
Running Time and Program Size for Self-assembled
Squares

Leonard Adleman� Qi Chengy Ashish Goelz Ming-Deh Huangx

ABSTRACT
Recently Rothemund and Winfree [6] have considered the
program size complexity of constructing squares by self-
assembly. Here, we consider the time complexity of such
constructions using a natural generalization of the Tile As-
sembly Model de�ned in [6]. In the generalized model, the
Rothemund-Winfree construction of n� n squares requires
time �(n log n) and program size �(log n). We present a
new construction for assembling n � n squares which uses
optimal time �(n) and program size �( log n

log log n ). This pro-
gram size is also optimal since it matches the bound dic-
tated by Kolmogorov complexity. Our improved time is
achieved by demonstrating a set of tiles for parallel self-
assembly of binary counters. Our improved program size
is achieved by demonstrating that self-assembling systems
can compute changes in the base representation of numbers.
Self-assembly is emerging as a useful paradigm for computa-
tion. In addition the development of a computational theory
of self-assembly promises to provide a new conduit by which
results and methods of theoretical computer science might
be applied to problems of interest in biology and the physical
sciences.

1. INTRODUCTION
Self-assembly is the ubiquitous process by which objects

autonomously assemble into complexes. Nature provides
many examples: Atoms react to form molecules. Molecules

�Professor of Computer Science and Molecular Biology,
University of Southern California. Research supported by
grants from NASA/JPL, NSF, ONR, and DARPA. Email:
adleman@usc.edu
yDepartment of Computer Science, University of South-
ern California. Research supported by NSF Grant CCR-
9820778. Email: qcheng@cs.usc.edu
zAssistant Professor of Computer Science, University of
Southern California. Email: agoel@cs.usc.edu
xProfessor of Computer Science, University of Southern Cal-
ifornia. Research supported by NSF Grant CCR-9820778
Email: huang@usc.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’01, July 6-8, 2001, Hersonissos, Crete, Greece.
Copyright 2001 ACM 1-58113-349-9/01/0007 ...$5.00.

react to form crystals and supramolecules. Cells sometimes
coalesce to form organisms. It has been suggested that self-
assembly will ultimately become an important technology,
enabling the fabrication of great quantities of intricate ob-
jects such as computer circuits from inexpensive components
such as DNA and inorganic nanocrystals. Despite its impor-
tance, self-assembly is poorly understood. Recently, work
related to DNA computation has led to experimental sys-
tems for the investigation of self-assembly and its relation
to computation [8, 5, 3, 2]. In addition certain theoret-
ical aspects of self-assembly have been considered. Win-
free [8, 9] proved that self-assembling tile systems in a plane
are capable of doing universal computation, and when re-
stricted to a line are exactly as powerful as discrete �nite
automata. Adleman [1] proposed a mathematical model
of self-assembly and analyzed the time complexity of lin-
ear polymerization. Rothemund and Winfree [6] proposed
the Tile Assembly Model of self-assembly and studied the
program size complexity (the number of di�erent tile-types
used) of constructing n�n squares. In this paper we extend
the Tile Assembly Model to include the time complexity of
the assembly process. We then demonstrate a system of
tiles which assembles into an n� n square while simultane-
ously achieving optimal (�(n)) time and optimal program
size (�(log n= log log n)). In contrast, the system proposed
by Rothemund and Winfree takes time �(n log n) and uses
�(log n) program-size in the worst case. It is our hope that
an understanding of simple self-assembling systems will pave
the way for a general theory of self-assembly.
To achieve the improved time complexity, we show how a

binary counter that counts from 0 to n can be assembled in
expected time �(n), as opposed to the �(n log n) time for
the same assembly in the work of Rothemund and Winfree.
Further, the assembly time has an exponentially decaying
tail. The number of increment steps required to count from
0 to n is exactly n. Thus our construction takes an amor-
tized time of �(1) for an increment step, even though each
increment step requires an addition of �(log n) new tiles.
This is made possible by the parallelism inherent in our tile-
assembly system. We also observe that no system can result
in a square being assembled in expected time less than 
(n)
in the model suggested by Rothemund and Winfree and ex-
panded by us in this paper.
In order to count to n, a log n-bit counter is required.

Most of the 
 log n) tiles in the construction of Rothemund
and Winfree were used to produce the �rst row (the seed
row) in the counter. The increment steps in their counter
assembly (and in ours) can be performed using a constant

740



number of tiles, and the fully assembled counter, which
is roughly a log n � n rectangle can be completed into a
square using a constant number of tiles. To eliminate the
need to produce a seed-row that is log n bits long, we rep-
resent the number n in base �(log n= log log n) using only
�(log n= log log n) digits. Thus if the counter were to use
base �(log n= log log n) rather than binary, only �(log n= log log n)
tiles would be required to assemble a counter. This ob-
servation immediately allows us to reduce the number of
tiles (the program size) required to assemble a square to
�(log n= log log n), which matches the lower bound dictated
by Kolmogorov complexity. Unfortunately, this program
size reduction comes at the cost of increased assembly time.
To remedy this, we introduce the notion of base conversion.
We start out with a row of �(log n= log log n) tiles represent-
ing a number between 0 and n in base �(log n= log log n).
We then convert this number into binary using a self-assembly
process that simulates base conversion. Now the counting
process can take place in binary, allowing us to achieve the
optimal time complexity and optimal program-size complex-
ity simultaneously.
Section 2 presents a natural extension of the tile-assembly

model of Rothemund and Winfree to include the time-complexity
of self-assembly. Section 3 shows how a log n � n counter
can be assembled in time �(n) and section 4 explains how
base conversion can be simulated in the tile-assembly model.
Section 5 sketches how an entire n � n square can be con-
structed using the tools outlined in sections 3 and 4. Finally,
we present some open problems and conclusions in section 6.

2. ADDING TIME COMPLEXITY TO THE
TILE ASSEMBLY MODEL

The Tile Assembly Model was originally proposed by Rothe-
mund and Winfree [6]. It extends the theoretical model of
tiling by Wang [7] to include a mechanism for growth based
on the physics of molecular self-assembly. Informally each
unit of an assembly is a square with glues of various types
on each edge. The tile "
oats" on a two dimensional plane
and when two tiles collide they stick if their abutting sides
have compatible glues.
Formally, a tile is an oriented unit square with the north,

east, south and west edges labeled from some alphabet �
of glues. We begin with a triple < T; g; � > where T is a
�nite set of tiles, � 2 Z>0 is the temperature, and g is the
glue strength function from �� � to N, where � is the set
of edge labels and N is the set of natural numbers. It is
assumed that null 2 �, g(x; y) = g(y; x) for x; y 2 �, and
g(null; x) = 0 for all x 2 �. For each tile i 2 T , the labels of
its four edges are denoted �N(i), �E(i), �S(i), and �W (i).
A con�guration is a map from Z2 to T [ femptyg. For

t 2 T , �
(x;y)
t is the con�guration such that �

(x;y)
t (i; j) = t

i� (i; j) = (x; y) and empty otherwise. Let C and D be
two con�gurations. Suppose there exist some i 2 T and
(x; y) 2 Z2 such that C(x; y) = empty, D = C except at
(x; y), D(x;y) = i, and

g(�E(i); �W (D(x+ 1; y)) + g(�W (i); �W (D(x� 1; y)) +

g(�N (i); �W (D(x; y + 1)) + g(�S(i); �W (D(x;y � 1)) � �:

Then we say that the position (x;y) in C is attachable, and
we write C !T D to denote the transition from C to D in
attaching tile i to C at position (x; y). Informally, C !T D
i� D can be obtained from C by adding a tile to it such that

the total strength of interaction in adding the tile to C is at
least � .
We de�ne the notion of a coordinated supertile recursively

as follows:

1. For t 2 T , �(x;y)t is a coordinated supertile.

2. if C !T D and C is a coordinated supertile, then D
is also a coordinated supertile.

Two coordinated supertiles are equivalent i� they di�er only
by translation. An equivalence class of coordinated super-
tiles is an supertile (s-tile in brief). Write A!T B for s-tiles
A and B i� there exist a 2 A and b 2 B such that a!T b.
A tile system is a quadruple T =< T; S; g; � >, where

T; g; � are as above and S is a set of supertiles called seed

supertiles.
Let !�

T denote the re
exive transitive closure of !T. A
derived supertile of the tile system T is a supertile such
that s !�

T A for some s 2 S. A terminal supertile of the
tile system T is a derived supertile A such that there is no
supertile B, di�erent from A, such that A !�

T B. If there
is a terminal supertile A such that for any derived supertile
B, B !�

T A, we say that the tile system uniquely produces

A.
Given a tile system T which uniquely produces A, we say

that the program size complexity of the system is jT j i.e.
the number of tile types.
In this paper, we adopt the restriction, suggested by Rothe-

mund and Winfree [6], that S contains a single seed s con-
sisting of a single tile, and that g(�;�) = 0 for �;� 2 � with
� 6= �. For a discussion of the lower bound on program-size
in the absence of the latter restriction, see open problem #2
in section 6.
We now introduce the de�nition of the time complexity of

self-assembly. A similar de�nition has also been suggested
by Winfree [10]. We associate with each tile i 2 T a non-
negative probability pi, such that

P
i2T

pi = 1. We assume
that the tile system has an in�nite supply of each tile, and
pi models the concentration of tile i in the system { the
probability that tile i is chosen when a tile is drawn at ran-
dom. Now self-assembly of the tile system T corresponds to
a continuous time Markov process where the states are in
a one-one correspondence with derived s-tiles, and the ini-
tial state corresponds to the seed s. There is a transition of
state B to C i� B !T C, and the rate of the transition is
pi if C is obtained from B by adding a tile i. Suppose the
tile system uniquely produces an s-tile AT . It would follow
that AT is the unique sink state. Given the Markov process,
the time for reaching AT from s is a random variable. The
time complexity for producing AT from s is de�ned as the
expected value of this random variable.
Informally our de�nition of time models a system wherein

a seed "
oats" in solution encountering tiles at random. The
higher the concentration of a particular tile the higher the
rate at which it is encountered. When a tile is encountered
which has su�ciently strong interaction with the seed, the
tile is incorporated. By this process of accretion the seed
grows larger and larger.
We say a tile system produces an N � N square i� it

uniquely produces a terminal s-tile which is an N�N square
of tiles. Then the time complexity of producing an N � N
square is the minimum of the time complexity of all the
tile systems which produce N �N squares. The following

741



theorem is immediate from our formal model; we omit the
proof from this version.

Theorem 2.1. The time complexity of producing an N �
N square is 
(n).

3. COUNTING UP TO N IN TIME �(N)

The square construction of Rothemund and Winfree [6]
occurs in two stages. They �rst show how to assemble a
log n�n rectangle, and then extend it into an n�n square.
To assemble the log n�n rectangle, they simulate a counter
that counts from 1 to n in binary. We are going to use
the same general framework, but will replace their counter
assembly by a more e�cient (and more involved) process.
In their counter assembly, only one tile is attachable to the
assembly at any given time. In our assembly process, several
tiles may be attachable at the same time. This \parallelism"
allows us to assemble a counter in time �(n) as opposed
to the �(n log n) assembly time for the counter described
by Rothemund and Winfree. We call the process described
below the SA-counter.

3.1 The Tile System
We initially assume that n = 2K � 1 for some positive

integer K { we will later show how this assumption can be
removed. While each tile is completely speci�ed by its four
glues, it is convenient for the purpose of exposition to allow
tiles to have labels. Each tile has one main label (either 0
or 1) which corresponds to the bit represented by the tile.
Further, each tile carries one or more auxiliary labels. The
fully assembled counter is going to be a rectangle, with K
tiles in each row. Each row represents a number between 0
and n { this number can be obtained by reading the main
labels on the tiles in the row, with the most signi�cant bit
being the leftmost in the row. We describe the self-assembly
process which results in the counter being incremented.
The increment operation happens in three stages and uses

15 di�erent tiles (see �gure 1). We start with an \INERT"
row (each tile carries the auxiliary label \I"). This row gets
replicated into an \ACTIVE" row (auxiliary label \A") if
and only if there is at least one 0-tile in the original IN-
ERT row. If all the tiles in the INERT row are 1-tiles, the
counter construction can not proceed any further and the
self-assembly process terminates. A \CARRY" row (auxil-
iary label \C") then assembles on top of the ACTIVE row.
The bulk of the increment operation happens during this
step. The CARRY row will represent the value of the AC-
TIVE row incremented by one, except that the 0-tile (if any)
which needs to change to a 1-tile due to a carry propagation
is still unchanged. Then an INERT row assembles on top
of the CARRY row which will convert such a tile (if any)
to a 1-tile. The rightmost tile in any row always carries
the auxiliary label \R" along with the auxiliary label corre-
sponding to the row. Some tiles may also be marked special
(auxiliary label \S") to aid in the carry propagation. Even
though the above description seems serial, the SA-counter
need not assemble row-by-row; several di�erent tiles (pos-
sibly belonging to di�erent rows) may be attachable at the
same time.
We will assume that the temperature for this counter con-

struction is 3. We now describe the tiles in each of the rows
and their glues. All tiles occur with the same probability,
pSA which is a constant independent of n.

INERT tiles: There are the following INERT tiles: 0I; 1I; 0IR;
1IR; 0IS; 1IS.

ACTIVE tiles: 0A; 1A; 0AR; 1AR.

CARRY tiles: 0C; 1C; 0CS; 0CR; 1CR. The glues and their
strengths are depicted pictorially in �gure 1.

Assembling ACTIVE rows: Notice that starting with an
INERT row that consists of all 1-tiles, no ACTIVE
tiles can attach to the top of the row since all possi-
ble bonds are of strength 2 whereas the temperature
is 3. However, all 0-tiles in the INERT row can al-
low ACTIVE 0-tiles to attach on top through bonds of
strength 3. These newly attached ACTIVE 0-tiles pro-
vide strength 1 bonds that supplement the strength 2
bonds between ACTIVE 1-tiles and INERT 1-tiles, al-
lowing ACTIVE 1-tiles to attach in positions adjacent
to the already attached ACTIVE 0-tiles. The newly
attached ACTIVE 1-tiles in turn provide strength 1
bonds that allow adjacent ACTIVE 1-tiles to attach
on top of INERT 1-tiles, and so on. This allows the
entire INERT row to be replicated into an ACTIVE
row.

Assembling CARRY rows: Notice that any 0-tiles (ex-
cept the rightmost) in the ACTIVE row allow a CARRY
0-tile to attach on top by means of bonds of strength 3.
These tiles then allow CARRY 1-tiles to attach on the
left through bonds of strength 1, which in turn allow
more CARRY 1-tiles to attach on the left. Notice that
CARRY 0-tiles do not provide any glues on the right
and therefore can not facilitate attachment of CARRY
1-tiles to their right. This allows most of the ACTIVE
row to replicate into the CARRY row { we just need
to bother about the rightmost tile and those ACTIVE
1-tiles that do not have an ordinary ACTIVE 0-tile to
their right. We will now consider two cases depend-
ing on the rightmost tile in the ACTIVE row. If the
rightmost tile in the ACTIVE row is a 0-tile then it
will allow a rightmost CARRY 1-tile to attach on its
top through a bond of strength 3. This then provides
a bond of strength 1 to its left which will allow AC-
TIVE 1-tiles to assemble to its left, thus completing
the CARRY row. Notice that this CARRY row already
represents the correct result for the increment opera-
tion. If the rightmost tile is an ACTIVE 1-tile, then
it allows a rightmost CARRY 0-tile to attach on top.
This tile then allows special CARRY 0-tiles (and not
CARRY 1-tiles) to bond to its left on top of the AC-
TIVE 1-tiles. Thus the entire sequence of contiguous
ACTIVE 1-tiles on the right will have special CARRY
0-tiles attached on top. The CARRY row now repre-
sents the correct result for the CARRY operation with
one exception: the ACTIVE 0-tile which was immedi-
ately to the left of the rightmost sequence of ACTIVE
1-tiles has a CARRY 0-tile attached on top, whereas
the increment operation should convert it into a 1-tile
due to carry propagation. This is remedied in the next
step.

Assembling INERT rows: The 0-tile which needs to be
changed into a 1-tile can be \detected" as a CARRY
0-tile which has a special CARRY 0-tile or a rightmost
CARRY 0-tile to its immediate right. The description

742



IS1 1IR IR0I0
a

k

L

IS0

A0 A1 0 AR1AR

m

n n

a d

n n

o

n

f

p

n

i

ACTIVE
TILES

q

0C C1 CS0 0 CRCR 1
c

s
m

e

s

L

o

s r r r s

h

q p

J

CARRY
TILES

a

b
c

d

b
e

d

c

b k

i

b

J

f
k

h

INERT
TILESb

1I

o

Figure 1: The tiles for the SA-counter. The number of lines jutting from each edge of the tile represent the
strength of the bond (1,2, or 3) and the label on the edges represents the glue. Some edges do not have any
glues.

for the assembly of the INERT row is simple. All the
tiles except ordinary CARRY 0-tiles can attach an IN-
ERT tile (with the other labels such as the bit-label,
the rightmost label, and the special label remaining the
same) on top. Now special INERT 0-tiles and right-
most INERT 0-tiles allow a special INERT 1-tile to
attach (on top of a CARRY 0-tile) to their left, while
all other INERT tiles allow an INERT 0-tile to attach.
This accomplishes the desired carry propagation and
completes the increment process.

The Seed Row: The seed supertile SK is a row of K spe-
cial tiles. The rightmost tile in SK is identical to the
tile 0IR except that the bottom surface has no glue.
The other K� 1 tiles are identical to the tile 0I except
that there is no glue on the bottom surfaces1.

The tile system TSA(K) has a tile set consisting of all
the tiles in �gure 1 as well as the special tiles needed in the
supertile SK . The glue strength function is as indicated in
�gure 1. The temperature is 3, and there is a single seed
supertile SK. We will refer to the Markov chain de�ned by
the tile system as the SA-counter. We will assume that all
tiles which are not in SK have the same constant probability.
The next theorem follows from our description of the tile

system, and we omit the proof.

Theorem 3.1. The tile systemTSA(K) uniquely produces
a supertile which is a K � (3 � 2K � 2) rectangle.

Minor modi�cation of the seed row results in a tile system
that uniquely produces a supertile which is aK�N rectangle
for any N � 3 � 2K � 2.
Our counter construction is more involved than that pro-

posed by Rothemund and Winfree [6] but exploits \paral-
lelism" to speed up the assembly process. The construc-
tion of Rothemund and Winfree takes time O(n log n) in
the model of running time described in Section 2. De�ne

1In this section we are using supertiles consisting of more
than one tile as the seed, whereas our restricted model allows
us to use only supertiles with a single tile as seed. We rectify
this in section 5.

the chain-length, C, of a row as the maximum number of
contiguous 1-tiles or contiguous 0-tiles in the row. Once a
row gets assembled in our construction, each tile in the next
row depends on at most O(C) more tiles attaching before it
becomes attachable. In the construction of Rothemund and
Winfree, a tile in the next row may have to wait for log n tiles
to attach (in serial) before it becomes attachable, even if C
is small. This distinction is the main source of parallelism in
our construction. The average chain length is O(log log n)
as the counter construction proceeds from 1 to n. Combin-
ing this with Cherno� bounds, we can immediately conclude
that the average expected time for an increment operation
is O(log log n) which yields an O(n log log n) upper bound
on the assembly time of our counter. This is not the best
bound we can prove (we show that SA-counter gets assem-
bled in linear time in section 3.2). Intuitively, the stronger
�(n) bound on the assembly time is due to the fact that a
row may start getting assembled even before the previous
row �nishes getting assembled.

3.2 Analysis
For the purpose of our analysis, we transform the SA-

counter into another process which we call the \sentinel"
process. The sentinel process does not adhere to the model
described in Section 2; in fact there does not seem to be
an easy implementation of the sentinel process. However,
the sentinel process is more amenable to analysis, and the
time for this process to complete is an upper bound (in the
stochastic domination sense) on the completion time for the
SA-counter.

3.2.0.1 The sentinel process:.
Look at a completed self assembly, and replace each bond

by two directed bonds, one in each direction. Each directed
bond has the same strength as the original bidirected bond.
Then, remove all the directed bonds that satisfy any of the
following criteria:

1. The bond goes from a higher to a lower row.

743



2. The bond goes from left to right in a non-ACTIVE
row.

3. The bond goes from left to right in an ACTIVE row,
and there is at least one zero-tile to the right of the
origin of the bond.

4. The bond goes from right to left in an ACTIVE row,
and the destination tile of the bond is a zero-tile.

5. The bond goes from right to left in an ACTIVE row,
the source and destination tiles are both one-tiles, and
there are no zero-tiles to the right of the source.

We can de�ne a sentinel graph as the graph with vertices
corresponding to the tiles, and directed arcs corresponding
to the directed bonds and labeled by the strength. The
following lemma is immediate from our construction.

Lemma 3.2. The sentinel graph is acyclic.

The sentinel process is a Markov chain obtained by modi-
fying the Markov chain corresponding to the SA-counter as
follows. We consider each transition in the Markov chain for
the SA-counter. Let this transition correspond to adding a
new tile X to a supertile A. A tile Y in A is said to be
a support tile if it shares a side with X and there is an arc
from Y to X in the sentinel graph; the strength of this arc is
said to be the support strength from Y . We retain this tran-
sition if the sum of the support strengths from the support
tiles is greater than the temperature and else we discard it.
Any state in the Markov chain that is unreachable from the
source state is discarded.
Intuitively, the sentinel process is formed by taking the

SA-counter and introducing a \sentinel" who disallows tran-
sitions that require bond-formation from the left to the right,
except when such transitions are necessary for replication.
It is not di�cult to see that the sentinel process produces
exactly the same complete assembly as the SA-counter.
In the sentinel graph, there is exactly one bond that goes

from the leftmost column to the right, and this happens just
above the INERT row 011 : : : 11 where the leftmost 0 is the
only tile that can \self-replicate" into the active row and
must then induce the 1-tiles to attach to its right. Further,
this property is recursively satis�ed if we remove the left-
most column and look at the sentinel graphs for the two
sub-rectangles below and above the 011 : : : 11 row. This re-
cursive structure makes the sentinel process more amenable
to analysis. The structure of the sentinel graph is illustrated
in �gure 2.

3.2.0.2 Stochastic dominance:.
De�ne tij to be the time at which the (i; j) position gets

�lled in the SA-counter and t0ij to be the time at which it
gets �lled in the sentinel process. Note that t(i; j) and t0(i; j)
are random variables. Let t(n) and t0(n) be the random
variables denoting the times at which the SA-counter and
the sentinel assembly complete.
A real valued random variable A is said to be stochas-

tically dominated by another random variable B, denoted
A �sd B, if for all x, Pr [A > x] � Pr [B > x].

Lemma 3.3. For all position (i; j) in the constructed counter,

tij �sd t
0
ij

C1

A1

1I

C1

A1

1I

C1

A1

IS1

0C CS0 0CR

A0 A1 AR1

1I

C1 CR1

A1 0AR

IS1 IR0

0C 0CR

A0 AR1

I0 1IR

0C CR1

A0 0AR

IS0 IR0

1I 1IR

0C

A0

I0

0C

A0

I0

0C

A0

I0

I0

C1 CR1

A1 0AR

IS1 IR0

0C 0CR

A0 AR1

I0 1IR

0C CR1

A0 0AR

IR0

1I 1IR

I0

G(4)

1

2

3G (8)

G (8)

G (8)

G(8)

G(4)

Seed Row

Figure 2: The recursive structure of the sentinel
graph.

744



Proof. Let Xij be an exponential random variable with
mean 1=pij , where pij refers to the probability associated
with the tile at position i; j in the square. Recall that
pij = pSA for all i; j, where pSA is some constant indepen-
dent of n. Let all the Xij be independent. A tile attaches
at position (i; j) in the self-assembly Xij time after this po-
sition becomes attachable2 . We couple the sentinel process
and the SA-counter by setting the values of Xij to be the
same for both processes. De�ne aij and a0ij to be the times
at which tile position (i; j) is attachable in the SA-counter
and the sentinel process, respectively. Let t be the earliest
time when a tile gets attached in the sentinel process but
is still unattached in the SA-counter. Let (i; j) be this tile
position. Clearly, a0ij < t. Therefore any tiles which had at-
tached in the sentinel process by time a0ij had also attached
in the SA-counter. Since the sentinel process was formed
by disallowing certain bonds in the SA-counter, tile position
(i; j) is also attachable in the SA-counter at time a0ij . Hence
aij � a0ij . But tij = aij +Xij and t0ij = a0ij +Xij. This im-
plies that tij � t0ij, which is a contradiction. Since tij � t0ij
for each coupled experiment, tij �sd t

0
ij .

3.2.0.3 Completion time for the sentinel process:.
De�ne L(n) to be the longest length of any directed path

in the sentinel graph for counting up to n.

Lemma 3.4. L(n) = �(n).

Proof. Let us break the sentinel graph into three parts
to take advantage of the recursive structure of this graph.
The �rst part corresponds to all the rows from the initial all-
zeros INERT row to the INERT row that has a 0 in the most
signi�cant position and a 1 everywhere else. The second
part corresponds to the increment operation on this INERT
row. The third corresponds to all the remaining rows. Let
G1(n);G2(n);G3(n) refer to these three parts of the sentinel
graph and let G(n) refer to the entire graph. The recursive
structure of the graph is depicted in �gure 2. Let L1(n),
L2(n), and L3(n) represent the maximum length of any path
in each of the three parts. Since no bonds go from higher
to lower rows (by construction of the sentinel graph), we
have L(n) � 2 + L1(n) + L2(n) + L3(n). Since the graph is
acyclic and there are only O(log n) tiles in the second part,
L2(n) = O(log n). The �rst and third parts of the graph
are symmetric so we will just concentrate on L1(n). The
crucial observation is that the leftmost tile (a 0-tile) in the
inert row with which the �rst part terminates is the tile
at which any longest path in the entire �rst part must end.
Further, the structure of the sentinel graph dictates that the
length of the longest path ending at this tile is L(n=2) + 1.
Therefore, L(n) = 2L(n=2) + �(log n), and the solution to
this recurrence is L(n) = �(n).

Recall that t(n); t0(n) are the completion times for the
SA-counter and the sentinel process respectively.

Lemma 3.5. E[t0(n)] = �(n). Further, t0(n) has an ex-

ponentially decaying tail.

2This fact follows from the fact that once a tile position
becomes attachable it remains attachable till it actually
attaches.

Proof. Let P1; P2; : : : PN represent the N directed paths
from the seed row to any tile in the �nal row in the sentinel
graph. At each step in any path, the bond must go either
up, left, or right. Therefore N is at most 3L(n) � ecn for
some constant c. Let Sl denote the sum of all Xij such
that position ij lies on path Pl. Then the completion time
t0(n) = maxnl=1 Sl. Sl is the sum of at most L(n) mutually
independent exponential variables, each with mean 1=pSA.
Hence E [Sl] � L(n)=pSA; let � denote the value L(n)=pSA.
Clearly � = O(n). Using Cherno� bounds for exponential
variables [4], it follows that Pr [Sl > � � (1 + �)] � ((1 +

�)=e�)L(n) � ((1 + �)=e�)n. Hence Pr [t0(n) > �(1 + �)] �
N � ((1 + �)=e�)n � ecn((1 + �)=e�)n = ((1 + �)=e��c)n. Let
us choose � = �0 + 2maxfc; 2g, where �0 > 0. Now

Pr
�
t0(n) > �(1 + 2maxfc; 2g)(1 + �0)

�
� Pr

�
t0(n) > �(1 + 2maxfc; 2g+ �0)

�
� ((1 + �0)=e�

0

)n:

This clearly gives an exponential tail bound. Now,

E
�
t0(n)

� � �(1 + 2maxfc; 2g)(1 +
Z 1

�0=0

((1 + �0)=e�
0

)nd�0);

which is O(n) as � = O(n) and the integral is bounded by
a constant for any value of n � 1.

Lemma 3.3 in conjunction with the lemma 3.5 now allows
us to conclude:

Theorem 3.6. E[t(n)] = �(n). Further, t(n) has an ex-

ponentially decaying tail.

4. SIMULATING BASE CONVERSION BY
SELF-ASSEMBLY.

In Rothemund and Winfree's construction (and in ours),
the \seed row" represents a number written in binary and
consists of log n tiles, each encoding 0 or 1. The number is
used as the starting point for a counter. Since we are only
allowed a seed supertile consisting of a single tile, this seed
row itself needs to be assembled from a single tile. Each
tile in the seed row needs to be distinct, and therefore the
program size complexity for assembling the seed row itself
is 
(log n). On the other hand, Kolmogorov complexity
dictates the program size complexity to be 
( log n

log log n ). In
order to achieve the Kolmogorov bound, we change the seed
row to represent a number written base b, where b is power
of 2 such that

log n

log log n
� b = 2k <

2 log n

log log n
;

for k a positive integer. Then the number of tiles to con-
struct the seed row will be

h =
log n

log b
<

log n

log log n� log log log n
= O(

log n

log log n
):

As in Rothemund and Winfree [6]'s counting scheme, we use
the \seed row" as a starting point for a counter. If we use
the counting strategy of Rothemund and Winfree, modi�ed
to count base b, we easily achieve the optimal program size
complexity or in the language of Rothemund and Winfree:

Theorem 4.1. K2
SA(N) = O( logN

log logN
).

745



Unfortunately if we simply follow Rothemund and Win-
free [6]'s method, we pay a price in time complexity. The
Rothemund and Winfree construction begins with the seed
row and grows through a succession of s-tiles to produce
a �nal rectangle. But for each s-tile produced in the pro-
cess, there is exactly one tile which can be incorporated.
There are at least b = �( log n

log log n ) distinct tiles which occur


(n) times in the �nal rectangle, and at least one of these
tiles must have probability O( log log nlog n ). It follows that such

tiles require 
( n log n
log log n ) time for assembling of the rectan-

gle. In particular, the time is not linear. Even using the
parallel construction described in section 3, the time is not
improved(proof omitted).
To overcome this time problem while preserving the O( log n

log log n )
program size, we adopt the strategy of writing the seed row
base b and then converting it to base 2. We then employ
the fast parallel counter described in section 3.
In the conversion part, we will employ some tiles, which

have the capability to perform division-by-2. These tiles
have glues representing binary strings. The north glue rep-
resents last bit, the west glue represents the pre�x substring
and the east glue represents the string itself. See Figure 4
(A) for the tile associated with the string 0110, and Figure 4
(B) for cooperation of two tiles. We assume that the tem-
perature is 3, but it is not hard to see that the same idea
also works for temperature 2.
In the following tile descriptions, we identify a tile by the

labels on its four sides: North(N), West(W), East(E) and
South(S), and a title symbol(TS). In our notations, a pre�x
\(2)" indicated a glue with strength 2, a pre�x \(3)" indi-
cated a glue with strength 3. The absence of pre�x indicates
glue with strength 1.
Suppose we want to convert b1 � � � bh in base b to binary

base number, where bi if written in binary would be bi;1bi;2 � � � bi;k .
The set of tiles consists of

1. (Seed.) These tiles will form a seed row. For each
bi;1bi;2 � � � bi;k , 1 � i � h,

TS: (bi;1bi;2 � � � bi;k)s
N: if i < h, (3)Si; S: If i > 1, (3)Si�1;

W: if i = h, (3)bh;1bh;2 � � � bh;k , else bi;1bi;2 � � � bi;k .

2. (division by 2.) For each binary string a1a2 � � �ai, 1 �
i � k,

TS: (a1a2 � � � ai)d,
N: (2)ai, E: (3)a1a2 � � �ai,

W: if i � 2, (3)a1a2 � � �ai�1, otherwise x2,
S: if i � 2, (2)x1, otherwise (2)x3.

3. (Base b copy.) For each binary string a1a2 � � �ak ,

TS: (a1a2 � � �ak)c,
N: (2)x1, W: a1a2 � � �ai, E: a1a2 � � � ai, S: (2)x1.

4. (Last b copy tile.) For each binary string a1a2 � � �ak ,

TS: (a1a2 � � �ak)C�
N: (2)x3, W: (3)a1a2 � � � ai, E: a1a2 � � � ai, S: (2)x1.

5. (Base 2 copy.) For a = 0 or 1,

TS: ax; N: (2)a; E: x2; S: (2)a; W: x2.

Note that the east side of the seed tiles, the south side of
the �rst seed tile and the north side of the last seed tile are
not assigned with any glues. They are open for later use.
Even if those glues are all di�erent, the number of distinct
tiles is not increased.
Figure 4(C) is an example showing how to convert string

031 in base 4 to string 001101 in base 2.
In item 2, we use the most distinct tiles. which is

b +
b

2
+

b

4
+ � � � 1 < 2b = O(

log n

log log n
):

Thus the number of distinct tiles in this conversion sub-
routine is O( log n

log log n
). Every tile appears at most O(log n)

times. We can arrange that each tile has probability greater

than 
( log2 n
n log log n ), in which case, the time to do the conver-

sion is at most O(n).

5. PUTTING IT ALL TOGETHER
The self-assembly of an n � n square begins with a seed

tile which grows into a seed row consisting of roughly b =
�( log n

log log n ) tiles representing a number m written base b.
This seed row spawns a base conversion assembly as out-
lined in section 4 The result is a rectangle with top row
representing m written base 2. This top row becomes the
starting point for a binary counter assembly as outlined in
section 3.
The height of the resulting counter rectangle is a function

H of m. H satis�es H(m + 1) = H(m) + 3. Hence by
selecting an appropriate m, the base conversion assembly
and the counter assembly have dimensions such that height
plus width equals n� e, where e = 0; 1 or 2. We can grow e
extra rows at the base of the combined rectangle to bring the
sum of the two dimensions exactly up to n. The resulting
rectangle acts as the basis for the completion of the n � n
square as described in [6] using diagonal elements and �ller
tiles. Figure 4 describes this process pictorially.
By allocating a combined probability of 1=5 to the tiles

constructing the seed row, 1=5 to the tiles which perform the
base conversion, 1=5 to the tiles which perform the counter
construction, 1=5 to the diagonal elements and 1=5 to the
�ller tiles, it follows that the time to construct the n � n
square is O(n). The fact that the �(n2) �ller tiles get as-
sembled in time O(n) can be proved in a manner similar to
that used for Lemma 3.5.

6. CONCLUSIONS AND OPEN PROBLEMS
We have generalized the Tile Assembly Model of Rothe-

mund and Winfree [6] to include time complexity and have
demonstrated a tile system for self-assembling n�n squares
that is optimal in both time and program size. The long
term goal of this research is the development of a mathematical-
computational theory of self-assembly that will combine clas-
sical theories such as thermodynamics and statistical me-
chanics with modern theories such as combinatorics and
computational complexity.
There are many open problems. For example:

1. Reducing the temperature � of our construction to 2
rather than 3.

2. As in [6] we have assumed that g(�;�) = 0 for �;� 2
� with � 6= �. Without this assumption, Kolmogorov

746



0

x1

011 0110

0

0110

x1

0110
d

0110
d

01

1

011
d

x1

(A) Convert one bit. (B) Convert two bits.

d

c*

ccdd c*

x

x x x x s

s

s

c

c

d

d

x d

0 0 01 1 1

0 00 00 00 00 00 00

0 0 1 11 11 11 11

010101100

(C) Convert 031 in base 4 to 001101 in base 2.

Figure 3: Converting base by self-assembly.

complexity no longer dictates an 
(log n= log log n) lower
bound on the program size (number of tiles). What is
the smallest possible number of tiles needed in that
case, and can this bound be achieved simultaneously
with optimal program time? The Kolmogorov com-
plexity based lower bound for this model is 
(

p
log n)

tiles.

3. In the model described here, s-tiles grow by accretion
i.e. by the addition of single tiles to a growing crystal.
Modify the model to allow any two s-tiles to merge
into a larger s-tile. In such a system the lower bound
of 
(n) for the time to assemble n � n squares no
longer appears necessary. In this case, what is the best
possible time and can it be achieved simultaneously
with optimal program size?

4. The Tile Assembly Model as presented here is "irre-
versible" - once a tile sticks, it never "unsticks". Gen-
eralize to a model that allows tiles to both attach to
and detach from the assembly.

Acknowledgements
We would like to thank Paul Rothemund and Erik Winfree
for several helpful discussions about their work [6].

7. REFERENCES
[1] Leonard M. Adleman. Towards a mathematical

theory of self-assembly. Technical Report 00-722,
Department of Computer Science, University of
Southern California, 2000.

[2] H. Abelson, D. Allen, D. Coore, C. Hanson, G.
Homsy, T. Knight, R. Nagpal, E. Rauch, G. Sussman
and R. Weiss. Amorphous computing. AI Memo

1665, August 1999.
[3] Chengde Mao, Thomas H. LaBean, John H. Reif and

Nadrian C. Seeman. Logical computation using
algorithmic self-assembly of DNA triple-crossover
molecules. Nature, 407:493{496, 2000.

[4] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[5] Paul Rothemund. Using lateral capillary forces to
compute by self-assembly. Proceedings of the National
Academy of Sciences, 97:984{989, 2000.

747



��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

B
as

e 
co

nv
er

si
on

In
iti

al
 B

in
ar

y 
C

ou
nt

er
 R

ow
B

in
ar

y 
C

ou
nt

er

Seed Tile

Base b Seed Line

Figure 4: Constructing a square by self-assembly.

[6] Paul Rothemund and Erik Winfree. The program-size
complexity of self-assembled squares. STOC 2000.

[7] H. Wang. Proving theorems by pattern recognition.
II. Bell Systems Technical Journal, 40:1-42, 1961.

[8] Erik Winfree, Furong Liu, Lisa A. Wenzler, and
Nadrian C. Seeman. Design and self-assembly of
two-dimensional DNA crystals. Nature, 394:539-544,
1998.

[9] Erik Winfree. PhD thesis. Cal Tech, 1998.

[10] Erik Winfree. Personal communication.

748


