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Abstract—We present a new multi-modal evolutionary opti-
miser, the niching migratory multi-swarm optimiser (NMMSO),
which dynamically manages many particle swarms. These sub-
swarms are concerned with optimising separate local modes, and
employ measures to allow swarm elements to migrate away from
their parent swarm if they are identified as being in the vicinity
of a separate peak, and to merge swarms together if they are
identified as being concerned with the same peak. We employ
coarse peak identification to facilitate the mode identification
required. Swarm members are not constrained to particular sub-
regions of the parameter space, however members are initialised
in the vicinity of a swarm’s local mode estimate. NMMSO is
shown to cope with a range of problem types, and to produce
results competitive with the state-of-the-art on the CEC 2013
multi-modal optimisation competition test problems, providing
new benchmark results in the field.

I. INTRODUCTION

An effective multi-modal optimiser embodies a number of

traits: (1) it is dynamic in the number of modes it maintains

and returns, enabling it to be applied to problems with few or

many modes; (2) it is self-adaptive, with few meta-parameters,

enabling a wide range of problem types to be tackled without

prior tuning; (3) it incorporates exploitative local search,

enabling it to rapidly hone the peak estimates it is maintaining.

Although the algorithm genus may vary (genetic algorithm,

evolutionary strategy, particle swarm, differential evolution,

etc.), it is these three properties which all the best-performing

algorithms in the CEC 2013 competition contain [1]. Here we

present a new optimiser which embeds the three properties

listed above, and utilises multiple particle swarm optimisers to

rapidly climb peaks in the search landscape. The swarms do

not operate in isolation: elements can migrate away from their

parent swarm if they are judged to have discovered a separate

peak. Swarms may also be merged if they are identified as

converging on the same peak. Additionally, swarm members

are not constricted to movements within a local region of

design space.

The paper proceeds are follows. In Section II we describe

the general multi-modal optimisation problem, and highlight

the difficulties that confront optimisers in this arena. In Section

III we briefly discuss some of the popular evolutionary com-

putation approaches to multi-modal optimisation. In Section

IV we introduce the niching migratory multi-swarm optimiser

(NMMSO), describing its properties and relationship to other

approaches. This is followed by empirical results on the

CEC 2013 competition test problems. The paper ends with

a discussion in Section VI.

II. MULTI-MODAL OPTIMISATION

The general aim in multi-modal optimisation is similar

to standard uni-objective optimisation, that is, given a legal

search domain X , without loss of generality, we seek to

maximise f(x), x ∈ X , given any equality and inequality

constraints. In the case of a multi-modal problem however,

we seek not simply to discover a single design x which

maximises f(x) given the constraints, but all x∗ ∈ X which

obtain the maximum possible function response, but which

inhabit isolated peak regions. That is, the mapped objective

values in the immediate region of an x∗ are all equal or lower

than f(x∗). Local optima (local modes/peaks) in contrast are

locations which are surrounded in the immediate vicinity with

less ‘fit’ solutions (lower responses from f(·)), but which do

not themselves have the highest possible fitness obtainable.

Local regions around a peak are often called niches.

There are many reasons that the problem owner may wish

multiple mode solutions to be discovered rather than a single

‘best’ solution. By discovering a range of different designs

which are operationally equivalent insight into the problem

domain may be extracted. Also, it may transpire that some

designs are not machinable – i.e., X is misspecified, and

therefore a range of solutions mitigates against this. Finally

f(·) may be in error in certain regions, therefore a wide range

of good solutions can be helpful if the ‘best’ design does not

perform as emulated (it is useful to have local optima, not

just global optima stored – as there is no guarantee that all

the global optima under f(·) are not in error).

III. EVOLUTIONARY MULTI-MODAL OPTIMISERS

One of the earliest approaches to evolutionary multi-modal

optimisation is derived from the fitness sharing concept, first

introduced in [2]. This was later refined as a means to

partition a genetic algorithm search population into different

subpopulations based on their fitness [3]. An overview of these

general niching ideas is presented in [4].

As highlighted in e.g. [5], many early multi-modal optimis-

ers tended to be highly parametrised, relying on well-chosen

values to perform well (for instance specifying a priori what



the niche width should be set as, or how many modes to search

for). However, a recent design trend of the most effective

multi-modal optimisers is to make them to a large degree ‘self-

tuning’.

The current state-of-the-art (based upon the results of the

CEC 2013 competition in the field) rely on a range of different

technologies and heuristics to maintain, search for and exploit

mode estimates. The optimiser that was the best performing

overall, proposed in [6], utilises the covariance matrix adapta-

tion evolution strategy (CMA-ES) of [7]. Rather than selecting

the restart location at random, [6] used nearest-better clustering

to partition a search population into sub groups concerned with

different modes. This is facilitated by fitting a spanning tree on

the population, linking all population members to their nearest

neighbour (in design space) which is better performing under

f(·), and disconnecting the longest edges (thus assuming that

the best search points on different peaks are likely to be further

away from each other than neighbours on the same peak). This

leads to another property of this approach – it is dynamic

in the number of modes it maintains and returns (although

limited to a maximum number, set a priori). The second best

performing multi-modal optimiser [8] also has dynamic mode

maintenance, storing an external dynamic archive of estimated

mode locations which supports a reinitialisation mechanism,

along with an adaptive control parameter technique for the

differential evolution algorithm driving the search. The third

best was the standard CMA-ES algorithm. Finally, the fourth

ranked algorithm proposed by [9] uses an external memory to

store the current global optima, along with an adaptive niche

radius to mitigate the effect of setting this parameter a priori to

a value which may not be appropriate to the problem at hand.

A mesh of solutions is exploited, with a combination method

that generates solutions in the direct of nearest (estimated)

global optima.

The published ranking of these algorithms is derived from

their average performance on the twenty problem formulations

used in the CEC 2013 benchmark suite, averaged across

five different accuracy levels for fixed numbers of function

evaluations. Given different test problems, and/or a different

number of permitted function evaluations and accuracy levels,

there may of course be a different ranking obtained. The top

ranked algorithms do however possess a number of similar

characteristics which would seem to describe an effective

multi-modal optimiser, namely: self-adaption of search pa-

rameters, dynamic mode maintenance, and exploitative local

search. Here we leverage and develop these ideas, and build

on aspects of our recent work in the area, which use coarse

mode region identification in conjunction with local surrogates

and hill-climbers [10], [11].

IV. USING MULTIPLE SWARMS

Particle swarm optimisation PSO has gained widespread

popularity since its introduction in [12] for the optimisation

of continuous non-linear functions, due to its rapid con-

vergence properties on a wide range of problems, and its

relative simplicity (and therefore ease of implementation). A

fixed population of solutions is used, where each solution

(or particle) is represented by a point in D-dimensional

design space. The ith particle is commonly represented as

xi = (xi,1, xi,2, . . . xi,D), and its performance is evaluated on

a given problem and stored. Each particle maintains knowledge

of its best previous evaluated position, represented as pi

(commonly referred to as ‘pbest’), and also has knowledge

of the single best solution found so far in some defined

neighbourhood, gi (commonly referred to as ‘gbest’). Often

this is with respect to a global neighbourhood (all particles are

considered), however other neighbourhood definitions can also

be used. The rate of position change of a particle then depends

upon its previous personal best position and the neighbourhood

best, and its previous velocity. For particle i this velocity is

vi = (vi,1, . . . , vi,D), typically initialised at random in X . The

general algorithm for the adjustment of these velocities is:

vi,j := ωvi,j + c1r1(bi,j − xi,j) + c2r2(gi,j − xi,j), (1)

and the position is updated as:

xi,j := xi,j + χvi,j , j = 1, . . . , D, (2)

where ω, c1, c2, χ ≥ 0. ω is the inertia of a particle, c1
and c2 are constraints on the velocity toward local best and

neighbourhood best - referred to as the cognitive and social

learning factors respectively, χ is a constraint on the overall

shift in position, and r1, r2 ∼ U(0, 1). In [12], the final model

presented has w and χ set at 1.0 and c1 and c2 set at 2.0.

As discussed in [13], in this classical form of PSO each

particle xi is flown toward pi, gi and vi. This, in effect, means

that a hypercuboid is generated in design space, the bounds of

which are the sum of the distances from xi to the other three

points (weighted by the appropriate multiplier constants from

(1) and (2)). The length of the jth dimension of the containing

hypercuboid of xi is:

lj = χ(wvi,j + c1(bi,j − xi,j) + c2(gi,j − xi,j)). (3)

A particle xi can therefore effectively move to any point within

this hypercuboid (determined by the draws of r1 and r2), but

not outside of it. Note – depending on the values of χ, c1
and c2, it is possible for one or more of vi, pi and gi to lie

outside this bounded region, and the higher the inertia, the

more exploratory the search. As regions of the hypercuboid

may lie outside of X , a PSO implementation must have a

mechanism to deal with potential movements outside the legal

bounds. We use rejection sampling here – i.e. r1 and r2 are

resampled until a legal xi results.

Here we exploit the swarm paradigm for multi-modal op-

timisation. However, instead of employing a single swarm

optimiser and using neighbourhood topology to maintain

modes (e.g. [5]), we use multiple swarms – each of which

is concerned with optimising a particular mode estimate that

has been identified in the search landscape. The approach taken

differs from other multi-swarm work for multi-modal problems

(e.g. [14]), in that the sub-swarms do not take a “devour and

move on approach”, but instead concern themselves solely



with the improvement of their local peak estimate, from

the time of that particular swarm’s initialisation, until the

algorithm termination (or its merging with another swarm).

Unlike other sub-swarm work which use distributed swarms

(e.g. [15]) the number of swarms is dynamic, and expends far

fewer evaluations on niche detection.

The basic idea is that NMMSO manages a number of

swarms which have strong local search, and which ‘fine-

tune’ their local mode estimates each generation. Additionally,

on each generation swarms which have improved their mode

estimate are paired with their closest adjacent swarm to see

if they should merge (thus preventing duplication of labour).

New regions in which to search for modes are identified by

splitting away particles from existing swarms, and via random

search and crossover.

A high level description of the algorithm can be found in

Figure 1. The algorithm takes in four overarching parameters:

max evals, tol, n and max inc, alongside the standard PSO

parameters which are used by all the sub-swarms. The param-

eter max evals sets the total number of permissible function

evaluations. tol is a small tolerance value, which specifies the

Euclidean distance in design space where two peak estimates

(and associated swarms) are automatically merged (we use

10−6 in our experiments here). n is the maximum number of

particles in any swarm, and max inc is the maximum number

of swarms to increment per algorithm iteration.

The algorithm starts by generating and evaluating a single

solution at random within X , making the initial swarm (Figure

1, line 1). The algorithm then continues in an optimisation

loop, until the allocated function evaluations are exhausted.

Line 4 checks if any swarms are flagged. This will be the

case if their gbest (mode estimate) has changed in the last

algorithm iteration, or if the swarm has just resulted from

the merging of two previous swarms. Those swarms that have

been marked are compared to their nearest neighbour (based

on the Euclidean distance between their respective gbests

locations in design space). If the nearest neighbour is within

tol distance, then the swarms are automatically merged, if

not, then the mid-point in design space between the gbest

locations is evaluated. If this location is worse than both of

the swarm gbests, the pair are maintained separately – if not

they are merged. The variable m tracks how many mid-points

have been evaluated each time the routine is called. Sampling

along a line for peak detection is not new (being introduced

in [16]) – however typically multiple points are sampled each

time, and the detection procedure is regularly undertaken (e.g.

[16], [15]), consuming the majority of function evaluations

during an optimisation. In contrast, NMMSO uses only a small

fraction of its function evaluations on line sampling.

When merging swarms, if the total number of particles in

both swarms is less than, or equal to, the swarm limit n,

then the resultant swarm simply contains all the elements of

both swarms. If however the total number of elements in both

exceeds n, then the fittest n particles across both swarms are

used to create the merged swarm, with the remaining particles

being discarded.

Require: max evals, tol, n,max inc, c1, c2, χ, ω

1: S := initialise_swarm(1)
2: evals := 1
3: while evals < max evals do

4: while flagged_swarms(S) = true do

5: {S,m} := attempt_merge(S, n, tol)
6: evals := evals+m

7: end while

8: S := increment(S, n,max inc, c1, c2, χ, ω)
9: evals := evals+ min(|S|,max inc)

10: {S, k} := attempt_separation(S, tol)
11: evals := evals+ k

12: S := add_new_swarm(S)
13: evals := evals+ 1
14: end while

15: {X∗, Y ∗} := extract_gbest(S)
16: return X∗, Y ∗

Fig. 1. High-level pseudocode of NMMSO.

The evaluation of a mid-point between two mode estimate

locations is a coarse way of mode region identification. There

are a number of landscape conditions where it will identify

two solutions as lying on different peaks when they are in

fact on the same mode. This may occur if there is a ridge

curving away and then back joining the two points, or when

a point ‘lower down’ on the same peak region is closer to a

point on another mode, than a point lying ‘further up’ on the

same mode. This means the point lower down will be paired

for comparison with the point on the other mode, resulting in

both the mode estimates lying on different parts of the same

peak region being maintained as gbests for distinct swarms.

However, as the swarms optimise and improve their gbests

(move up the peaks), mode estimates will move to positions

where their relationship is correctly identified (resulting in

merging).

After merging has been attempted, each swarm is incre-

mented (line 8). If a swarm has fewer than n particles, then a

single new particle is added to the swarm and evaluated. This

new entrant is sampled uniformly in a hypersphere centred on

the swarm’s current peak estimate (its gbest), with the radius

corresponding to half the distance to the nearest neighbouring

swarm peak estimate (subject to the sample lying in X ). The

velocity is sampled in a similar fashion (but centred on 0,

without having to lie in X ). Note that although the particles are

initialised within this local region, their subsequent movement

is not restricted (beyond staying in X ). If a swarm has

reached its full quota of n particles, then on incrementing

the swarm one of its particles is selected at random, and

updated according to (1) and (2). The number of swarms

incremented each generation is limited to max inc – if the

number of swarms maintained exceeds this value, then 50%

of the time the max inc swarms with the best gbests are

incremented, the other 50% of the time max inc swarms are

selected at random for incrementing. This limit is to prevent



TABLE I
PARAMETERS USED FOR PERFORMANCE MEASUREMENT, AND MAXIMUM

NUMBER OF FUNCTION EVALUATIONS PER OPTIMISER RUN.

Function F1 F2 F3 F4 F5

r 0.01 0.01 0.01 0.01 0.5

Peak height 200 1 1 200 1.03163

Max evals 50k 50k 50k 50k 50k

Function F6 F7 F8 F9 F10

r 0.5 0.2 0.5 0.2 0.01

Peak height 186.731 1 2709.0935 1 -2

Max evals 200k 200k 400k 400k 200k

Function F11 F12 F13 F14 F15

r 0.01 0.01 0.01 0.01 0.01

Peak height 0 0 0 0 0

Max evals 200k 200k 200k 400k 400k

Function F16 F17 F18 F19 F20

r 0.01 0.01 0.01 0.01 0.01

Peak height 0 0 0 0 0

Max evals 400k 400k 400k 400k 400k

the algorithm exhausting too many function evaluations on

poor performing local modes. It biases the search toward the

best max inc found so far, but still searches in the wider

population of swarms, as these swarms may find substantially

better solutions at a later point in time and may also provide

useful particles when merging.

On line 10 a single swarm is selected at random from those

which are at capacity (i.e. have n elements). This is checked to

see if it should have a particle removed to seed a new swarm.

First a particle, xi, is selected at random from the swarm. If

xi is more than tol distance from the swarm’s gbest, then

the mid-point between it and the swam gbest is evaluated.1 If

the performance of this mid-point is worse than f(xi), then

xi is removed from its parent swarm, and used to seed a

new swarm, taking its velocity with it. It is replaced in its

previous swarm by the evaluated mid-point, whose velocity

is initialised at random as if it was a new swarm entrant. If

however the mid-point is not worse than xi, then xi remains in

its original swarm, and instead the swarm’s gbest is compared

to the mid-point evaluation: if it is worse, then the gbest

is replaced. Very early in an optimiser run, as none of the

maintained swarms has reached capacity, no mid-points are

evaluated due to the attempt_separation routine (i.e.

k = 0). As the optimisation progresses, typically k = 1 at each

iteration, although as swarms converge on their gbest locations

the randomly selected xi may be within the tol distance, and

so k = 0 may still occur later in an optimisation run.

Finally, each algorithm iteration ends with a new swarm

being generated. 50% of the time this is seeded with a

uniformly sampled location in X , otherwise it is seeded by a

single offspring solution, generated using uniform crossover

of two randomly chosen swarm gbests (the probability of

inheriting a particular design parameter from either parent

being 0.5). The generation of random swarms means the

algorithm is constantly looking for new peaks in addition to

those currently being optimised, and the uniform crossover

means any peak symmetry in the landscape is exploited.

1If it is less than tol distance away, even if it is split off, it will be merged
back into the swarm on line 5 of the next iteration, so it is computationally
efficient to check this beforehand.

V. EMPIRICAL RESULTS

The NMMSO algorithm is compared to the results of a

wide range of multi-modal optimisation algorithms [17], [7],

[18], [8], [19], [20], [21], [6], [9], [22], which were applied to

the 20 benchmark problems of the CEC 2013 “Competition

on Niching Methods for Mutlimodal Optimization” [23], [1].

We follow the algorithm assessment protocol used in the

CEC 2013 competition; our results can therefore be directly

compared to the combined competition results.

We also compare to the Multinational Evolutionary Algo-

rithm (MEA) [16] and Multi-Sub-Swarm Particle Swarm Op-

timisation Algorithm (MSSPSO) [15] – as these both embed

‘hill-valley’ approaches to niche maintenance. Parameters for

these comparison algorithms are fixed as in their respective

original publications. In [16] the population size is varied

across test problems from 750-1500, we use 1000 for all test

problems here. Likewise in [15] population size varied from

1-40 and number of sub-swarms from 5-25. In keeping with

the original competition, algorithm parameters are fixed for all

problems – a population size of 20 and 25 sub-swarms is used

here for MSSPSO.2

The 20 benchmark problems are of varying dimensionality

and number of optima, and are derived from 12 base test prob-

lems. The Equal Maxima (F2), Himmelblau (F4), Vincent (F7,

F9) and Modified Rastrigin (F10) problems only have global

peaks. The Five-Uneven-Peak Trap (F1), Uneven Decreasing

Maxima (F3), Shubert (F6, F8), and Composite Functions 1

(F11), 2 (F12), 3 (F13, F14, F16, F18) and 4 (F15, F16, F19,

F20) all have local maxima as well as global maxima (with

the Shubert and Composite Functions having many more local

maxima than global maxima). Due to space constraints formal

definitions are not provided here – however a technical report

detailing them can be found online [23].

Additionally, NMMSO is compared to the problem level

results which are published in [9] and [8] for the niching vari-

able mesh optimisation (N-VMO) and the dynamic archiving

niching differential evolution (dADE) algorithms.

Problem assessment criteria are detailed in Table I. The

parameter r gives the maximum distance (in design space)

a solution may be from a peak be categorised to have found

it – subject to a further accuracy level, ǫ, which gives the

maximum distance from the global maximum in objective

space. For all problems five different accuracy levels are

assessed, ǫ = {10−1, 10−2, 10−3, 10−4, 10−5}.

All algorithms are run 50 times on each problem. Two cri-

teria are used for assessment. The success rate (SR) measures

the proportion of successful runs (those which find all global

optima given the prescribed ǫ and r). A value of 1.0 indicates

that all 50 runs found all global peaks, whereas a value of

0.5 indicates that half of the runs found all global peaks. The

peak ratio (PR) measure gives the average proportion of global

2The value of the penalty applied to swarm members who stray onto other
peaks is not detailed in [15]. Here we set it such that straying particles cannot
replace their pbest.



TABLE II
CONVERGENCE RATES OF NMMSO, N-VMO AND DADE/NRAND/1/BIN. BEST VALUES FOR EACH PROBLEM ARE UNDERLINED.

ǫ = 10
−1

Algorithm Function F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

dADE/nrand/1
Mean 5922 221 203 3107 367 27459 2911 367282 396811 3392

St. D. 1673 38 14 845 121 6904 618 42450 22547 653

NMMSO
Mean 578 167 46 1191 114 68441 27349 391589 399982 1422

St. D. 135 62 46 947 53 42978 14198 21682 125 444

Algorithm Function F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

dADE/nrand/1
Mean 145456 114735 182185 219869 61965 292773 200503 392376 340214 400000

St. D. 58240 21749 47527 154230 16890 133136 127782 33324 95904 0

NMMSO
Mean 5836 49537 53038 391400 400000 400000 400000 400000 400000 400000

St. D. 2872 41905 40697 36202 0 0 0 0 0 0

ǫ = 10
−4

Algorithm Function F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

dADE/nrand/1
Mean 20202 1801 1290 12703 3567 150328 200000 393667 400000 12904

St. D. 2788 586 565 1668 652 35209 0 17665 0 2169

N-VMO
Mean 12795 31835 380 25769 13012 200000 200000 400000 400000 181772

St. D. 236 2847 128 265 278 0 0 0 0 24688

NMMSO
Mean 1089 487 342 1910 617 88759 31350 392525 400000 2686

St. D. 179 124 131 913 149 40262 13175 21587 0 388

Algorithm Function F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

dADE/nrand/1
Mean 200000 200000 200000 400000 400000 400000 400000 400000 400000 400000

St. D. 0 0 0 0 0 0 0 0 0 0

N-VMO
Mean 200000 200000 200000 400000 400000 400000 400000 400000 400000 400000

St. D. 0 0 0 0 0 0 0 0 0 0

NMMSO
Mean 9057 68049 74120 400000 400000 400000 400000 400000 400000 400000

St. D. 3261 38807 43854 0 0 0 0 0 0 0

TABLE III
SUCCESS RATES OF NMMSO, N-VMO AND DADE/NRAND/1/BIN. BEST VALUES FOR EACH PROBLEM AND ACCURACY LEVEL ARE UNDERLINED.

F1 F2 F3 F4 F5

ǫ NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE

10
−1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10
−2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10
−3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10
−4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10
−5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F6 F7 F8 F9 F10

ǫ NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE

10
−1 0.960 1.000 1.000 1.000 1.000 1.000 0.260 0.000 0.020 0.020 1.000 1.000 1.000 1.000 0.500

10
−2 0.960 1.000 1.000 1.000 1.000 0.240 0.220 0.000 0.000 0.000 0.000 1.000 1.000 1.000 0.380

10
−3 0.960 0.360 1.000 1.000 0.140 0.020 0.180 0.000 0.000 0.000 0.000 1.000 1.000 1.000 0.280

10
−4 0.940 0.000 0.780 1.000 0.000 0.000 0.180 0.000 0.000 0.000 0.000 1.000 1.000 1.000 0.140

10
−5 0.000 0.000 0.000 1.000 0.000 0.000 0.180 0.000 0.000 0.000 0.000 1.000 1.000 0.660 0.020

F11 F12 F13 F14 F15

ǫ NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE

10
−1 1.000 1.000 0.640 0.980 0.220 0.980 0.960 1.000 0.140 0.080 1.000 0.700 0.000 1.000 1.000

10
−2 1.000 0.000 0.000 0.980 0.000 0.440 0.960 0.000 0.000 0.060 0.000 0.000 0.000 0.020 0.000

10
−3 1.000 0.000 0.000 0.980 0.000 0.000 0.940 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.000

10
−4 1.000 0.000 0.000 0.980 0.000 0.000 0.940 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10
−5 1.000 0.000 0.000 0.980 0.000 0.000 0.940 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

F16 F17 F18 F19 F20

ǫ NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE

10
−1 0.000 1.000 0.540 0.000 1.000 0.760 0.000 0.960 0.080 0.000 0.220 0.000 0.000 0.000 0.000

10
−2 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10
−3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10
−4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10
−5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

peaks found across runs, i.e. for q runs:

PR =

∑q

i=1
oi

tq
(4)

where oi denotes the number of global optima discovered by

the ith run, and t is the total number of global peaks. We

use the code made available by the CEC 2013 competition

organisers for representing the test problems, and for assessing

algorithm performance.3

We set the automatic merging tolerance tol = 10−6, the

maximum swarm size n = 10D (where D is the number of

design parameters) and the maximum number of swarms to

increment max inc = 100. We use standard PSO parameters

3Obtainable from http://goanna.cs.rmit.edu.au/∼xiaodong/cec13-niching/
competition/.

c1, c2 = 2.0, χ = 1.0 but with a low inertia to promote local

convergence (ω = 0.1).

Table II shows the convergence rates of NMMSO and

dADE for ǫ = 10−1, and these plus N-VMO for ǫ = 10−4

(convergence results for ǫ = 10−1 are not reported in [9]).

At the ǫ = 10−1 level dADE performs the best, having the

fastest mean convergence 10 times to NMMSO’s nine. At the

ǫ = 10−4 level however NMMSO performs much better than

both the other algorithms, having faster convergence at this

level on 12 of the problems. On the other eight problems none

of the algorithms converged to all the global optima on any

run at ǫ = 10−4.

Tables III and IV give the success rate and peak ratio results

across the 20 test problems for all five levels of accuracy for

each of the algorithms. NMMSO has the best/equal best SR



TABLE IV
MEAN PEAK RATIOS OF NMMSO, N-VMO AND DADE/NRAND/1/BIN. BEST VALUES FOR EACH PROBLEM AND ACCURACY LEVEL ARE UNDERLINED.

F1 F2 F3 F4 F5

ǫ NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE

10
−1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10
−2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10
−3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10
−4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10
−5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

F6 F7 F8 F9 F10

ǫ NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE

10
−1 0.998 1.000 1.000 1.000 1.000 1.000 0.984 0.412 0.837 0.930 1.000 1.000 1.000 1.000 0.985

10
−2 0.998 1.000 1.000 1.000 1.000 0.962 0.984 0.294 0.595 0.922 0.683 1.000 1.000 1.000 0.978

10
−3 0.998 0.940 1.000 1.000 0.945 0.892 0.983 0.270 0.545 0.920 0.399 1.000 1.000 1.000 0.981

10
−4 0.997 0.670 0.984 1.000 0.901 0.823 0.981 0.198 0.431 0.917 0.275 1.000 1.000 1.000 0.967

10
−5 0.000 0.000 0.000 1.000 0.806 0.732 0.980 0.027 0.356 0.913 0.192 1.000 1.000 0.968 0.947

F11 F12 F13 F14 F15

ǫ NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE

10
−1 1.000 1.000 0.893 0.998 0.848 0.998 0.993 1.000 0.743 0.770 1.000 0.923 0.673 1.000 1.000

10
−2 1.000 0.667 0.667 0.998 0.745 0.887 0.993 0.667 0.667 0.740 0.667 0.667 0.673 0.713 0.620

10
−3 1.000 0.667 0.667 0.998 0.725 0.745 0.990 0.667 0.667 0.713 0.667 0.655 0.673 0.668 0.615

10
−4 1.000 0.667 0.667 0.998 0.713 0.740 0.990 0.667 0.667 0.710 0.667 0.655 0.670 0.623 0.627

10
−5 1.000 0.667 0.667 0.998 0.565 0.728 0.990 0.663 0.667 0.703 0.637 0.655 0.668 0.390 0.620

F16 F17 F18 F19 F20

ǫ NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE NMMSO N-VMO dADE

10
−1 0.663 1.000 0.873 0.553 1.000 0.938 0.633 0.987 0.683 0.477 0.340 0.420 0.183 0.000 0.030

10
−2 0.660 0.703 0.667 0.548 0.475 0.472 0.633 0.483 0.660 0.470 0.133 0.143 0.180 0.000 0.000

10
−3 0.660 0.653 0.667 0.543 0.440 0.417 0.633 0.470 0.630 0.463 0.133 0.063 0.178 0.000 0.002

10
−4 0.660 0.653 0.667 0.538 0.413 0.403 0.633 0.470 0.633 0.447 0.130 0.018 0.178 0.000 0.005

10
−5 0.660 0.633 0.667 0.538 0.320 0.410 0.633 0.360 0.627 0.443 0.103 0.000 0.178 0.000 0.000

value on 57% of the problem/accuracy level combinations. N-

VMO achieves this for 44% and dADE 36%.4 For 26% of

the problem/accuracy level combinations all of the optimisers

have an SR of zero. On the mean PR measure, NMMSO has

the best/equal best value on 79% of the problem/accuracy level

combinations. N-VMO achieves this for 43% and dADE 41%.

No algorithm found any solutions at the ǫ = 10−5 level on

F6. NMMSO tends to have relatively better performance at the

higher accuracy levels. This would indicate that once NMMSO

has identified a peak, the low inertia swarms are more effective

at exploiting it to a high level of accuracy in a rapid fashion

compared to the other algorithms.

Table V presents the overall performance assessment of

NMMSO. The mean PR for the five accuracy levels on each of

the 20 test functions are combining into a single average, and

compared to the results of the 15 state-of-the-art entrants to the

CEC 2013 competition (results from [1]), along with MEA and

MSSPSO. NMMSO can be seen to be extremely competitive

with the current state-of-the-art, having the highest mean and

median PR yet observed.

Figure 2 shows the number of swarms maintained by each

run of NMMSO for each of the problems. As can be seen,

when there are only global modes, the number of swarms

maintained converges to the number of global modes (F2, F4,

F7, F9 and F10). For problems with very many local optima

the number of swarms can be seen to constantly rise, however,

due to the search bias toward the better performing mode

estimates, this does not prevent good convergence results on

these problems. Interestingly, on the composite functions with

10-20D NMMSO can be seen to consistently hone just a few

peaks until at some point the number of swarms rises quickly.

4There appear to be some data entry issues in the tabulated results for the
some of peak ratios in [8], as the values reported increase from ǫ = 10

−3 to
10

−4 for F15 and F18, and from ǫ = 10
−2 to 10

−4 for F20.

TABLE V
AVERAGE RESULTS ACROSS ALL TEST PROBLEMS AND ACCURACY LEVELS

OF NMMSO, MEA AND MSSPSO, ALONG WITH RESULTS OF

MULTI-MODAL ALGORITHMS COMPARED IN THE CEC 2013 COMPETITION

(DETAILED IN [1]) ON THE PEAK RATIO.

Algorithm Median Mean St. D.

NMMSO 0.9933 0.8271 0.2535
MEA [16] 0.2167 0.3676 0.3878

MSSPSO [15] 0.0000 0.2179 0.3901

A-NSGA-II [17] 0.0740 0.3275 0.4044
CMA-ES [7] 0.7750 0.7137 0.2807

CrowdingDE [18] 0.6667 0.5731 0.3612
dADE/nrand/1 [8] 0.7488 0.7383 0.3010
dADE/nrand/2 [8] 0.7150 0.6931 0.3174

DECG [19] 0.6567 0.5516 0.3992
DELG [19] 0.6667 0.5706 0.3925

DELS-aj [19] 0.6667 0.5760 0.3857
DE/nrand/1 [20] 0.6386 0.5809 0.3338
DE/nrand/2 [20] 0.6667 0.6082 0.3130

IPOP-CMA-ES [21] 0.2600 0.3625 0.3117
NEA1 [6] 0.6496 0.6117 0.3280
NEA2 [6] 0.8513 0.7940 0.2332

N-VMO [9] 0.7140 0.6983 0.3307
PNA-NSGA-II [22] 0.6660 0.6141 0.3421

This is probably due to tendency of NMMSO to merge local

modes that live on larger landscape features. Figure 3 shows

the growth of a swarm population over time as visualised in

X for some of the 2D test problems. Where the global/local

peaks/basins are deformations from the plane the number of

modes identified quickly increases (see e.g. F6, and regions

in F12 and F13), as the mid-points always tend to be lower

between any pairing of global/local mode estimate. Where

however local modes lie on a larger landscape feature (e.g.

the peak mid way down on the right of F11 and F12), these

swarms tend not to be sustained, as pairing with a swarm

converging on a mode ‘further’ up the larger landscape feature



0 100 200
0

5

10

Iteration

#
 S

w
a

rm
s

F1

0 50 100
0

5

10

Iteration

#
 S

w
a
rm

s

F2

0 20 40 60 80
0

5

10

Iteration

#
 S

w
a

rm
s

F3

0 500 1000
0

5

10

Iteration

#
 S

w
a

rm
s

F4

0 50 100 150
0

5

10

Iteration

#
 S

w
a

rm
s

F5

0 1000 2000
0

100

200

300

Iteration

#
 S

w
a
rm

s

F6

0 1000 2000
0

10

20

30

40

50

Iteration

#
 S

w
a

rm
s

F7

0 1000 2000 3000
0

200

400

600

Iteration

#
 S

w
a

rm
s

F8

0 2000 4000
0

50

100

150

200

Iteration

#
 S

w
a

rm
s

F9

0 100 200
0

5

10

Iteration

#
 S

w
a

rm
s

F10

0 1000 2000
0

5

10

15

20

Iteration

#
 S

w
a

rm
s

F11

0 1000 2000
0

50

100

150

Iteration

#
 S

w
a

rm
s

F12

0 2000 4000
0

20

40

60

Iteration

#
 S

w
a
rm

s

F13

0 2000 4000
0

100

200

Iteration

#
 S

w
a

rm
s

F14

0 2000 4000
0

200

400

600

Iteration

#
 S

w
a

rm
s

F15

0 2000 4000 6000
0

200

400

Iteration

#
 S

w
a

rm
s

F16

0 2000 4000
0

200

400

Iteration

#
 S

w
a

rm
s

F17

0 2 4

x 10
4

0

100

200

300

Iteration

#
 S

w
a

rm
s

F18

0 2 4

x 10
4

0

200

400

Iteration

#
 S

w
a

rm
s

F19

0 2 4 6

x 10
4

0

10

20

30

40

Iteration

#
 S

w
a

rm
s

F20

Fig. 2. Number of swarms maintained by each run on each problem, recorded at each iteration until all global optima have converged to within 10
−5, or

the function evaluations allowed are exhausted. Swarms recorded at line 11 of Figure 1. Mean of runs plotted in red (when a run has terminated, the size of
its final population is used in the calculation of the mean swarm size until all runs complete).

will tend to result in a mid-point that is higher than the lower

swarm gbest – causing the paired swarms to be merged.

VI. DISCUSSION

We have introduced a new multi-modal optimiser which

utilises a number of self-contained but communicating sub-

swarms to search for modes in the fitness landscape. The

approach builds on a number of properties which have been

identified in effective multi-modal optimisers, and continu-

ously hones mode estimates by exploiting individual swarms

in parallel, rather than searching in local regions and moving

on like other multi-swarm approaches to multi-modal optimi-

sation. Particles may additionally split off to form new swarms,

or migrate between swarms by splitting and subsequently

merging. Results on the CEC 2013 niching test problems

show that the proposed algorithm is extremely competitive

with the current state-of-the-art, and gives robust performance,

even though seeded by a single random solution in X .

Nevertheless, the number of parameters is still larger than

would be generally desirable: future work will be focused

on reducing these (via self-adaptation) as well as applying

NMMSO to multi-modal engineering design problems. Note

however that the optimiser does not require a niching radius

or number of niches to be set – as it dynamically fits both

of these locally, based upon the distance between the current

peak estimate locations being maintained. MATLAB code for

the NMMSO, MEA and MSSPSO algorithms is available at

https://github.com/fieldsend.
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