operators and domains, see,
e.g., [20, §5.6.2]. For example, in the case of the Laplacian in the ci-dimensional
unit square, we have Xk = cf(k2,d) for the natural ordering \Xk\ < \X¡\ if k < I.

Let us illustrate the fact that v also depends on the regularity of /. Consider,
for example, the one-dimensional heat equation with homogeneous Dirichlet
boundary conditions,

(3.8) u, = uxx + a(x) g(t)      in O = (0,1).

Here, q>k(x) = sin(knx), Xk = -k2n2, and simple integration by part shows
that if a is sufficiently differentiable and satisfies
(3.9) a(2w)(0) = a(2w)(l) = 0,        m = 0, ... , M - X,

then we have 3°(v) with v <v = M + X/4. These artificial boundary con-
ditions for M > X have been pointed out already in [17]. Similar conditions
(formulated in terms of the domain of the operator <Sf ) were also noticed by
Crouzeix [6]. For the formulation of the theorem, we introduce the following
notation. Let E(h) be a function satisfying

(3.10) E(h)=Cf(ha),        0<a<a,
but eventually E(h) / (f (ha). In this case, we write

E(h) = cfh(hs).
It is in general not possible to deduce from (3.10) a convergence rate of cf(h") ;
as an example, consider h • Xogh , which is cf(hs) for all ô < X but not cf (h).

We now give the main result of the paper concerning the convergence in the
L2-norm.

Theorem 2. Consider the equation (2.1) satisfying (3.1) with solution and source
function satisfying (3.5). Apply an Astable Runge-Kutta method (2.2), which
has classical order p and satisfies C(q) and (2.9). Then we have the following
estimate for the global error (nh = const) :

(i)   If P <q + 2, then
(3.11a) \\u(nh) - un\\L2 ■-

(ii)   Let V be given by (3.6b). Then

(3.11b)        \Hnh)-un\\Ll = [mq+2+V)       [fp>g + 2 + 17.

Note that condition C(q) can be replaced by the weaker condition (2.7)
without changing the theorem, see [15]. The second line in (3.11b) can of
course be written as tf(hq+2+l/) for a v <V. From the numerical point of
view, it is impossible to notice if the bound v =■ v is really attained or not. We
therefore use the term order of convergence for

(3.11') Q2 = min(p, C7 + 2 + I7)
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410 A. OSTERMANN AND M. ROCHE

and write
\\u(x,nh)-un(x)\\L2=&h(ha>).

Formula (3.11) shows that an order reduction from p down to q + 2 + V can
occur, depending on the value of v. As (3.6a) holds with v = 0 for every
function / satisfying (3.5), a lower bound for a2 is given by

a2 > min(p, q + 2).

This was first shown by Brenner et al. [1] for a model problem similar to (2.1).
However, for many classes of pde's (2.1), even fractional order can occur. For
the important class of one-dimensional second-order parabolic differential equa-
tions (3.8) and regular functions a (e.g., differentiable), not vanishing on dQ.,
the value of v in Theorem 2 is v = 1/4, hence we get the order

(3.12) a2 = min(p, q + 9/4).
We now study the actual form of the function (?„(■•■) in (3.11b). It de-

pends strongly on the structure of the constant C in the basic condition (3.6a),
i.e., how C depends on v. We will illustrate this by a simple example and
consider

(3.13) ii/O)^^ <__£_,        0<j<p,

where C is a constant. Note that (3.13) holds for the one-dimensional heat
equation (3.8) if a is sufficiently regular. We prove the following result:

Theorem 3. Under the assumptions of Theorem 2 and the additional condition
(3.13), if p > q + 2 + v , we have

\u(nh) - un\\0 = W+2+,y|log/;|).

Similar order results can also be obtained for /i(ö)-stable methods, i.e., meth-
ods whose stability region contains the sector

(3.14) Sû = {z£C; |arg(z)|>7t-ö}.

Theorem 4. Consider the equation (2.1) satisfying (3.1) with solution and source
function satisfying (3.5). Suppose that the eigenvalues of the operator 2? lie
in the sector (3.14). Apply an A(t})stable Runge-Kutta method (2.2), with
classical order p and satisfying C(q) and (2.10). Then we have the following
estimate for the global error (nh = const) :

(i)   If p <q + 2, then
\\u(nh) - un\\Li =cf(hp).

(ii)   Let v be given by (3.6b). Then
W) ifq + 2<p<q + 2 + v,

11^ - Ml- , w+2+?)       l/p>, + 2 + F.   D
Of course, the theorem remains valid if condition C(q) is replaced by (2.7).
It is possible to obtain similar convergence results in the Lr-norm for r 7^ 2

by defining a real number vr as in (3.6a' ), (3.6b), but with the domain D(2'v)
taken with respect to Lr(Q). The only additional assumption concerns a sub-
stitute for Lemma 1, i.e., an operational calculus in U. Such an operational
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calculus is provided, for instance, within the theory of analytic semigroups.2
Note that an immediate extension of Lemma 1 within our assumptions seems
difficult, as its proof is based on property (3.1c) which does not hold except for
r = 2. With these ingredients one gets

(3.15) \\u(nh) - un\\Lr = i
p) ifp<q + 2 + ur,

@h(hq+2+v')       ifp>q + 2 + vr.

Further, if 1 < r < 2 and r' are conjugate indices (1 = X/r+ X/r'), we have,
owing to the continuity of the embedding Lr' (Q) c Lr(Q),

(3.16) »oo  < <V   <  a2  < ar < ax

with  Qoo := inf{ar ;  1 < r < oo}   and

(3.17) ar = min(p, q + 2 + vr)    for 1 < r < oo.

In the simple situation of the one-dimensional heat equation (3.8) with regular
a(x) one has for 1 < r < oo, see [20, §4.3.3]3

(3.18) vr = M + — with M given by (3.9).

For the generic cases a(0) ^0 or a(X) ^ 0 this gives

(3.19) ax =min(p, q + 5/2),        ax = min(p, q+ 2).

Remark. Theorem 2 (and also Theorems 3 and 4) remains valid for the local
error (n = 1 ) of Runge-Kutta methods applied to problem (2.1) with p re-
placed by p + X in formula (3.11). This explains the asymptotic /z325-behavior
in the L2-norm of the local error of a two-stage DIRK method ( p = 3, q = X )
observed by Verwer [21, formulas (4.25a), (4.27)] on a problem of class (3.8)
with v — 1/4. Similarly, the example of [1, p. 13] can be explained by the
equivalent formula (3.11) for the local error, with ¡7=1/4, q = X.

The proof of Theorems 2 and 3 will be given in §4. The proof of Theorem 4 is
a straightforward extension of that of Theorem 2. Therefore, it will be omitted.
The implications of the theorems to the case where the operator ¿¿?(x, d) in
(2.1) is discretized in space (by standard finite differences or finite elements)
will be discussed in §6. We will show there that the global error of Runge-
Kutta methods (satisfying the conditions of Theorems 2, 3, or 4) applied to the
discretized system behaves like

h"*       forho<h<H,
h"        for h < ho{

with ai given by (3.11 ' ) and appropriate constants ho and H.

4. Proofs of Theorem 2 and Theorem 3
Proof of Theorem 2. We insert the exact solution of (2.1 ' ) into (2.2), expand
into Taylor series and use the simplifying assumptions C(q) of (2.4).   This

2The case r = oc requires some modifications. We do not elaborate on this point, cf. also (3.17)
below.

3In our context, formula (3.18) remains valid for r = 1  (take, for instance, a(x) = 1).
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412 A. OSTERMANN AND M. ROCHE

yields (here, t„ = nh)
s

u(tn+x ) = u(t„) + hY,b, u'(t„ + ah) + (f(hp+x ),
(4.1) -l    ,

u(t„ + ah) = u(tn) + h^2 <*ij u'(t„ + cjh) + Si,
;=i

where the defect A = (Sx, ■•• , 6„)T is given by
P      uk

(4.2) A=  J3 ~{ck-kAck-x)u{k)(tn)+âf(hp+x).
k=q+l

Next we subtract (2.2) from (4.1 ) and denote the global error by en = u(nh)-u„ .
Using the abbreviations Kf = u(t„ + c¡h) - C//1, Kn = (K{" , ... , K^)T, we get
(43) en+x=en + h(bT®5f)K"+c?(hp+x),

(I®Jr-hA®3')Kn = \®en + A.
System (4.3) yields the following recursion formula for the global error:
(4.4) en+x =R(h5f)e„+h(bT®£?)(I®Jr -hA®5?)-xA + c?(hp+x).
Inserting (4.2) into (4.4) and using (2.9b) and Lemma 1 gives

(4.5) en+x=R(h5?)en + (^-R(h5f))  5]   f^-Wk(h^f)2fu^(tn)+(f(hp+x).
k=q+l

We first show that the term with k = p is cf(hp+x) and can thus be neglected.
By (3.7) one has S?u(p\t) £ L2(il). Therefore, it is sufficient to prove the
boundedness of the operator (J2" - R(h£?))Wp(hS?). But this follows easily
from (2.9a,b) and Lemma 1. Thus, we have to consider instead of (4.5) the
recursion

(4.6) en+x=R(h^)en + (^-R(h^))  £  ^Wk(h^)2fu^(tn)+cf(hp+x).
k=q+l

For p = q, q + 1 formula (4.6) simply reads
en+x=R(h5?)en+(f(hp+x),

hence ^-stability together with Lemma 1 gives en = cf(hp). This implies
(3.11a) for p = q, q + 1.

For p > q + 2, we solve the recursion (4.6) and use eo = 0 to obtain

(dl]       e»=   £  ^Wk{h&)^R{h&)»-l-\S -R{h&))&ék\u)
'        l k=q+l        ' 1=0

+ cf(hp),
which, by regrouping the second sum, can be rewritten as

P~l    uk+l I
en=  Y, -^-yVk(h^)\^u^k\t^x)-R(h^)n^u^(to)

k=q+l        ' \
n-1 \

+ Y,R"~l~l(h&)&{ulk)(ti)-uik)(ti+x))   +cf(hp).
i=0
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Using ,4-stability and Lemma 1, we can estimate the global error en in the
L2-norm by

£ TT ( ll^(^)^»(fc)(í«-i)ll + \\wk(h^)^u(k\to)\\
(4.8) *=«+!     '

+ /" ' IIWk(h3f)5?u{k+X)(s)\\ds\ +cf(hp).

It thus remains to estimate terms of the form

(4.9) hk\\Wk(h&)h5?u«\t)\\,       l = k,k + X
for q + X < k < p - X.

lfp<q + 2 + v and hence v > p - q - 2 (for v < v and sufficiently near
to v), condition (3.7) implies

5?u(l)(t)£D(3>p-k-x),       l = k,k + X   and   q+X<k<p-X.
We rewrite (4.9) as
(4.10) hp\\Wk(h£?)(hä?)k+x-p3>p-ku{l)(t)\\

and have to show that the operator Wk(h2')(h3')k+X~p is bounded. This is a
consequence of (2.8), (2.9), and Lemma 1.

Finally, for p > q + 2 + v and hence v < p - q - 2 (for v < v ), condition
(3.7) shows that

S?u(l)(t)£D(£?q+x+v-k),       l = k,k+X   and   q + X<k<p-X.

We distinguish two cases: If k > q + X + V, then (4.9) can be bounded by

(4.11) A*+1.||^(A^)||-H-S<'"(/)(0ll.
which is cf(hk+x) by Lemma 1. If k < q + X + v we rewrite (4.9) as

(4.12) h<l+2+v\\Wk(h3')(hS?)k-<l-x-l,3"<+2+v-ku(l)(t)\\

and use again (2.8), (2.9), and Lemma 1.   This shows that (4.12) is of size
tf(hq+2+l/), which completes the proof of Theorem 2.   G

Proof of Theorem 3. The foregoing proof gives sharp results up to (4.8). Then,
because of (3.13), terms of the form (4.12) can be bounded by

_    /,<7+2+"
(4.13) C—-rr^       for all v < v.

(v - vylL

Therefore, they are also bounded by the infimum taken over all v < V, which
is easily seen to be

V2e"Chq+2+»J\Xogh\.
This completes the proof of Theorem 3.   D

5. ADDITIONAL CONVERGENCE RESULTS

5.1.    Convergence in sequence spaces.   In view of the isomorphism (3.1c), the
convergence results obtained in §3 can easily be translated to convergence results
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in the sequence space I2. Although it is straightforward, we elaborate this point,
since the ^-interpretation of convergence gives—in our opinion—much more
insight why fractional order appears (see §6.1). Further, the I2 approach easily
extends to /'-norms with r ^ 2 .

To start, we represent the solution u(x, t) of (2.1) by the (generalized)
Fourier series

oo

(5.1) u(x, 0 = £"*(0î»*(*).
k=l

where {tpk} is the basis of eigenfunctions of Sf satisfying (3.1 ). Inserting (5.1 )
into (2.1) and comparing the coefficients of <pk , we obtain an infinite sequence
of ordinary differential equations

(5.2) u'k(t) = Xkuk(t) + fk(t), k>X,

where fk(t) is the Fourier coefficient of /. The initial value uk(0) is the
Fourier coefficient of the initial function uq(x) of (2.1). Let U(t) = (ux(t),
Ui(t), ...) denote the exact solution of (5.2). Applying «-times a Runge-Kutta
method with step size h to (5.2) yields the numerical solution, which we denote
by U„ and which approximates U(nh). Because of (3.1c), the error of a Runge-
Kutta method (which has to satisfy, of course, the assumptions of Theorem 2),
applied to the decoupled system (5.2), has an asymptotic behavior given by
(3.11). Thus, an alternative proof of Theorem 2 is the following:

Consider first the scalar equation

(5.3) y'(t) = Xy(t) + g(t)

with some initial value y0 . Apply a Runge-Kutta method for its solution,
s

Yi=y„ + h^2 aij(XYj + g(tn + Cjh)),

(5.4) »
yn+i = yn + h 53 bi(XY¡ + g(tn + ah)),

i=i
and call E„(X, g, h) the global error for t = nh . Then the error of the whole
system (5.2) is given by

(oo

Y}En(kk,fk,h)\2
k=i

with Xk of (3.1b) and fk of (5.2). It can be estimated as in the proof of
Theorem 2.

We like to stress the fact that the above approach does not need any opera-
tional calculus and is therefore more elementary. The only ingredient needed is
the following lemma whose proof is given by (4.1)—(4.7) with J? replaced by
a complex number X.

Lemma 5. The global error E„(X, g, h) of the Runge-Kutta method (5.4) sat-
isfying the assumptions of Theorem 2 is given by (nh = const)

'/-
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(5.6)
En(X, g, h) =y(nh)-yn

=   £  t}^Wk(z)i£R(zr-'-x{X-R(z))X/k\tl)+^(hp),
k=q+l ' 1=0

with z = hX and Wk(z) of (2.6).   □
To estimate the global error in /'-norms, we consider again the decoupled

system (5.2). As in §3, we will characterize the order of convergence with the
help of a real number p and the property 3°r(p),

(5.7a) ßr(p): (\Xk\»fkU](t)) £ lr,    0<j<p,
(5.7b) pr = sup{p £ R ; 3\(p) holds}

with Xk of (3.1b) and fk(t) given by (5.2). Recall that V for r > X is the
Banach space of sequences (Wk)k>i satisfying Y, \Vk\r < °° • For simplicity we
assume that

(5.8) (uk)£Cp+x([0,T],lx),        (fk)£Cp([0,T],lx).

Then 3*>r(p) holds with p = 0 for all r > X , and since the embeddings ( r and
r' denote conjugate indices, i.e., 1 = X/r + X/r' )

/' c r c i2 c r' c /°°
are continuous, we have

0 < px  < pr < p2  < Pr<  < foc-

using the same techniques as in the /2-case shows the following theorem:

Theorem 6. Under the assumptions of Theorem 2 together with (5.7), (5.8)
instead of (3.5), (3.6), the global error of a Runge-Kutta method, applied to the
system (5.2), is given by (nh = const)

win   m     r/ii       J^AP) ifp<q + 2 + pr,\\U(nh) - U„\\ir = < ,,_
"    ^     ' '"      \^(A«+2+"0       ifp>q + 2 + pr.   D

The convergence behavior is thus @h(ha') with

(5.9) âr = min(p , q + 2 + pr).

A careful analysis of the proof (§4) shows that if the Runge-Kutta method
satisfies additional conditions (cf. (5.15) below), then the above theorem can be
extended to situations where

(\h\~rfk\t)) € /'    for some 0 < y < 1.
We omit details.

In the simple situation (3.8) of the one-dimensional Laplace operator and
fk(t) = ak • g(t) = (f(k~x) one easily deduces from (5.7), (5.9)

(5.10) ai = min(p , q + 2)       and       â^ = min(p , q + 5/2),

which is conjugate to (3.19), i.e., ai = ax and âoo = <*i •
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5.2. Nonhomogeneous boundary conditions. The case of nonhomogeneous
boundary conditions is more difficult to investigate from a theoretical point
of view. Numerical experiments, however, indicate that the order reduction
can be more severe than the one predicted by Theorem 2. To illustrate this, we
consider the pde (3.8) with nonhomogeneous boundary conditions

u(o,t) = ®(t),      «(i,o = o(0-
Discretization of the Laplacian by standard 3-point finite differences leads to
the ode system

(5.11) U' = LNU + BN(t) + FN(t),

where L# is the N x N matrix

-1     2     -1

(5.12) LN = -(N+X ,2

-1     2     -1
V -12/

and BN(t) = (N + l)2(O(0 » 0, ... ,0, 6(0)T ■ Introducing the affine function

w(x, t) = x0(O + (l -x)G>(0
allows us to rewrite (5.11) as

(5.13) U' = LN(U-W) + FN(t),

where W = (wx(t), ... , wN(t)) with wk(t) = w(jj^, t). As the eigenvec-
tors of (5.12) are orthogonal, system (5.13) can be decoupled by an orthogonal
transformation Q into the diagonal system ( V = QU )

(5.14) V = A(V - QW) + QFN(t),
where A = diag (Xx, ... , Xn) with the eigenvalues Xk of (5.12). Note that
Runge-Kutta methods are invariant under the transformation from (5.11) to
(5.14). System (5.14) consists of N scalar differential equations of the Prothero-
Robinson type (see [16]),

v'k=Xk{vk-ak(t)) + gk(t),        X<k<N.

Instead of (2.10c) we consider the conditions

(5.15) zWk(z) is bounded in {z G C ; |arg(z)| > n - Û}   for q + X < k < p.

Many well-known Runge-Kutta methods such as Radau IIA or Lobatto IIIC
methods fulfill (5.15). An analysis similar to that made in §5 for the infinite
system (5.2) is now possible, essentially with q + 2 replaced by q+X. Suppose
that the Runge-Kutta method satisfies the assumptions of Theorem 4, but with
(5.15) instead of (2.10c), and apply it to (5.11). Then its global error behaves
in the Euclidian norm like C • hß2 (for h not too small) with

(5.16) ß2 = min(p,q+X+J).

Here, x (and X) is defined by (3.6) with fP' replaced by ak . As Xk « -K2k2
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and
(-X)k+X X

we have x - 1/4 for general 8 and <I> and hence (compare with (3.12))

(5.17) ß2 = min(p,q + 5/4).
Note that Gauss methods with an even number of stages do not satisfy (5.15).
As a consequence, one loses another power of h when applying these methods
to (5.11) and gets
(5.18) ß2 = min(p,q+X/4)
instead of (5.17).
Remark. Formula (5.17) remains valid for the local error with p replaced by
p + X. This explains perfectly the asymptotic /z225-behavior in the L2-norm
of the local error of a two-stage DIRK method (p = 3, q = X ) observed by
Verwer [21, formulas (4.25b), (4.27)] on a problem of class (3.8) with nonhomo-
geneous boundary conditions. Similarly, formula (5.17) confirms the order of
convergence observed by Verwer for the same class of methods [21, Table 4.1].

6. More on error behavior
6.1. Superposition. The proof of Theorem 2 leads to a nice geometrical in-
terpretation of the encountered fractional order. We consider again equation
(5.3). The global error of a Runge-Kutta method, applied to it, has been derived
in Lemma 5. For a fixed value of X £ {z £ C ; Re z < 0} with \X\ sufficiently
large, this term exhibits two different /z-behaviors:

(i)     For \hX\ large, the function En(X, g, h) in (5.6) is (see also (4.8))

(6.1) En(X,g,h)*Fx(X)hq+2-",
where the integer u> depends on the method and is for p > q + 2 determined
by the behavior of the rational function Wq+X(z) at infinity, i.e., Wq+X(z) =
<f(z~w) for z —► oo. Radau IIA methods ( s > 3 ), for example, have «y = 2.
This can be seen from b¡ = as¡, which implies cs = X and bTA~l (cq+x -qAcq) =
0.

(ii) For h -> 0, (2.8) shows that Wk(z) = cf(hp-k~x), and therefore E„
behaves like
(6.2) En(X,g,h)*F2(X)hp.
The constants Fx, F2 depend on the method and on X, but not on h . Plotted
in double-logarithmic scale, the function En(X, g, h) consists thus essentially
of two segments with slopes q + 2 - œ and p , respectively.

Considering now a sequence of equations (5.3) with different values of X
gives a sequence of self-similar curves En(X, g, h) which are, however, dis-
placed and therefore superpose each other. The global error of the whole system
(5.2) for different values of h is thus dominated by curves associated with dif-
ferent components of (5.2). This is particularly evident in the /°°-norm, where
the error of the whole system is just the envelope of the set of individual curves.

Let us illustrate this phenomenon with a picture. We consider a system of
type (5.2),
(6.3) u'k = -XOkuk + t\        k = X, ... ,4,
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h        10~2 10"1 10° 10"2 10"1 10°

Figure 1. Global error of Radau IIA methods on (6.3)
at t = X

with initial values on the smooth solution. In Figure 1 we have plotted the
global error of the four components of (6.3) in dependence of h for the three-
and four-stage Radau IIA methods. As pr = 0 for all r, one observes the
superposed orders 5 and 6 as the slope of the envelope of the four curves.

6.2. Order reduction for semidiscretized PDE's. Full discretization of a prob-
lem (2.1) gives rise to two types of errors: a space truncation error due to the
discretization of the space variables x by finite elements or finite differences,
and a time truncation error from the numerical integration of the resulting ode
by a Runge-Kutta method. The following analysis treats only the time trunca-
tion error.

Spatial discretization (by standard finite elements or finite differences) of the
partial differential equation (2.1) leads to the ode system

(6.4) U' = LNU + FN(t),
where Ln is a constant N x N matrix whose eigenvalues tend to the N first
eigenvalues of the operator L(x, d) when N —» oo . The global error of Runge-
Kutta methods is governed by a similar superposition as described above. But
as there are just N components, the superposition takes place only for h suffi-
ciently large. For h —> 0, we observe, of course, classical order of convergence.
There exists thus an h-zone where the order result of Theorem 2 applies. This
zone becomes arbitrarily large when N tends to infinity.

We illustrate this superposition with a numerical example. Consider the pde
(3.8) with a(x) = x, g(t) = e~' and homogeneous Dirichlet boundary con-
ditions. We discretize by standard 3-point finite differences. In this case the
matrix LN is given by (5.12) and the parameter V of Theorem 2 is V = 1/4.
As the eigenvectors of (5.12) are orthogonal, system (6.4) can be decoupled by
an orthogonal transformation into the diagonal system

(6.5) V' = AV + F(t),
where A = diag(Ai , ... , XN) with the eigenvalues Xk of (5.12). This decou-
pling is the perfect numerical analogue of the continuous decoupling of (3.8)
with the eigenfunctions <pk(x) = sin(knx).
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Table 1. Observed orders of convergence
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aX,ob a2,ob Qoo ,ob "1,0* a2, ob aoo ,ob

2

4

8

16

32

64

128

6.45

6.61

6.57

6.53

6.52

6.53

6.55

6.36

6.37

6.32

6.29

6.28
6.27

6.28

6.19

6.11

6.06

6.04

6.04

6.04

6.03

6.05
6.05
6.04

6.03

6.02

6.02

6.03

6.36

6.37

6.32

6.29

6.28
6.27

6.28

6.50

6.79

6.43

6.53
6.53

6.51

6.53

We denote by Un and V„ the numerical solution of the four-stage Radau IIA
method (p = 1, q = 4) applied «-times with step size h = X/n to the systems
(6.4) and (6.5), respectively, with initial values on the smooth solution. U„
and Vn are approximations to the exact solutions U(t) and V(t) at t = X.
We computed the global errors en = U„ - U(X) and ên = Vn - V(X) in the
three norms || • ||i. II ' II2 • and || • II«, • The observed orders of convergence are
obtained through the formulas

ai ,ob = ^%2{\\en\\il\\e2n\\i),        ¿=l,2,oo,

and
«i,oft = log2(||êB||I-/||é2iilli).       '= l,2,oo.

We display these values in Table 1 for N = 50 and « = 2,4,8,... , 128.
Table 1 nicely shows that the observed orders of convergence correspond

to the theoretical values given in Theorems 2 and 6, in particular, the order
reduction a2 = 6.25 predicted by (3.12) and âx = 6, â«, = 6.5 predicted by
(5.10), can be observed.  Notice also the identities ax
which follow from (3.19) and (5.10).
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