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Abstract

DARPA’s Ubiquitous High-Performance Computing

(UHPC) program asked researchers to develop comput-

ing systems capable of achieving energy efficiencies of 50

GOPS/Watt, assuming 2018-era fabrication technologies.

This paper describes Runnemede, the research architec-

ture developed by the Intel-led UHPC team. Runnemede

is being developed through a co-design process that consid-

ers the hardware, the runtime/OS, and applications simul-

taneously. Near-threshold voltage operation, fine-grained

power and clock management, and separate execution units

for runtime and application code are used to reduce en-

ergy consumption. Memory energy is minimized through

application-managed on-chip memory and direct physical

addressing. A hierarchical on-chip network reduces com-

munication energy, and a codelet-based execution model

supports extreme parallelism and fine-grained tasks.

We present an initial evaluation of Runnemede that

shows the design process for our on-chip network, demon-

strates 2-4x improvements in memory energy from explicit

control of on-chip memory, and illustrates the impact of

hardware-software co-design on the energy consumption of

a synthetic aperture radar algorithm on our architecture.

1. Introduction

DARPA’s Ubiquitous High-Performance Computing

(UHPC) program challenged researchers to develop hard-

ware and software techniques for Extreme-Scale systems:

computing systems that deliver 100–1,000x higher perfor-

mance than current systems of the same physical foot-

print and power consumption [34]. Extreme-scale sys-

tems should deliver the energy-efficiency (50 GOPS/Watt),

reliability, and scalability required to construct practical

exaOP supercomputers (machines that execute 10
18 oper-

ations/second) in the 2018-2020 timeframe.

In this paper, we describe Runnemede, the research ar-

chitecture developed by the Intel-led UHPC team. Run-

nemede’s goal is to explore the upper limits of energy ef-

ficiency without the constraints imposed by backward com-

patibility and the need to support conventional program-

ming models. Its hardware, OS/runtime, and applications

are being developed through a co-design process to produce

a system in which hardware and software work together to

maximize performance and minimize energy consumption.

We begin this paper by outlining our technical approach.

We then present Runnemede’s architecture, focusing on the

hardware but describing the software stack where relevant.

This is followed by a preliminary evaluation of our network

design, memory system, and the impact of our co-design

process. Finally, we present related work and conclude.

2. Technical Approach

Runnemede1 is heavily influenced by several predictions

about 2018-2020 fabrication technology. The power con-

sumed by logic is expected to scale well as feature sizes

1Following Intel tradition of naming projects after geographic locations

in the US or Canada, the Runnemede project was named after Runnemede,

NJ, inspired by Runneymede, England, where the Magna Carta was signed.
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shrink, but not as well as transistor density, leading to the

design of overprovisioned, energy-limited systems that con-

tain more hardware than they can operate simultaneously.

Signaling power is expected to scale much less well than

logic power, making on-chip and off-chip communication

a larger fraction of overall power. SRAM power is also

expected to scale less well than logic power, due to the

difficulty of designing SRAM circuits that can operate at

low supply voltages. We expect the power consumed by

DDR DRAMs to decrease relatively slowly over time, al-

though stacked DRAMs with improved interfaces will be-

come available in the not-too-distant future [28], signif-

icantly reducing DRAM power consumption. However,

technology will limit the number of DRAM die per stack,

and the need to provide I/O pins for each stack will limit the

total DRAM capacity of systems that use stacked DRAMs,

potentially leading to systems that combine stacked and

DDR DRAMs into two-level DRAM hierarchies.

These technology trends lead to several predictions about

extreme-scale computer systems. Extreme-scale computer

systems will be energy-limited and overprovisioned. There-

fore, to achieve maximum performance, they should be de-

signed such that their key subsystems (cores, memory, and

networks) can each consume a disproportionate share of the

system’s full power budget when that subsystem is the lim-

iting factor on performance. This, in turn, requires that soft-

ware and hardware actively manage their power consump-

tion to ensure that the system stays below budget. The com-

puter industry is already seeing early examples of overpro-

visioned designs, such as Intel’s Turbo Boost [17] technol-

ogy, which defines a base clock rate for each chip that meets

the chip’s power budget when all cores are active, and in-

creases the clock rate when some cores are idle to provide

high performance on both serial and parallel codes/regions.

Because extreme-scale systems will be energy-limited,

they must be designed to operate at their most-efficient sup-

ply voltages and clock rates (low, near-threshold voltage

(NTV) and modest frequency), although the ability to in-

crease supply voltage and clock rate on serial sections of

code will also be of great benefit. Operating at low clock

rates implies that extreme-scale systems will require more

parallelism than current systems to deliver a given amount

of performance, leading to interest in execution models that

maximize parallelism and minimize synchronization.

Energy-limited systems are expected to be heteroge-

neous, because there is no performance benefit to building

more of a given unit, core, or module than can be oper-

ated simultaneously (possibly plus a few spares for relia-

bility), which is sometimes described as the “dark silicon

problem/opportunity” [6]. Being energy-limited also en-

courages specialization, or the design of hardware that may

be used infrequently, as long as it can be powered off when

not in use. A small number of custom functions/instructions

can significantly improve an architecture’s efficiency and

performance on applications that make use of those func-

tions [15] [35], and including such functions does not de-

crease the performance of applications that do not use them

if the system is limited by energy instead of area.

Finally, the technology scaling trends described above

imply that energy-limited systems must minimize data

movement in order to achieve maximum performance.

While stacked DRAM is expected to require much less

energy to access than DDR DRAM, on-chip wires and

SRAMs are expected to scale less well than logic, making

data movement increasingly expensive relative to computa-

tion. This argues that extreme-scale memory systems and

applications should focus on bandwidth efficiency by elim-

inating unnecessary data transfers.

2.1. Energy-Efficiency from the Ground Up

The Runnemede architecture is built from the ground up

for energy efficiency. All of the layers of the computing

stack are co-designed to consume the minimum possible en-

ergy, accepting the cost of limited compatibility with previ-

ous operating systems and applications.

The processor is intended to operate at near-threshold

supply voltages. At such voltages, within-die parameter

variations are expected to be significant. Consequently,

much thought has been put into understanding the likely

parameter variations [19], and on designing circuits and or-

ganizations to tolerate them in an energy-efficient manner.

In addition, Runnemede has widespread clock and power

gating in processors, memory modules, and networks.

To provide the parallelism required to achieve extreme-

scale performance at the low clock rates that near-threshold

voltages allow, Runnemede’s processor chip includes a

large number of relatively-simple cores. The initial design

described in Section 4 takes this philosophy to the extreme

of single-issue, in-order cores, although future work will ex-

plore the trade-offs involved in different core architectures.

One likely future design is a system containing a small num-

ber of large cores optimized for ILP and a large number of

simple cores, in order to provide both good performance

on sequential sections of code and high parallelism on par-

allel regions. To exploit locality, cores are organized into

groups, where each group contains a set of processors and

local memories connected by an energy-optimized network.

Runnemede’s memory system is designed to maximize

software’s ability to control data placement and movement,

in the belief that this will minimize energy consumption at

the cost of placing additional responsibility on the software.

We provide a single, shared, address space across an entire

Runnemede machine. Instead of a hardware-coherent cache

hierarchy, our on-chip memory consists of a hierarchy of

scratchpads and software-managed incoherent caches, and
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we provide a set of block transfers to minimize the cost of

data movement. Our off-chip memory is implemented using

stacked DRAMs with an energy-optimized interface, signif-

icantly reducing the energy consumed per bit transferred.

The on-chip network is designed with wide links to re-

duce latencies, but its components are power-gated when

unused. In addition to the data network, we provide a net-

work for barriers and reductions/broadcasts. This network

reduces the latency and energy cost of synchronization and

collective operations, both through specialized hardware

and by making it easier for cores to clock- or power-gate

themselves while waiting for a synchronization or a collec-

tive operation to complete.

The software system is co-designed with the hardware,

and provides a number of programming models with dif-

ferent trade-offs between simplicity and control of the

underlying hardware. Our higher-level models include

Hierarchically-Tiled Arrays (HTAs) [13], which expresses

computations as blocks or tiles in successive, hierarchical

levels, and Concurrent Collections (CnC) [7], which de-

scribes computations in a high-level dataflow-like manner.

The R-Stream R© compiler can automatically generate paral-

lelized and locally-optimized code for sequential loop nests.

Finally, for programmers who want a lower-level interface

to the hardware, it is possible to code directly to our run-

time’s codelet model, which is described in the next section.

Runnemede also includes mechanisms for energy-

efficient resilience. In particular, we envision an incre-

mental in-memory checkpointing system [2], which can be

adapted to take advantage of the structure of CnC programs

2.2. Hardware-Software Co-Design

Runnemede is a co-designed hardware/software effort,

in which the hardware, execution model, OS/runtime, and

applications are being developed simultaneously by a team

that combines computer architects, system software experts,

compiler developers, and application experts. This ap-

proach is made easier by the fact that the UHPC program

defines five “challenge problems” that represent a signifi-

cant fraction of the anticipated extreme-scale applications.

Given the extreme amounts of parallelism required

to achieve exaOP performance at near-threshold supply

voltages, we are designing Runnemede’s runtime sys-

tem around a dataflow-inspired [30] execution model. In

contrast to pthread-style execution models, which imple-

ment parallel programs using long-running communicating

threads, dataflow-inspired execution models represent pro-

grams as graphs of (typically short-running) tasks, where

edges represent dependencies between tasks. This is sim-

ilar to the way dataflow processors represent programs as

graphs of instructions, with edges that represent dependen-

cies. Further, in our execution model, the tasks in a program

graph are codelets [14] — self-contained units of computa-

tion with clearly-defined inputs and outputs. Codelets are

assumed to run to completion once they begin executing, al-

though the operating system may intervene to halt a codelet

that has entered an infinite loop or otherwise exceeded the

“acceptable” codelet execution time.

Dataflow-inspired execution models have a number of

characteristics that make them well-suited to extreme-scale

systems. First, they make it easy for each phase of an ap-

plication to exploit all of the parallelism available to it in-

stead of encouraging a static division of an application into

threads. Second, in dataflow execution models, only the

producer and the consumer(s) of an item need to synchro-

nize, potentially reducing synchronization costs. Third, the

non-blocking “complete or fail” nature of codelets allows

us to avoid much of the context-switching overhead of tra-

ditional OSes. Finally, a dataflow-inspired execution model

makes it easy to identify a computation’s inputs and out-

puts, and thus to schedule code close to its data, to marshal

input data at the core that will perform a computation, and to

distribute results from producers to consumers. This well-

specified data movement both motivates and supports our

decision to use software-managed on-chip memories.

Just as hardware issues affect our choice of execution

model, software concerns influence hardware design. Hav-

ing an execution model in which tasks (codelets) have well-

defined inputs encourages the design of cores with separate

power and clock gating for memories and execution units.

This allows the runtime to turn on a core’s memory(ies) in

order to marshal a codelet’s inputs and only turn on the ex-

ecution units when input data is available and the codelet

is ready to execute, thus avoiding the energy that would be

wasted by idle execution units waiting for inputs to arrive.

Our execution model also influences our hardware de-

sign by encouraging the design of two types of cores:

general-purpose Control Engines (CEs), which execute

OS/runtime code, and energy-optimized Execution Engines

(XEs), which execute codelets from user applications. With

a space-separated (rather than time-separated) division be-

tween system code and user code [24], hardware to enforce

protection rings (e.g., user/kernel mode) can be safely omit-

ted from the CEs. Additionally, the non-blocking prop-

erty of codelets means that I/O operations can only occur

on inter-codelet boundaries, allowing a model in which the

XEs do not contain I/O hardware. Instead, an I/O opera-

tion is represented as a dataflow dependence between two

codelets. When the producer codelet reaches the I/O opera-

tion, it terminates with a request that a CE perform the I/O

operation. When the I/O operation completes, the runtime

notes that the consumer codelet’s data dependence has been

satisfied, and schedules the consumer for execution.

Co-design also affects our resilience and power-

efficiency schemes. Our hardware provides the runtime
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Figure 1. Runnemede chip architecture.

with information about the status, temperature and power

usage of different regions on the chip. This allows the run-

time to allocate work to avoid overheating, reducing hard-

ware complexity. Similarly, the runtime is able to react

to hardware failures, for example by assigning less-parallel

tasks to a region that contains a failed core, or by increasing

the region’s clock rate to compensate if latency is important.

Finally, having a well-designed set of target applica-

tions allows us to co-design the hardware and the applica-

tions. We implement a number of instructions, such as the

sincos instruction described later, that have a significant

impact on one or more of the challenge applications. Ap-

plication characteristics also influence our network design,

including its barrier hardware and support for collective op-

erations, and our synchronization primitives. In turn, under-

standing the hardware design allows our application experts

to tune their algorithms to the strengths of the hardware.

3. Runnemede Architecture

As illustrated in Figure 1, the Runnemede architecture

is modular and hierarchical, which allows applications to

take advantage of locality and makes it easy to scale the ar-

chitecture to a wide range of performance, price, and chip-

size points. The basic module of Runnemede is the block

(shown in Figure 2), which contains several cores, the first-

level networks, and an L2 scratchpad memory. The next

level of the hierarchy is the unit, which contains multiple

blocks, an L3 scratchpad, and the second-level networks. A

full Runnemede chip would contain multiple units and an

L4 scratchpad, which would be connected by the third-level

networks, allowing hundreds of cores to be integrated onto a

chip. An off-chip network port allows multiple Runnemede

chips to be integrated into a single-board system, with larger

systems consisting of multiple boards.
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XEXEXEXE

CE XEXEXEXE

2.5 MB L2 

Memory

Block

Ex. Unit

Reg. File

32K 

Incoherent 

Cache

Control Engine (CE)

Very Large 

Reg. File32K 

Incoherent 

Cache

64K L1 

Memory

Ex. Unit

Performance 

Monitors

Vdd and Clock 

Gating

Execution Engine (XE)

Figure 2. Contents of a block.

3.1. Architecture of a Block

Each block is a heterogeneous system that contains one

Control Engine (CE), which executes operating system and

runtime routines, and multiple Execution Engines (XEs),

which execute tasks from application programs. The 8 XEs

shown in the figure are an initial estimate of the number

of XEs that one CE will be able to support without the

CE becoming the performance bottleneck; the number of

XEs/block in an actual design will depend on the amount of

CE support each codelet requires. Similarly, the 8 blocks

per unit shown in Figure 1 is an early estimate that will be

revised as we gather data about how much L3 memory is re-

quired to support a block of cores and the amount of locality

in extreme-scale applications.

This heterogeneity is expected to increases energy-

efficiency by allowing us to optimize each type of core

for the work it does. XEs can be optimized for

performance/watt on parallel computations, while CEs

are optimized for more latency-sensitive OS operations.

Infrequently-used hardware, such as I/O, can be placed in

the CE to improve XE efficiency on computation kernels.

Finally, separating the XE and the CE simplifies the de-

sign of systems in which the XEs in different blocks are

optimized for different types of computations, since blocks

with different types of XE would present the same interface

to the OS and hardware outside the block.

CEs in Runnemede are typically general-purpose proces-

sor cores. XEs are typically custom architectures, contain-

ing one or more execution pipelines, a large (512-1024 en-

try) register file, a software-managed L1 scratchpad and an

incoherent cache. XE instructions may be stored either in

the cache or the scratchpad, as selected by a mode bit. Each

of the scratchpads and register files in a Runnemede system

maps onto a unique range of addresses from a single shared

address space that is described in more detail in Section 3.2.

4



Each XE also contains performance monitors and registers

that control power and clock gating, which are also mapped

into the address space.

To reduce XE-CE communication overhead, each XE

contains a set of memory-mapped registers for fast XE-CE

communication. Writes into these registers inform the CE

that the XE needs attention and pass information about what

the XE needs the CE to do. If the CE requires additional

information to handle the XE’s request, it can read that in-

formation directly from the XE’s memory or registers.

3.2. Memory Hierarchy and Address Space

Runnemede’s on-chip memory hierarchy does not have

hardware-coherent caches. While coherent caches simplify

programming, their fixed line lengths and replacement poli-

cies can make them energy-inefficient if an application’s ac-

cess patterns do not match the cache’s assumptions.

Instead, most of Runnemede’s on-chip memories are

software-managed scratchpads (blocks of SRAM that are

mapped onto distinct regions of the address space so that

software, rather than hardware, selects which data is kept in

each scratchpad). This approach can significantly increase

the energy-efficiency of some codes by eliminating trans-

fers of unused data, false sharing, set conflicts, and colli-

sions between streaming data and high-locality data — al-

beit at a potentially non-trivial cost in programming effort.

To simplify the use of the scratchpads, Runnemede provides

a set of DMA-like block transfer operations. These oper-

ations also reduce energy by performing cache-line-wide

accesses to DRAM, which are much more energy-efficient

than single-word accesses.

Runnemede also includes incoherent, software-

managed, caches in each core, which are accessed via

load.cache and store.cache instructions. The

software-managed caches are intended to provide an

intermediate efficiency/programming effort point be-

tween scratchpads and hardware-coherent caches. In our

software-managed caches, hardware manages fetching and

writeback of lines from/to whichever scratchpad, register

file, or DRAM the address being referenced maps onto,

but software is responsible for maintaining consistency

when multiple caches may contain copies of the same

location. To assist in this, Runnemede provides several

cache-management instructions that prefetch lines, inval-

idate them (remove them from the cache without writing

back dirty data), update them from the backing store, or

evict them without writing back dirty data.

Runnemede provides a single, 64-bit, address space that

is shared by all of the software running on the machine.

Each scratchpad, DRAM, and register file in the system, as

well as all of the performance monitors and control regis-

ters, appears in the address map. Runnemede implements a

physical address space, with no virtual memory. This elim-

inates both the energy costs of address translation and the

limits that TLB capacity places on the amount of memory a

program can access efficiently (without requiring additional

memory accesses for page-table walks).

Using a physical address space eliminates the energy

cost of translation, but also eliminates the protection and re-

location benefits of virtual memory. In addition, a physical

address space has the potential to require the use of 64-bit

addresses everywhere in the memory system. We solve the

latter problem with hardware that determines the number of

address bits required for each request based on the distance

to the memory being referenced and only sends that many

bits over the network, greatly reducing the number of ad-

dress bits transmitted in programs with high locality.

To provide protection without translation, each block in a

Runnemede architecture incorporates a “gate” unit that can

be configured to allow or deny requests by a given set of

cores to given ranges of the address space. Moreover, our

runtime provides relocation by allocating memory as “data

blocks”, each of which has a unique identifier. Before a

codelet’s first use of a data block, it must call a translation

routine that returns the physical address of the start of the

data block. This allows the runtime to relocate data blocks

as long as no codelet is currently referencing them, and lim-

its translation costs to one translation per codelet per data

block, as opposed to one translation per memory reference.

Finally, our future research will investigate address transla-

tion mechanisms that impose less overhead than traditional

virtual memory [12][33], in order to make it easier to map

large data structures across multiple physical memories.

3.3. Networks

A Runnemede processor contains two independent hier-

archical networks: a data network and a barrier/reduction

network. Each block contains its first-level data and barrier

networks, which provide low-energy communication within

the block. Each block’s first-level networks also interface

with the second-level networks that connect the blocks in a

unit, which in turn interface with the third-level networks

that connect the units on a chip. This hierarchical network

design allows Runnemede to provide tapered bandwidth,

such that the amount of bandwidth between two points is in-

versely proportional to the distance between them and thus

to the energy per bit of messages.

The data network handles the traffic generated by ordi-

nary memory references. When a core references data from

a memory located outside of the core, the hardware cre-

ates a request message that is transmitted to the destination

memory over the data network, instructing it to perform the

memory access and return the result. In contrast, the bar-

rier/reduction network provides a mechanism for fast bar-
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riers and reductions (operations that combine inputs from

many cores into one output), and can also be used to per-

form broadcast/multicast operations. Performing a barrier

or a reduction using this network is a two-phase process

that separates arriving at a barrier or at the start of a re-

duction from waiting for the barrier/reduction to complete.

This allows a task to signal other tasks that they can proceed

past the barrier/reduction at the earliest possible point, per-

form any independent work that it may have, and then only

wait for other tasks to reach the barrier/reduction when it

becomes absolutely necessary, reducing wait times.

3.4. Power Management

Since an overprovisioned system incorporates more

hardware than it can simultaneously operate, it must also

contain mechanisms that allow it to dynamically allocate

power to different portions of the system in order to remain

within its power budget. Runnemede’s power management

mechanisms provide fine-grained control over clock rates,

supply voltages, and power/clock gating. They are inte-

grated into our address map to make them easy to access.

3.4.1. Dynamic Voltage/Frequency Scaling

The Runnemede architecture divides each CPU into sev-

eral independently controllable clock/power domains, each

containing one or more blocks, depending on the size of

the chip and the number of voltage controllers it is feasible

to fabricate, with an additional domain for the on-chip net-

work. This provides fine-grained control over voltage and

frequency, and also allows the network to operate at a volt-

age/frequency point that minimizes errors while the cores

operate at the most energy-efficient voltage/frequency.

3.4.2. Power and Clock Gating

Runnemede provides clock-gating (clock is disabled but

power supply is on, so that the unit retains its state) and

power-gating (power supply and clock are disabled, which

destroys the state of the unit) at multiple levels of granular-

ity. Individual cores, memory modules, and network com-

ponents can be clock-gated or power-gated independently.

In addition, portions of a core may be power- or clock-

gated independently, allowing software to disable units that

it knows it will not use, such as the floating-point unit dur-

ing an integer computation. This also allows software to

power on a core’s memory and ALUs at different times, to

minimize power consumption while waiting for input data.

3.4.3. Power Management Interface

Runnemede’s power management mechanisms are con-

trolled through a set of memory-mapped registers that ap-

pear in the global address space. Reading these registers

returns information about the state of the appropriate unit,

while writing them changes that state. To prevent malware

or buggy code from selecting power states that exceed the

chip’s thermal budget or interfere with other applications,

we use a combination of our gate-based memory protection

mechanisms and hardware-enforced limitations on which

registers user code may write to.

Looking forward, one of the challenges in our future

work will be developing runtime systems and hardware-

software interfaces that use our power management inter-

face to configure the chip to deliver the best performance

per Watt for each application. For example, applications

that achieve good parallel speedup will maximize perfor-

mance per Watt by running on many cores but at low clock

rates and supply voltages, while applications with poor par-

allel speedup will prefer a small number of cores at high

clock rates. To achieve optimal efficiency, extreme-scale

systems will need mechanisms to determine which category

each application or phase of an application falls into, how to

allocate their power budget across the applications running

on a system, and how to configure the resources available to

each application to best make use of its power budget.

3.5. Resilience and Reliability

Resilience is a major challenge in extreme-scale systems.

Errors, variation, and failure rates are expected to increase

in future fabrication technologies, particularly when oper-

ated at near-threshold voltages. Moreover, the large scale

of exaOP supercomputers will lead to high error and fail-

ure rates per system. Finally, the drive for energy-efficiency

may lead to systems that operate with smaller guard bands

than today’s systems, increasing transient error rates.

Extreme-scale systems must tolerate these non-ideal be-

haviors, and can only afford to devote a small amount of

energy to doing so, which prohibits the use of many of

the redundancy-based reliability mechanisms that have been

used in the past. Runnemede takes a cross-layer [8] ap-

proach to reliability that combines hardware-based error de-

tection with software-based recovery and adaptation mecha-

nisms, minimizing reliability overheads during the common

case of correct operation. However, we also incorporate

hardware-based recovery techniques, such as ECC memory,

where they are energy- and complexity-effective. We use a

scalable checkpointing approach based on Rebound [2] to

protect state against unrecoverable errors. We envision that

a supercomputer-scale Runnemede system will use multiple

levels of checkpointing, including checkpointing to DRAM,

NVRAM, and hard disks, to reduce checkpoint and recov-

ery overheads for common, localized failures, while still

protecting itself against uncommon system-wide failures.
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4. Sunshine: an Initial Design

Early in the Runnemede project, we began the design

of a test chip, code-named “Sunshine.” Intended for fab-

rication in 22nm technology, Sunshine would have been a

demonstration of our architecture and a platform for our

software team’s work. While the Sunshine test chip was

never actually built, the process of designing a test chip con-

tributed significantly to the ideas that went into Runnemede.

To strike a balance between utility and implementa-

tion effort, Sunshine incorporated most of the programmer-

visible features in the Runnemede architecture, such as the

scratchpad memories, software-managed caches, register-

based power management, and the XE-CE communication

interface. However, other aspects of the design, in particu-

lar the architecture and microarchitecture of the cores, were

chosen to minimize implementation effort.

Sunshine’s CEs were based on the Siskiyou Peak [32]

synthesizable core, with a custom interface to the on-chip

networks and memory hierarchy. The XEs were single-

issue in-order cores with a custom RISC ISA that incor-

porated instructions for software-managed caches, synchro-

nization, network collectives, and block memory transfers.

Several Sunshine implementations were considered, includ-

ing a multi-block chip that supported multi-chip systems.

One area where the Sunshine work heavily influenced

the larger Runnemede effort was the sizing of the scratch-

pads and caches shown in Figure 1. Sunshine’s target clock

rate was 500 MHz – 1 GHz, and our analysis suggested

that 64KB was the largest scratchpad that would fit in that

clock cycle when implemented in energy-efficient SRAM.

Similarly, the software-managed caches were sized at 32KB

because of the latency incurred by tag lookup and hit/miss

checks. We selected 2.5MB as the L2 scratchpad size in or-

der to keep the first-level (within a block) network latency

under one cycle. The L3 and L4 scratchpad sizes shown in

the figure were not directly driven by the Sunshine design.

5. Initial Evaluation

As an initial evaluation of Runnemede, we present three

results: a case study showing how hardware-software co-

design improves the energy efficiency of an application, an

analysis of the energy/bandwidth trade-offs in different net-

work topologies, and a comparison of the energy costs of

scratchpad-based and cache-based memory hierarchies.

The co-design results were generated using a functional

simulator of the Sunshine architecture, while the network

results were generated using an analytic model that ac-

counts for wire length, switch size, and switch energy. Our

memory analysis was done with a trace-driven simulator,

using traces generated with a custom PIN [26] tool and a

set of libraries that allows programmers to write scratchpad-

style programs for Linux workstations. Our energy esti-

mates were generated using an internal power model that

estimates the energy of each functional block of a design

(wires, memories, pipeline stages, etc.) based on represen-

tative circuits from existing designs. The unit of energy in

our results is the amount of energy required to perform a

double-precision floating-point multiply (FM64), which we

selected to allow a comparison between different simula-

tions while still being free of fabrication process details.

5.1. HW-SW Co-Design Case Study

One of the five challenge problems used to benchmark

UHPC architectures is a streaming sensor application based

on synthetic aperture radar (SAR). SAR’s input is a set of

vectors, each of whose values represent the returns from a

given radar pulse as a function of time. Given this set of vec-

tors and the location of the radar at the time each pulse was

emitted, SAR generates an output image that shows how

much energy was reflected from each point in the image.

We implement our SAR algorithm using the codelet ex-

ecution model and run it on our simulator, modeling a four-

block Sunshine architecture with a total of 32 XEs and 4

CEs. Figure 3 shows how different co-design optimizations

reduce the energy consumption of this application. At the

top of the figure, the Base SAR bar shows the energy con-

sumed by our first implementation of the algorithm, which

is dominated by the energy consumed in computation. In

particular, SAR performs a large number of sin and cos

operations, and our baseline implementation spends the ma-

jority of its time in math library routines.

0.00E+00 2.00E+10 4.00E+10 6.00E+10 8.00E+10

+CompilerOpt

+Blocking

+TrigOpt

+ISAOpt

Base SAR

Energy Consumed (FM64) 

Compute Memory Network

Figure 3. Co-design optimizations for SAR

To address this problem, we add a sincos instruction to

the ISA that computes both the sin and the cos of its input

(since SAR typically needs both values). The +ISAOpt bar

on the graph shows the energy consumed with this improve-

ment, which reduces compute energy by 86%. We also

implement an algorithmic change that replaces the original

single-precision computation of each output pixel’s value

with a double-precision computation of a subset of the pix-

els and a less-expensive interpolative computation of the
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remaining pixels. This reduces compute energy by an ad-

ditional 45%, as shown in the +TrigOpt bar.

The +Blocking bar shows the energy consumed after we

modify SAR so that each codelet copies the portions of the

input array that it will use into the XE’s L1 scratchpad rather

than fetching values from DRAM each time they are used.

Since pixels that are close together in the output image de-

pend on similar regions of the input pulses, this substan-

tially reduces the number of DRAM references SAR makes.

Finally, our compiler does not perform some address cal-

culation and strength reduction optimizations that a more-

mature compiler would perform. Hand-implementing these

optimizations reduces computation energy by 47% over

the value shown in the +Blocking bar, yielding the results

shown in the +CompilerOpt bar. In total, our co-design

optimizations reduce computation energy by 97% and to-

tal energy by 75%, showing the value of jointly optimizing

hardware, applications, and development tools.

5.1.1. Effect of Technology Scaling

The results presented in Figure 3 assumed a 45nm im-

plementation of Runnemede. Figure 4 shows predictions

of how the energy consumed scales with fabrication pro-

cess (based on internal predictions about process scaling),

while Figure 5 shows how the fraction of energy consumed

by computation, memory, and the on-chip network scales.

As expected, computation energy scales well, decreasing

by 77% as we move from 45nm to 10nm, while network

energy only decreases by 51%. Memory energy also de-

creases drastically over time, driven by the energy per byte

improvements from the use of stacked DRAM. As a result,

SAR’s energy consumption is relatively balanced between

computation, memory, and network in the 10nm node.
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Figure 4. SAR energy scaling
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Figure 5. SAR energy distribution

5.2. Network Analysis

Our network analysis focuses on minimizing the amount

of energy required to send each message (or packet) in the

network. Extreme-scale applications need significant com-

munication locality in order to meet their energy goals, en-

couraging the design of networks that minimize the cost

of short-distance communication even if that somewhat in-

creases the cost of long-distance communication. However,

we also have to ensure that the on-chip network provides

enough global bandwidth to not limit the performance of ap-

plication phases that require global communication, under

the assumption that such phases power-down other portions

of the chip in order to free up power for communication.

Given these guidelines, we examine a number of tree-

based networks, as they provide high bandwidth with a

small number of switch crossings for local messages. In

addition, recent work [23, 22] suggests that designs based

on relatively high-radix switches reduce network energy.

Tree-based networks can also provide differing amounts

of bandwidth at each level in the tree to tune the ratio of

local to global bandwidth. Figure 6 illustrates this effect. In

a pruned tree, each link in the network has the same band-

width. As a result, the total bandwidth at each level in the

network decreases by the radix of the switches used. At the

other extreme, the bandwidth of the links in a fat tree scales

up by the switch radix at each level, keeping the total band-

width per level constant. In between these extremes, the

bandwidth per link of a hybrid tree increases as one moves

up the tree, but at a rate smaller than the switch radix, so the

global bandwidth at each level decreases more slowly than

the global bandwidth of the pruned tree. In our experiments,

we consider hybrid tree networks in which the total band-

width at each level is a factor of two lower than the total

bandwidth of the level below it, regardless of switch radix.

We evaluate our networks by calculating the energy per

bit of messages in two access patterns: uniform-random and

a localized pattern. In the latter, each message’s destination

is selected randomly from the nodes at a distance H from the

source, where the probability that a message travels H hops

is N

KHH
, with KH being the number of nodes at distance H

from the source node, and N being a normalizing constant

selected such that
∑

∀H

N

KHH
= 1. In our analysis, we model

the number of hops each message traverses, the wire length

of each hop, and the switch energy of each configuration.

Figure 7 shows the results of our localized-traffic anal-

ysis. The fat tree and pruned tree topologies show energy

minima between 4-ary and 16-ary trees, depending on the

size of the network. These minima are less evident in the

hybrid tree topologies, whose energy curves are closer to

monotonically-increasing with switch radix.

A Runnemede system fabricated in 2018-2020 would be
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Figure 6. Schematic of a fat tree, a hybrid tree and a pruned tree
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Figure 7. Energy per bit for localized traffic as a function of switch radix
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Figure 8. Energy per bit for uniform random traffic as a function of switch radix

expected to have a 512- to 1,024-node on-chip network. Fo-

cusing on the 1,024-node network, the curves show that

the best configurations of the pruned tree and hybrid tree

topologies require very similar amounts of energy to send a

message, and that the curve is relatively flat near the optimal

point. The 512-node network also sees similar message en-

ergy in the hybrid tree and pruned tree topologies, although

its slope is distorted because there are only a small number

of valid switch radices for 512-node trees if all levels in the

tree are required to have the same radix. The fat tree net-

work shows significantly higher message energies for both

the 512-node and 1,024-node networks, making it unattrac-

tive for Runnemede.

On uniform-random traffic, as shown in Figure 8, the dif-

ferent networks have very different energy trends. In the fat

tree network, message energy decreases significantly as ary,

and thus switch size, increase, while message energy in-

creases monotonically with switch radix in the hybrid tree

network. Finally, the pruned tree network sees high mes-

sage energies for both very small and very large switch

sizes, with minima in between.

These curves can be explained by considering the size,

and thus the energy cost, of the switches in each net-

work. Fat trees use wider channels in higher levels of the

tree, making switches in the top levels large and energy-

expensive. This encourages the use of high-radix switches

that increase the number of nodes a given node can reach via

the lower levels of the tree. In pruned trees, switches at all

levels of the network are the same size, creating a trade-off

between switch size and the number of switches traversed

by an average message and leading to sub-optimal energy at

either extreme of radix size. Hybrid trees lie between these

two extremes: their link widths increase at higher levels in

the tree, but at a much slower rate than fat trees. This causes

them to have significantly lower message energies than fat

trees, approaching the message energy of pruned trees.
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Table 1. Runnemede network parameters
Network Link Width Radix (Modules Connected)

First-Level

Network

N 11 (1 CE, 8 XEs, 1 L2 Memory, 1 port

to Second-Level Network)

Second-Level

Network

2N 10 (8 First-Level Network Ports, 1 L3

Memory, 1 Third-Level Network Port)

Third-Level

Network

4N 11 (8 Second-Level Network Ports, 1

L4 Memory, 1 Off-Chip Memory, 1

Off-Chip Network)

Based on these results, we envision a hybrid tree network

for Runnemede, but one whose link bandwidth increases

more slowly with level in the tree than the hybrid tree net-

works evaluated here. Pruned tree networks had the lowest

message energy in our studies, but provide very little bisec-

tion bandwidth, making them a performance bottleneck on

applications with limited communication locality. Fat tree

networks have high bisection bandwidth, but are too energy-

expensive. Our results also suggest that an 8-ary or 16-ary

tree is close to energy-optimal, leading to a three-level tree

for 512- to 1,024-node networks. Based on this analysis, Ta-

ble 5.2 shows the parameters for the Runnemede network.

5.3. Evaluating Scratchpad Memories

To evaluate the energy-efficiency of scratchpad memo-

ries, we simulate the execution of a 1,024x1,024 Givens

QR decomposition and a 2,048x2,048 matrix-matrix mul-

tiplication on an 8-XE block of Runnemede. We start with

a sequential version of each program, and use the R-Stream

compiler [27] to generate parallel versions for hardware-

coherent caches with different sets of cache locality opti-

mizations. We also modify R-Stream to automatically com-

pile applications to a scratchpad-based memory hierarchy,

although, at the moment, the compiler can only target one

level of scratchpads. Finally, we hand-code versions of the

applications to take advantage of the two-level scratchpad

hierarchy present in a Runnemede block. Our results show

the active memory energy consumed by each benchmark,

neglecting leakage energy because because our trace-driven

simulator does not model time accurately.

We model the scratchpad-based memory hierarchy of a

single block as shown in Figure 1, with 64KB L1 scratch-

pads in each core and a 2MB L2 scratchpad (rounding to

the nearest power-of-two bytes). We also simulate a mem-

ory hierarchy with hardware-coherent 64KB L1 and 2MB

L2 caches. Both levels of cache use 64-byte lines and are

8-way set-associative. We model an “oracular” directory-

based MESI coherence protocol in which each cache has

complete knowledge about the contents of the other caches

in the system. These results assume DDR DRAM off-chip

memories, because more detailed information about their

power consumption is available than for stacked DRAMs.
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Figure 9. Memory energy for matrix mult.

5.3.1. Matrix Multiplication

Figure 9 shows the results of our matrix multiplication

experiments. The Naı̈ve Cache Parallelization bar shows

the energy consumed in the memory system when execut-

ing an 8-threaded matrix multiplication with no blocking for

cache locality on our cache hierarchy. The Best Compiled

Cache bar shows the energy consumed on the same hierar-

chy when all of R-Stream’s cache locality optimizations are

applied and the arrays holding each matrix are padded to

prevent set conflicts. Applying these optimizations reduces

memory system energy by over two orders of magnitude,

from 4.96x1012 FM64 to 4.47x1010 FM64.

Next, we use R-Stream to compile versions of matrix

multiplication for our scratchpad-based memory hierarchy,

generating variants that use either copy loops or block trans-

fer operations to move data. The Compiled 1-Level Scratch-

pad bars show the energy used by these versions of the com-

putation. When block transfers are used to copy data, R-

Stream is able to achieve the same energy consumption as

a two-level hardware-coherent cache hierarchy, in spite of

only being able to take advantage of the L1 scratchpads.

In contrast, the copy loop version of the scratchpad-based

algorithm consumes almost 6x more energy than the best

cache-based algorithm, due to the 7x increase in energy per

byte when performing single-word accesses to the DRAMs.

The Hand-Coded 2-Level Scratchpad bars show the en-

ergy consumed by a hand-written matrix multiplication that

takes advantage of both the L1 and L2 scratchpads in a

block. When copy loops are used, the hand-coded compu-

tation approaches the energy of the best cache-based code,
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Figure 10. Memory energy for Givens QR

even with the energy/byte penalty of single-word DRAM

accesses. When block transfers are used, energy consump-

tion decreases to 49% of the best cache-based code.

The last two bars of the graph are included as sanity

checks on our results. The Hand-Coded 2-Level Scratch-

pad Alg. on Cache bar shows the energy consumed when

the scratchpad-based code is run on a hardware-coherent

cache hierarchy, to demonstrate that our energy efficiency

gains are due to scratchpads, not to a more-efficient under-

lying algorithm. The Intel MKL DGEMM on Cache bar

shows the memory energy consumed by an eight-threaded

2,048x2048 matrix multiplication using the DGEMM rou-

tine from Intel’s Math Kernel Libraries [29]. Because the

MKL DGEMM was optimized for a different memory hier-

archy, it is not possible to directly compare its results to our

other results, but the fact that the MKL DGEMM did not

beat our compiled codes argues that R-Stream does a good

job optimizing for cache locality.

5.3.2. Givens QR

Figure 10 shows the results of our experiments with

Givens QR decomposition. Applying locality optimizations

to the cache-based code reduces memory energy by 40x

over a naı̈ve parallelization. When block transfers are used

for data movement, the R-Stream-compiled scratchpad-

based code consumes 20% less energy than the best cache-

based code, again using only the L1 scratchpads.

The hand-coded version of Givens QR that takes advan-

tage of both the L1 and the L2 scratchpads uses 30% less

memory system energy than the best cache-based version,

even when energy-inefficient copy loops are used for data

movement. When the block transfer operations are used, the

scratchpad algorithm uses 76% less memory energy than

the cache-based algorithm. Again, we also run the hand-

coded scratchpad code on a cache-based hierarchy to show

that scratchpads are responsible for the improvement.

These results suggest that, in some cases, giving pro-

grams direct control over on-chip memory can significantly

reduce memory system energy. This reduction in energy

comes at a non-trivial cost in programmer effort, although

our results and those of others [25][4][10] suggest that com-

pilers may be able to automate scratchpad management, at

least for regular codes.

6. Related Work

Runnemede is one of four extreme-scale architecture

research projects funded by the UHPC program. The

NVIDIA-led Echelon team [21] developed a GPU-inspired

architecture that integrates a large number of throughput-

optimized cores and a smaller number of latency-optimized

cores onto a chip. Sandia’s X-Caliber project combined

latency-optimized cores with compute-near-memory units

using 3-D stacking, and MIT’s Angstrom group [3] ex-

plored techniques for self-aware computing systems and

factored operating systems.

Our execution model [24] is based on the Codelet

paradigm [14] [36], which is separately embodied in ETI’s

SWARM runtime [11]. Our high-level compiler team is de-

veloping tools that use the Hierarchically-Tiled Arrays [13]

[5] and Concurrent Collections [7] models to compile con-

ventional programming languages into codelet-based pro-

grams. We have also been contributing to the development

of the Open Community Runtime [31] and have been work-

ing with researchers from Rice University to apply concepts

from their Habanero [9] model to our system.

The power-gating, clock-gating, and NTV techniques

used in Runnemede build on a large body of circuit research

at Intel [20] [1] [16]. Recently, Intel Labs demonstrated

an experimental NTV IA-32 processor, code-named Clare-

mont [18], that achieves a 4.7x increase in energy efficiency

by reducing its supply voltage from 1.2V to 0.45V.

7. Conclusions

Runnemede is a “blank sheet of paper” research ar-

chitecture designed to maximize energy efficiency without

the constraints imposed by backward compatibility and the

need to support conventional programming models. Run-

nemede’s focus on energy-efficiency begins at the circuit

level, using NTV circuits and fine-grained power and clock

gating to minimize power dissipation. At the architec-

tural level, we use many simple cores, organize them into
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hierarchical groups, and divide them into Execution En-

gines and Control Engines to allow separate optimization of

hardware for OS code and application kernels. Our mem-

ory system emphasizes efficiency through a single address

space, software-managed scratchpads, incoherent caches,

and block operations. Our on-chip network is hierarchical

and provides support for barriers and collectives.

We continue to develop Runnemede through a co-design

process that simultaneously explores hardware architec-

tures, runtime/OS mechanisms, and applications. Our ini-

tial experience with Runnemede has shown that co-design

can significantly reduce application energy and has demon-

strated the potential of application-managed memory hi-

erarchies. However, many questions remain unanswered

about programmability, execution engine architecture, and

off-chip networking, to name a few. Our ongoing work is

exploring these issues, and the Runnemede architecture will

continue to evolve as this work proceeds.
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