
Behavior Research Methods, Instruments, & Computers
1997.29 (3),3/3-32/

RunScript: An extendable object-oriented
program for computer-controlled

psychology experiments

SILVIO P.EBERHARDT, MISRA NEVEROV, and OMAR HANEEF
Swarthmore CoUege, Swarthrrwre, Pennsylvania

RunScript is a general-purpose authoring program that allows one to specify, in a script text file, the
steps to be undertaken in the execution of an experiment. The script language supports fundamental
operations, such as conditional branching to script-defined labels, manipulation of variables, sending
the user messages, appending a string to a data file, and executing a subsidiary script file. A second
command type allows runtime loading and execution of custom object-oriented software modules. A
module's methods (or routines) are accessed from the script file simply by citing their text names, with
optional variables likewise specified via a character string. Module development is simplified by re­
quiring that new modules inherit existing code that implements protocols for passing variables and in­
teracting with the script interpreter. These mechanisms allow the experimenter to add features of ar­
bitrary complexity while maintaining simplicity, clarity, and consistency in the overall architecture of
the software and the scripting language.

Programs that control real-time psychological experi­
ments necessarily exhibit a tradeoff between ease of use
and generality. Easy-to-use systems, with built-in functions
that anticipate the user's needs, can significantly improve
lab productivity (Ratcliff, 1994). However,customizing the
program for nonsupported experimental paradigms and be­
haviors may be difficult and awkward at best and often im­
possible. More general programs allow a user to implement
arbitrary functionality, but at the cost of extensive pro­
gramming. It is not at all obvious that ease of use and gen­
erality can coexist in one software package (Dixon, 1991).

Several commercial applications have attempted to pro­
vide both generality and ease of use. A popular example
is SuperLab (Cedrus Corp., Phoenix, AZ), which, rather
than requiring explicit programming, guides the user
gently through a series of windows to set up an experi­
ment. Visual and auditory stimuli can be presented, and
responses are subsequently collected and saved to a data
file. However, the underlying scripting system does not
allow conditional branching (at the time of this writing),
so adaptive testing paradigms are not possible. Also, every
stimulus token must be stored as a separate image or audio
file. It is not possible to directly manipulate features ofthe
underlying operating and windowing systems, and cre­
ation ofstudies with large numbers ofstimulus tokens can
be time-consuming and awkward.

This material is based on work supported by the National Science
Foundation under Grant IRI-9309015. The authors gratefully acknowl­
edge the kernel driver development efforts ofYe He and, for helpful com­
ments on this paper, Lynne Bernstein and the reviewers. Correspon­
dence should be addressed to S. P. Eberhardt, Department ofEngineering,
Swarthmore College, Swarthmore, PA 19081(e-mail: silvio@jabberwock.
swarthmore.edu).

Another popular package is MEL Professional (Psy­
chology Software Tools, Inc., Pittsburgh, PA), which al­
lows almost any experimental paradigm to be set up. It has
a steeper learning curve than SuperLab, uses outdated
software technology (it runs under PC DOS), and does re­
quire programming. As with SuperLab, facilities are avail­
able to link custom software routines with MEL.

The most general approach, but also the most time­
intensive, is to develop custom software using standard
software development tools. Many investigators, the pre­
sent authors included, have pursued this avenue because
existing products did not sufficiently meet their needs.
Frequently, stimulus presentation or response collection
requires the coordination ofone or more custom computer
peripherals-a situation that unavoidably requires custom
code development and that can cause difficulties even if
the custom code is linked to a commercial package. Our
computer-interface studies, for example, require direct
manipulation of the computer graphical interface, with
custom mouse interrupts, direct manipulation ofthe event
loop, and specification ofthe appearance and behavior of
graphical objects, such as buttons, menus, and text. Our ap­
proach was to find the operating system that most flexi­
bly supported manipulation of the user interface and then
to develop RunScript to allow fine-grained control ofun­
derlying system resources.

Several risks are inherent in developing a full-custom
application. One is that as the software "grows" over a se­
ries ofexperiments, the complexity of the package can in­
crease dramatically, and it becomes difficult to track the
interactions of variables and subroutines. Development
of additional functions becomes increasingly difficult
(Dixon, 1991), as does debugging and modifying the soft­
ware. An alternative approach, creating individual soft-

313 Copyright 1997 Psychonomic Society, Inc.

314 EBERHARDT, NEVEROV, AND HANEEF

ware packages for each experiment that incorporate only
the necessary routines, requires maintaining multiple
copies ofthe software, thereby making it difficult to main­
tain and upgrade the underlying software.

A reasonable balance between ease of use and gener­
ality would be exhibited by a program that (1) imple­
ments a basic set of commands that are frequently used
across experiments, (2) allows arbitrary new functions
to be added, and (3) enforces a structured mechanism for
interfacing new functions that avoids runaway complex­
ity as the program is extended. These requirements are
likely best achieved by the use of object-oriented pro­
gramming (OOP).

OOP requires structuring a program into semiautono­
mous units called objects, which interact via well-defined
interfaces. An object consists ofvariables (including data
structures), which are inaccessible outside of the object,
and "methods," which manipulate the variables and pro­
vide object behavior. An object's methods can be accessed
by other objects. Thus, a program generally consists ofa
hierarchically organized object structure in which a top­
level controller object activates objects at the next level
to carry out particular tasks, and these objects in turn ac­
cess methods of objects at a lower level, and so on. Ob­
jects can also control entities external to the immediate
program, such as equipment connected to the computer,
icons on the screen, or operating system features.

OOP has several advantages over traditional procedural
programming. First, well-crafted objects can be modified
and extended without the likelihood oferrors arising from
interactions ofobject variables with code outside the ob­
ject, since the internal implementation ofan object is iso­
lated from other objects by the method interface. Second,
objects can be extended by adding methods without affect­
ing preexisting methods. Third, (well-documented) ob­
jects are easy to debug, modify, and understand. Finally,
many well-designed modules are sufficiently general
that they can be reused in other applications at a later date.
Indeed, the advanced OOP programmer usually finds
that much of the tedium ofprogramming vanishes, espe­
cially when a good object library is available, because
low-level functional requirements can often be satisfied
with preexisting objects rather than custom code. Soft­
ware development proceeds at a much higher level of
abstraction.

OOP does have a few drawbacks, beyond a minor­
to-moderate level of computational overhead. The pro­
grammer must not only learn a new syntax but must
significantly reorganize how software systems are con­
ceptualized. OOP emphasis is spatial-involving inter­
actions between static objects-rather than temporal, as
is the case in procedural programming where the pri­
mary focus is on the sequences of subroutine calls. Ob­
jects do not disappear after they have been accessed; data
contained within an object remain valid after the object's
method returns. In fact, multiple instances ofone object
type, each with independent copies ofvariables and data,
are frequently maintained in a program. For example, each
icon, button, and window on an OOP-based graphical user

interface (GUI) is associated with a separate object. An­
other drawback is that the documentation ofa general ob­
ject library may run to thousands ofpages, thus requiring
a substantial time investment for initial familiarization.

Finally, it is critical that the programmer carefully plan
at the outset how a problem will be decomposed into ob­
jects. Poor initial planning often leads to extensive restruc­
turing at a later date, whereas good designs can quickly
result in well-structured programs, which are easy to un­
derstand and modify, and objects that can be reused.

With respect to real-time software for running exper­
iments, there are several additional reasons for adopting
OOP. First, some OOP languages-most notably, Small­
talk, Objective-C, and Java-have a feature called dynamic
binding (Budd, 1991). Dynamic binding allows loading
a new object into memory at runtime by specifying its text­
string name (and directory location) and by subsequently
accessing its methods by way of their text names. This
powerful mechanism permits loading only the objects
needed for a given experiment. Also, new objects can be
developed without requiring changes in the script inter­
preter program. In contrast, OOP languages with static
binding (such as C++) require the names ofall objects and
methods used at runtime to be specified at compile time.
This means either that all objects used in any experiment
must be compiled into the script interpreter program or that
a different program must be compiled for each experiment.

A second reason for adopting OOP is that objects in­
herit all of the methods and variables of a parent object
and all predecessors back to the "root object" (from which
all objects inherit). The task of creating new custom ob­
jects for real-time experiments is greatly facilitated by re­
quiring that all loadable objects inherit from a prototype
object that implements standardized interactions with the
script interpreter and with other custom objects.

Finally,current GUIs consist ofmany interrelated com­
ponents, including icons of many types, sounds, video,
and text strings. Application development frameworks,
such as Microsoft Foundation Classes (MFC, Microsoft
Corp., Redmond, WA), Object Windows Library (OWL,
Borland Corp., Scotts Valley, CA), Abstract Window
Toolkit (java.awt, Sun Microsystems, Mountain View,
CA), and NEXTSTEP (Apple Computer Inc., Cupertino,
CA), implement each such component as one or more ob­
jects that are interrelated and controlled in a logical and
consistent manner and are carefully documented. This
makes it possible for custom applications to manipulate
even the most subtle aspects of preexisting GUI objects
and to create new objects that inherit all of the behaviors
of a preexisting object.

Unfortunately, few operating systems allow the user
to exploit all these OOP benefits. One system is NEXT­
STEP, which incorporates the Objective-C language (an
extension of C) throughout the user interface. Each ele­
ment on the NEXT STEP graphic display (e.g., buttons,
windows, sliders, etc.) and each sound is implemented as
an object. NEXTSTEP has been used previously for psy­
chology experiments. The high quality of the discontin­
ued black-box NeXT Computer's audio capabilities have

made it a platform ofchoice for audio synthesis and out­
put (e.g., Ratcliff, 1994). The StatTools statistics package
(Anderson, 1995) takes advantage of dynamic loading
and another NEXT STEP capability that allows an object
to communicate with other applications (in this case, the
Mathematica engine and a spreadsheet). Cohen, Lam­
oureux, and Dunphy (1991) give a good introduction to
the elegant features ofNEXT STEP,and a more complete
treatment is found in Garfinkel and Mahoney (1993).
The NEXT STEP operating system currently runs on a
variety of hardware platforms, including 386/486/Pen­
tium-based machines and workstations from Sun Mi­
crosystems and Hewlett-Packard. Also, the new Open­
Step package (Apple Computer, Inc.) allows layering
most of the features of the NEXT STEP interface over
Windows NT (Microsoft Corp.).

Java is another object-oriented language that allows
dynamic binding. The full-featured Java language is sig­
nificantly simpler than the Objective-C and C++ exten­
sions to the C language, because many features ofC have
been omitted (Ritchey, 1995)-most notably, pointers.
Java code is more portable than any other language be­
cause objects, which are compiled to a special Java ma­
chine code format, can be transferred to and executed on
any system for which there is a Java machine code trans­
lator. For our purposes, however, NEXTSTEP is prefer­
able because it allows extremely fine-grained control of
GUI objects.

Our work has centered on developing a script-based
software package, RunScript, that takes advantage of the
features ofObjective-C and NEXTSTEP. While the goal
of RunScript development was to provide a completely
automatic data collection facility for behavioral experi­
ments that compare the efficacy of different windows­
based computer interfaces, it was decided that the Run­
Script script interpreter should remain as general purpose
as possible. Experiment-specific code is added to Run­
Script by way of dynamically loadable modules. Each
module includes a primary object that is loaded into mem­
ory when a script first references the module's name.
The primary object's methods can then load, from the
module, auxiliary objects and resources such as images
or sounds. We have also developed a protocol for naming
methods and passing variables in order to simplify the
creation of new modules, to maintain consistency in the
scripting language, and to simplify the interactions be­
tween each module and the script parser. We have made
available"black-box" and 386/486/Pentium (NEXTSTEP)
versions of RunScript that provide additional documen­
tation and full source code for RunScript and our modules
(see the uniform resource locator [URL] given in the Avail­
ability section at the end of this article).

An overview ofRunScript is presented below, and fea­
tures of the scripting language are described. Next, out­
lines of several modules that have been developed to date
illustrate how an experiment can be orchestrated. Finally,
we outline how we have solved the technical difficulties
involved in taking response-time measurements on a
multitasking operating system. Due to space considera-

RUNSCRIPT 315

tions, we will not detail our particular experiments, which
involve evaluating the relative efficacy ofdifferent pointer
devices by comparing task-completion times for every­
day GUI tasks such as button acquisition and menu-item
selection (Eberhardt, Neverov,West, & Sanders, in press).

RUNSCRIPT OVERVIEW

The RunScript program, when initially launched, waits
for the user to select a script file. It then parses and exe­
cutes the command strings given in the script file. Each
line of this text file contains either a complete command
or a comment. Lines are interpreted in order, unless exe­
cution order is explicitly changed via a goto or control loop
command. A sample command file is given in Listing 1.

Two distinct command types are implemented. Core
commands implement script functions that are of a gen­
eral nature; these are executed directly by the RunScript
program. Module method requests are routed to user­
supplied modules. A module's methods are accessed from
the script by citing the text names of the module and the
desired method, followed by an optional text string that
comprises arguments to be passed to that method. Run­
Script will automatically load a module into memory the
first time it is referenced in a script.

The object structure ofRunScript is shown in Figure 1.
The MainController object performs initialization and
services user-selected menu requests, such as "load script"
and "quit." The ModuleController object is responsible
for all interactions with user-supplied modules. It loads
modules, keeps track ofall modules loaded into memory,
passes module method requests to the specified module,
and passes back the resulting return value.

The ScriptParser object iteratively obtains a line from
the script file, interprets and executes all core commands,
and passes module method requests to the Module­
Controller. An important feature of RunScript is that a
script can cause the execution ofa secondary script (herein
called a subscript) in a manner similar to a subroutine call.
When subscript execution completes, control returns to
the higher level script. Consequently, an arbitrary number
of scripts can be open at one time. By instantiating inde­
pendent copies of the ScriptParser object for each script,
independent variable spaces for each script are automat­
ically generated, greatly reducing the possibility ofvari­
able interaction errors between scripts.

Since the main task of the ScriptParser object is to ex­
ecute one line at a time from the script file, it was advan­
tageous to insulate this object from the low-level details
ofscript file data input and output. The FileController ob­
ject was created to perform file functions, such as re­
turning the next line from the script file, resetting to the
first line, returning the last line, and appending a line to
the file. Since these functions must be independently
performed on all open files, a separate copy of the File­
Controller is created for each script and data file.

RunScript object interactions are as follows. When the
RunScript program is first executed, the MainController
object is loaded. Its initialization sequence loads and ini-

316 EBERHARDT, NEVEROV, AND HANEEF

8
script
file 1

script
file 2

Figure 1. Object relationships of the RunScript system. The MainControUer object ini­
tializes the system and satisfies menu selections. The ModuleControUer dynamicaUy loads
script-requested modules and passes method invocation requests to the module's main ob­
ject. In a way similar to subroutine execution, a script me can specify that a secondary
(subscript) me be parsed. For each script me, separate instances of ScriptParser and File­
Controller objects cooperate to sequentially read and execute the script file commands.

tializes the ModuleController and RunScript's menu bar.
MainController then returns control to the operating sys­
tem. When the user selects a menu item, the operating
system invokes a MainController method associated with
that menu item. If the menu item is "Open & Run,"
MainController prompts the user for the script file to be
executed. If the file is valid, a ScriptParser and a File­
Controller object are created for that file, and control is
passed to the ScriptParser. ScriptParser immediately re­
quests the first script file line from the FileController and
decodes it. If the line specifies a core command, Script­
File also executes it. Ifthe line specifies a module method
request, the whole line is passed to the ModuleController,
which in turn reformats the request and passes it to the
specified module (loading the module first, ifnecessary).
Finally, the value returned by the module is passed back
to the ScriptParser object, which then obtains the next
script line from FileController.

RUNSCRIPT COMMAND SYNTAX

Script file syntax is simple: A capital letter in the first
character position of a line indicates a core command,

and an "@" symbol in the first position specifies that a
module method request follows. All other character types
in the first position render the line a comment line. The
basic syntax format for these operations is

CoreCornmand [OptionalArgumentString]
@ModuleName methodName [OptionalArgumentString]

this is a comment line
as is this

All arguments and return values (except null, indicat­
ing a fatal error) are required to be text strings. By this
mechanism, ScriptParser need not determine the number
and type of arguments, variable substitution is simpli­
fied, and return strings can be directly output to the user
(simplifying script debugging).

Variables are identified by a positive integer that acts
as variable index. (The next major version of RunScript
will use arbitrary words to identify variables.) A variable
may be explicitly set either by the SETVAR core com­
mand ("SETVAR 3 arbitrary string" will load the string
"arbitrary string" into variablenumber 3) or by redirecting
the return string from a core command or module method
(e.g., "GETDATE > $5" will place the date and time into

IFGO condition label
INCR var
LABEL labelName
LOGFILE <fileName>

variable 5). Any argument string specified in a script file
may contain one or more variable identifiers, using the
dollar-sign ($) notation; before executing the correspond­
ing operation, RunScript replaces all variable identifiers
with the variable contents (e.g., "MESSAGE the current
time is $5" will output to the user the date and time ob­
tained above). Listing 1 gives more examples of variable
substitution. Finally, the special variable $0 is reserved
for passing parameters to a subscript.

CORE COMMAND SET

The core command set, given in Table I, currently con­
sists of 25 commands that are implemented in less than
400 lines ofObjective-C code. This set implements com­
mands useful for running real-time experiments, although
few of the commands are highly specialized.

Most of the commands are straightforward, and only
a few of the more complex commands will be treated in
more depth below. First, the primary conditional control­
flow commands are IFGO and WHILE. IFGO has the
syntax

IFGO condition label

Table 1
RunScript Core Commands

APPEND argString Append string to data file
APPENDNL argString Append string to data file with newline
GETDATE Return current date and time
DEBUG Print diagnostics as script executes
DECR var Decrement specified (integer) variable
DOSCRIPTfileName <args> Executespecified subscript,passing args
END End conditional loop (while or if)
ENDFAIL Endfailure code,resumenormaloperation
EVALregularExpression Evaluate a mathematical expression
GETLINE n Get nth line from current data file
GETWORD n string Return nth word in string
GOTO label Unconditional jump to specified label
lFFAlL Iflast method returned error, continue,

else continue execution at ENDFAIL
Jump to label if relational clause is true
Increment specified (interger) variable
Associatelabelwith this line in scriptfile
Specify data file to append to and read

(iffileName is omitted, append to
script file)

MESSAGE string Output a message string to the user
MODULEPATH directoryPath Set directory where modules are
QUIT Abort RunScript altogether
RETURN returnString Return from current script, pass

returnString
SCRIPTPATH directoryPath Set path to subscripts directory
SETVARvarString Set variable to string
WAITmilliseconds Delay by the specified interval
WHILE condition Do to ENDwhile conditional clause true

Note-These commands comprise a simple scripting language that im­
plements conditional execution and a convenient interface between
module return strings, system variables, comments, and file and user
input and output. All arguments, variables, and return values are char­
acter strings. Any argument string can incorporate variable identifiers;
RunScript replaces the identifiers with the variable's content string.
Core command return strings may be saved to a variable by the re­
direction (">") operator.

RUNSCRIPT 317

If the Boolean condition evaluates true, a branch to the
specified label is taken. The condition is specified using
the form arg 1 connective arg2, with spaces separating
the three parts. Arg I and arg2 can be variables or literal
strings; ifnumeric, the arguments are evaluated as integer
or float types, and ifalphabetic, as case-sensitive strings.
Valid connectives are =, = =, <=, >=, !=, or <>.

The WHILE loop, using the same conditional format,
has the syntax

WHILE <condition>

END

Currently, loops cannot be nested, except when inner
loops are contained within subscripts.

The specialized control-flow command IFFAIL allows
executing a block ofcommands if the last-invoked mod­
ule method failed to execute properly, as evidenced by a
NULL or "ERR" method return. Usually, a failed module
method causes notification of the user; however, notifi­
cation is suppressed ifthe IFFAIL command directly fol­
lows the failed module method request. The fail code ter­
minates with the ENDFAIL command.

Another important function, DOSCRIPT, allows the
execution of subscripts, or lower level script files. Once
a lower level script file completes execution, control re­
turns to the command following the DOSCRIPT com­
mand. DOSCRIPT takes as arguments the file name to
be executed and a string that is passed to the subscript's
$0 variable. The command returns the string that fol­
lowed the subscript's RETURN command, or "ERR" if
the subscript file was not found.

Subscripts serve the same purposes as subroutines:
They allow command blocks that are frequently called to
be written only once, they allow structuring the operation
ofa complex experiment, and, perhaps most importantly,
they allow conditional execution of script files. To illus­
trate the last point, our current experiment setup uses a
top-level script loop that requires subjects to enter their
assigned code identifier. That identifier serves as the file
name of the script that controls their particular experi­
ment procedure. Once a subject completes a session, the
upper level script reinitializes its modules in preparation
for the next subject.

The EVAL function evaluates the string argument as a
regular mathematical expression, with integer, floating
point, hexadecimal, or octal values. The return type is con­
sistent with the types in the expression, and mixed types
give a consistent result (e.g., mixing integer and float types
results in a correct float). An error is returned if a vari­
able cannot be converted to one of the supported types.
Currently, the four arithmetic primitive operations are
supported, and parentheses can be used to group sub­
expressions and to overcome the strictly left-to-right eval­
uation order. The EVAL function was included to support
adaptive experimental paradigms (such as two-interval
forced choice), where stimulus characteristics and the num­
ber of experimental trials depends on subject responses.

318 EBERHARDT, NEVEROV, AND HANEEF

Listing 1
Code Segment From a Script File lUustrating How

Experiment Sessions Are Automatically Executed Sequentially

MODULEPATH /home/silvio/Apps/CHIRA/bundles
SCRIPTPATH /home/silvio/Expts
append all data to this control/datafile
LOGFILE
activate module to blank screen ofoperating system icons
@CoverWindow on
put last line in control/data file in variable number I
GETLINE last> $1> $2
get second word from line-this is index oflast session
GETWORD 2 $1 > $2
increment to next session index
INCR2
then, execute code for that session
GOTO SESSION $2
execute failure code-r-come here only ifGOTOfailed
MESSAGE Can't find session, please notify attendant!
END
................... SESSION I .

LABEL SESSION I
get date and time
GETDATE>$2
and identify beginning ofsession in logfile
APPENDNL +SESSION I $2

GETDATE>$2
output that we're done to control file, IDENTIFY THIS SESSION
APPENDNL -SESSION I $2
RETURN
................ SESSION 2·······..••
LABEL SESSION 2

Note-All data are appended as text to the end of the script file, with
special characters placed in a data line's first character position in order
to facilitate later data processing. The top code segment determines the
last session's index, increments the index, and performs a GOTO to the
next session's code. The CoverWindow module overlays the screen with
an opaque layer to mask out all operating system icons.

Three commands implement the mechanism for ar­
chiving to a data file comments and strings returned from
commands and module methods.The command LOG­
FILE is used to specify the file, Ifno filename argument
is given, the currently executing script file is used for all
subsequent data access. APPEND and APPENDNL are
used to append a string (without and with a newline char­
acter) to this data file,

Two additional commands allow experiments to pro­
ceed completely automatically. First, a means is neces­
sary for dividing a script file into sessions that are se­
quentially executed on different days. This is achieved by
the code segment in Listing I, which we include in each
subject's script file. First, RunScript determines the last
session executed by (1) reading the last line ofthe data file,
which must contain the index ofthe last session executed,
and (2) obtaining the session index from the line. The
GETLINE command (with special argument "last") re­
trieves the last line ofthe datafile, and GETWORD returns
the second word of that line (which specifies the session
number). Second, RunScript must be able to branch to the
code specifying the next session. This is achieved by the

GOTO command, which takes as argument the word
SESSION followed by the substituted, incremented ses­
sion index.

MODULE DEVELOPMENT PROTOCOLS

While script execution control and some user messag­
ing functions can easily be programmed using just the
core commands, any custom behavior must be added by
way of runtime-loadable modules. As argued above, de­
velopment ofcustom modules is substantially simplified
by the use of OOp' not only because the internal imple­
mentation details of each module are strictly isolated
from RunScript and other modules but also because a
module's main object inherits from a prototype object
that confers useful methods for interfacing to the Run­
Script application. Additionally, the establishment of
method-naming and variable-passing protocols brings
consistency to the RunScript scripting language and the
module development endeavor.

In this section, we discuss the rules for developing
new modules and present the most important features of
the prototype object, which is called RSClass. RSClass
methods are intended to supply commonly used func­
tions appropriate for many modules. The currently im­
plemented functions include sizing and moving windows
and other on-screen objects (using sizes and positions in
screen millimeters), setting important module parameters,
and sending error messages to the user. (It is straightfor­
ward to add additional methods to RSClass, although re­
compilation of all modules is subsequently required.)

A potential difficulty with using OOP for experiments
is that many modules can be expected to have internal
variables that need to be adjusted from the script file. In
our studies, for example, graphical object parameters, such
as window size and location, frequently need to be adjusted
from within a script. While it is certainly possible to write
script-accessible module methods that explicitly set such
parameters, it is more efficient to provide a general ser­
vice for modifying module variables. Thus, RSClass has
a built-in mechanism for allowing specially registered in­
ternal variables to be changed from the script.

Variables may be registered within module code by
using a one-line method call within the initialization code
of the module. (Currently, a simple method must also be
written to actually affect the change.) After registration,
that variable may be set, using its text name, by the script­
accessible method

@SomeModule setVar variableNarne variableValue

Text strings and any atomic variable types (such as char­
acter, integer, or floating point) may be set in this way.
While this variable-setting mechanism muddies the in­
terface between the RunScript core and custom modules,
the implementation ofsetVar is clean and straightforward,
and the module's interface specification document makes
it obvious which variables are registered.

In another attempt to enforce uniformity between mod­
ules, it is suggested that all RunScript modules implement
the following methods:

init initialization code executed only at load time

reinit code that returns the module to its initial
(default) state

suspend removes interface features from view, removes
stimuli

quit removes interface icons and operating system
connections

exe perform the primary function of the module
(execute)

free release resources in preparation for module
destruction

It is not currently possible to make more than one in­
stance of a module, since it is important that a given
module maintain its state between method invocations. If
necessary, RunScript will be extended to allow copies by
allocating a unique name to each copy.

MODULE DESCRIPTION

A number of modules have been developed so far, at
various levels ofgenerality. For illustrative purposes, sev­
eral of the more general-purpose modules are described
here in some detail. Our special-purpose modules, geared
toward our aUI studies, exhibit behaviors such as draw­
ing arbitrary configurations ofbuttons on the screen and
highlighting one of them (to determine how fast a sub­
ject can acquire the highlighted button), and interacting
with an external MC68000 microcomputer system for
real-time arbitrary signal generation.

The simplest general-purpose module, Random, re­
turns a pseudorandom floating-point number that lies be­
tween two limits given as argument. One use for this mod­
ule is to specify a random stimulus onset time interval.
Only one instruction is needed to generate and collect a
random number in a variable:

select a random float between 200 and 1000 ms
@Random exe 200.0 1000.0 > $5

A more complex module, RandStim, randomizes stim­
ulus order. An arbitrary number of independent factors
may be specified with the method setNumberFactors,
and the number of elements for each factor must then be
programmed with setNextFactor. The method randomize
tosses the die, and nextStim can then be iteratively used
during each trial to retrieve, without replacement, a string
that contains the choices (or indices) for each factor. The
script can archive this string to the data file, and pass it to
the module that will generate the stimulus.

Another function commonly required in an experi­
ment is display of a text document, and (possibly) input
ofa text response. TextPanel allows an arbitrary text doc­
ument (with interleaved images) to be displayed in a scroll­
able NEXTSTEP text window. A response box can be

RUN SCRIPT 319

used to collect from a subject a line of text (such as the
code password that activates the subject's personalized
script file). The positions and sizes of the window and
response box are registered variables that can be altered
from the script.

The Button module can be used for presenting visual
stimuli and collecting subject responses. The newButton
method initializes a new button, takes as argument the
position (in screen millimeters) and default text title, and
returns a unique button identifier that can be subsequently
used to change one of many attributes. Each button can
also display an arbitrary image. Display of all buttons is
deferred until the exe method is executed; this method re­
turns the button that was pushed by subjects and the (ap­
proximate) reaction time.

Finally, modules were developed for controlling a
two-button, two-lamp response box (ButtonBox) and for
obscuring the screen and disabling the menu system
(CoverWindow).

REACTION TIME MEASUREMENT

A common difficulty with using computers for real-time
experiments is that today's multitasking operating sys­
tems allocate computer resources among many different
computational processes, thereby introducing time lags
in individual programs that are unpredictable and over
which the user may have little control. Such time lags,
which can last hundreds ofmilliseconds or more, make it
difficult or impossible to take precisely timed measure­
ments. While some systems, including NEXTSTEP, have
built-in mechanisms to reduce such time lags, these
mechanisms are difficult to control and may not com­
pletely eliminate delays or may disallow using some of
the very features for which NEXT STEP was chosen in the
first place.

An alternative solution, which we have adopted on our
486 machines, is to use an internal counter/timer board
(CTR-CI05, Computer Boards, Inc., Mansfield, MA) to
time events. Since we are interested in measuring the re­
sponse time between when a graphical trigger occurs on
the video terminal (such as a button highlight) and when
the subject responds by clicking on a mouse button, we
have designed a simple circuit (shown in Figure 2) for
starting the stopwatch when a video event occurs and
stopping it when the mouse button is pushed. While the
binary "mouse-button pushed" signal was easily extracted
via a mouse-cable splice, detecting a video event was more
difficult. Our solution was to illuminate a small square
ofpixels at the screen's lower left corner in synchrony with
the video trigger event. By drawing both the trigger and
the square offscreen before video update, an interrupt can­
not intervene between display ofthe two objects. The out­
put ofa photocell positioned over these pixels was routed
through an analog comparator to detect onset of illumina­
tion. The resulting binary signal enabled the event timer,
and the subsequent mouse click disabled the timer. A
programmable-logic chip was used to implement the dig-

320 EBERHARDT, NEVEROV,AND HANEEF

+5V

200K

1--------1+

Photo­
transistor

20K
Threshold

LM311N

PAL22V10

Gate
(timer)

Figure 2. Reaction time measurement circuit detail. A group of pixels under­
lying a photocell is lit in synchrony with the graphical stimulus onset. This circuit
detects the event via a comparator and a programmable-logic chip, and the derived
binary trigger initiates counting on the internal CTR_CI05 timer/counter board
(Computer Boards, Inc., Mansfield, MA). Counting stops when the mouse button
is pressed.

ital functions of this circuit; the ABEL code is included
with the RunScript software as file timer.abl in the Timer
module source.

A Timer module interfaced a CTR-CI05 kernel driver
to RunScript. Methods to control the timer include arm
to initialize the stopwatch for a measurement, andgetTime
to retrieve the count in millisconds. The interval measure­
ment has a temporal resolution of I usee.

SUMMARY

RunScript, a platform for running real-time psycholog­
ical experiments, was developed in an effort to find a com­
promise between simplicity and generality. Simplicity is
obtained by controlling the behavior of the software via a
general-purpose text-based scripting language that sup­
ports both general core commands and commands speci­
fying the execution of custom (software) object module
methods. The object-oriented nature of the interfaces to
custom modules ensures simplicity. The system is very
general in that modules can be developed to perform al­
most any computer-based task. Custom module develop­
ment is simplified because new modules are built on a pre­
existing object framework that was designed to integrate
seamlessly with the core RunScript script interpreter.

The use of script files allows experiments to be easily
orchestrated and serves to document the precise sequence
ofevents ofan experiment, session by session. Indeed, as
long as peripherals do not need to be switched or recon­
figured between subjects, RunScript is capable of auto­
matically collecting a day's worth of data, from the time
the first subject "logs in" with a code that identifies his
or her script file until the last subject of the day leaves.

Documentation and subject impressions can also be au­
tomatically displayed and collected. By programming
RunScript to automatically collect and record results to
data files (complete with subjects' comments, date, and
time), the likelihood of human error is greatly reduced.

Script files can be structured in much the same way as
a high-level computer language, thereby reducing redun­
dancy and improving readability. Blocks of code com­
mon for all subjects, as well as complex module initial­
ization sequences, can be contained in subscript files that
function similarly to subroutines. Conditional program
execution based on variable values is possible, as is pro­
cessing ofpreviously collected data. Indeed, we have even
used RunScript to generate stimulus files and to process
data files.

The small core command set, which can be easily ex­
tended, cannot by itself run most experiments; it was de­
signed to be able to carry out common support functions
in executing an experiment. Significant effort was ex­
pended to ensure that the command set remained general
and independent of particular experimental paradigms.
Specific behavior is added by way of object modules
loaded and accessed at run time. While we recognize that
the development of new object modules is not a trivial
task, this mechanism allows virtually any functionality
to be added to RunScript.

So far, the philosophy underlying RunScript has proven
sound. As the number ofmodules grows, the complexity
ofmodule interactions has not become appreciably more
complex. On the contrary, efforts to keep modules and
built-in commands simple have paid offwell and have re­
sulted in several modules that are useful for most exper­
iments. Consistency within script method naming has

also simplified writing scripts and has rendered scripts
easily understandable, even a year later. However, we
recognize that the functionality we require of RunScript
exercises only a fraction of the gamut of experimental
paradigms, and we expect to extend the package as dictated
by our needs and, to an extent, those of other investiga­
tors wishing to adopt RunScript.

Availability
RunScript may be obtained from http://www.engin.

swarthmore.edu/-web/eberhardt/software.html.

REFERENCES

ANDERSON, D. E. (1995). Extensible programming: Beyond reusable
objects. Behavior Research Methods, Instruments, & Computers, 27,
131-133.

BUDD, T. (1991). An introduction to object-oriented programming.

RUNSCRIPT 321

Reading, MA: Addison-Wesley.
COHEN, A., LAMOUREUX, M. P., & DUNPHY, D. A. (1991). NeXT in

the psychology laboratory: An example of an auditory pattern track­
ing task. Behavior Research Methods, Instruments, & Computers, 23,
523-536.

DIXON, P.(1991). The promise of object-oriented programming. Behav­
ior Research Methods, Instruments, & Computers, 23, 134-141.

EBERHARDT, S. P.,NEVEROV, M., WEST, J. T., & SANDERS, C. (in press).
Force reflection for WIMPS: A button acquisition experiment. In
American Society ofMechanical Engineers Winter Annual Meeting
(Nov. 1997) Proceedings, Dynamic Systems and Control Volume.

GARFINKEL, S. L., & MAHONEY, M. K. (1993). NeXTSTEP program­
ming: Step one, object-oriented applications. SantaClara,CA: TELOS.

RATCLIFF, R. (1994). Using computers in empirical and theoretical work
in cognitive psychology. Behavior Research Methods, Instruments,
& Computers, 26, 94-106.

RITCHEY, T. (1995). Java! Indianapolis, IN: New Riders.

(Manuscript received January 24, 1996;
revision accepted for publication September 9, 1996.)

