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1. Introduction

In hydrology, the rainfall-runoff relationship is considered to be 

one of the most complicated processes. It is influenced by several 

factors such as topography, climate, rainfall, etc. Various modeling 

techniques are used to represent this complex relationship. 

Available modeling techniques are often grouped into one of the 

three categories viz. (i) Empirical model, (ii) Conceptual model 

and (iii) Physically based model. Empirical models are built solely 

upon analysis of existing data and hence commonly known as 

a data-driven model. Conceptual models use semi-empirical equa-

tions in the model building process and the required parameters 

are acquired through physical data collection and model calibration 

process. Physically based models, on the other hand, provide a 

more realistic approach to modeling by representing the real phe-

nomenon mathematically. Although, physically based models seem 

more appropriate for modeling purpose but lacks acceptability due 

to the inherent complexity and computational expense. As a result, 

empirical modeling techniques such as Autoregressive Integrated 

Moving Average (ARIMA), Fuzzy inference system (ANFIS), 

Artificial Neural Network (ANN) models, etc. have gained popular-

ity over the years.

ARIMA belongs to the class of statistical modeling techniques, 

primarily used for analysis and forecasting of time series data. 

The biggest advantage of ARIMA is its ability to withstand the 

nature of underlying data fluctuations. It has been successfully 

used in modeling various hydrological events [1]. Machine learning 

techniques such as ANN, FIS are also reported to be efficient in 

modeling such complex phenomena. Being simple and their ability 

to handle nonlinearity without the knowledge of the actual system 

makes them very special among others. Numerous evidences are 

available in the literature where fuzzy logic (FL) based systems 

excelled in modeling various hydrological events such as rainfall, 

runoff, streamflow, etc. [2-5]. The presence of uncertainties and 

imprecision in these domains make FL based systems a suitable 

candidate for modeling purpose. 

Recent developments have also witnessed an increasing trend 

in the application of ANN in simulation and prediction of nonlinear 

problems. ANNs have the advantages of being fault-tolerant, robust 

in dealing with nonlinearity and possesses learning capability as 

well. However, its training process often suffers from limitations 

such as slow learning speed, risk of trapping into local minima, 
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etc. To overcome these problems, various optimization techniques 

especially PSO based techniques have been used in the past. Asadnia 

et al. [6] investigated an improved PSO based ANN model to estimate 

the water level for Heshui Watershed in China. The performance 

of the PSO-ANN model is then compared with ANNs trained using 

the conjugate gradient, gradient descent (GD), and Levenberg-Marquardt 

(LM) neural network algorithms. The results indicate that, in both 

the cases of a single parameter (rainfall) and multiparameter (rainfall 

and water level) input, PSO based ANN model achieved the better 

root mean square error (RMSE) and outperformed conventional 

ANNs in predicting the low and peak water levels. Cheng et al. 

[7] investigated Quantum-behaved Particle Swarm Optimization 

(QPSO) based ANN for generating daily reservoir runoff forecast 

for the Hongjiadu reservoir in Wu River of China. Authors replaced 

the conventional training process of ANN with QPSO in optimizing 

different hyperparameters. The experimental results showed that 

the QPSO-ANN model could achieve better forecast accuracy com-

pared to the classical ANN model. In another experiment, M. 

Motahari and H. Mazandaranizadeh presented a comparison of 

ANN models developed using the LM training algorithm and 

PSO-ANN model in predicting rainfall-runoff response [8]. The 

results also revealed that the PSO based ANN model performed 

better than the conventional ANN model. Although there is no 

doubt about the ANN's versatility, but they only provide a black 

box view of the real system and hence fail to provide the rationale 

behind a particular model outcome [9]. The same is the case with 

fuzzy rule-based systems. These systems do not have any definite 

method to find out the required number of fuzzy rules and the 

number of membership functions (MF) associated with each rule 

[10]. Moreover, they don’t have any learning algorithm either for 

refining MF which can minimize the output error. 

ANFIS is a hybrid model that mixes the characteristics of both 

FL and ANN into one powerful unit which has the advantages 

of i.e., adaptability, quick convergence, and high accuracy. 

Moreover, the resultant network does not remain black box anymore 

as the model would have if−then−else rules to explain the linguistic 

variables [11]. Over the years, this technique established itself 

as a useful modeling technique in various hydrological fields. ANFIS 

was found to be superior in predicting various water resources 

aspects such as water quality, river flow, flood forecasting, sediment 

concentration, etc. [12-16]. All these instances among many other 

applications of ANFIS explain why it has been a popular choice 

of modeling over the years.

However, recent investigations indicate that ANFIS is a computa-

tionally expensive and complex system [17]. It suffers from the 

inability to handle long term dependencies due to the presence 

of exploding or vanishing gradient problem [18]. Its training and 

hyperparameter training process are also found to be very complex. 

To overcome these problems, researchers have used various opti-

mizing techniques in estimating ANFIS’s parameters. Dariane and 

Azimi developed a streamflow forecasting model by incorporating 

a Genetic Algorithm (GA) with conventional ANFIS [19]. The au-

thors reported significant improvement in the model performance 

when GA selection was applied. Qasem et al. [20] experimented 

with the conventional ANFIS model by incorporating Differential 

Evolution (DE), GA and PSO in optimizing trainable ANFIS 

parameters. The study presented three hybrid ANFIS versions i.e. 

DE-ANFIS, GA-ANFIS, and PSO-ANFIS for estimating sediment 

transport in open channels. It was found that modified ANFIS 

was able to achieve better R2 and RMSE value compared to its 

original counterpart. Pousinho et al. [21] used a hybridized 

PSO-ANFIS technique to predict wind power and compared the 

model’s performance with ARIMA, feed forward neural network, 

Neural Network with wavelet transform, and wavelet neuro fuzzy 

model. JalalKamali employed two modified variants of ANFIS name-

ly ANFIS-GA and ANFIS-PSO for predicting groundwater quality 

of Kerman province, Iran [22]. Basser et al. [23] used a similar 

ANFIS-PSO based model for estimating the optimal parameters 

of a protective spur dike. Kisi et al. [24-25] experimented with 

the ANFIS model by incorporating PSO and DE algorithms for 

parameter estimation process and showed that modified ANFIS 

possesses the improved capability of predicting ground-water qual-

ity compared to the conventional counterpart. Yosefvand et al. 

[26] employed a hybrid method based on the ANFIS and PSO 

for estimating the minimum velocity required for preventing the 

sedimentation process. Similarly, in another study by Dieu et. al. 

[27] performed the fusion of ANFIS with cultural (ANFIS-CA), 

bees (ANFIS-BA) and invasive weed optimization (ANFIS-IWO) 

algorithms for flood susceptibility mapping. It was found that all 

three modified versions were capable of finding the optimal model 

parameters and also succeeded in avoiding the problems of trapping 

into local minimum. There are numerous other instances available 

where ANFIS’s parameters were estimated using the heuristic opti-

mization technique [28-29]. 

From the available literature, it can be observed that in most 

of the cases, ANFIS showed acceptable performance in predicting 

various environmental phenomena. However, its performance var-

ied depending on the choice of appropriate model parameters. 

Various optimization approaches such as evolutionary computing 

techniques are commonly used for this purpose. These fusions 

have not only helped ANFIS in achieving a better result but also 

helped with its faster convergence. This paper presents an attempt 

to hybridize ANFIS with popular metaheuristic based optimization 

technique known as particle swarm optimization (PSO) in modeling 

rainfall-runoff relationship. To the best of our knowledge, the combi-

nation of PSO-ANFIS was not been employed for this purpose 

by any previous researchers. The objectives of the present study 

are as follows:

• To build a fuzzy-neural network based time-series estimation 

model for estimating rainfall-runoff relationship.

• To explore the scope of improving the performance of the 

conventional ANFIS model by incorporating PSO technique. 

• To compare the performance of PSO-ANFIS with that of ARIMA 

model and conventional ANFIS to determine its applicability 

in the rainfall-runoff estimation process. 

The organization of this paper is covered in six different sections. 

Section 2 introduces a brief discussion about various modeling 

techniques used in this investigation. Section 3 brings out the 

discussion about the methodology used in this experiment. This 

section includes detailed discussion about the study area, input 

data selection techniques, performance criteria, and model develop-

ment process. The experimental result and discussion are provided 

in section 4 and section 5, respectively. Finally, Section 6 presents 

the conclusion.
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2. Models Used

2.1. Adaptive Neuro-ANFIS

ANFIS was originally proposed by Jang [10] in the year 1993. Since 

then, it has been used in different fields for modeling purposes. 

The internal structure of ANFIS can be divided into antecedent 

and the consequent part. These two halves are interconnected with 

each other by rules in a network form. ANFIS, in its initial phase, 

discovers the fuzzy rules from the given set of input-output data 

and then in the later phase applies a neural network to refine 

those rules. A typical Takagi-Sugeno’s ruleset with two inputs x, 

y, and one output Z can be defined by:

IF x is A1 and y is B1 THEN f1=α1x+β1y+r1

IF x is A2 and y is B2 THEN f2=α2x+β2y+r2

Where α, β and r represent the linear output parameters. The 

corresponding ANFIS structure is shown in Fig. 1. It has five layers 

with two kinds of nodes, represented by circle and square. The 

square node is referred to as the adaptive node which accepts 

parameters. The circle node is known as the fixed node and it 

does not accept any parameter. 

Fig. 1. ANFIS structure of two inputs and one output system.

Layer 1: The first layer is a fuzzification layer. It maps a crisp 

input to its corresponding linguistic levels (e.g. good, bad and 

average) based on the calculation of fuzzy membership function. 

It can be defined by:


   

     for   1, 2 (1)

Here, x and y represent the input to the ith node. Usually a 

bell-shaped membership function such as Gaussian function is 

used for this purpose. The Gaussian membership function (GMF) 

can be defined as:

  






 








(2)

Where a, b and c form the set of adaptable parameters. Values 

of these parameters actually determine the type of membership 

function used (e.g. bell-shaped, triangular etc.). These parameters 

are also referred to as premise parameters.

Layer 2: This layer is also referred to as rules layer. It calculates 

the strength of incoming signals received from the previous layers. 

Usually a T-norm operator (multiplication) is used to get the output. 

The operation can be defined as:


 ×    1, 2 (3)

Layer 3: It is known as the normalization layer. Every nodes 

of this layer computes the ratio of its own rule firing strength 

to the sum of all others. The output of this layer can be defined 

by: 


       1, 2 (4)

Layer 4: This layer is known as the defuzzification layer. The 

output of layer 4 can be defined as:


  

   1, 2 (5)

Where  is the output of the Layer 3 and {α, β, r} forms a 

parameter set known as consequent parameters.

Layer 5: The final layer is the output layer. The output layer 

contains a single fixed node. It computes the final output by sum-

ming all input signals which can be described as:


  

 ∑
∑

  1, 2 (6)

The training process of ANFIS follows a hybrid learning mecha-

nism for acquiring an optimal set of rules. It learns by updating 

antecedent and consequent parameters iteratively by keeping one 

set constant while updating the other. ANFIS uses Least-Square 

Error (LSE) methods for optimizing the Consequent Parameters 

{α, β, r} in the forward pass whereas uses GD to update antecedent 

Parameters {a, b, c} in the backward pass. Calculating gradient 

at every step can be very difficult and also comes with the risk 

of getting trapped in local minima [30]. Moreover, convergence 

in the GD method is quite slow and heavily depends on the initial 

values of ANFIS parameters. An evolutionary algorithm such as 

PSO can provide an alternate solution to these types of problems. 

Although, there exist other techniques for parameter optimization 

such as grid search, random search, genetic algorithm, etc. but, 

PSO appears to be more appropriate choice for this study because 

of its simplicity, low computational cost as compared to genetic 

algorithm, quick to converge to optimal solution as compared to 

grid search and random search and doesn’t require calculation 

of derivatives like GD. Thus, these interesting features of PSO 

motivated the investigators to apply it in updating the trainable 

ANFIS parameters.

2.2. Particle Swarm Optimization (PSO)

PSO is a population-based metaheuristic algorithm proposed by 

Dr. Eberhart and Dr. Kennedy in the year 1995 [31]. The idea 

of PSO draws inspiration from the social behavior of bird flocking 

or fish schooling. The goal of this algorithm is to find an optimal 
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Fig. 2. Convergence mechanism of PSO algorithm.

solution (global best) among all possible solutions in a given search 

space. Every particle is associated with a fitness value calculated 

by evaluating a fitness function and a speed factor by which a 

particle moves within the flock. Initially, particles are spread across 

the search space randomly. At the end of every iteration, a particle 

updates its knowledge about two important information (i) The 

best fitness value it has computed so far, known as personal best 

(PBest) and (ii) The best fitness value discovered among other 

particles known as the global best (GBest). Based on these two 

information particles calculate the speed or velocity at which it 

should move so that it can reach closer to the global solution 

or GBest. It can be visualized with an example included in Fig. 2.

Particles gradually adjust their position and traveling speed dy-

namically by learning from own experience as well as of its col-

leagues as shown in Fig. 2. With the current velocity Vi(t) of the 

ith particle, it tends to move away from the GBest. However, with 

PiBest and GBest included in the equation particles are forced to 

fly closer to the global solution. The way these particles update 

their velocity and positions can be explained by the equations 

given below as discussed in [32]. The process is repeated until 

target value or the maximum number of iterations is attained.

Vi(t + 1) = w × Vi(t) × r1 × c1 × (PiBest − Pi(t)) + 

r2 × c2 × (GBest − Pi(t)) (7)

Pi(t + 1) = Pi(t) + Vi(t + 1) (8)

Here, Vi(t) is the velocity with which the ith particle is moving. 

Pi(t+1) is the updated position of the particle based on its current 

position Pi(t) and moving velocity Vi(t + 1). PiBest and GBest are 

personal and GBest values as discussed earlier. The values r1 and 

r2 (ranges between 0 and 1) are random values regenerated for 

each velocity update. c1 and c2 are the rate of learning parameter 

and c1, c2, w are user supplied coefficients.

3. Methodology

3.1. Study Site and Data Used

The study area used in this investigation is Dikhow basin, India. 

The Dikhow River is one of the important tributaries in the southern 

bank of the river Brahmaputra. The major area of the basin lies 

in Nagaland. It originates from the Nuroto Hill area in the Zunheboto 

district. The river flows towards the north along the border of 

Tuensang and Mokokchung districts. The river further flows north-

ward and leaves the hill near Naginimora and passes through 

Sibsagar city of Assam. The Central Water Commission (CWC) 

gauge station located near to the Brahmaputra main channel is 

considered as the outlet of the Dikhow River for hydrological 

modeling. The basin area is 3,292 Sq. km. The length of the river 

up to the confluence of Brahmaputra is approximately 330 km. 

The annual rainfall of the Dikhow basin varies between 1,431 mm 

to 2,597 mm. The maximum rainfall received for this basin is 

from May to September. Rainfall-runoff readings from May to 

September from 2006 to 2018 are collected and considered as the 

input to our predictive model. The location of Dikhow river basin 

is shown in Fig. 3.

Fig. 3. Dikhow basin (study area).

3.2. Selection of Inputs to the Model

Any data-driven model is sensitive to the quality of input data. 

Therefore, data must be preprocessed before being used in any 

modeling process. Runoff data gathered at a daily interval is essen-

tially an example of time series data. In time-series data, summary 

statistics like mean, variance, autocorrelation (ACF), etc. of input 

data keeps changing over time. Which can provide additional in-

formation that can be used in the model building along with existing 

data. However, in most cases of time series analysis, the dataset 

needs to be analyzed, transformed and processed to get the desired 

result.

This present study employed a statistical approach as suggested 

by Sudheer et al. [33] to identify the suitable input parameters. 

The approach works on the assumption that variables of importance 

with respect to different time lags can be identified by analyzing 

cross correlation, ACF and partial autocorrelation (PACF) between 

the variables under consideration. Detailed explanation of PACF 

in runoff estimation can be found in [34]. In this experiment, we 

have used PACF to analyze our input dataset. Fig. 4 (a) and (c) 

show that rainfall and runoff in the Dikhow basin are significant 

up to 4 lags, respectively. Hence, a total of 8 parameters as shown 
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in Eq. (9) are chosen as input to the model.

       ⋯          ⋯     (9)

where, R represents the rainfall and Q represents the runoff.

In transformation, the most commonly used approach is known 

as sliding window technique. Assuming original time series to 

be    ⋯ , applying sliding window will give us Y 

which includes several Yi’s of the form       ⋯ 

    ×, for  1, 2, ⋯ . Here,  is the lag and 

 represents the window size. In this experiment  is set to 1 

and  is determined by using PACF technique discussed above.

Ideally, we want our time series estimation model to extract 

any kind of systematicities present in the time-variant data. 

However, we also do not want known or obvious systematicities 

to affect its performance. That is why classical time series analysis 

techniques convert non-stationary time series data into stationary 

by identifying and removing trends and seasonal effects. A very 

common way of doing this is by using the differencing process. 

It basically finds the difference between two successive values 

as shown in Eq. (10). Thus, the linear trend available in the data 

is rectified.

′     0, 1, .... (10)

Besides analysis and transformation, certain preprocessing steps 

are also required. Neural network based models are sensitive to 

variance in the input data. Data preprocessing steps like normal-

ization can help to reduce the overall processing time and improve 

network consistency as well. Normalization can be performed as 

follows:

 max min

min
(11)

After performing these basic steps, the input data are then split 

into 70-30 ratio for training and testing purpose, respectively.

3.3. Performance Evaluation Criteria

There are numerous performance evaluation matrices available 

in the literature. However, in the absence of any universal evaluation 

standard researchers often use multiple techniques to reflect upon 

one or more characteristics of the developed model. In this study, 

a statistical measure known as coefficient of determination (R2), 

coefficient of efficiency or Nash-Sutcliffe efficiency (NSE) and the 

root RMSE are used for performance evaluation purposes. R2 repre-

sents the degree of determination among the measured and predicted 

values. Its value typically ranges between 0 and 1 indicating no 

and perfect fit between data points and best fit regression line, 

respectively. The value of NSE ranges from -∞ to 1 and it is often 

used to evaluate the model’s predictive power. Similarly, the RMSE 

is the measure of the average magnitude of the error. It represents 

the square root of the average squared differences between pre-

diction and actual observation. All these indices can be defined 

as follows:






  



 


 






/   


 
 

  




  (12)


  



 
 

/   


 
  (13)








  



 
 

 (14)

Where   and   represent the measured and predicted outcome 

for ith data, respectively. n is the total number of data points consid-

ered in the performance evaluation process and  ,  represents 

the mean of measured and predicted value, respectively.

3.4. Model Development

This investigation used PSO-ANFIS as the primary forecasting algo-

rithm for rainfall-runoff estimation. As already discussed in section 

2.2, ANFIS is a hybridization of two other machine learning algo-

rithms namely ANN and FIS. The performance of ANFIS highly 

depends on the accuracy in estimating the weight and bias parame-

ters of ANN. Here, we have used a metaheuristic technique known 

as PSO for estimating model parameters of ANN. The discussions 

about the model development process are as follows.

3.4.1. ARIMA model

ARIMA model’s performance depends on the selection of three 

primary components, AR (autoregressive term), I (differencing term) 

and MA (moving average term). It is commonly represented as 

ARIMA(p, d, q); where, p denotes the autoregressive term, d is 

the differencing factor important for data stationarity and q is the 

moving average window size. The necessary model configuration 

a b c

 

Fig. 4. ACF and PACF analysis. (a) Rainfall PACF plot, (b) Runoff ACF plot, (c) Runoff PACF plot.
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was done through the analysis of autocorrelation function (ACF) 

and partial autocorrelation function (PACF) plots generated from 

runoff data analysis. ACF and PACF provide an initial guess about 

the different lag factor. As can be seen from Fig. 4 (b) and (c), 

approximately, first 50 lags on ACF plot and 4 lags in PACF plot 

shows a significant positive correlation. Therefore, the choice of 

p = 50, and q = 4 would give an initial choice to begin with. 

However, the actual values of p, d and q were selected on a trial 

and error basis. Different values were tried and the best result 

was achieved using ARIMA(10,1,4).

3.4.2. ANFIS and PSO-ANFIS model

The initial parameter settings of PSO–ANFIS used in this experiment 

are discussed as follows. The cognitive factor c1 and the social 

learning factor c2 were both initially set to 2. The number of particles 

and iterations were set to 100 and 500, respectively. The inertia 

weight was set to 0.5, the maximum velocity was set to 3. Random 

numbers r1 and r2 are kept within the range of 0 to1. Most of 

the PSO configuration was done by trial and error method with 

values adopted from the work of Eberhart [31]. 

In the case of ANFIS, the model was created using the discussion 

presented in section 2.1. Initially, training data are partitioned 

into clusters to construct the initial ANFIS. Some of the available 

clustering choices are grid partitioning, subtractive clustering, fuzzy 

c-mean clustering, etc. In this case, fuzzy c-mean clustering is 

chosen for creating the initial FIS because of their superior perform-

ance as claimed by many researchers [35]. In ANFIS, there are 

2 sets of trainable parameters available in the form of antecedent 

part parameters and consequent part parameters. We have used 

the GMF in the antecedent part as there is no explicit theory available 

to substantiate the rationale behind selecting a particular type and 

number of MF [36]. Therefore, the required number of MFs is 

determined via trial and error method. In this experiment, the 

best prediction was acquired using GMF which can be defined 

by the following equation.

   exp












 











 (15)

where,  is the variance,  is the crossover slop and  is the center 

of MF.

In the training process, ANFIS uses a two-step process. A typical 

ANFIS uses the least squares method and the backpropagation 

GD method to optimize different trainable parameters. In every 

iteration, one of the parameters set is updated. In the forward 

pass, nodes output till the fourth layer are calculated and then 

least square method is used to update consequent parameters before 

calculating the final output. Similarly, in the backward pass, the 

error is back-propagated till first layer where the GD method is 

used to update the membership function parameters. The final 

FIS parameters of the ANFIS model gets determined when the 

stopping criterion of the training process is met.

With PSO-ANFIS, the training process is carried out a little 

differently. Initially, trainable parameters are initialized with ran-

dom values and then PSO is used to update them. In every iteration, 

out of two parameters set, one is updated keeping the other constant. 

Finally, after updating all the parameters again the first set of 

Fig. 5. PSO-ANFIS flow diagram.

parameter update is considered and the process goes on. These 

parameters are usually assembled in a vector form which is updated 

in every iteration. The updating process is carried out using the 

steps discussed in section 2.2. The overall working of PSO-ANFIS 

can be understood using the flowchart given in Fig. 5.

4. Results

In order to model rainfall-runoff relationships, historical time series 

of rainfall and corresponding runoff values with different time 

lags were examined in this experiment. For uniformity in model 

building, the same set of training and validation data were used. 

For performance evaluation purposes, statistical error measures 

such as R2, NSE, and RMSE have been used. From Table 1 it 

can be observed that all three methods have different performances 

during both the training and testing phases. In the training phase, 

the PSO-ANFIS model achieved about 0.3% and 0.6% improvement 

over conventional ANFIS in terms of NSE and RMSE, respectively. 

Whereas, in comparison to ARIMA, it achieved an overall improve-

ment of 0.89% in terms of NSE and a 1.19% reduction in overall 

RMSE. A similar trend was found in the testing phase as well. 

PSO-ANFIS measured an improvement of 2% and 9% in terms 

of NSE value over conventional ANFIS and ARIMA model, 

respectively. At the same time, it measured a slight reduction of 

0.2% and 1.2% in overall RMSE value over conventional ANFIS 

and the ARIMA models, respectively. However, total computational 

time (validation time) as shown in Table 1, suggests that the ARIMA 

model was superior in computing the result. Proposed PSO-ANFIS 

model took 1.45 s more than the ARIMA model but took 3.8 s 

less than ANFIS to produce the result.
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In addition to the NSE and RMSE measure, The PSO-ANFIS 

registered better R2 value as well. Fig. 6 shows the prediction and 

correlation graph of all three models. The proposed PSO-ANFIS 

achieved R2 equal to 0.94 which is better than that of R2 value 

of 0.92 and 0.88 of ANFIS and ARIMA model, respectively. This 

shows the presence of a higher correlation between observed and 

predicted runoff in the PSO-ANFIS model. Moreover, if we observe 

the observed vs. predicted runoff plot, we can see that PSO-ANFIS 

is able to predict the high and extreme runoff values more effectively. 

For instance, the extreme value of 400 m3 and above runoff values 

is best predicted by the PSO-ANFIS model. Overall, we can say 

that PSO-ANFIS model outperformed ARIMA and conventional 

ANFIS in all aspects except the computational time where ARIMA 

performed the best.

5. Discussions

From the analysis of the result presented in section 4, it is 

clear that PSO-ANFIS performed better than the conventional 

ANFIS model. This is because the output of ANFIS is dependent 

on the performance of ANN which in turn depends on the accuracy 

in estimation of its weights and biases. In modified ANFIS, swarm 

intelligence technique like PSO has been used to estimate the param-

eters of underlying ANN. Since PSO is a metaheuristic-based 

optimization algorithm it makes very little or no assumptions 

about the problem being modeled. This implies that PSO does 

not use the gradient of the problem during convergence. Hence, 

eliminates the probability of chances of models being trapped 

into local minima or vanishing gradient like problems. This helps 

in providing the major advantage of using PSO over GD and as 

a consequence, improved accuracy and convergence speed could 

be achieved. 

A comparison of proposed PSO-ANFIS with the ARIMA model 

reveals that the former has been able to predict runoff values more 

accurately. However, ARIMA performed better with respect to com-

putational time. It is worth mentioning here that, ARIMA is a 

univariate time series estimation model. This means, ARIMA model 

in this experiment is built solely using historical runoff data. This 

is in contrast to ANFIS or PSO-ANFIS models which have the 

leverage of using one exogenous variable in the form of rainfall 

data for the model building purpose. Considering this fact, the 

Table 1. Prediction Accuracy of ARIMA, ANFIS and PSO-ANFIS

Model
Computational Time

during testing (s)

Train Test

R2 NSE RMSE R2 NSE RMSE

ARIMA(10,1,4) 8 0.85 0.80 2.127 0.88 0.78 2.792

ANFIS 13.25 0.91 0.86 1.521 0.92 0.85 1.731

PSO-ANFIS 9.45 0.93 0.89 0.928 0.94 0.87 1.503

a b c

d e f

Fig. 6. Correlation plot and observed vs. predicted runoff graph of ARIMA-(a)(b), ANFIS-(c)(d) and PSO-ANFIS-(e)(f).
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Fig. 7. Forecast errors (Residuals)-ARIMA(10,1,4).

performance of the ARIMA looks satisfactory to some extent. Fig. 7 

shows the residual of forecast error with mean = 0.014 and std = 

1.681 which is highly acceptable. Adding extra rainfall attribute 

in the model equation will certainly help to achieve an even better 

result. Such a multivariate version of ARIMA models is commonly 

known as ARIMAX model. Development of such a model can be 

considered as future scope of this work.

Statistical estimation techniques like ARIMA often suffer from 

the problem related accuracy. This is due to the fact of a linear 

representation of a non-linear system [37]. The process also gets 

affected by the presence of noise and measurement inaccuracies. 

Therefore, ARIMA often fails to capture the extreme situations 

satisfactorily. Besides, these techniques also require a high volume 

of continuous historical data [38]. Fortunately, the performance 

of machine learning-based approaches like ANFIS or PSO-ANFIS 

is less dependent on the quality of the input data. As a result, 

the proposed PSO-ANFIS model performed better than ARIMA 

which is apparent from the result shown in Table 1. From reading 

presented in Table 1, it can also be observed that the computational 

time required by PSO-ANFIS is slightly higher than ARIMA but 

significantly lower than conventional ANFIS. This indicates the 

strength of the PSO-ANFIS in forecasting runoff data. The Table 

also indicates the result in terms of statistical error measures, the 

performance of PSO-ANFIS is better than the ARIMA and conven-

tional ANFIS techniques.

4. Conclusion

Rainfall-runoff estimation is a very important process in hydrology. 

It usually provides support for different water resource planning 

and management activities. Designing a physical model for such 

phenomena is often a costly affair and requires absolute domain 

expertise too. Therefore, machine learning techniques are com-

monly used to discover a hidden relationship. In this study, a 

popular modeling technique known as ANFIS, augmented with 

PSO is presented for modeling the rainfall-runoff relationship.

Experimental result as included in Table 1 suggests that modified 

ANFIS performed better in terms of RMSE compared to ARIMA 

and conventional ANFIS. The PSO-ANFIS’s prediction results as 

shown in Fig. 6 also indicate how well it has modeled the hidden 

nonlinearity. These results are quite satisfactory. Overall, it can 

be inferred that because of the simplicity of the PSO algorithm 

(no gradient calculation at every step) the convergence and overall 

accuracy of PSO-ANFIS has improved. Thus, it can be concluded 

that ANFIS-PSO provides a viable solution to modeling complex 

problems such as rainfall-runoff with considerable accuracy.

However, it should be noted that instances like this (rainfall-run-

off) are very specific. The variance in the dataset differs from case 

to case which often leads to contrasting results. There are evidences 

available where ARIMA outperformed ANFIS and vice versa [39-40]. 

Therefore, in future we would like to extend our research with 

other basins data as well as some other problem domain to best 

support this conclusion.
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