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A b s t r a c t .  

We construct generalized Runge-Kutta methods for integration of differential equa- 
tions evolving on a Lie group. The methods are using intrinsic operations on the 
group, and we are hence guaranteed that the numerical solution will evolve on the 
correct manifold. Our methods must satisfy two different criteria to achieve a given 
order: 

�9 Coefficients Ai,j and bj must satisfy the classical order conditions. This is done 
by picking the coefficients of any classical RK scheme of the given order. 

�9 We must construct functions to correct for certain non-commutative effects to 
the given order. 

These tasks are completely independent, so once correction functions are found to the 
given order, we can turn any classical RK scheme into an RK method of the same order 
on any Lie group. 

The theory in this paper shows the tight connections between the algebraic structure 
of the order conditions of RK methods and the algebraic structure of the so called 
'universal enveloping algebra' of Lie algebras. This may give important insight also 
into the classical RK theory. 

1 I n t r o d u c t i o n .  

In many  areas of applied mathemat ics  one wants to solve differential equations 
whose solution is known to evolve on a given manifold. There  are two main fam- 
ilies of solution techniques for such problems, embedded and intrinsic methods.  
In the first of these one embeds the manifold in t( n and employs a classical inte- 
gration scheme here. The  problem of this approach is that ,  except in very special 
cases, it is generally impossible to  find classical integrat ion schemes which will 
stay on the correct manifold [5, 9, 11]. The  alternative, intrinsic methods,  are 
based on expressing the algori thm via a set of 'basic flows' which in each point  
span all the directions of the manifold. These methods  have the advantage of 
being guaranteed to sit on the manifold. The  price we must  pay for this is tha t  
we must  be able to compute  the basic flows exactly, e.g., by comput ing  matr ix  
exponentials or by integrat ing 'simpler '  vector fields defining the basic flows. 
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The topic of this paper is intrinsic integration algorithms in the case where 
the domain is a Lie group. This has many nice applications briefly discussed 
in [12, 14, 15]. In [15] we show that  if we know how to integrate equations on 
general Lie groups, we can also integrate equations on virtually any manifold 
of practical interest (more precisely on any homogeneous manifold). Another 
application is the construction of explicit orthogonal and unitary integrators. It 
is known that  all classical orthogonal integrators must be implicit [17], while 
these new algorithms can be explicit. 

We want to point out some related papers dealing with intrinsic integration 
algorithms. Iserles [8] presents intrinsic integrators for linear ODEs with variable 
coefficients. This approach can more generally be understood as a numerical 
implementation of the method of Lie reduction [2, 22], and can be applied to 
any equation of Lie type. Zanna [21] proposes generalizations of this approach 
to general ODEs on Lie groups. 

In [13] we presented a class of generalized Runge-Kutta methods for differential 
equations on Lie groups, which we will refer to as MK methods. The main 
emphasis in [13] was to show how the classical order theory of Butcher could 
be understood in terms of operations on commutative Lie groups. A related 
approach is the method of Crouch and Grossman (C-G) [6], who present a general 
approach and give explicit formulas for a 3rd order method. The order theory 
of their algorithms has recently been systematically developed by Owren and 
Marthinsen in [16], who also device C-G methods of order 4. The main difference 
between the C-G and MK methods is that whereas C-G does the approximations 
in the Lie group, MK does them in the Lie algebra. That  is, C-G advances 
by a composed product of exponentials, while MK first combines elements in 
the Lie algebra, and then advances by a single exponential mapping applied to 
this combination. It turns out that  the order theory of the MK approach is 
dramatically simpler than that of the C-G approach. The main reason for this is 
that whereas operations in the Lie group are nonlinear, the Lie algebra is a linear 
space. However, the original formulation of MK methods cannot achieve order 
higher than 2 on a non-commutative Lie group, and it needs some modifications. 

In the present paper we reformulate the theory of [13] in a more precise lan- 
guage, and introduce the necessary modifications in order to construct higher 
order methods for general non-commutative groups. The main idea behind this 
construction is to devise methods whose order theory is as close as possible to 
the classical Butcher theory. We obtain a family of methods where two different 
criteria must be satisfied in order to achieve a given order: 

�9 Finding coefficients Ai,j and bj satisfying the classical conditions. This is 
simply done by picking the coefficients of any classical RK scheme of the 
given order. 

�9 Finding some correction functions, which correct certain non-commutative 
effects to the given order. 

The two tasks above are completely independent, so once correction functions 
are found to the given order, we can turn any classical RK scheme into an RK 
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method of the same order on any Lie group. While Owren and Marthinsen [16] 
prove that  for C-G type methods 5 stages are needed to obtain order 4, the 
present work give examples of 4 stage 4th order algorithms of MK type 1 . 

Readers who want to see the structure of the algorithms without diving too 
deeply into the mathematics may jump to Section 3.2, where 3rd and 4th order 
algorithms are explicitly written out. 

2 Mathemat i ca l  background and notat ion .  

We have chosen to present this paper in the language of general Lie groups 
rather than, e.g., in the more special setting of matrix Lie groups. There are 
several reasons for this choice. First of all a mathematically rigorous presen- 
tation will be an important reference for future work, and it emphasizes that  
the algorithms are not depending on particular representations. The general 
language is also precise with respect to the type of the mappings involved, and 
we avoid the ' type errors' which are easily introduced if we employ the language 
of matrix Lie groups. Thus the abstract language is also an important guide if 
we want to design object oriented programs for solving differential equations. 

The readers who are not familiar with the general notation may find it very 
useful to interpret the formulas for two concrete examples; first the Abel ian 
case (where our methods reduce to the classical Runge-Kutta methods on R '~) 
and secondly the matrix Lie group case. All concepts in abstract Lie group 
theory have a concrete counterpart for matrix Lie groups, which gives a good 
conceptual handle on the essential ideas. The third important interpretation is 
the case where the Lie group is a group of diffeomorphisms on a manifold and 
the Lie algebra consists of vector fields tangential to the manifold. The reader 
will find the details of these three cases in Section 2.4. 

The texts [2, 19, 20] are excellent references on Lie group theory. 

2.1 Di f ferent ia l  equat ions on mani fo lds .  

Let ] : Af ~ M be a smooth mapping between manifolds. We let f~ : 
TAr -~ T.44 denote the derivative of f ,  defined as a mapping between the tangent 
manifolds. The derivative of a composition of mappings is given as ( f  o g)~ = 
f~ o g'. To avoid a cluttered notation we will identify T ~  with lir itself, thus, e.g., 
if yt  : ~ --r M is a curve on A/t, then yt  ~ : ]I( --+ TJ~4 is a curve on TJ~/[. 

A vector field on ,44 is a smooth mapping F : A4 -~ T~4,  such that  7r o F = 
IdM, where 7r : T M  -~ M is the natural projection. F defines a general initial 
value problem as: 
(2 .1 )  = F ( y t ) ,  y0 = p .  

The f low of F is the solution operator CF,~ : M -4 2~4 defined in such a way 
that  yt = k~F,t(p) is the integral curve starting in p, i.e., 

0 
(2.2) -~gtF,  t(p) = F(ggF, t (p) ) ,  CAF,o(p) = p .  

1 In a succeeding paper  [14], we show how cl~sical  RK methods  of any order can be modified 
to a Lie group invariant method of the same order. 
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Our goal is to study the numerical integration of (2.1) in the case where ~4 is a 
Lie group. 

2.2 Lie groups and algebras. 

A Lie group is defined as a manifold G equipped with a continuous and smooth 
group product �9 : G x G -~ G. 
group as: 

La(b) = a.b fo ra ,  b � 9  

Ra(b) -: b.a for a, b E G 

We define left and right multiplications in the 

The Lie algebra is defined as the tangent space of G in the identity, g = TGle, 
and has the structure of a (real or complex) linear space equipped with a bilinear 
skew symmetric form [., .] : g x g  --~ g. It  is called the Lie bracket, defined below. 
If G is a matr ix  Lie group then g is a space of square matrices, and the Lie 
bracket is the matr ix  commutator  [u, v] = uv - vu. 

The tangent space at any point a E G, TGla can be identified with g using 
either left or right multiplication, i.e., 

TGla={L~a(v )  l v e g } = { R ~ a ( W ) l W e g } .  

Thus any vector field F : G -~ TG can be written in either of the forms: 

(2.3) F(a)  = L~a(f(a)) = R'a(](a)),  

where f ,  ] : G --+ g. The adjoint representation of G is defined as the mapping 2 
Ad : G -~ Aut(g) given as: 

(2.4) Ad(a)(v) = (n~ o R ~ - l ) ' ( v )  , v �9 g. 

We have ](a)  = A d ( a ) ( f ( a ) ) ,  thus the adjoint mapping is a way of relating left 
and right representations of vector fields. 

NOTE 2.1. All the algorithms of this paper  exist in left and right versions. 
We have based most of the presentation here on the left versions. In some 
situations it is important  to know the right version, and therefore we give the 
most important  formulas and definitions in both forms. 

The mapping ad : g --+ End(g) is defined as: 

(2.5) ad(u) -- Ad'(e), 

and the Lie bracket [-, .] : g • g -~ 9 is a bilinear skew symmetric form on 9 
defined as 

(2.6) [u, v] = ad(u)(v). 

Since ad(u) : 9 ~ 9, we can define ad'~(u) as the n-times iterated map, i.e., 

ad~ = v 

adn(u)(v)  = ad (u ) (adn - l (u ) ( v ) )  = [u, [u, [. . . , [u, v]]]], for n _> 1. 

2End(g)  is the  set of  all l inear m a p s  from g to itself, and  Aut (g)  those  which are invertible. 
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2.3 The exponential mapping and its differential. 

The exponential mapping is a mapping exp : g -+ G. In the case of matrix Lie 
groups it is given as the matrix exponential (2.11), and on Diff(,~//) it returns 
the flow of a given vector field (2.12). 

The differential of the exponential turns out to be of major importance in the 
order theory for Runge-Kutta methods on Lie groups. Since exp : g -+ G, we 
must have exp t : Tg -+ TG. However, since g is a vector space we can identify 
Tg with g itself, and we have seen that  also the tangent space TGI~ can be 
identified with g. Thus exp t can be expressed via a function dexp : g --r g- 
There are two ways of doing this, depending on whether TGIa is related to g 
via left of right multiplication. For u, v E g we define: 

(2.7) dexpu(v ) = L'exp(_u ) o exp'(u,v)  

(2.8) d r exp,(v) = RIexp(_u) o exp'(u, v), 

where exp' (u, v) = o exp(u + tv)It=o" There are various formulas for expressing 
dexp~(v) and d r expu(v): 

/o 1 (2.9) dexpu = ( -1)J  adJ(u) = ex p (ad ( - su ) )d s  
j=o (j + 1)! 

oo 1 . fo 1 (2.10) drexp~ = ~.= (j ~ l ) ! a d J ( u )  = exp(ad(su))ds 

The sum form of (2.9) is derived in Varadarajan [19] p. 108, while a form similar 
to the integral form in (2.10) is implicitly derived in the paper of Crouch and 
Grossman [6] (their Lemma 3). Iserles [8] derives the sum form of (2.10) (his 
Theorem 1). 

2.~ Some important examples of Lie groups. 

2.4.1 Abelian groups and R "=. 

Abelian groups are in general groups where a.b = b-a for all a, b E G. This 
implies that [u,v] = 0 and hence that  dexpu(v ) = v for all u,v E g. Abelian 
groups are always locally vector spaces, though they may be globally different 
(e.g., tori). 

The real vector spaces l~ n are special Abelian Lie groups where: 

(G, . )  = +)  

(9, +,  [',-]) = +,  [u, v] = 0) 
exp(u) = u 

TG = Rn 

R~a(b) = L~a(b) = b. 

The initial value problem (2.35) takes the form 

' Y~=f (Y t ) ,  f o r f : R  n - + ~ n .  
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2.4.2 Matrix Lie groups. 

The general linear group, G = GL(n, If0, is the group of all real invertible n x n 
matrices, where the product is the matrix product. The Lie algebra g -- 9[(n, R) 
consists of all real n x n matrices, + in g is the sum of matrices. We have: 

(2.11) 

U, V] -~ UV - -  V t t  

oo v j  

exp(v) = E ~.  
j=O 

TG = { b v [ b e G ,  v � 9  

R~a(vb) = vba 

L~(bv) = abv. 

In this case the initial value problem (2.35) takes the form (3.12). 
Other matrix Lie groups are continuous subgroups of GL(n), and the corre- 

sponding algebras are subalgebras of g[(n). Some important cases are: 

�9 The orthogonal group O(n) = { a �9 GL(n,]R)]aTa = I }. The corre- 
sponding algebra consists of all skew symmetric matrices. 

�9 The special linear group SL(n)  = { a E GL(n, R) ] det a -- 1 }, where the 
algebra consists of all matrices with trace 0. 

O(n) is important in orthogonal flows and SL(n)  is essential for the understand- 
ing of volume preserving flows. 

2.4.3 The group Di~(2~4). 

For a given manifold Az[, Diff(M) consists of all diffeomorphisms r on ]~4, 
i.e., smooth invertible mappings r : ,~l --> 2~4. Its Lie algebra is :~(~4), i.e., 
the set of all tangent vector fields on .A4, and the bracket [., .] is the Lie-Jacobi 
bracket of vector fields, see [1] for its definition. The product in Diff(2Pi) is the 
composition of diffeomorphisms and the sum in :~(M) is the pointwise sum of 
vector fields. The exponential mapping exp : :~(J~4) -+ Diff(,~4) is given as 

(2.12) exp(tF) = ~F,t, 

where ~F,t is given in (2.2). 

2.5 The universal enveloping algebra of g. 

The enveloping algebra allows us to introduce higher order differential opera- 
tors, and is important in the order theory of RK methods. 

An element v E 9 defines left and right invariant vector fields on G as: 

(2.13) Xv(a) -- L~a(V) (left invariant) 

(2.14) Yv(a) = R~a(V) (right invariant). 
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The flows of Xv and Yv are given as: 

(2.15) ~xo,t = Rexp(tv) 
(2.16) ~PY~,t = L e x p ( t v ) .  

Let f be a smooth real valued function on G, f E C~176 Then v may act as a 
derivation of f either from left or right, as the Lie derivative of f with respect 
to either Xv or Yr. I.e., v[-], [.Iv: C~176 -~ C~176 are defined as: 

(2.17) (v[f])(a) = ~ f ( a . e x p ( t v ) )  t=0 

0 
(2.18) ([f]v)(a) = -~ f(exp(tv).a)[t=o . 

We can introduce higher order left and right invariant differential operators by 
iterating first order operators, i.e., we introduce the second order left and right 
invariant operators 3 (u.v)[.] -- u[v[-]] and [-](u.v) -- [[.]u]v. It can be shown that  

02 -exp(t2v)) (2.19) (u.v)[f](a) = OtlOt2f(a.exp(tlU ) 
~1=$2m0 

(2.20) [f] (u.v)(a) = OtlOt2f(exp(tlu).exp(t2v).a) . 
tl=t2----O 

The sum of two differential operators is defined the obvious way, (u + v)If] = 
u[f] + v[/], and the 0'th order identity operator ]I is defined as lT[f] = f .  

DEFINITION 2.1. The Universal enveloping algebra r of a Lie algebra g con- 
sists of all invariant di~erential operators generated by (]I, g} under the opera- 
tions, and + defined above. 

For any vector space V we identify T V  with V, thus if vt : R -+ V we have 
Ov~/Ot = vt ~ : ]~ --~ V. In this case we will henceforth use the notation: 

Oi 
(2.21) v (i) = -~v~ t=o" 

More specifically, for a curve v~ : ~ --~ ~,  we define the curve v~ : ]~ -+ ~5 such 
that  

0 
= for all I e Coo(G).  

It can be shown that  the sum + and the product �9 on ~ behave in the familiar 
way under derivations, i.e., 

( ~ + ~ ) '  : ~ + ~  

= + 

3The product u . v  should not be confused with a matrix product! 
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NOTE 2.2. We have introduced O in terms of invariant derivations on G. 
An alternative approach is a purely algebraic construction, see [19]. In this 
construction, the products u . v  are tensor products 4. Thus, e.g., second order 
homogeneous elements of @ lie in (a quotient space of) g | g. The detailed 
algebraic structure of 0 is not needed for this paper. However, to understand 
the tensorial nature of the order conditions for RK methods, it is very useful to 
look somewhat closer at the enveloping algebra of the s-fold cartesian product 
of a Lie group. 

2.6 Cartesian products of  Lie groups. 

Let G8 denote the s-fold cartesian product of a Lie group, G8 = G •  • G, 
let gs be its Lie algebra, g8 = g x - . .  • g and let 08 be the enveloping algebra 
08 = 0 • . . .  • 0 .  The elements of Gs, g8 and 08 are s-tuples of G, g and 0 
respectively. All the basic operations such as product on Gs, + and [., .] on gs, 
exp : 98 -+ Gs and the product �9 on 08 are defined componentwise on the tuples. 
We have, e.g., 

(2.22) exp(v) = (exp(v l ) , . . . , exp(v8)) ,  where v : (Vl,V2,... ,v8) E ~s 

u + v  = ( U l + V l , . . . , u s + v s ) ,  whereu,  v E g s  

We introduce the following tensor product basis for gs:  

g8 = ~8 | g, 

i.e., gs is the linear span of vectors such as: 

q |  = (qlv,  q 2 v , . . . , q s v ) ,  w h e r e q e R S , v E g .  

We will see that this basis can be extended to all of 08. We equip R 8 with the 
Schur product, i.e., 

(2.23) q.r  = (qlry,  q 2 r 2 , . . . ,  qsrs) T 

and the identity in ]I( 8 is given as 

x = (1 ,1 , . . . , 1 )  T. 

Obviously, the identity in 08 is: 

~8 = 1 |  = (~,~, . . . ,~) ,  

and from (2.23) we see that  the product in 08 is given as 

(2.24) (q | v)- (r | w) = (q.r)  | ( v .w)  for q, r e ]~s, v, w �9 0 .  

This gives the product on 08 in the tensor product basis, and it is extended 
to all of 08 by linearity. For the order theory of Runge-Kutta methods, it is 
important to note that whereas generally v . w  ~ w . v  for v , w  �9 0 ,  we always 
have q . r  = r . q  for q , r  �9 R s. Le. ,  the non-commuta t iv i ty  sits only in the right 
part  o f  the product on 08 .  

4Or more precisely a quotient construction on a tensor product space, where elements such 
as u.v - v.u - [u, v] are divided out. 
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2.7 Equations of  Lie type. 

Given a curve vt E it, an equation 

(2.25) Yt' = X~, (Yt) = i~ ,  (ut), Yo = P, 

where the right-hand side is a time dependent, left- or right-invariant vector 
field, is called an equation of Lie type. Such equations play a central role in the 
analytical treatment of ODEs. Let st be the integral curve of (2.25) starting in 
So --- e, where e is the identity in G. This is called the fundamenta l  solution. 
The general solution of (2.25) is given as Yt = P" st. If the right-hand side is 
instead Y~,, we obtain the solution yt = st .p.  Thus: 

(2.26) ~x~,,t = Rs,, where s~ = X~, ( s t ) ,  So = e, 

(2.27) ~Y~,,t = Ls,, where s~ =Y~,(st) ,  so = e. 

Equations of Lie type provide us with a natural 1-1 correspondence between 
curves on g and curves on G starting in the point p. This will be used in our 
definition of the order of numerical integration schemes. 

LEMMA 2.1. Given an arbitrary curve Yt E G, Yo = P. I f  ut E g is given as 

then 

! ! 

a = L ; - l ( y t ) ,  

' = X v , ( s t ) ,  s o  = e .  Yt = Rs, (p), where s t 

2.8 Lie-Butcher  series. 

The basic tool for series developments on manifolds is Lie series, which is 
essentially Taylor series adapted to manifolds. The Lie-Butcher series, intro- 
duced in [13], is a special form of Lie series which generalizes the theory of J. 
Butcher [3, 4] to manifolds. 

Let F be a vector field on a manifold .~d, let ~F,t be the flow of F and let f 
be a 'geometric object '5 on ~4. We now assume that  f E C~(A4).  Let ~/~,tf 
denote the pullback of the object along the flow. The definition of the pullback 
depends on the object. When f E C~(A/I) the pullback is simply defined as 

(2.28) ~*F,tf = f o ~F,t.  

The Lie derivative of the object f with respect to a vector field F is generally 
defined as: 

(2.29) FIr] = ~t  (~*F,J) 
0 '  t 

i.e., the rate of change of f at time t = 0, as it pulled back along the flow. By 
iterating this formula, we find the basic form of the Lie series: 

~F,tf  = f + tF[f] + ~-F[F[/I] + F[F[F[f]]] + . . . .  ~ F~[I]. 
/=0  

5It can,  e.g., be a real funct ion,  a t ensor  field, a differential k-form etc. 
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If both the vector field F and the object f are time dependent, the rate of change 
at an arbitrary time is given as [1] (p.285) 

(2.30) ~(~Ft,tft) = a , t  _Ft[ft] + - -~  j . 

Now, if f is independent of time and Ft = X~,, then (2.30) yields: 

0 @, 
Ot ( x . t , t f )  = ~ *  
- [Y]) 
0 2 ~ ,  * 

( x . , , t f )  = ~ x " t , t  ( v t ' v t [ f ]  + v~[f])  etc. Ot 2 

To express the n th  derivative, we introduce B~(vt)  E ~ recursively as: 

(2.31) B~ = ][ 

i--1 ~ i--1 (2.32) B~(ut) = u t ' S  t (t/t) + -~ (St  (t/t)), i > O. 

Prom (2.30) we see that  

on(.) 
(2.33) Ot n r = k~*x~,,tB~(vt)[f]. 

Note that  B~(vt)  depends only on the derivatives of vt up to order n - 1. We 
define 

n--1 "~ti " I 
(2.34) /~n(V(0), U(I), ' ' ' ,V(n-I)) : Bn(/=~ 0 t  ~ t=0" 

B"  are n-variate polynomials in O. The first of these are: 

B ~ 0 = 

Bl(v(o)) = t/(o) 

B 2 (//(o),/,,(1)) = /j(o) .p(o) ~_//(1) 

B 3 (/2(~ y(1), t/(2)) : V(0).t/(0).y(0) + 2t/(0).t/(1) + y(1).u(0) q- u(2). 

We will use these polynomials and Lemma 2.1 to find a special type Lie series 
characterizing the solution Yt of the general initial value problem (2.1). Using 
the left form of (2.3) we can write (2.1) as 

(2.35) y~ = L~,( f (y t ) ) ,  Yo = P, 

where f : G --+ g. For vector valued functions (such as this f ) ,  the definition 
of pullback and derivations is identical to the definition for functions in C ~176 (G) 
given above 6. Thus from Lemma 2.1 and (2.26), we find that t/t E g is given as 

' ' R* (~* ) (2.36) vt = Lv;-,(y t) = Y(Yt) = Y(p.st)  = ( , , Y )  (p) = x~ , , t f  (P). 

6Consider f : G --+ V via its components fi  E C~176 given relative to some basis for V. 
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From (2.33) we obtain: 

THEOREM 2.2. Let Yt be the solution of the initial value problem (2.35) and 
let vt be the corresponding curve on g defined in Lemma 2.1. Then 

t i . 
(2.37) vt = ~ ~ v  (0, 

i=O 

where 
tp(i) = U(i) (v(o),v(1), . . . , / /( i-1)) (2.38) [/](P) 

and B i are the polynomials defined in (2.34). 

The series defined in (2.38) is what we call the Lie-Butcher series characteriz- 
ing the initial value problem (2.35). To see clearer what it means, we introduce 
the following shorthand notation: For v 6 ~,  define P 6 g as 

(2.39) P = v[f](p). 

�9 

Figure 2.1: Correspondence with the Butcher-tree notation. 

Thus the bar operator is an R-linear map from 13 to 9 depending on ] and p. 
Equation (2.38) yields 

(2.40) v(~ = Boo -- IT 

(2.41) v O) = B1(v(~ = 

(2.42) v (2) = B2(v(~ = ]I.][ + ]I 

(2.43) v(3) :- ]i.]I.~+2I.I[+]I.1I+IL]I+]I etc. 

If we turn the bar-patterns upside down, we see the relationship between these 
operators and the elementary differentials in the Butcher theory, represented 
as trees. See Figure 2.1. Note that when the group is non-commutative, then 
permutation of the branches in the trees yields different elementary differen- 
tials. This differs from the classical Butcher theory, where trees with permuted 
branches are considered identical. 
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3 Runge-Kutta  methods.  

We will study the numerical solution of (2.35). There exist several ways to 
generalize classical Runge-Kut ta  methods to non-commutative Lie groups in such 
a way that  they reduce to the classical methods when we plug in a commutative 
group. The formulation we study here is deliberately designed such that  the 
order theory becomes as close as possible to the classical order theory. It  is close 
to the formulation in [13], the main difference being the correction functions ~i0 
and ~0 which are new. The choice of correction functions is discussed later. Let 
s be the number of stages of the method and h the step size and let fii be the 
numerical solution in step i. Our family of generalized RK methods is defined 
as :  

ALGORITHM 3.1. R K - M K  : 

fio = P 
f o r  n = 0 ,1 , . . .  

f o r  i =  l , 2 , . . . , s  
A ui = h~ ] j = l  i,jkj 

(ti = ~i(Ui, kl, k2 , . . . ,  ks) 
ki = f (~n 'exp(~i))  

end 
b v = h ~ j = l  jkj  

---- ~(V, k l ,  k 2 , . . - ,  ks) 
fin+z = fin'exp(#) 

end 

where ui, (ti, ki, v, ~ 6 g and fli 6 G. The real constants Ai,j, bj and the correction 
functions ~iO and ~0 determine a particular scheme. The method is explicit if 
Ai,j = 0 for i  < j and the functions ~i(ui, k l , .  . .) depend only on ki, k2 , . . . ,  ki-1. 
In this case, the iteration over i can be computed explicitly. 

The classical way of defining the order of RK methods on R" is to say that  
the method has order q if [[fiI - Yh[[ = (9(hq+l). Since there is no particular 
metric on G, we must modify this definition. If we let h vary, fi1 will trace out 
a curve fih E G. TO this curve there corresponds a curve lgh 6 g via Lemma 2.1. 
Our definition of order is based on matching the Taylor series of this curve with 
the Taylor series of the curve ut E g derived from the analytical solution: 

DEFINITION 3.1. Let fih = fi1 be the numerical solution after one step of 
Algorithm 3.1, considered as a function of h. Let fit be the analytical solution 
of (2.35) and let f/h and t't be the corresponding curves in g given by Lemma 2.1: 

[/h 

ut 

then the method has order q if 

(3.1) v(i) = #(i) 

= L zi(fi ) 

= L ' : l ( y ; )  

]or i = O, 1 , . . . , q - 1  . 
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A very convenient way of analyzing the order  of Algori thm 3.1 is to  consider 
it as a 1-stage method  on an s-fold product  manifold: Let  G8 = G • 2 1 5  G, 
f8 = f x - - .  x f ,  let g, be the Lie algebra of Gs and Os its enveloping algebra. 
We make the identification g, = R'  | g as in Section (2.6) and let A8 = A | I ,  
b, = b T | I. The  first step of Algori thm 3.1 can then be wri t ten as: 

(3.2) p~ = (p ,p , . . . , p )  �9 G8 

(3.3) u = hAsk 

(3.4) fi = ~(u,k)  

(3.5) k = f e ( p s . e x p ( f i ) ) =  (Rexpr, fs)(ps ) 

(3.6) v = hbsk 

(3.7) 6 = ff(v,k) 

(3.8) Yl = p.exp(~)) = RexpO(p) 

where u ,~ , k  E gs, v,O E g and ~tl E G. 
In the following analysis, we will let derivations such as 6' and 6(i) be with 

respect to  h. 

LEMMA 3.1. Let Uh E g be defined in Definition 3.1, let 5h = exp(fi) E Gs and 
I -?  

let f~h = L ~ I  (z h) �9 gs. Then 

Uh = dexpo(~ ' )  

/2h = dexp~(fi ' )  

PROOF: 

bh = L'ex,(~)-~ o Lp_, o (p.exp(~)) '  --- L'ex,(_~)o exp'(~, ~') --- dexpo(~ ' ) .  

The  equation for/2h follows by a similar computat ion.  [] 

We will henceforth make the following assumption about  the correction func- 
tions: 

ASSUMPTION 3.1. The functions ~(., .) in (3.4) and (3.7) are chosen such that 

f~(i) = u (i+x) f o r i = O ,  1 , . . . , q - 2 ,  

b(i) = v (i+l) f o r i = O , 1 , . . . , q - 1 .  

NOTE 3.1. If G is Abelian, i.e., if ad(u) = 0 for all u E g, then we see 
from (2.9) and Lemma 3.1 tha t  t~(i) = fi(i+l) and !) (i) --- ~(i+1). Thus  in this case 
the assumption holds if we choose fi = u and ~ = v. 

THEOREM 3.2. Under Assumption 3.1, the Lie-Butcher series for the numer- 
ical solution ~th is given by the following recursion for b (i) : 

(3.9) k (i) = B i (Ask(~ ,2Ask(1) , . . . , iAsk( i -x) )  

(3.10) O(i) = (i + 1)bsk (~), 
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]or i = 0 , 1 , . . . , q -  1. 

PROOF: From k = (Rexp~f8) (p~), Lemma 3.1 and eqns. (2.26), (2.33) we get 

k (i) = Y i ( f$ (O) , . . . , fL ( i -1 ) ) [ f s ] (ps  ) ---- B i (~ (0 ) , . . . ,  ~(i--1)), 

�9 ~  h and from the Leibniz rule ~ hf(h) lh= o = io~=v f (  )lh=O and eqns. (3.3), (3.6), 
we get: 

v (i) = ibsk (i-1) 

u (i) = iAsk( i -1) .  

Thus from Assumption 3.1, 

f~(i) = (i + 1)Ask (i) 

p(i) = (i + 1)bsk (i) 

which yield (3.9), (3.10). [2 

We will use this recursion to obtain the terms p(i), and hence also the order 
conditions on Ai,j and bj. Note the following relation between the bar-operator 
on r and on ~5: 

q N v  = (qlv, q 2 v , . . . , q s v ) [ f , . . . , f ]  (p , . . . ,p )  = (qlv,--. ,qsv) = q| 

Let c = Ax, where 1 = (1, 1 , . . . ,  1) T. We get: 

k (~ = B~ = I ,  = 1|  

k (') : B ~ 1 7 6 1 7 4 1 7 4  = A l | 1 7 4  

k(2) _-- S 2(Ask(0) ,2Ask( i ) )  _ ( A I  | ~) . ( A I  | [) -~- 2Ac  | ~ : c .c  | ~.-~ -[- 2Ac  | 

k (a) = c . c . c |  + c.(2Ac) |  ( 2 A c ) . c |  3A(c.c) | 6A2c |  

p(0) = b,k(O) = bT1 | 

!)0) = 2bsk (1) _- 2bTc| 

p(2) = 3bsk (2) = 3bTc 2 | + 6bTAc@~ 

( V:) = - r) (3) ---- 4bTc 3 |  8bT(c.Ac) | 2~--'-'~+ + 12bTAc 2 |  24bTA2c|  

Comparing this with (2.40)-(2.43), we obtain the order conditions 

bT1 = 1 
2bTc = 1 
3bTc 2 = 1 ,  6bT A c =  l 
4bTc 3 = 1, 8bT(c.Ac) = 1, 12bTAc 2 = 1, 24bTA2c = 1 
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These are the classical order  conditions of Runge-Kut t a  methods.  The  crucial 
observation is tha t  since the products  on O8 are commutat ive  in the left-hand 
part ,  the order  conditions are the same for e lementary differentials which differ 
only by the ordering of the branches in the Butcher  trees. Hence we must  have 
the same order conditions in the commutat ive  as in the non-commutat ive  case. 

THEOREM 3.3. Let Ai,j and bj be coefficients which define a classical Runge- 
Kutta method of order q. I f  Assumption 3.1 holds, then the Algorithm 3.1 has 
order q on any Lie group G. 

3.1 Computing correction functions. 

We want to s tudy the following problem: Given Vh E g such tha t  v0 = 0, let 
= ~(Vh) and let /)h = dexp~(~') .  Determine ~() such tha t  

(3.11) 1)(0 = v(i+l) for i = 0, 1 , . . . ,  q - 1. 

We assume for the t ime being tha t  v (i) can be computed.  We will here show how 
to compute  corrections up to  order  q = 4. A similar procedure can be employed 
to arb i t rary  order,  but  the computat ions  become more complicated.  From (2.9) 
we get 

/)h = dexp~(~')  = ~3' _ _[ ]2~ ,~ ,  , 1  + 61 [~3, [~, ~']] - 1[~3, [~3, [~, ~3']]] + . . .  

We assume tha t  ~3 = 0 for h = 0. Using [u, v]' = [u', v] + [u, v'], differentiating 
and setting h = 0, we obtain: 

/)(0) : ,~(1) 

/)(1) ---- ~(2) 

1 [,bO),,~(2)] /)(2) = ~(3) __ 

/~(3) __ ~(4) __ [~(1),~(3)] + ~[~(1) ,  [~(1) ,~(2)]] .  

From this we find tha t  the corrections hold up to order  4 provided 

~(1) ---- V(1) 

~(2) = v(2) 

~3(3) = v ( 3 ) + 2  , 

~3(4) = v(4)+  lvr  
I . . 1  

There  are several ways to construct  corrections compatible with these conditions. 
By differentiation we check tha t  the following holds: 

LEMMA 3.4. The following functions give corrections up to order q = 4 : 

Order 2 : ~ = Vh 

: ~3----V h + ~[V(1),Vh] Order3 

Order~ : ~ = V h +  v O),vh + ~  v (2),vh �9 
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NOTE 3.2. These equations do not require that v (i) are exactly known, e.g., 
for order 4, it is sufficient to know an O(h  3) approximant for v (1) and an O(h 2) 
approximant for v (2). Such approximants can be computed from the ki in the 
RK scheme. 

We have u ('~) = n A s k  (n-l)  and v (n) = nbsk(n-1),  thus from Theorem 3.2 

u (1) = Ask (~ = c |  

u (2) = 2Ask (1) = 2 A c |  

V (1)  ---- bsk (~ = bT1 | = 

v (2) = 2bsk (1 )=2bTc |  

Note that  the elementary differentials I,]~,][.]I,... E 9, and can be computed to 
sufficient accuracy from k by linear algebra: 

h 2 
k = ( k l , k 2 , . . . , k s )  = k (~ + h k  (1) + -~-k (2) + O ( h  3) 

= + O ( h  3) 

Let d = Ac. If A defines a 4-stage RK method with AI,j --- 0, j -- 1, 2, 3, 4, then 
we get: / kl) (1~176 ~ (~ / 

k2 1 c2 c~ 2d2 h~ O(h  3) 
k3 = 1 c3 c~ 2d3 -~2~.~ + O(h 3) " 
k4 1 c4 c~ 2da h 2- O(h 3) T ]  

This equation can be solved for ~ and ~ to the required accuracy. 

3.2 Explicit  R K - M K  schemes of orders 3 and 4. 

The algorithms in this section integrate the general initial value problem (2.35) 
on a general Lie group. In the matrix Lie group case (2.35) can be written as 

(3.12) Yt' - :  Y t ' f ( Y t ) ,  Yo = P, where f : G ~ g. 

ALGORITHM 3.2. Exp l i c i t  3 rd  o r d e r  R K - M K  
Choose the coe~cients  A i j  and bj of a classical s-stage, 3rd order explicit R K  

$ 
scheme. Let ci = )-~j=l A i j .  

Y0 ---:P 
f o r  n = 0, 1 ,2 , . . .  

11 -: kl  -- f (Yn)  
f o r  i - - 2 , . . . , s  
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u, = h E~11 A, jk3 
ki = f (ftn'exp(ui) ) 

e n d  
$ 

v = h ~ = 1  bjkj 
v + ~[Ii,v] 

~n+l = Yn'exp(O) 
end 

ALGORITHM 3.3. Expl ic i t  4 t h  o rde r  R K - M K  
Choose the coefficients A i j  and bj of a classical s-stage, 4th order explicit R K  

8 scheme. Let ci = ~ = 1  A i j ,  and di = Ej=I Ai,jcj. Compute the coefficients 
( m a , m 2 , m a ) by solving the linear system: 

(rex m2 m3) e3 ~ 2d3 = ( 1  00 ) .  
c4 ~ 2d4 

Then the 4th order R K - M K  scheme is given as 

fro = p 
f o r  n = 0 ,1 ,2 , . . .  

I1 = k l  = Y( n) 
f o r  i = 2 , . . . , s  

h~- '~i--1 A- .v. 
Ui = '~ / - -~ j= l  t J '~3  

Ui ---- Ui + - ~  [11, Ui] 
ki = f(On'exp(~/i)) 

end 
I2 = (ml(k2 - 11) + m2(k3 - 11) + m3(k4 - h ) ) / h  
v = h ~ S  bjkj j = l  

~n+l -- Y,~'exp03) 
end 

Right-hand forms of these algorithms are obtained by rewriting (3.12) as 

= 

where ](a) = Ad(a)( f (a) ) ,  changing the order of multiplication 

ki = ](exp(ui)'~ln), Yn+l = exp(v)'yn 

and changing the sign of some of the correction terms, according to the sign 
differences in eqns. (2.9) and (2.10): 

Order 2 : fi = U h 

Order3 : ~ = u h - -  h [u  (1),uh] 

h 2 
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3.3 A numerical example. 

To illustrate the algorithms, we choose an example given by Zanna [21]. In 
this example G = O(n), the space of orthogonal n• matrices and g is the space 
of skew-symmetric n x n matrices. We want to solve (3.12) where f ( y )  is given 
(in Matlab notation) as: 

f ( y )  = diag(diag(y, +1), +1) - diag(diag(y, +1), -1 ) ,  

and the initial condition is the following random orthogonal 5 • 5 matrix: 

rand('seed', 0); [Y0, r] = qr(rand(5)). 

We base our algorithms on the original 4 stage 4th order RK scheme given by 
the coefficients 

A2,1 = 1/2, A3, 2 = 1/2, A4,3 = 1, all other Ai,j = 0, 
B 1 = 1 / 6 ,  B 2 = 1 / 3 ,  B 3 = 1 / 3 ,  B 4 = 1 / 6 .  

From this we compute 

cl = 0 ,  c 2 = 1 / 2 ,  c 3 = 1 / 2 ,  c 4 = 1 ,  
d~ = 0 ,  d2 - -0 ,  d 3 = 1 / 4 ,  d 4 = 1 / 2 ,  
ml -- 2, m2 -- 2, m3 ~ -1 .  

The numerical experiments were performed by integrating from t = 0 to t = 1 
using constant stepsizes, h 1 1 1 1 - 258, 12s, 6 4 , ' " ,  ~" Figure 3.1 shows the global 
error at t = 1 (measured in 2-norm) versus the stepsize h. RK-MK2 is the 
RK-MK scheme without any correction functions, RK-MK3 and RK-MK4 are 
corrected to orders 3 and 4. All these methods retain orthogonality perfectly. 

2 
The line 'Classic RK4' is obtained by embedding (3.12) in ]l~ and use the 
classical RK scheme here. In this case orthogonality is gradually lost during the 
integration. 

4 C o m m e n t s  a d d e d  i n  p r o o f i  

In the period between the submission and the final proof reading of this article, 
there has been a major progress in the area of numerical integration techniques 
for differential equations on manifolds. In [15], the methods of this paper are 
generalized to homogeneous manifolds. In [14], we show how classical RK meth- 
ods of any order can be modified to a Lie group invariant method of the same 
order, thus we solve the problem of finding correction functions of arbitrarily 
high order. There has also been a significant development of efficient methods 
specialized at equations of Lie type [10]. It is interesting to note that the new 
Lie group based methods not only give qualitatively better results than classical 
integrators (due to exact preservation of the group structure), but in several im- 
portant examples it is also seen that,  since they often have a much smaller error 
constant, they can beat classical integrators also in terms of accuracy versus 
floating point operations. We believe that the next few years will bring these 
new integrators more into the main stream of numerical analysis and software. 
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Figure 3.1: Global error versus stepsize for RK-MK schemes based on the classical 4 
stage 4th order RK scheme. 
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