Running Genetic Algorithms in the Edge:
A First Analysis

José A. Morell and Enrique Alba

Departamento de Lenguajes y Ciencias de la Computacién
Universidad de Mdlaga, Andalucia Tech, Spain *
{jamorell, eat}@lcc.uma.es

Abstract. Nowadays, the volume of data produced by different kinds of
devices is continuously growing, making even more difficult to solve the
many optimization problems that impact directly on our living quality.
For instance, Cisco projected that by 2019 the volume of data will reach
507.5 zettabytes per year, and the cloud traffic will quadruple. This is
not sustainable in the long term, so it is a need to move part of the
intelligence from the cloud to a highly decentralized computing model.
Considering this, we propose a ubiquitous intelligent system which is
composed by different kinds of endpoint devices such as smartphones,
tablets, routers, wearables, and any other CPU powered device. We want
to use this to solve tasks useful for smart cities. In this paper, we analyze
if these devices are suitable for this purpose and how we have to adapt the
optimization algorithms to be efficient using heterogeneous hardware. To
do this, we perform a set of experiments in which we measure the speed,
memory usage, and battery consumption of these devices for a set of
binary and combinatorial problems. Our conclusions reveal the strong
and weak features of each device to run future algorihms in the border
of the cyber-physical system.

Keywords: Edge Computing, Fog Computing, Evolutionary Algorithms, Ge-
netic Algorithms, Metaheuristics, Smartphone, Tablet, Ubiquitous Al

1 Introduction

At present, cloud computing looks like a mature and stable domain. Processing
all the data in the Cloud have been effective until now. However, when we analyze
the near future in terms of volume of data produced, we find some issues for
which we are not yet ready. However, we can say that cloud computing and even
big data as we knew them until now are not sustainable in the long term. To
understand the problem, we must realize the large amount of data that is created
by new devices, not only laptops and smartphones, but also tablets, wearable
devices, home and city sensors, and so on. According to Cisco, “The Internet of
Everything”, which means all of the people and things connected to Internet,
will generate 507.5 zettabytes of data by 2019 [1]. That is a large amount of data
that needs to be analyzed. Big Data analysis is currently performed in cloud or

* This research has been partially funded by the Spanish MINECO and
FEDER projects TIN2014-57341-R (http://moveon.lcc.uma.es), TIN2016-81766-
REDT (http://cirti.es), TIN2017-88213-R (http://6city.lcc.uma.es), the Ministry of
Education of Spain (FPU16/02595), and Universidad de M4laga.

enterprise data centers. Consequently, it is necessary to find new approaches to
solve problems at the edge without sending all the information to the cloud.

Several new approaches are now emerging to solve these problems. One of
them is called edge computing (aka fog computing) [2], a paradigm where com-
puting tasks move closer to the source of data. Currently, sensors are collecting
so much data that it is necessary to perform some data analysis at the edge
instead of sending all data to the cloud. To achieve this, edge computing uses
endpoint processing capacity in a distributed way. Peter Levine, a partner at
the Silicon Valley venture capital firm Andreessen Horowitz, has recently talked
about edge computing as the next multibillion-dollar tech market [3]. He said
that edge computing would overtake the cloud and that the cloud would still
store important data, but as devices become more sophisticated, all the data
curation and learning would take place at the edge. Furthermore, both research
and industry are taking steps in this direction. For instance, some companies
such as HTC and Samsung are developing apps to allow people to contribute
with the unused computational power of their smartphones in mobile grids (HTC
Power to Give! and Samsung Power Sleep?).

: I Vo emmmemmmeaay

H 1) —} "Pool of dewces

L RO g

: o ey ML’JB['MQ{;}{;&;J&S

2% ;%;«

Thousands

CLOUD | Data Centers

FOG | Nodes

EDGE | Devices

Maps Trends Correlatlons

Fig. 1. Ubiquitous Artificial Intelligence at the Edge.

Considering this, our main aim is to design a ubiquitous intelligent system
(Fig. 1) for solving complex problems of smart cities using a highly decentralized
computing model. However, this system will be composed of a wide variety of
heterogeneous hardware. We have to deal with asynchronism, fault tolerance
and the devices that join and leave the system. Therefore, we must analyze this
hardware and test it to solve problems locally, before doing it in a distributed
way. For this purpose, we perform a set of experiments in which we measure the
speed, memory usage, and battery consumption of these devices solving a set
of well-known optimization problems using Genetic Algorithms (GAs). This
research is an extension of a previous work [4].

! https://www.htc.com/es/go/power-to-give/
2 https: / /news.samsung.com/global /power-sleep-app-lets-you-be-a-part-of-an-
advanced-scientific-research

In summary, we will answer the following set of worth research questions:

- RQ1: Are these devices suitable to solve complex problems using smart al-
gorithms?

- RQ2: What are the differences in resources usage between the different
portable devices?

- RQ3: How can we develop efficient algorithms for so limited memory devices?

This article is organized as follows: Section II describes the problems chosen
for experimentation. Section III shows details about the design of our algorithm.
Section IV analyzes and discusses the experiments performed. Finally, Section
V draws the main conclusions and the future work research.

2 Description of the Problems

In this section, we present the set of problems chosen for the experimentation, in-
cluding different sizes, different types of underlying NP-Hard problems, different
constraints, varied fitness functions, and considered the areas of research they
represent. As a result, the benchmark contains binary and combinatorial prob-
lems with many different interesting features in optimization, such as epistasis,
multimodality, and deceptiveness. The binary problems chosen are the Massively
Multimodal Deceptive Problem (MMDP) [5], the Error Correcting Code Design
(ECCQ) [6], the Minimum Tardy Task Problem (MTTP) [7], and finally, the One-
Max problem [8] to ease comparisons to other domains and algorithms. Also,
we have chosen a well-known combinatorial problem, the Capacitated Vehicle
Routing Problem (CVRP) [9] that can scale and represent problems in smart
mobility in cities. Let us now proceed to explain each one briefly.

MMDP is a problem in which bipolar deceptive functions with two global
optima and with a number of deceptive optima are designed. In MMDP each
subproblem s; contributes to the total fitness value according to the number of
ones it has. The number of local optma is quite large (n*), while there are only
2F global solutions. The degree of multimodality is regulated by the k parameter.

k
fuMMDP(s) = Z fitnesss,; (1)

=1
ECC consists of assigning codewords to an alphabet that minimizes the
length of transmitted messages and that provides maximal correction of single
uncorrelated bit errors, when the messages are transmitted over noisy channels.
A code can be formally represented by a three-tuple (n, M,d), where n is the
length of each codeword, M is the number of codewords and d is the minimum
Hamming distance between any pair of codewords. An optimal code consists
in constructing M binary codewords, each of length n, such that d, the min-
imum Hamming distance between each codeword and all other codewords, is

maximized.

1
fece = =~
i=1245=1,i#j g2

1]

(2

MTTP is a NP-hard task-scheduling problem wherein each task i from the
set of tasks T'= 1,2,...,n has a length [; (the time it takes for its execution),
a deadline d; (before which a task must be scheduled), and a weight w;. The
weight is a penalty that has to be added to the objective function in the event
that the task remains unscheduled. The lengths, weights and deadlines of tasks
are all positive integers. Scheduling the tasks of a subset S of T is to find the
starting time of each task in S, such as at most one task at time is performed
and such that each task finishes before its deadline. The objective function for
this problem is to minimize the sum of the weights of the unscheduled tasks.

furrp(®) = > w; (3)
1€T—S
OneMaz (or BitCounting) is a simple problem consisting in maximizing the
number of ones of a bitstring. Formally, this problem can be described as finding
an string © = {x1,29,...,2N}, with z; € {0,1}, that maximizes the following
equation:

N
fonemaz(m) => @i (4)
i=1

CVRP is a problem in which a fixed fleet of delivery vehicles of the same
capacity must service known customer demands for a single commodity from
a common depot at minimum total transit costs. CVRP is defined as an undi-
rected graph G = (V,E) where V = {vg,v1,...,v,} is a vertex set and V =
{(vi,vj)vs,v; € V)i < j} is an edge set. The depot is represented by vy and it is
from where m identical vehicles of capacity Q must serve all the customers, repre-
sented by the set of n vertices {v1, ..., v, }. A solution for the CVRP is a partition
R1, R, ..., Ry, of V representing the routes of the vehicles. The cost of the prob-
lem solution is the sum of the costs of its routes R; = {vio, vi1, ..., Vik+1} Where
v;; € V and vi9 = vig41 = 0, where 0 is the depot, satisfying > vijer,,q; < @Q,
which can be presented as:

m k
Cost = Z Cost(R;) = Z Cij+1 (5)
im1 =0

where matrix C' = (¢;;) is a non-negative cost between customers v; and v;
defined on E.

3 Design of our Algorithm

The algorithm used to test the performance of the portable devices is a Genetic
Algorithm (GA). A GA is a population-based metaheuristic inspired by the
process of natural selection. GAs are used to generate high-quality solutions to
optimization and search problems. They are especially useful to solve NP-hard
and even NP-complete problems. Exact algorithms are designed in such a way
that it is guaranteed that they will find the optimal solution in a finite amount
of time. However, when the problem is big, exact methods become useless while
metaheuristic algorithms can still find good solutions in a reasonable amount of
time.

The canonical GA uses three main types of rules at each step to create
the next generation from the current population. First, selection rules select the
individuals, called parents, that will be recombined. Second, recombination rules
combine the parents to form a child for the next generation. Third, mutation
rules apply random changes to the recombined individual to form the final child.
Next, we replace the worst individual in the population with the new child. It is
like natural selection. We repeat the process again and again until we achieve a
good enough solution.

In this research we use a canonical steady state algorithm to solve our
problems, adding an additional step in the case of the combinatorial problem
(CVRP). In this case, we add a local search operator to the canonical GA due
to its efficiency solving CVRP. We have implemented our algorithm similarly to
that used by Dorronsoro and Alba [10].

4 Experimentation

For the experimentation we used five different portable devices of a wide variety
of performances (Tables 1 and 2). These devices are a laptop, two smartphones,
a tablet and a raspberry pi 3 (RP3). Their technical specifications are showed in
Table 1. In experimentation we compare their performances solving known hard
problems in literature in terms of speed, memory usage and battery consumption.

Table 1. Hardware in the edge: features

laptop RP3 mobileA tablet mobileB
os Ubuntu 16.04 Raspbian 9 Android 5.1.1 |Android 5.0.1 Android 6.0
LTS (64-bit) (64-bit) ARMv7 (32-bit)| x86 (32-bit) [AArch64 (64-bit)
Java VM 1.8.0.161 1.8.0-65 - - -
Toshiba . Lenovo TAB LeMobile
Model Satellite L50-B | Raspberry P13 Zuk 21 S8-50F LEX653
Memory 7893 MB 745 MB 2871 MB 1870 MB 3759 MB
1600 MHz 900 MHz 933 MHz 778 MHz 800 MHz
Factory Battery 14.8 V 3.7V 3.7V 3.8V 4.2 'V
2800 mAh 3800 mAh 4000 mAh 4290 mAh 4000 mAh

Table 2. Processor Specifications

laptop RP3 mobileA tablet mobileB
Name Intel Core ARM v7 Qualcomm |Intel Atom Z3745 ﬁgﬁ gg::ziﬁ
i7-4510U (64-bit) | BCM2709 (64-bit) |Krait 400 (32-bit) (32-bit) MT6797D (64-bit)
T 1 1 I;’ré)ces?or, 1 Processor, 1 Processor, 1 Processor, 1 Processor,
opology ores, 4 Cores 4 Cores 4 Cores 10 Cores
4 Threads
2.3 GHz x 2
Frequency 2.0 - 3.1 GHz 1.2 GHz 2.5 GHz 1.33 - 1.86 GHz 1.85 GHz X 4
1.4 GHz X 4
L1 Inst. Cache 32.0 KB x 2 16.0 KB x 1 16.0 KB x 2 32.0 KB x 4 -
L1 Data Cache 32.0 KB x 2 16.0 KB x 1 16.0 KB x 2 24.0 KB X 4 -
L2 Cache 256 KB x 2 512 KB x 1 2.00 MB x 1 1.00 MB x 1 -
L3 Cache 4.00 MB X 1 - - - -

In this research, we focus on the behavior of these devices without using
multithreading. In future work, we will check what happen when we use multi-
threading and compare it with these results.

The problems chosen for experimentation are detailed in section 2. They are 4
binary problems (MTTP, ECC, MMDP, OneMax) and 1 combinatorial problem
(CVRP). The algorithm used to solve these problems is a genetic algorithm and
it is explained in section 3.

Table 3. Problem Instances

. . Probabilities
Problem | Chrom. Size| Pop. Size Recomb. Mutation Local Search Type
OneMax 5000 100 0.8 m - Binary
MTTP 200 100| 0.8 rasee - Binary
ECC 144 50000 0.8 —asie - Binary
MMDP 240 5000/ 0.8 ,r%gw - Binary
CVRP 54 500 04 27 1 Combinatorial

We have chosen one instance of each problem (Table 3). The four binary
instances have been chosen from JCell Library®. The CVRP instance is the
CMT1 which is one of the set of instances proposed by Christofides [11] for this
problem. The chosen instances are not large because they must be solved by
devices with low processing capacity. For now, what interests us is to observe
the performance in each platform and not solve very large problems. This is why
we have chosen a varied set of problems that can be solved in an acceptable time
by all the evaluated devices.

The parameters chosen to solve the binary problems are the most common
in literature and the parameters chosen to solve CVRP can be found in [10] ,
both are shown in Table 3. Regarding to population size, we tested with different
sizes among 100, 200, 500, 1000, 2000, 5000 until we got 100% of success with 30
different seeds in each problem. For each experimental instance, we have carried
out 30 independent runs with a different random seed in each repetition. Same
seeds were used for each problem.

Our first experiment is to run some of the most well-known benchmarks on
each platform to have an idea of their real performances. Most of these bench-
marks are not multiplatform, however, we can obtain certain information using
them in the platforms that we can.

Next, we evaluate the performance of each problem in each platform. Since
all the devices use the same seeds, and since we are not using multithreading,
all the devices solve the instances in the same number of evaluations. Therefore,
what we compare is the time each device devotes to solve each instance.

Then, we analyze the use of the CPU and the memory of the different plat-
forms when solving these instances. And finally, we compare the consumption of
the battery.

4.1 Knowing Edge HW by Running Standard Benchmarks on it

First of all, we perform some benchmarks on these devices. These benchmarks
are composed by the classical Whetstone [12], Dhrystone 2 [13], Linpack [14]
and Livermore [15]. Also, we use Antutu benchmark? which is specific for An-
droid OS, and we focus on their CPU (1 single core) and memory score. And
finally we use one of the benchmarks most used today for multiplatforms devices,

3 http://neo.lcc.uma.es/software/jcell /
4 http://www.antutu.com/en/

Geekbench 4 (1 single core)’. The results of the different benchmarks have been
normalized getting a score. The score 1 represents the best result and the rest
of scores are proportionals to this one.

Table 4. Benchmarks

laptop| RP3 |mobileA |tablet [mobileB

GeekBench 4 1 - 2.15 2.43 1.38
Antutu CPU - 1.12 1.26 1
Antutu Maths - 1.06 1.90 1
Antutu Mem. 1 1.39 1.13

1.38 1.44 1.56 3.55

Y =

Whetstone

Dhrystone 2 4.42 2.65 4.13 2.18
Linpack 9.71 3.95 12.16 40.89
Livermore 13.53 6.89 17.90 5.91

The implementation of the classical benchmarks have been taken from Roy
Longbottom’s Benchmark Collection® which have implementations of many bench-
mark for a wide variety of platforms. The results obtained in these benchmarks
are not very accurate, apparently. This is because these benchmarks are very
dependents of the compilers and the hardware architectures.

The results obtained in Antutu and GeekBench 4 are closer to what we
expected. The problem is that Antutu is just for Android OS and GeekBench 4
does not have an implementation for Raspbian OS.

Based on the benchmark results and the features of the devices (Table 1 and
2) we can expect that the order from the faster to the slower device is as follow:
laptop, mobileB, mobileA, tablet, RPS.

These benchmarks help us to have a first approach to these platforms as a
first step before our experiments begin. Although, we should know that these
benchmarks are just a number and does not have to be similar to the final results.
For instance, Antutu is so common that hardware manufacturers have taken to
cheating on the benchmark which makes the benchmark unreliable.

4.2 Time Results

In Table 5 we can see the experiment results per problem and per device. The
most important thing here is the time performance because the number of evalu-
ations is the same for all devices in each problem. We have normalized the times
getting a score. The device with the fastest time in each problem gets a score of
1, and the rest of them get a score proportional to this in a incremental way.

We can see that the performance in Linux devices (laptop and RP3) is much
better than in Android devices. It is interesting to see that RP3, a device of
€30 cost, can obtain a result very similar than a laptop even when it has a
much worse CPU. RP3 needs 10 times the time of the laptop to solve the same
problem, that is not too much because of the cost of the RP3 compared to the
laptop.

® https://www.geekbench.com/
S http://www.roylongbottom.org.uk/

Table 5. Problem Results

Fitness Evaluations Time (s)
Device |Prob. ave hit avg * sd max min avg t sd max | min | score
laptop |OneMax 5 x 102100 %| (18 + 1) x 107]23 x 10%[16 x 10% 1.95 + 0.14| 2.38] 1.76| 1.00
RP3 OneMax 5 x 103[100 %| (18 £ 1) x 104 |23 x 104 |16 x 104 21.47 + 1.46| 26.28| 19.43| 11.01
mobileB | OneMax 5 x 103[100 %| (18 & 1) x 10%|23 x 10% |16 x 10% 98.79 + 7.65| 117.13| 87.46| 50.66
mobileA | OneMax 5 x 103[100 %| (18 &£ 1) x 10%|23 x 104 |16 x 10% 99.91 + 6.85| 119.85| 90.33| 51.23
tablet |OneMax 5 x 103 [100 %| (18 + 1) x 10%|23 x 10%|16 x 10%| 176.32 4+ 12.34| 215.39| 158.40| 90.41
laptop |MTTP | 25 x 10~ 4[100 %/ (48 + 48) x 10%|24 x 10° |39 x 103 0.52 + 0.53| 2.80| 0.05| 1.00
RP3 MTTP | 25 x 10~%4[100 %| (48 + 48) x 10% |24 x 10°|39 x 103 5.86 + 5.82| 29.65 0.50| 11.23
mobileB|MTTP | 25 x 104|100 % | (48 + 48) x 10%|24 x 10° |39 x 103 55.67 + 54.97| 278.69 4.42|106.67
tablet |MTTP | 25 x 10-4[100 % | (48 + 48) x 10%|24 x 10% 39 x 103 66.01 + 65.44| 334.04 5.63[126.49
mobileA | MTTP | 25 x 104|100 %/ (48 + 48) x 10%|24 x 10° |39 x 103 71.75 + 71.93| 369.39 6.48(137.49
laptop |MMDP 40[100 % | (37 & 46) x 10%]22 x 10% |19 x 10% 2.12 + 0.66| 4.68| 1.69| 1.00
RP3 MMDP 40[100 %|(37 & 46) x 104 |22 x 10° |19 x 10% 17.94 + 5.66| 40.09| 14.29| 8.47
mobileB | MMDP 40100 %|(37 £ 46) x 10%[22 x 105 |19 x 10%| 331.35 4+ 195.25|1180.94| 199.50|156.46
tablet |MMDP 40[100 %[(37 + 46) x 10422 x 10|19 x 10| 416.22 + 74.83| 683.50| 349.13(196.53
mobileA | MMDP 40[100 % | (37 & 46) x 10%|22 x 10% |19 x 10%| 476.01 + 122.47| 983.44| 379.61|224.76
laptop |ECC 674 x 1074]100 %| (33 + 6) x 10% |45 x 10% |23 x 10% 2.68 + 0.34| 3.41| 1.99| 1.00
RP3 ECC 674 x 10~4[100 %| (33 + 6) x 10% |45 x 10|23 x 10% 25.42 + 3.45| 32.85| 18.94| 9.48
mobileB|ECC 674 x 10~4 (100 %| (33 + 6) x 10% |45 x 10423 x 104| 470.22 + 75.97| 621.57| 310.18|175.30
tablet |ECC 674 x 10~4(100 %| (33 + 6) x 10% |45 x 10423 x 104| 533.14 + 66.72| 672.33| 403.31|198.76
mobileA |ECC 674 x 104100 %| (33 + 6) x 10% |45 x 10% |23 x 10%| 577.81 4+ 71.82| 725.69| 438.77|215.41
laptop |CVRP 524.61[100 % (45 + 11) x 109 |80 x 106 |24 x 106 9.85 + 2.45| 17.29| 5.09| 1.00
RP3 CVRP 524.61[100 % (45 + 11) x 109 |80 x 106 |24 x 106 76.39 + 19.54| 136.23| 39.89| 7.76
mobileB|CVRP 524.61(100 % | (45 + 11) x 100 |80 x 100 |24 x 106 |1637.20 + 553.04|3389.71| 771.45|166.28
tablet |CVRP 524.61(100 %|(45 + 11) x 100 |80 x 100 |24 x 106 [2376.80 + 601.78(|4218.04|1247.25|241.40
mobileA | CVRP 524.61]|100 %[(45 + 11) x 105[80 x 10 |24 x 106(2440.79 + 589.31]4150.62|1332.99(247.90

The bad news is the time Android devices need to solve these problems. It
is clear that something is not working as well as expected in the optimization
of the Java VM on Android. Android does not use Oracle Java VM, but uses
Android Runtime (ART) (which replaced Dalvik Virtual Machine after Android
KitKat). DVM was created to avoid JVM copyright and to better use memory
and power in more limited devices. There are many studies [16] that shown that
DVM was much slower than JVM, we have to say that some years later ART
does not improve that results.

The tablet, and the smartphones have CPU much better than the RP3, how-
ever, they are getting a very bad performance solving these problems. Android
OS is an obstacle to obtain our long-term goal and we will have to deal with it
in future work. If benchmarks can obtain good results on these devices it means
that it is possible and maybe we have to use native code to solve the restrictions
of the Android OS.

4.3 Resources Usage

To measure memory we use the unique set size (USS) which is the portion of
main memory (RAM) occupied by a process which is guaranteed to be private
to that process. It was proposed by Matt Mackall because of the complications
that arose when trying to count the ”real memory” used by a process.

It is interesting to see in Fig. 2 how smartphones, the tablet and the RP3
manage the memory better than the laptop. It seems like the VM is optimized
to use the memory better on these devices with memory restrictions than on the
laptop. We have to highlight the use of memory in the tablet and in the RP3
that need much less memory than the other devices to solve the same problems.

Regarding to CPU, we have to say that to run the same java code on Android
we needed a simple interface with a button to start the algorithm on background.
That is why Android devices are using two cores when laptop and RP3 are using
only one. However, we can see how the tablet uses less CPU than smartphones.
It seems that Intel x86 is using the CPU in a smarter way than ARM/AArch
on Android OS.

.
300 .
' 1000001 ¢
— &
& 200- X 750001
I % —— :
s . 500001 4 .
1001 + —!— = QR
25000 -
: :b
laptop r|:;3 mobileA tablet mabileB Iapllop rF;S mobileA tablet mobileB

Device Device
Fig. 2. Resources Usage.

4.4 Battery Consumption
We have measured the battery consumption during 2 hours with and without
the algorithm running. As a result, we have obtained that all devices increment
their battery consumption in a similar way from 1.5 to 1.97 depending on the
device. The laptop increment their battery consumption 1.72 with respect to
their normal consumption, RP3 did 1.8, mobileA did 1.97, tablet did 1.5 and
mobileB did 1.76.

These are good results comparing it with making a call, web browsing or
playing a video. These activities can increment battery drain in 5 or 6 times
depending on the device.

5 Conclusions

In this article, we have analyzed the performance of five different devices while
running smart algorithms in the edge. We have measured their performance,
CPU and memory usage, and battery consumption.

First, we chose a representative set of problems with different interesting
features and solved them using a GA. Second, we showed that benchmarks are
not so useful to known the real performance of the devices although they can
help to have a first impression about it. Also, we showed that OS could be
more important than HW to get good results running these algorithms. Another
remarkable result is that battery consumption is lower than many applications
we commonly use, and much more lower than a call for instance.

Finally, we have got many unexpected results. On the one hand, RP3 arises
as a perfectly suitable platform to run algorithms in the edge. RP3 is very cheap,
and it uses less memory than laptop and an acceptable time solving the prob-
lems. RP3 is commonly used in smart city sensors, so it is very suitable device
to perform edge computing. On the other hand, Android devices got very poor

results in terms of performance. It seems like Android OS has many restric-
tions to run high-performance applications, Android OS seems more interested
in maintaining battery consumption low and in using less memory (cleaning
garbage collector more often). Anyway, this only encourages us to look for new
approaches to solve the problem of performance in Android. This platform is
crucial for our long-term goals, so in future work we will use native code (JNI).
We have shown how devices with low processor capacity as RP3 are perfectly
useful solving optimization problems. In the case of smartphones and tablets,
we still have to deal with the limitations of Android OS. In future work, we will
check what happen when we use multithreading and we will research to new
ways to improve the performance in Android devices like using native code.

References

1. Index, C.G.C.: Forecast and methodology, 2015-2020 white paper. Retrieved 1st
June (2016)

2. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and challenges.
IEEE Internet of Things Journal 3(5) (2016) 637646

3. Levine, P.: Return to the edge and the end of cloud computing.
https://al6z.com/2016/12/16/the-end-of-cloud-computing/ (Dec. 2016) Online;
accessed 17 February 2018.

4. Morell, J., Alba, E.: Distributed genetic algorithms on portable devices for smart
cities. In: International Conference on Smart Cities, Springer (2017) 51-62

5. Goldberg, D.E., Deb, K., Horn, J.: Massive multimodality, deception, and genetic
algorithms. Urbana 51 (1992) 61801

6. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. Elsevier
(1977)

7. Stinson, D.: An introduction to the design and analysis of algorithms. The Charles
Babbage Research Centre, St. Pierre (1985)

8. Eshelman, L.: On crossover as an evolutionarily viable strategy. In: Proceedings
of the Fourth International Conference on Genetic Algorithms. (1991) 61-68

9. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Management science
6(1) (1959) 80-91

10. Alba, E., Dorronsoro, B.: Cellular genetic algorithms. Volume 42. Springer Science
& Business Media (2009)

11. Christofides, N., Mingozzi, A., Toth, P.: Loading problems. N. Christofides and
al., editors, Combinatorial Optimization (1979) 339-369

12. Curnow, H.J., Wichmann, B.A.: A synthetic benchmark. The Computer Journal
19(1) (1976) 43-49

13. Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Commu-
nications of the ACM 27(10) (1984) 1013-1030

14. Dongarra, J.J., Bunch, J.R., Moler, C.B., Stewart, G.W.: LINPACK users’ guide.
Siam (1979)

15. McMahon, F.H.: The livermore fortran kernels: A computer test of the numeri-
cal performance range. Technical report, Lawrence Livermore National Lab., CA
(USA) (1986)

16. Batyuk, L., Schmidt, A.D., Schmidt, H.G., Camtepe, A., Albayrak, S.: Devel-
oping and benchmarking native linux applications on android. In: International
Conference on Mobile Wireless Middleware, Operating Systems, and Applications,
Springer (2009) 381-392

