
Eur. Phys. J. C (2020) 80:1154
https://doi.org/10.1140/epjc/s10052-020-08736-8

Regular Article - Theoretical Physics

Running of effective dimension and cosmological entropy in early
universe

Yong Xiao1,2,a

1 Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physical Science and
Technology, Hebei University, Baoding 071002, China

2 Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK

Received: 7 September 2020 / Accepted: 6 December 2020 / Published online: 14 December 2020
© The Author(s) 2020

Abstract In this paper, we suggest that the early uni-
verse starts from a high-energetic state with a two dimen-
sional description and the state recovers to be four dimen-
sional when the universe evolves into the radiation dominated
phase. This scenario is consistent with the recent viewpoint
that quantum gravity should be effectively two dimensional
in the ultraviolet and recovers to be four dimensional in the
infrared. A relationship has been established between the
running of effective dimension and that of the entropy inside
particle horizon of the universe, i.e., as the effective dimen-
sion runs from two to four, the corresponding entropy runs
from the holographic entropy to the normal entropy appro-
priate to radiation. These results can be generalized to higher
dimensional cases.

1 Introduction

It has been established that black holes have thermodynamic
properties such as temperature and entropy. In particular, the
thermodynamics of the Schwarzschild black hole of radius
R has the form

M = R

2G
, T = 1

4πR
, S = A

4G
, (1)

where we have set h̄ = c = KB = 1. The celebrated
Bekenstein–Hawking entropy A

4G is often called holographic
entropy because of its proportionality with the boundary area
of the system. In [1] Bekenstein and Mayo revealed a secret
behind this kind of thermodynamics, that is, black holes
are effectively 1 + 1 dimensional as far as entropy flow is
concerned. Recently, in [2] Xiao showed more directly that
the thermodynamics (1) is 1 + 1 dimensional in essence.
Quantum gravitational (QG) particles with non-trivial phase
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space have been introduced there in order to provide a micro-
scopic explanation to (1), with the equation of state (EoS)
w ≡ P/ρ = 1 derived as a byproduct.

In the context of cosmology, we mainly concern about
the dominate stage of these QG particles in the evolvement
history of the universe. First, we expect the very-early high-
energetic stage of the universe be controlled by QG theory.
Second, by Friedmann equations the evolvement of the uni-
verse declines to lower the value of w as time increases. So
it is natural to expect an early stage of the universe with
w = 1 exists before the radiation dominated universe with
w = 1/3. It immediately follows an interesting scenario of
the evolution of the very early universe: When the domi-
nate EoS evolves from w = 1 to w = 1/3, the effective
description of the universe runs from 1 + 1 dimensional to
3+1 dimensional, along with a remarkable evolvement of the
entropy from holographic entropy for QG particles to normal
entropy for radiation.

Interestingly, in recent years, there have been cumulative
evidences [3–5] indicating that quantum gravity should be
effectively 1 + 1 dimensional at small sizes (commonly near
the Planck length l p but not necessarily transcending it) and
recovers to be 3+1 dimensional at large scales. Actually the
phenomenon of short-distance dimensional reduction was
obtained from various approaches to quantum gravity and
various definition of effective dimensions. The universality
has even been viewed as a curious question to be addressed
[6,7]. The subtlety here is the concept of “effective dimen-
sion” which is defined and obtained by examining some spe-
cific physical behaviors sensitive to space-time dimensions.
For example, the diffusive behavior of particles defines the
spectral dimension, and the temperature dependence of the
thermodynamic quantities determines the thermodynamic
dimension. In particular, Hořava–Lifshitz gravity flows to
be 2 dimensional in the ultraviolet, measured by both the
generalized spectral dimension and thermodynamic dimen-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-08736-8&domain=pdf
http://orcid.org/0000-0001-5639-3921
mailto:xiaoyong@hbu.edu.cn


1154 Page 2 of 7 Eur. Phys. J. C (2020) 80 :1154

sion [5]. Hořava stressed that the behavior doesn’t necessarily
imply a foamy structure of space-time and can be explained
by the existence of some special properties of quantum grav-
ity such as the anisotropic scaling of space and time at short
distances, keeping the 3 + 1 dimensional geometry smooth.
Thus to avoid confusion, it would be better to say that the
corresponding effective dimensions coincide with the given
space-time dimension D at large scales, while deviate from it
and reduce to 2 at small scales. We refer the interested reader
to [6,7] for a clear discussion of the concept of effective
dimensions and the phenomenon of short-distance dimen-
sional reduction in quantum gravitational theories.

The paper is organized as follows. First we review the
thermodynamics (1) can be microscopically explained by
introducing the so-called QG particles and it is effectively
1+1 dimensional [2]. Next we study the universe filled with
a single kind of constituents for simplicity and derive the
concerned properties including the entropy inside particle
horizon and effective dimension. Then we provide a self-
consistent evolvement scenario for the early universe, with
emphasis on the running of effective dimension and entropy.
We always use the thermodynamic dimension as the dimen-
sional estimator for studying the phenomenon of dimensional
reduction, which is also a good one among others [6,7]. We
exhibit the general results in D = d + 1 dimensions in the
Appendix.

2 QG particles and Bekenstein–Hawking entropy

The fact that black holes have temperature and entropy
implies that there must be some kinds of microscopic degrees
of freedom behind it. In order to provide a statistical interpre-
tation to the thermodynamic behaviors (1), we consider the
Schwarzschild black hole as composed of microscopic par-
ticles that we call QG particles for convenience [2]. In fact
such ideas are not new, for example, the charged AdS black
holes have been suggested to be consisting of “molecules”
with attractive or repulsive interactions [8,9].

We take the QG particles as massless bosonic particles
with the logarithm of partition function written as 1

ln Ξ = −
∑

i

ln(1 − e−βεi )

= −g
∫ ∞

0
ln(1 − e−βε)D(ε)dε,

(2)

1 The form of (1) is so simple that we should avoid to introduce all
unnecessary parameters such as particle mass, particle number and inter-
action strength.

where β = 1/T , D(ε)dε is the number of quantum states
with energy between ε and ε + dε, and g represents other
possible degrees of freedom such as polarization.

Before handling with the black hole thermodynamics,
we look back to the familiar statistical mechanics of pho-
ton gas system for comparison. Quantum mechanics and
special relativity respectively tells that �qi�pi ≥ h̄

2 and
ε = cp (we only restore the fundamental constants temporar-
ily). Then the quantum states of a photon can be labeled by
p = 2π h̄

L (m1,m2,m3) with energy spectrum ε = c|p|. So the
number of quantum states between ε and ε +dε can be eval-
uated by D(ε)dε = 1

2π2 V ε2dε. Substituting it and g = 2

into Eq. (2), there is ln Ξ = π2

45
V
β3 . The standard photon gas

thermodynamics follows

E = − ∂

∂β
ln Ξ = π2

15
VT 4, (3)

S = kB(ln Ξ + βE) = 4π2

45
VT 3, (4)

P = T
∂ ln Ξ

∂V
= 1

3
ρ. (5)

When the energy is of the same order of that of a black hole
of the same size, E ∼ Ebh ∼ R/G, there is Tmax ∼ L−1/2.
Substituting it into Eq. (4), we get the entropy bound for
conventional quantum field theory (QFT) [10–13]

SQFT ∼ A3/4. (6)

Now turn to the system consisting of QG particles.
According to [2], in order to account for the thermodynamics
(1), we should take

gD(ε)dε = 9V

πG
dε. (7)

The special form (7) means that QG particles have a dis-
tinctive energy spectrum from that of photons, which may
hint some radical modification to the basic physical princi-
ples. Whatever, in practice we can consider all the non-trivial
physical effects have been encapsulated in (7) and use it as
the starting point. So we get

ln Ξ = − 9V

πG

∫ ∞

0
ln(1 − e−βε)dε = 3π

2G

V

β
, (8)

along with other thermodynamic properties

E = − ∂

∂β
ln Ξ = 3π

2G
VT 2, (9)

S = ln Ξ + βE = 3π

G
VT, (10)

P = T
∂ ln Ξ

∂V
= ρ, (11)
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with V = 4π
3 R3. The gravitational energy of the system is

M = (1 + 3w)E = 6π
G V T 2 which naturally satisfies the

Smarr formula M = 2T S. Requiring M = R
2G , we deduce

the Hawing temperature T = 1
4πR . Substituting it into Eq.

(10), we successfully obtain the exact Bekenstein–Hawking
entropy

SQG = 4πGM2 = A

4G
. (12)

Observing the logarithm of partition function (8), we soon
realize that it is the same as that of a 1 + 1 dimensional
quantum system

ln Ξ = − Ls

π

∫ ∞

0
ln(1 − e−βε)dε = π

6

Ls

β
, (13)

with size Ls = 9V/G.2 Obviously this means that the black
hole can be described as a 1 + 1 dimensional quantum sys-
tem at least from the thermodynamic viewpoint, despite the
fact that it actually lives in a 3 + 1 dimensional space-
time. The derivation can be generalized to higher dimen-
sions, and the necessity of w = 1 for getting the exact
Bekenstein–Hawking entropy has been emphasized in [2].
In the Appendix, we further generalize the derivation above
to general EoS w in D = d + 1 dimensions, where it con-
tains an intriguing explaination about the equality between

the exponent of the holographic entropy S ∼ M
D−2
D−3 and the

coefficient of the Smarr relation M = D−2
D−3T S.

Actually the thermodynamics (9)–(11) has many interest-
ing properties that may attach to quantum gravity. First, it
has the EoS w = P/ρ = 1. The fluid with w = 1 is usually
called stiff fluid for that it is the most incompressible fluid
permitted by relativistic causality. In contrast, black hole is
also incompressible in some sense. If you want to accumu-
late more matter or entropy into it, the only way you can
do is to increase its horizon size. Second, we can observe

S = √
6π

√
EV
G from these formulas. It has been shown that

the expression S ∼
√

EV
G is invariant under the T and S dual-

ities, and it even keeps its form when we curl up some extra

dimensions because of
√

EV3(Lc)D−4

GD−2
=

√
EV3
G with (Lc)

D−4

the volume of the extra dimensions [14].

3 Cosmological entropy and effective dimension

Now we have two typical kinds of constituents at hand, with
respectively w = 1/3 and w = 1. For simplicity we start

2 In [2] the 1 + 1 dimensional system was viewed as an effective string
which has length V/G and can vibrate in 9 independent directions. The
two descriptions are equivalent to each other at the leading order of the
thermodynamics that we concern.

from a universe filled with a single kind of constitutes with
a general EoS w. Consider a spatial-flat, homogenous and
isotropic universe which is described by the Friedmann–
Lemaître–Robertson–Walker (FLRW) metric and obeys the
Friedmann equations

3

(
ȧ

a

)2

= 8πGρ, (14)

ρ̇ + 3 (1 + w)
ȧ

a
ρ = 0. (15)

The scaling behavior of the entropy inside particle horizon
can be obtained in the following way [15]. From Eq. (15)
there is

ρ = C1a(t)−3(1+w). (16)

Substituting it into Eq. (14), there is

a(t) =
(√

8πGC1

3

3(1 + w)

2
t

) 2
3(1+w)

, (17)

which in turn gives

ρ = 3

8πG

(
2

3(1 + w)

)2 1

t2 . (18)

Then the physical size of the particle horizon is

Rph = a(t)
∫ t

0

1

a(t)
dt = 3(1 + w)

1 + 3w
t. (19)

The energy inside the particle horizon is E = 4π
3 R3

phρ =
6(1+w)

(1+3w)3
t
G = 2

(1+3w)2
Rph
G . The gravitational mass is thus

M = (1 + 3w)E = 2

1 + 3w

Rph

G
. (20)

The cosmological expansion is an adiabatic process, so the
entropy of the constituents in a co-moving volume a(t)3s

must be conserved. This leads to s = C2a(t)−3 = C3t
− 2

1+w .
Thus the entropy inside the particle horizon is

S = 4π

3
R3
phs = C4t

1+3w
1+w . (21)

Using Eq. (19), the relation between the entropy S and the
particle horizon area A = 4πR2

ph can be written as

S ∼ A
1+3w

2(1+w) . (22)

It shows the available entropy for an observer in the universe
increases as the particle horizon expands, with different rates
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depending on w. This kind of cosmological entropy was first
analyzed by Fischler and Susskind in applying holographic
principle to cosmology [15]. The result is reliable since only
the standard cosmological principles are used. It can also be

written as S ∼ E
1+3w
1+w and generalized to the D = d + 1

dimensional cases as S ∼ E
1+ D−1

D−3 w

1+w [16]. Obviously, differ-
ent kinds of constituents have different strategies of distribut-
ing energy into space.

Amazingly, even without knowing the microscopic physics
of the constituents, Eq. (22) reproduces the same scaling
behaviors of the entropies as those we gained in last section.
Concretely speaking, there are

S ∼ A
3
4 for w = 1

3
;

S ∼ A for w = 1.

(23)

Nevertheless, our calculation provides a clear statistical ori-
gin for Eq. (23). And below we need the corresponding ther-
modynamic properties to derive the temperature–time rela-
tion and the effective dimension of the universe.

We first discuss the temperature–time relation T (t) of the
universe and show that the relevant thermodynamic proper-
ties are consistent with the cosmological laws. For a universe
filled with radiation, i.e., photons or other relativistic parti-
cles in conventional QFT, from Eqs. (3) and (4) the entropy
and energy density are respectively s ∼ T 3 and ρ ∼ T 4.
Since the entropy in a co-moving volume a3T 3 is conserved,
we get the familiar relation T ∼ a−1 ∼ 1/

√
t for radiation

dominated universe. And the corresponding energy density
ρ ∼ T 4 ∼ a−4 is consistent with the evolvement law (16) for
w = 1/3 universe. Similarly, for a universe filled with QG
particles, from Eqs. (9) and (10) there are s ∼ T and ρ ∼ T 2.
Because a3T is conserved now, we have T ∼ a−3 ∼ t−1

which means the temperature changes more abrupt with time
increases than that of the radiation case. And ρ ∼ T 2 ∼ a−6

is surely consistent with the evolvement law (16) for w = 1
universe.

Then we come to the effective dimension of the universe.
We have shown in last section that the QG system with w = 1
is 1 + 1 dimensional in essence. However, more formally we
can measure the effective dimension of a system using the
concept of thermodynamic dimension [6,7]. The spirit of
thermodynamic dimension is that partition function should
depend on the dimension of phase space which certainly
reveals the physically relevant dimensions at the quantum
level. This can be translated to the temperature dependence of
energy density. Thus, for a system consisting of massless par-
ticles, the effective dimension can be defined by ρ ∼ T De or
written as De = d ln ρ

d ln T . In the cosmological situation, due to
Eq. (18), there is always ρ ∼ t−2. So we have De = −2 d ln t

d ln T
showing that the effective dimension can be coded in the

temperature–time relation T (t). As what we expected, for the
radiation dominated universe with T (t) ∼ 1/

√
t the effec-

tive dimension is 4 and for QG particle dominated universe
with T (t) ∼ 1/t the effective dimension is 2, written clearly
as

De = 4 for w = 1

3
;

De = 2 for w = 1.

(24)

In the Appendix, we find that the effective dimension is De =
1 + 1

w
for a D dimensional universe filled with massless

particles with EoS w.

4 The running of effective dimension and entropy

The realistic universe with various kinds of constituents
mixed together is far more complicated than that described
above. When the constituents do not interact with each other,
the energy density evolves like ρi/ρ j ∼ a−3(wi−w j ), repre-
senting the overall trend of the universe to dilute the con-
stituents with large w and lower the average w, from w = 1
to the conventional w = 1/3 and w = 0 and finally approach-
ing to w = −1. On the other hand, above some characteristic
temperatures and at high-energetic stages of the universe, the
constituents actually interact strongly with each other and
translate between. Only below the temperatures, they decou-
ple from each other and evolve independently. In the fol-
lowing we provide a self-consistent scenario of evolvement
of the universe, with emphasis on the running of effective
dimension and entropy.

The first characteristic temperature we concern is roughly
kBT = mc2 with m the typical mass of nuclei. The interac-
tions of standard model are responsible here to create massive
particles. Obviously at this temperature the entropy density
sm ∼ ρ/m for massive particles and sr ∼ T 3 for radiation
are of the same order, so the entropy can vary continuously
in this process. Above the temperature the universe is radia-
tion dominated, and below the temperature the radiation and
matter start to decouple from each other, the universe evolves
towards matter dominated. As for the effective dimension, the
energy density for massive particles is ρ = nmc2 + 3

2nkBT ,
with the second term commonly omitted at kBT � mc2.
Since the massive particles can freely move in 3 directions,
the number of spatial dimensions is obviously 3. More for-
mally the fact can be read from the energy equipartition term
D−1

2 nkBT [6]. Thus the effective dimension is fixed to be
3 + 1 when the universe evolves from radiation dominated
to matter dominated stage.

Another characteristic temperature is near the Planck
scale, where the entropy density sr = T 3 for radiation and
sQG = 1

G T for QG particles are of the same order. Thus,
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as the universe expands further and the temperature cools
down, the holographic constituents may rapidly decay to or
be diluted by other relativistic particles in standard model
like photons. Accordingly the cosmological entropy evolves
from a holographic form to the conventional form appropri-
ate to radiation, and the effective dimension runs from 2 to 4.
The transition begins from near Planck energy 1019 GeV, and
it is natural to assume it would finish to some extent at the
Grand Unified Theory scale 1016 GeV, which is also the scale
where the gravitational interaction is believed to be separated
from the other three fundamental interactions in nature. Gen-
erally, when the universe has expanded over 10l p , the concept
of classical space and time can safely apply.3 So it justifies
the using of the FLRW metric in the description of this pro-
cess. The universe with EoS w = 1 should be some analogue
of black hole, and black hole can translate into radiation by
Hawking evaporation, so maybe the same QG mechanism
also plays its role here.4 Hawking evaporation has the ability
to create all kinds of particles. Most of the standard model
particles would be broken by the ultra-high-energetic pho-
tons, while those particles that do not interact with photons
would retain and be explained as dark matter.

When tracing back to the time even earlier, it is basically
not permitted to imagine a universe with w > 1 which violets
the relativistic causality. More likely, at this stage quantum
effects are so strong that the classical geometric description
of space-time is not applicable any more. The stage may be
controlled by highly-excited strings or the so-called string-
holes as suggested in [16,17]. Besides, requiring D = 2
or w = 1 naturally leads to a scale-invariant spectrum for
cosmological perturbations even without inflation [18–22].
Albeit this, our scenario puts no specific constraints on infla-
tionary models and there were some attempts to combine
inflation with w = 1 universe [14,23].

It is interesting to note that various approaches to quan-
tum gravity have suggested the dimensional reduction from
4 to 2 near Planck scale [3–7]. Our result shares a similar
pattern with those of Hořava–Lifshitz gravity. Hořava sug-
gested gravitational theories have the space-time anisotropy
x → bx, t → bzt [24]. As z flows from z = 3 in the ultra-
violet to z = 1 in the infrared, the corresponding effective
dimension changes from 4 to 2. In D = d + 1 dimensions,

3 The quantum gravitational corrections can be suppressed by a factor

(
l p
L )n .

4 The constituent of w = 1 universe can be considered as a dense gas
of black hole fluid from some perspective [14,21,22]. The volume V
is taken as an arbitrary given volume in [14] (in contrast we take it as
the physical volume inside the particle horizon) so that it can contain
many black holes. Here refers to another special property of the entropy

formula S ∼
√

EV
G that both a single black hole and a dense black hole

fluid satisfy the form.

the effective dimension for general z is given by [5]

Ds = 1 + D − 1

z
. (25)

What happens in our context is that the number of quantum
states D(ε)dε and thus the entropy are unchanged under the
scaling transformation x → bx, ε → b−zε, with z = 3 for
QG particles and z = 1 for photons. In the Appendix we also
provide the effective dimension for the general cases as

De = 1 + D − 1

z
. (26)

Though the expressions (25) and (26) exactly match with
each other, we may not naively take the whole frameworks to
be conceptually equivalent. For example, in Hořava–Lifshitz
gravity the anisotropic scaling of space-time is proposed
to insure power counting renormalizability and it modifies
the Einstein-Hilbert action and the gravitational field equa-
tion. In contrast, we are searching for a non-trivial quan-
tum matter satisfying the thermodynamics (1). And our QG
constituents determine the space-time geometry through the
standard Friedmann equations with no modifications (or else
we can not get the expected cosmological entropy with area
scaling). Thus for now we regard this matching as mainly
reflecting the universality of the fundamental QG theory.

5 Discussions

In conclusion, we have suggested that, when the universe
evolves from a QG particle dominated universe with w = 1
to a radiation dominated universe with w = 1/3, the effective
dimension runs from 2 to 4 and the cosmological entropy runs
from A to A3/4. This may correspond to the phenomenon of
dimensional reduction in the ultraviolet that has been found in
various approaches to quantum gravity. The effective dimen-
sion afterwards is fixed to be 3 + 1 even when the universe
evolves to be matter dominated.

Here we stress again that the phenomenon of dimensional
reduction doesn’t necessarily mean a fluctuating space-time,
it mainly reflects that some properties that we accustomed to
have to be greatly modified over some characteristic scale.
For example, Hořava proposed an anisotropic scaling of
space and time, motivated from critical phenomena of con-
densed matter physics [5]. In contrast, we modified the den-
sity of states for microscopic particles at high energy phase
of the universe, with the motivation that there should be a
holographic stage in early universe. The postulated density
of states (7) actually implies that the microscopic particles
at this phase are quantized as if the space-time were 1 + 1
dimensional, as is clear from Eq. (13). It seems the funda-
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mental physics behind both black hole and early universe is
1 + 1 dimensional [2], and this is worthy of further study.

Another interesting novelty of the work is that both the

cosmological entropy formula S = E
1+ D−1

D−3 w

1+w and the effec-
tive dimension formula De = 1 + D−1

z can be naturally
derived from our microscopic setting. The same form of
entropy was obtained from standard cosmological analy-
sis in [15,16], and the same form of effective dimension
was obtained from Hořava–Lifshitz gravity in [5]. However,
the two formulas were uncorrelated with each other in the
previous literature, since they were derived in completely
different contexts. Amazingly our work has found that the
maximum entropy and the effective dimension are actually
two aspects of the same phenomenon. Furthermore, all these
physical concepts, i.e., maximum entropy, effective dimen-
sion, EoS w and space-time anisotropy seem to be closely
correlated, which is very interesting and has never been dis-
covered before.

Our work also suggests to take seriously the w = 1 stage
of the early unverse. Fortunately the w = 1 stage has already
been conjectured and studied in cosmology for many years
from a number of different physical motivations, with the
properties like enhancing stochastic gravitational waves, dark
matter abundance and baryon asymmetry [25–29]. The future
observational evidence of the existence of such a stage would
have profound implications for the understanding of quantum
gravity.
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Appendix A: The calculation for general cases

Here we aim to provide the results for general EoS w in D =
d + 1 dimensions. We can generally consider the partition
function

ln Ξ = g1V
∫ ∞

0
ln(1 − e−βε)dε

D−1
z = g2Vβ− D−1

z , (A.1)

where z = 1 corresponds to the familiar photons which we
know the microscopic physics well and z = D−1 the conjec-
tured QG particles. Notice the analysis is only applicable to
massless particles, otherwise the parametersm and N have to
be introduced. It follows from Eq. (A.1) the thermodynamic

properties E = D−1
z g2VT

D−1
z +1, S = ( D−1

z + 1)g2VT
D−1
z

and w = P/ρ = z
D−1 . When z continuously changes from

1 to D − 1, we get w with value from 1
D−1 to 1.

For a general self-gravitational system there is E ∼ RD−3

and P = wρ ∼ 1/R2, then one can check dE + PdV
can be written as dM where M ≡ (1 + D−1

D−3w)E . Thus

the thermodynamic law can be written as dS = 1
T dM . On

the other hand, we can directly observe M = 1+ D−1
D−3 w

1+w
T S

from the above thermodynamic expressions, which gives
1
T = (1+ D−1

D−3 w)S
(1+w)M . So we have dS = (1+ D−1

D−3 w)S
(1+w)M dM or written

as d ln S = 1+ D−1
D−3 w

1+w
d ln M . It follows the result

S ∼ M
1+ D−1

D−3 w

1+w . (A.2)

The effective dimension for a D = d + 1 dimensional uni-
verse can be evaluated by De = −2 d ln t

d ln T . Due to T ∼
t
− 2

1+ D−1
z , we get

De = 1 + D − 1

z
. (A.3)

It can also be written as De = 1+ 1
w

by noting that w = z
D−1 .

Accordingly, for the special case w = 1, we have the
Smarr formula M = D−2

D−3T S, the holographic entropy S ∼
M

D−2
D−3 and the effective dimension De = 2.
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