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SUMMARY

In many scientific applications, arrays containing data are indirectly indexed through indirection arrays.
Such scientific applications are called irregular programs and are a distinct class of applications that
require special techniques for parallelization.

This paper presents a library called CHAOS, which helps users implement irregular programs on
distributed-memory message-passing machines, such as the Paragon, Delta, CM-5 and SP-1. The CHAOS
library provides efficient runtime primitives for distributing data and computation over processors; it
supports efficient index translation mechanisms and provides users high-level mechanisms for optimizing
communication. CHAOS subsumes the previous PARTI library and supports a larger class of applica-
tions. In particular, it provides efficient support for parallelization of adaptive irregular programs where
indirection arrays are modified during the course of computation. To demonstrate the efficacy of CHAOS,
two challenging real-life adaptive applications were parallelized using CHAOS primitives: a molecular
dynamics code, CHARMM, and a particle-in-cell code, DSMC.

Besides providing runtime support to users, CHAOS can also be used by compilers to automatically
parallelize irregular applications. This paper demonstrates how CHAOS can be effectively used in such a
framework. By embedding CHAOS primitives in the Syracuse Fortran 90D/HPF compiler, kernels taken
from the CHARMM and DSMC codes have been automatically parallelized.

KEY WORDS: distributed-memory multiprocessors; runtime compilation; adaptive irregular programs; parallelizing com-

pilers

INTRODUCTION

In recent years, distributed-memory parallel machines have been the popular target for the
development of scientific applications. Distributed-memory machines are popular because
their architectures are scalable, and they promise the most likely means of achieving teraflops
performance. However, the programming of current distributed-memory machines to get
good speedups and efficiency has proved to be cumbersome, since users must explicitly co-
ordinate data movements through low-level message-passing calls. To ease programming,
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there have been major efforts in developing programming languages, compiler support and
runtime support for distributed-memory machines.

Programming languages such as Fortran D,1 High Performance Fortran (HPF),2 and Vi-
enna Fortran3 allow users to program in the data-parallel framework, where the computation
is single threaded and structured in loosely synchronous phases. The user views memory
through a global name space. Compilers for these languages automatically partition data
across processors, distribute loop iterations, perform global to local translations, and produce
single program multiple data (SPMD) codes with appropriate embedded message-passing
calls. Runtime support provides optimized libraries for the compiler when performing the
common high-level tasks involved in parallelization, such as partitioning data, distributing
loop iterations, translating from global space to local name space and communicating data.
Thus the focus of much research has been the defining of languages that ease the task of the
programmer,1−3 and developing compiler4−6 and runtime support7 that allow the efficient
parallelization of codes written in these languages.

This paper addresses a particular class of scientific application programs, called irregular
programs, which require special runtime and compiler support for parallelization. Irregular
applications are characterized by the use of indirect indexing of data arrays. This means that
the data arrays are indexed through the values in other arrays, which are called indirection
arrays. The use of indirect indexing causes the data access patterns, i.e. the indices of the
data arrays being accessed, to be highly irregular, leading to difficulties in determining
communication requirements. Examples of irregular applications are found in unstructured
computational fluid dynamic solvers,8 molecular dynamics codes (CHARMM,9 AMBER,10

GROMOS,11 etc), diagonal or polynomial preconditioned iterative linear solvers,12 and
particle-in-cell (PIC) codes.13

Figure 1 illustrates a typical irregular loop. The data access pattern is determined by
indirection arrays, ia and ib. At runtime, once the data access pattern is known, a two-
phase inspector/executor strategy can be used to parallelize such a loop-nest.7 The loop in
Figure 1 is sometimes called a static irregular loop, since the data access pattern of the inner
loop (L2) remains unchanged throughout all iterations of the outer loop (L1). However, some
irregular applications are adaptive, in the sense that the data access patterns may change
during computation.

real x(max nodes), y(max nodes) ! data arrays
integer ia(max edges), ib(max edges) ! indirection arrays

L1: do n = 1, n step ! outer loop
L2: do i = 1, sizeof indirection arrays ! inner loop

x(ia(i)) = x(ia(i)) + y(ib(i))
end do

end do

Figure 1. An example with an irregular loop

This paper presents a new set of runtime procedures designed to efficiently implement
adaptive irregular programs on distributed-memory machines. This runtime library is called
CHAOS;14 it subsumes PARTI, a library aimed at static irregular programs.7,15 CHAOS
introduces two new features – light-weight schedules and efficient schedule generation,which
are usedul in certain types of adaptive programs. CHAOS has been used to parallelize two
challenging real-life applications – CHARMM, a molecular dynamics code and DSMC,16 a
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particle-in-cell code. Language support to enable compilers to generate efficient codes for
adaptive programs is also presented. The Syracuse Fortran 90D/HPF compiler4 was used
as a test-bed for the ideas presented in this paper.

ADAPTIVE IRREGULAR LOOP STRUCTURES

In adaptive irregular programs, such as adaptive fluid dynamics and molecular dynamics
codes, interactions between entities (mesh points, molecules, etc) change during computation
(due to mesh refinement or movement of molecules). Since interactions are specified by
indirection arrays, the adaptivity of irregular programs is represented by the frequency of
modification on indirection arrays.

Figure 2 illustrates the properties of loops found in molecular dynamics codes and un-
structured fluid dynamics codes. Here, multiple loops access the same data arrays but with
different access patterns. In loop L2 the data arrays x and y are indirectly accessed using
arrays ia and ib. In loop L3 the same data arrays are indirectly accessed using indirection
array ic. The data access pattern in loop L2 remains static, whereas the data access pattern
in loop L3 changes whenever the indirection array ic is modified. The adaptivity of the
loop is controlled by the conditional statement S.

L1: do n = 1, nsteps ! outer loop
L2: do i = 1, sizeof indirection arrays ! inner loop

x(ia(i)) = x(ia(i)) + y(ia(i)) * y(ib(i))
end do

S: if (required) then ! under certain conditions
regenerate ic(:) ! indirection array may change

L3: do i = 1, sizeof ic inner loop
x(ic(i)) = x(ic(i)) + y(ic(i))

end do
end do

Figure 2. A code that adapts occasionally

do i = 1, rows
do j = 1, size(i) ! size(i) is the number of elements in the ith row
new data(icell(i,j), next(icell(i,j))) = data(i,j)
next(icell(i,j)) = next(icell(i,j)) + 1

end do
end do

Figure 3. Example of data movement in a particle-in-cell code

In other applications, such as DSMC and PIC codes, data access patterns and computa-
tional load change frequently. Thus, data arrays may need to be reshuffled or frequently
redistributed to relocate moving particles and to maintain load balance. For such appli-
cations, efficient runtime support to perform particle migration and data redistribution is
necessary. A typical loop for performing such data movement is shown in Figure 3. Here,
elements are moved across the rows of a two-dimensional array based on the information
provided in indirection array icell. The elements of array data are shuffled and stored
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Figure 4. Data movement in a particle-in-cell code

in array new data. While the total number of rows remains the same after the shuffle, the
size of individual rows may not. At the programming-language level this process can be
viewed as the first dimension being statically distributed while the second dimension is
compressed. Here, elements migrate across the first dimension. Figure 4 shows an example
of such data movement. Usually, the order in which elements append to new rows is not
strictly maintained since the order of computation over these elements does not matter. By
taking advantage of this property efficient runtime procedures for fast data migration have
been developed.

RUNTIME SUPPORT

This section presents a brief overview of the CHAOS runtime support library, a superset
of the PARTI library, and describes the new features, light-weight schedules and two-phase
schedule generation, which are designed to handle adaptive irregular programs.

Overview of CHAOS

The CHAOS runtime library has been developed to efficiently handle irregular programs.
The library is designed to ease the implementation of computational problems on parallel
architecture machines by relieving users of low-level machine specific issues. Solving such
irregular problems on distributed memory machines using CHAOS runtime support involves
six major phases (Figure 5). The first four phases concern mapping data and computations
onto processors. The next two steps concern analyzing data access patterns in loops and
generating optimized communication calls. Detailed description of these phases can be
found in Reference 17.

In static irregular programs, Phase F is typically executed many times, while phases A
through E are executed only once. In some adaptive programs where data access patterns
change periodically but reasonable load balance is maintained, phase E must be repeated
whenever the data access patterns change. In highly adaptive programs, the data arrays may
need to be repartitioned in order to maintain load balance. In such applications, all the
phases are repeated.
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Phase A : Data Partitioning Assign elements of data arrays to processors

Phase B : Data Remapping Redistribute data array elements

Phase C : Iteration Partitioning Allocate iterations to processors

Phase D : Iteration Remapping Redistribute indirection array elements

Phase E : Inspector Translate indices; Generate schedules

Phase F : Executor Use schedules for data transportation;
Perform computation

Figure 5. Solving irregular problems

Two-phase schedule generation

A communication schedule is used to fetch off-processor elements into a local buffer
before computation phase, and to scatter these elements back to their home processors after
the computational phase is completed. Communication schedules determine the number of
communication startups and the volume of communication. Therefore, it is important to
optimize the schedule generation.

The basic idea of the inspector/executor concept is to hoist preprocessing outside the loop
as much as possible so that it need not be repeated unnecessarily. In adaptive codes where
the data access pattern occasionally changes, the inspector is not a one-time preprocessing
cost. Every time an indirection array changes, the schedules associated with it must be
regenerated. For example, in Figure 6, if the indirection array ic is modified, the schedules
inc sched c and sched c must be regenerated. Generating inc sched c involves inspecting
sched ab to determine which off-processor elements are duplicated in that schedule. Thus,
it must be certain that communication schedule generators are efficient while maintaining
the necessary flexibility.

In CHAOS, the schedule-generation process is carried out in two distinct phases.

1. The index analysis phase examines the data access patterns to determine which refer-
ences are off-processor, removes duplicate off-processor references by only keeping
distinct references in hash tables, assigns local buffer for off-processor references, and
translation global indices to local indices.

2. The schedule generation phase generates communication schedules based on the in-
formation stored in hash tables.

The communication schedule for processor p stores the following information:

1. send list – a list of arrays that specifies the local elements of a processor p required
by all processors,

2. permutation list – an array that specifies the data placement order of off-processor
elements in the local buffer of processor p,

3. send size – an array that specifies the sizes of out-going messages of processor p to
all processors, and
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L1: do n = 1, nsteps ! outer loop
call gather(y(begin buff), y, sched ab) ! fetch off-proc data
call zero out buffer(x(begin buff), offp x) ! initialize buffer

L2: do i = 1, local sizeof indir arrays ! inner loop
x(local ia(i)) = x(local ia(i))

+ y(local ia(i)) * y(local ib(i))
end do

S: if (required) then
modify part ic(:) ! ic is modified
CHAOS clear mask(hashtable, stamp c) ! clear ic
local ic(:) = part ic(:)
stamp c = CHAOS enter hash(local ic) ! enter new ic
inc sched c = CHAOS incremental schedule(stamp c) ! incremental sched
sched ac = CHAOS schedule(stamp a, stamp c) ! sched for ia, ic

endif

call gather(y(begin buff2), y, inc sched c) ! incremental gather
call zero out buffer(x(begin buff2), offp x2) ! initialize buffer

L3: do i = 1, local sizeof ic ! inner loop
x(local ic(i)) = x(local ic(i)) + y(local ic(i))

end do
call scatter add(x(begin buff), x, sched ac) ! scatter addition

end do

Figure 6. Schedule generation for an adaptive program

4. fetch size – an array that specifies the sizes of in-coming messages to processor p
from all processors.

The principal advantage of such a two-step process is that some of the index analysis
can be reused in adaptive applications. In the index analysis phase, hash tables are used
to store global to local translation and to remove duplicate off-processor references. Each
entry keeps the following information:

1. global index – the global index hashed in,
2. translated address – the processor and offset where the element is stored; this infor-

mation is accessed from the translation table,
3. local index – the local buffer address assigned to hold a copy of the element, if it is

off-processor, and
4. stamp – an integer used to identify which indirection array entered the element into

the hash-table. The same global index entry might be hashed in by many different
indirection arrays; a bit in the stamp is marked for each such entry.

Stamps are very useful when implementing adaptive irregular programs, especially for those
programs with several index arrays in which most of them are static. In the index analysis
phase, each index array hashed into the hash table is assigned a unique stamp that marks all
its entries in the table. Communication schedules are generated based on the combination
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Initial    distribution   of  data   arrays

     stamps
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Figure 7. Schedule generation with hash table

of stamps. If any one of the index arrays changes, only the entries pertaining to the index
array, i.e. those entries with the stamp assigned for the index array, have to be removed
from the hash table. Once the new index array is hashed into the hash table, a new schedule
can be generated without rehashing other index arrays.

Figure 6 illustrates how CHAOS primitives (in pseudo-code) are used to parallelize the
adaptive problem. The conditional statement S may modify the indirection array ic. When-
ever this occurs, the communication schedules that involve prefetching references of ic

must be modified. Since the values of ic in the hash table are no longer valid, the entries
with stamp stamp c are cleared by calling CHAOS clear mask(). New values of ic are
then entered into the hash table by CHAOS enter hash(). After all indirection arrays have
been hashed in, communication schedules can be built for any combination of indirection
arrays by calling CHAOS schedule() or CHAOS incremental schedule() with an appropriate
combination of stamps.

An example of schedule generation for two processors with sample values of indirection
arrays ia, ib, and ic is shown in Figure 7. The global references as the result of the
indirection array ia are stored in hash table H with stamp a, ib with stamp b and ic

with stamp c. The indirection arrays might have some common references. Hence, a hashed
global reference might have more than one stamp. The gather schedule sched ab for the
loop L2 in Figure 6 is built using the union of references with time stamps a or b. The
scatter operation for loop L2 can be combined with the scatter operation for the loop L3.
The gather schedule inc sched c for loop L3 is built with those references that have time
stamp c alone because references with time stamps a or b as well as with c can be fetched
by using the schedule sched ab. The scatter schedule for loops L2 and L3 is built using the
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union of references with time stamps a and c.
PARTI, the runtime library that preceded CHAOS, also had support for building incremen-

tal and merged schedules.18 However, in PARTI, such schedules were built using specialized
functions for these purposes. The CHAOS library restructures the schedule generation pro-
cess and by the using a global hash table provides a uniform interface for building all types
of schedules. Such a uniform interface is easier to use for both users and compilers that
automatically embed CHAOS schedule generation calls.

Light-weight schedules

In certain highly adaptive problems, such as those using particle-in-cell methods, data
elements are frequently moved from one set to another during the course of the computa-
tion. The implication of such adaptivity is that preprocessing for a loop must be repeated
whenever the data access pattern of the loop changes. In other words, previously built
communication schedules cannot be reused and must be rebuilt frequently.

In such applications a significant optimization in schedule generation can be achieved
by recognizing that the semantics of set operations imply that elements can be stored
in sets in any order. This information can be used to build much cheaper light-weight
communication schedules. During schedule-generation, processors do not have to exchange
the addresses of all the elements they will be accessing with other processors, they only
need to exchange information about the number of elements they will be appending to each
set. This greatly reduces the communication costs in schedule generation. A light-weight
schedule for processor p stores the following information:

1. send list – a list of arrays that specifies the local elements of processor p required by
all processors,

2. send size – an array that specifies the out-going message size of processor p to all
processors, and

3. fetch size – an array that specifies the in-coming message size of processor p from all
processors.

Thus, light-weight schedules are similar to the previously described schedules except that
they do not carry information concerning data placement order in the receiving processor.
While the cost of building a light-weight schedule is less than that of regular schedules, a
light-weight schedule still provides the same communication optimizations of aggregating
and vectorizing messages.18

EXPERIMENTAL RESULTS

This section presents the computational structures and performance of two adaptive ir-
regular application programs: (1) a molecular dynamics code – Chemistry at HARvard
Macromolecular Mechanics (CHARMM), and (2) a particle-in-cell code – direct simulation
Monte Carlo (DSMC). These two application programs are ported to distributed-memory
machines using CHAOS primitives. The application code CHARMM adapts occasionally,
whereas the application code DSMC adapts frequently. Experimental results are presented
for these two parallelized programs on the Intel iPSC/860 machine.
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CHARMM

Overview

CHARMM is a program that calculates empirical energy functions to model macromolec-
ular systems. The purpose of CHARMM is to derive the structural and dynamic properties
of molecules using the first- and second-order derivative techniques.9

The computationally intensive part of CHARMM is the molecular dynamics simulation.
It simulates the dynamic interactions among all atoms in the system for a period of time.
For each time step, the simulation calculates the forces between atoms, the energy of the
whole structure, and the movements of atoms by integrating Newton’s equations of motion.
It then updates the new spatial positions of the atoms. The positions of the atoms are fixed
during the energy calculation; however, they are updated when the spatial displacement as
the result of force are calculated.

The loop structures of molecular dynamics simulations is shown in Figure 8. The phys-
ical values associated with atoms, such as velocity, force and displacement are accessed
using indirection arrays (IB, JB, etc). The energy calculations in the molecular dynamics
simulations comprises two types of interactions – bonded and non-bonded.

Bonded forces exist between atoms connected by chemical bonds. CHARMM calculates
four types of bonded forces – bond potential, bond angle potential, dihedral angle (torsion)
potential, and improper torsion. These forces are short-range, i.e. forces existing between
atoms that lie close to each other in space. Bonded interactions remain unchanged during
the entire simulation process because the chemical bonds of structures do not change. The
complexity of bonded forces calculations is nearly linear to the number of atoms because
each atom has a finite number of bonds with other atoms.

Non-bonded forces are the van der Waals interactions and electrostatic potential between
all pairs of atoms. The time complexity of non-bonded forces calculations is O(N2) because
each atom interacts with all other atoms in the system. When simulating large molecular
structures, CHARMM approximates this calculation by ignoring all interactions beyond a
certain cutoff point. This approximation is done by generating a non-bonded list, array JNB,
which contains all pairs of interactions within the cutoff point. The spatial positions of the
atoms change after a time step, consequently, the same set of atoms may not be included
in subsequent time steps. Hence, a new non-bonded list must be generated. However, in
CHARMM, the user has control over non-bonded list regeneration frequency.

Parallelization approach

Data partition. Spatial information is associated with each atom. Bonded interactions
occur between atoms in close proximity to each other. Non-bonded interactions are excluded
beyond a certain cutoff point. Additionally, the amount of computation associated with an
atom depends on the number of atoms with which it interacts – the number of JNB entries
for that atom. The way in which the atoms are numbered frequently does not have a useful
correspondence to the interaction pattern of the molecule. A naı̈ve data distribution such as
BLOCK or CYCLIC may result in a high volume of communication and poor load balance.
Hence, data partitioners such as recursive coordinate bisection (RCB)19 and recursive inertial
bisection (RIB),20 which use spatial information as well as computational load, are good
candidates to partition atoms over processors. Note that all data arrays that are associated
with atoms are distributed in an identical manner.

Iteration partition. Once the atoms are partitioned, the distribution is used to decide how
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L1: DO N = 1, nsteps
Regenerate non-bonded list if required
...

C Bonded Force Calculations
L2: DO I = 1, NBONDS

Calculate force between atoms IB(I) and JB(I)
END DO

L3: DO I = 1, NANGLES
Calculate angle potential of atoms IT(I), JT(I), and KT(I)

END DO
...

C Non-Bonded Force Calculation
L4: DO I = 1, NATOMS

DO J = INBLO(I)+1, INBLO(I+1)
Calculate force between atoms I and JNB(J)

END DO
END DO
Integrate Newton’s Equations and Update Atom Coordinates

END DO

Figure 8. Molecular dynamics simulation code from CHARMM

loop iterations are partitioned among processors. Each iteration of bonded force calcula-
tions is assigned to the processor that has the maximum number of local distributed array
elements. If the choice of processor is not unique, the processor with the lowest computa-
tional load is chosen primarily to reduce off-processor accesses. Bonded force calculations
consume about one per cent of the total execution time for energy calculation. Non-bonded
calculations consume 90 per cent of the execution time. Hence, balancing the computational
load that results from non-bonded calculations is of primary concern. To balance load, the
non-bonded force calculation pertaining to an atom is assigned to the processor that owns
the particular atom since the atoms are distributed using both geometrical and computational
load information. Hence, each iteration of the outer loop is assigned to the processor that
owns the atom.

Remapping and loop preprocessing. Once the new distributions of data and loop iterations
are known, CHAOS primitives can be used to remap the data and indirection arrays from
the current distributions to new distributions. After remapping, loop preprocessing is carried
out to translate global references to local ones and to generate communication schedules
for exchanging data among processors.

Indirection arrays used in bonded force calculation loops remain unchanged while the non-
bonded list adapts during computation. Hence, preprocessing for bonded force calculation
loops need not be repeated, whereas it must be repeated for non-bonded force calculation
loops whenever the non-bonded list changes. In this case, the hash table and stamps are
very useful for loop preprocessing. While building schedules, indirection arrays are hashed
with unique time stamps. The hash table is used to remove any duplicate off-processor
references. When the non-bonded list is regenerated, non-bonded list entries in the hash
table are cleared with the corresponding stamp. Then the same stamp can be reused and the
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new non-bonded list entries are hashed with the reused stamp.

Performance

The performance of molecular dynamics simulations was studied with a benchmark case
(MbCO + 3830 water molecules) on the Intel iPSC/860. It ran for 1000 steps with 40
non-bonded list updates. The cutoff for non-bonded list generation was 14 Å. The non-
bonded list was regenerated 40 times during the simulation. The results are presented in
Table I. The RCB partitioner was used to partition atoms. The execution time includes
the energy calculation time and communication time of each processor. The computation
time was the average of the computation time of dynamics simulations over processors;
the communication time was the average communication time. The load balance index was
calculated as

(maxni=1 computation time of processor i) × (number of processors n)
∑n

i=1 computation time of processor i

The results showed that CHARMM scaled well and that good load balance was maintained
up to 128 processors.

Table I. Performance of parallel CHARMM on Intel iPSC/860 (in seconds)

Number of processors 1 16 32 64 128

Execution time 74,595·5∗ 4356·0 2293·8 1261·4 781·8

Computation time 74,595·5 4099·4 2026·8 1011·2 507·6

Communication time 0·0 147·1 159·8 181·1 219·2

Load balance index 1·00 1·03 1·05 1·06 1·08
∗ Estimation done by Brooks and Hodošček.21

Overheads of preprocessing. Data and iteration partitioning, remapping, and loop prepro-
cessing, must be done at runtime. Preprocessing overheads of the simulation are shown in
Table II. The data partition time is the execution time of RCB. After partitioning atoms, the
non-bonded list is regenerated. This non-bonded list regeneration was performed because
atoms were redistributed over processors and it was done before simulation occurred. In
Table II, the regeneration time is shown as non-bonded list generation time.

During simulation, the non-bonded list was periodically regenerated. When the non-
bonded list is updated, the schedule must be regenerated. The schedule regeneration time
in Table II gives the total scheduled regeneration time for 40 non-bonded list updates. By
comparing these numbers to those in Table I, it can be observed that the preprocessing
overhead is relatively small compared to the total execution time.

Schedule merging against multiple schedules. There are several indirection arrays used
in bonded and non-bonded force calculations to reference data arrays that are distributed
in identical fashion. One possible approach is to compute a separate schedule to gather
and scatter off-processor data for each irregular loop. A second approach is to compute a
single schedule using the schedule merging technique. Table III compares the performance
of these techniques and demonstrates the usefulness of schedule merging.



608 Y.-S. HWANG ET AL

Table II. Preprocessing overheads of CHARMM (in seconds)

Number of processors 16 32 64 128

Data partition 0·27 0·47 0·83 1·63

Non-bonded list update 7·18 3·85 2·16 1·22

Remapping and preprocessing 0·03 0·03 0·02 0·02

Schedule generation 1·31 0·80 0·64 0·42

Schedule regeneration (×40) 43·51 23·36 13·18 8·92

Direct simulation Monte Carlo

This section presents an example of a highly adaptive code, DSMC code. It is similar to PIC
codes in that it tries to simulate the physics of flows directly through Lagrangian movement
and particle interaction. The fundamental structure of the computational requirements of
DSMC methods is described along with the parallelization strategy using CHAOS runtime
support. The performance results of two-dimensional and three-dimensional DSMC codes
on the Intel iPSC/860 hypercube are also presented.

Overview

The DSMC method is a technique for computer modeling a gas by a large number of sim-
ulated molecules. It features highly efficient movement and collision handling of simulated
molecules on a spatial flow field domain overlaid by a Cartesian mesh.22 The spatial location
of each molecule is associated with a Cartesian mesh cell. Physical quantities such as the
velocity components, rotational energy and position coordinates are associated with each
molecule and are modified with time as the molecules are concurrently followed through
representative collisions and boundary interactions in simulated physical space.

Changes in position coordinates may cause molecules to move between cells. The cost
of transmitting molecules among cells can be significant on distributed-memory parallel
computers since a substantial number of molecules migrate in each time step, and each
molecule is usually associated with several bytes of data. Moreover, since data associated
with the molecules need to be reshuffled in order to accommodate the moved molecules
within each processor’s local memory, new indirect access patterns are regenerated every
time step. Applications that have characteristics like the DSMC computation require runtime
support that provides

1. efficient data transportation mechanisms for particle movement, and
2. fast dereferencing mechanisms to identify the destination processors of the moved

particles.

Table III. Communication time (in seconds)

Schedule merging Multiple schedules

Number of processors Comm. time Exec. time Comm. time Exec. time

16 147·1 4356·0 182·1 4427·5

32 159·8 2293·8 201·0 2364·2

64 181·1 1261·4 223·2 1291·9

128 219·2 781·8 253·1 815·2
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Figure 9. Structures of three-dimensional DSMC computation

Furthermore, such molecule movement may lead to fluctuation in work load distribution
among processors. The problem domain may need to be repartitioned frequently in order
to balance the work load. This characteristic raises an issue of load balance and requires

1. effective domain partitioning methods, and
2. good policy for domain re-partitioning decisions.

Parallelization approach

Figure 9 depicts the fundamental structure of a typical DSMC computation along with its
parallelized version. In the COLLIDE phase, molecules within each cell collide with each
other and update their positions. If the arrays associated with molecules are distributed using
a regular data distribution scheme then there can be a significant amount of communication
in this phase in bringing the molecule-data from the home processor to the cell that owns it
and moving it back after the collision phase. Instead, the molecule arrays can be redistributed
every time step such that the molecule data are owned by the same processor as the cell in
which the molecule lies. The key component of this redistribution is the MOVE procedure
which calculates the new positions of molecules and moves them to the proper cells in the
global address space. When a DSMC code runs on distributed-memory parallel machines,
the MOVE procedure requires information exchange among participating processing nodes.
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Two new procedures are appended to deal with molecule movement and cell partitioning
for load balance. Procedure TRANSFER carries out actual communication to exchange data
associated with moved molecules using the CHAOS adaptive data migration primitives.
When it is needed to repartition cells to achieve better load balance, procedure REMAP
invokes a domain partitioner that may be chosen by the user, and redistributes cell-based
distributed arrays according to a new partition of cells.

Efficient data migration. Communication optimization is crucial for the optimal perfor-
mance of the TRANSFER and REMAP procedures. The regular communication schedules,
such as those used in CHARMM offer highly communication-optimizing strategies to ex-
change off-processor data. However, in applications such as DSMC, the data movement
is quite different from that in CHARMM. Firstly, the data movement can be viewed as a
redistribution of the molecule arrays, rather than a data-copying. Secondly, because this is
a redistribution of molecules, the order in which the molecules are placed locally in each
processor is not important. In such cases, the light-weight schedules can be used to transport
data, at much lower overheads than regular communication schedules, which have to ensure
the proper ordering of communicated data.

Remapping for load balancing. DSMC codes can be characterized by statistical calcula-
tions carried out involving particles associated with each cell. Particles move to new cells as
a result of calculations, and cells are partitioned over the processing nodes. The combination
of these characteristics may lead to system performance deterioration over time when the
problem domain is partitioned statically. The performance of the three-dimensional DSMC
code can be improved by periodic redistribution of computational load with the help of
partitioners such as RCB and RIB. A chain partitioner23,24 is also used to take advantage of
the highly directional nature of particle flow that characterizes some DSMC communication
patterns. In the experiments reported here, more than 70 per cent of the molecules move
along the positive x-axis. This property allows us to use a very fast one-dimensional par-
titioner. Experiments show that the chain partitioner dramatically reduces partitioning cost
to a scale that is conformable to adaptive data migration primitives. It also nearly achieves
the same quality of load balance when compared with recursive bisections.

Performance results

Table IV compares the execution time of two-dimensional DSMC code using the light-
weight schedules with the time obtained using the regular communication schedules. In this
experiment, molecules were evenly distributed over the whole domain, so load balance was
not an issue. Regular communication schedules performed much worse than light-weight
schedules for two reasons. Firstly, the overhead of building regular schedules is much
higher than that of constructing light-weight schedules. This is because regular schedules
need to keep track of the ordering of incoming data, whereas light-weight schedules only

Table IV. Regular schedules against light-weight schedules

(Time in seconds) 48x48 cells 96x96 cells

Number of processors 16 32 64 128 16 32 64 128

Regular schedules 63·74 50·50 79·58 95·50 226·89 131·99 125·64 118·89

Light-weight schedules 20·14 11·54 7·60 6·77 79·89 40·46 21·77 14·23
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need to keep track of the amount of incoming data, not their local ordering. This extra
overhead must be borne during every iteration. Secondly, the version of DSMC using regular
schedules assumes a static distribution of the arrays containing molecule information. As
molecules move across cells, maintaining the original distribution causes a large amount of
communication in the COLLIDE phase where off-processor molecules lying in the cell must
be gathered, collided and scattered back to their home processors. In contrast, the light-
weight schedule version of the code redistributes the molecule arrays so that molecules are
always aligned with the cells they fall in, ensuring that the COLLIDE computation is local.

Table V. Performance effects of remapping (remapped every 40 time steps)

Number of processors Sequential

(Time in seconds) 8 16 32 64 128 code

Static partition 1161·69 675·75 417·17 285·56 215·06 4857·69

Recursive bisection 850·75 462·15 278·23 209·75 267·24

Chain partition 807·19 423·50 237·12 154·39 127·26

Periodic data remapping provides better performance compared with that of static parti-
tioning. Experiments performed with the three-dimensional DSMC code on 128 processors
have revealed that the degree of load imbalance does not exceed 30 per cent of perfect
load balance, whereas static partitioning exceeds 400 per cent. Table V compares the per-
formances of periodic domain partitioning methods with that of static partitioning (i.e. no
remapping), for three-dimensional DSMC codes. The domain is re-partitioned every 40 time
steps based on the workload information collected for each Cartesian mesh cell. The table
presents execution time for 1000 time steps. The results show that the repartitioning method
significantly outperforms static partitioning on a small number of processors. However, us-
ing a recursive inertial bisection partitioner leads to performance degradation on a large
number of processors. The net result of this method is a poorer performance than that of
the static partitioning. This performance degradation is a result of the large communication
overhead that increases as the number of processors increases. The chain partitioner, on the
contrary, provides better results for this problem.

COMPILING ADAPTIVE IRREGULAR PROGRAMS

There are a wide range of languages, such as Fortran D,1 HPF,2, pC++,25 and Vienna
Fortran,3 which provide a rich set of directives allowing users to specify desired data
decompositions. With these decomposition directives, compilers can partition loop iterations
and generate the communication required to parallelize programs. This paper presents the
language features required to support adaptive problems within the Fortran D framework.
However, the same could be extended for other languages. In the following sections, the
existing Fortran D language support and the proposed language extensions for adaptive
problems are discussed.

Language support

On distributed-memory machines, large data arrays need to be partitioned over the local
memory of processors. These partitioned data arrays are called distributed arrays. Many
applications can be efficiently implemented by using simple schemes for mapping distributed
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arrays. One example of such a scheme would be the division of an array into equal-sized
contiguous subarrays and the assignment of each subarray to a different processor. Another
example would be to consecutively assign indexed array elements to processors in a round-
robin fashion. These two data distribution schemes are often called BLOCK and CYCLIC
distributions,2 respectively.

Irregular distribution

On distributed-memory machines, irregular concurrent problems may not run efficiently
with standard data distributions such as BLOCK and CYCLIC.26−28 Researchers have devel-
oped a variety of heuristic methods to obtain data mappings that are designed to optimize
irregular problem communication requirements.26−32 The distribution produced by these
methods typically results in a table that lists a processor assignment for each array element.
This kind of distribution is often called an irregular distribution.

Fortran D provides the user with a choice of several standard distributions. In addition,
a user can define non-standard distributions, or irregular distributions as well. In Figure 10
we present an example of such a Fortran D declaration. In Fortran D, one declares a
template called a distribution that is used to characterize the significant attributes of a
distributed array. The distribution fixes the size, dimension and way in which the array is to
be partitioned between processors. A distribution is produced using two declarations. The
first declaration is DECOMPOSITION. Decomposition binds a name to the dimensionality
and size of a distributed array template. The second declaration is DISTRIBUTE. Distribute
is an executable statement and specifies how a template is to be mapped onto the processors.

S1 REAL∗8 x(N),y(N)
S2 INTEGER map(N)
S3 DECOMPOSITION reg(N),irreg(N)
S4 DISTRIBUTE reg(block)
S5 ALIGN map with reg
S6 . . . set values of map array using some mapping method . . .
S7 DISTRIBUTE irreg(map)
S8 ALIGN x,y with irreg

Figure 10. Fortran D irregular distribution

A specific array is associated with a distribution using the Fortran D statement ALIGN.
In statement S3 of Figure 10, two one-dimensional decompositions, each of size N, are
defined. In statement S4, decomposition reg is partitioned into equally-sized blocks, with
one block assigned to each processor. In statement S5, array map is aligned with distribution
reg. Array map will be used to specify (in statement S7) how distribution irreg is to
be partitioned between processors. An irregular distribution is specified using an integer
permutation array map; when map(i) is set equal to p, element i of the distribution irreg

is assigned to processor p. A data partitioner can be invoked to set the values of the
permutation array. However, the partitioner may not always be available in Fortran D. In
such cases, it can be called an extrinsic procedure.
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Computational loop structures

The implementation of the FORALL construct in Fortran D follows copy-in-copy-out
semantics—loop-carried dependencies are not defined. In this implementation, loop-carried
dependencies that arise as the result of reduction operations are defined. Reduction op-
erations are specified in a FORALL construct using the Fortran D REDUCE construct.
Reduction inside a FORALL construct is important for representing computations such as
those found in sparse and unstructured problems. This representation also preserves the
explicit parallelism available in the underlying computations. Figure 11 shows how the
reduction in Figure 1 would be written within this framework.

L1: DO i=1, n step ! outer loop
L2: FORALL i=1, size of indirection arrays ! inner loop
S1 REDUCE(SUM, x(ia(i)),y(ib(i)))

END DO
END DO

Figure 11. Example reduction loop in Fortran D

Reduce append

In highly adaptive codes, the data access patterns change frequently. Figure 3 shows an
example of such a code. Elements of the two-dimensional array data are moved across rows
based on the indirection array icell. When these programs are executed on distributed-
memory machines, array elements will be moved across processors based on the distribution
of rows of the two-dimensional array data.

In some programs, such as DSMC, the computational results after such inter-row data
movement do not depend on the ordering of elements in each row, and hence the data place-
ment order need not be strictly maintained. The computation only depends on the number
of elements in each row and the values of those elements. Therefore, the data movement
operation can be implemented by appending each element into an array that is being log-
ically used as an unordered list. Since an operation that adds elements to unordered lists
is associative and commutative, this process of appending elements can be viewed as a
reduction operation. A reduction is defined as an accumulation of elements of a vector,
where the accumulating operation performed on each element is associative and commuta-
tive (e.g. summing the elements of a vector). In a loop that performs a reduction, the output
dependencies between different iterations can be ignored, thus enabling parallelization.

Recognizing that a particular data movement is a reduction operation can lead to signifi-
cant optimizations. It is possible with the existing compiler techniques to compile irregular
loops where data access patterns are known only at runtime because of indirections,6 pro-
vided the computation inside the loop is known to be a reduction. For such loops, the com-
piler generates a preprocessing code that at runtime generates appropriate communication
calls and places off-processor data in a pre-determined order. However, current techniques
do not automatically detect reductions in data movement, such as that in Figure 3.

In order to allow compilers to detect reduction in data movement, an intrinsic function
called reduce(append,. . . ) is proposed, which is like the Fortran D reduce intrinsics. This
intrinsic function will direct the compiler to adopt the appropriate data moves (i.e. to
use light-weight schedules). Thus, while parallelizing the loop in Figure 3, a user with
application specific knowledge can recognize that the loop is a reduction and can convey
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this information to compilers using the proposed intrinsic. Figure 12 shows how such an
intrinsic would be used for the loop shown in Figure 3.

FORALL i=1, rows
FORALL j=1, size(i) !size(i) is the number of elements in the ith row
REDUCE(APPEND, new data(ia(i,j),:),data(i,j))

END DO
END DO

Figure 12. Example of a reduce append loop in Fortran D

!HPF$ TEMPLATE rowtemp(rows)
!HPF$ DISTRIBUTE rowtemp (BLOCK)
!HPF$ ALIGN with rowtemp::data(:,*), new data(:,*),ia(:,*),

. mask(:,*),bit(:,*),size(:), new size(:)
real, allocatable(rows,:)::new data

C Mask off array elements which do not store data and
compute the number of elements which will be stored in new rows

L1: forall(i=0:rows,j=1:max size)mask(i,j)=(j≤size(i))
L2: forall(i=0:rows,j=1:max size,mask)bit(i,j)=1
L3: forall(i=0:rows)new size(i)=0
S1: new size=sum scatter(bit,new size,ia,mask)

C Allocate memory for new rows and perform data movement
S2: max size=maxval(new size)
S3: allocate(new data(rows,max size))
S4: new data=list scatter(data,new data,ia,mask)

Figure 13. Example of a reduce append operation in HPF

Relationship to HPF

While the Fortran D system has been used to demonstrate the runtime techniques, the same
techniques can be used by other compilers as well. This section presents how the techniques
could be extended to HPF.

The current version of HPF (HPF-1) does not support distributions other than standard
BLOCK and CYCLIC distributions. However, HPF can indirectly support such distribu-
tions using the data reordering technique, which has recently been successfully implemented
by researchers to parallelize their applications.33,34 In their approach, the effect of a non-
standard distribution is achieved while maintaining BLOCK distribution by first obtaining
the non-standard distribution using a domain partitioner and then renumbering the array
elements. Those functions that partition domains and renumber array elements can be in-
corporated into HPF programs as extrinsic procedures.

For each reduction operation, HPF introduces a combining-scatter function.2 For instance,
the sum scatter function in the statement S1 in Figure 13 accumulates values of unmasked
elements of a two-dimensional array bit to a one-dimensional array new size the particular
offsets of which are determined by a two-dimensional indirection array ia. In this particular
example, since the values of the unmasked elements of bit are one, each element of the
new size is assigned the number of unmasked elements in each row of the bit array.
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The reduce append operation can also be extended to HPF in the same way as the
sum scatter function. Since the reduce append operation is associative and commutative,
it can be considered as a new extrinsic reduction operation. The list scatter function in
statement S4 in Figure 13 is the combining-scatter function for the reduce append operation.
The list scatter function adds elements of its operand to an unordered list in random order.
In this example, the list scatter function takes the elements of a source array data and
appends them into rows of a destination array new data as determined by an indirection
array ia. It should be noted that since the sizes of the unordered lists (i.e. the sizes of the
rows of the destination array new data) are determined by the indirection array ia they
are known only at runtime. Therefore the destination operand needs to be an array that has
the ALLOCATABLE attribute or POINTER attribute in order to store varying numbers of
elements by dynamically allocating memory. Statements S2 and S3 are responsible for the
dynamic memory allocation.

Compiler implementation

This section presents an outline of the compiler transformations used to handle irregular
templates that appear in CHARMM and DSMC. The runtime support has been incorporated
in the Fortran 90D compiler that is being developed at Syracuse University.4 The Fortran
90D compiler generates codes that the CHAOS procedures are embedded in the translated
codes. The performance of the compiler-generated codes is compared with that of the hand-
parallelized versions. All measurements were done on the Intel iPSC/860 machine.

CHARMM

The non-bonded force calculation loop is computationally intensive and also adapts every
few time steps. A simplified Fortran D version of the non-bonded force calculation loop is
shown in Figure 14. The non-bonded list jnb is used to address the coordinate arrays (x
and y) and the displacement arrays (dx and dy) of atoms. The size of the non-bonded list
of atom i is inblo(i+1)-inblo(i).

C$ Initially arrays are distributed in blocks
C$ DECOMPOSITION reg(14026)
C$ DISTRIBUTE reg(BLOCK)
C$ ALIGN x,y,dx,dy WITH reg

. . .
S1 Obtain new distribution format (map) from the extrinsic partitioner
C$ DISTRIBUTE reg (map)

. . .
C Calculate DX and DY
L1: FORALL i=1, natom

FORALL j=inblo(i), inblo(i+1)−1
REDUCE (SUM, dx(jnb(j)),x(jnb(j))−x(i))
REDUCE (SUM, dy(jnb(j)),y(jnb(j))−y(i))
REDUCE (SUM, dx(i), x(i)−x(jnb(j)))
REDUCE (SUM, dy(i), y(i)−y(jnb(j)))

END DO
END DO
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Table VI. Performance of hand-coded and compiler-generated CHARMM loops

(In seconds) Processors Partition Remap Inspector Executor Total

Hand coded 32 3·2 8·2 2·8 84·6 98·8

64 4·2 6·7 2·0 62·9 75·8

Compiler 32 3·3 8·7 3·1 85·0 100·1

64 4·3 7·1 2·2 63·6 77·2

Figure 14. Non-bonded force calculation loop of CHARMM in Fortran D

In Figure 14, data arrays are initially distributed by BLOCK. A maparray map is used to
irregularly distribute data arrays. The values of map are set using a partitioner. The compiler
embeds CHAOS remap procedures to irregularly redistribute data. The compiler transforms
the irregular loop L1 into an inspector and an executor by embedding appropriate CHAOS
runtime procedures. The transformed loop is shown in Figure 15.

Carrying out preprocessing for irregular loops is an expensive process. However, if data
access patterns do not change, the results from preprocessing could be reused. A detailed
implementation of reusing the results of preprocessing is discussed in Reference 6. In
this approach, compiler-generated code maintains a record of when the statements or array
intrinsics of loops may have modified indirection arrays. Before executing an irregular loop,
the inspector checks this record to see whether any indirection array used in the loop has
been modified since the last time the inspector was invoked. If an indirection array was
modified, the inspector removes the current schedule, generates a new schedule and updates
the loop bound information. Otherwise, the same schedule can be reused.

C Start with block distribution of arrays
S1 Obtain new distribution format (map) from an extrinsic partitioner procedure
S2 Remap arrays (x and y) aligned with distribution reg to distribution map

. . .
C$ Parallelized irregular loop—inspector and executor with schedule saving
S1 Check if new inspector needed

If needed
S3 Call CHAOS procedure to compute new schedule
S4 Store new schedule and loop bound information

Else
S5 Retrieve previous schedule and loop information

End if
S6 Call CHAOS procedure to Gather off-processor data
S7 Execute loop
S8 Call CHAOS procedure to Scatter off-processor data

Figure 15. Compiler transformations

The experimental results that compare the performance of compiler-generated code with
that of a hand-coded version are presented in this section. Both versions of the program ran
the calculations of the benchmark case (MbCO+3830 water molecules) for 100 iterations.
In order to simulate the adaptivity of the non-bonded force calculation loop, data arrays
are redistributed every 25 iterations by alternately applying RCB and RIB. Therefore, data
arrays and iterations are redistributed four times during the execution. Table VI lists the
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cost of data partitioning, data and indirection arrays remapping, and preprocessing and
execution. The performance of the compiler-generated code is almost as good as that of the
hand-parallelized code.

The key component of the DSMC computation is a MOVE procedure that computes the
new positions of particles and moves them to proper locations in global address space.
Particles move from one cell to another when their spatial locations change, consequently
the data associated with the particles must be redistributed as well.

C$ DECOMPOSITION celltemp(num cells)
C DISTRIBUTE celltemp(BLOCK)
C$ ALIGN icell(*,:),vel(*,:),size(:),newsize(:)WITH celltemp

C Reduce-append the particle information into new cells according to icell array
L1: FORALL j=1, num cells

FORALL i=1, size(j)
REDUCE(APPEND, vel(i,icell(i,j)), vel(i,j))

END FORALL
END FORALL

C Compute the number of particles in each cell
L2: FORALL j=1, num cells

newsize(j)=0
END FORALL

L3: FORALL j=1, num cells
FORALL i=1, size(j)
newsize(icell(i,j))=newsize(icell(i,j))+1

END FORALL
END FORALL

Figure 16. DSMC particle movement code in Fortran D

Figure 16 shows a simplified version of the particle movement of two-dimensional DSMC
code in Fortran D. Cells are distributed across processors. An indirection array icell(i,j) is
used to represent a new index of a cell to which particle i in cell j must be assigned.
An array size identically aligned with the second dimension of icell stores the number
of particles in each cell. A loop L1 in the figure redistributes velocity components vel
associated with individual particles using the reduce append intrinsic that is proposed in
this paper. Loops L2 and L3 are responsible for recomputing the number of particles in
each cell.

An abstract version of the compiler-generated particle movement code is shown in Fig-
ure 17. When a reduce append statement is encountered, the compiler generates a sequence
of calls to CHAOS data migration primitives (statements S1 and S2) in order to carry out
the data movement as a reduction. The loop bounds of loops L2 and L3 are determined by
the compiler. The compiler parallelizes loop L3, which involves indirection, by embedding
appropriate CHAOS runtime procedures.

Performance results for both the compiler-generated and the manually-parallelized two-
dimensional DSMC code with 32 × 32 cells and 5K molecules are presented in Table VII.
These performance numbers include the computation of the velocity and position of each
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Table VII. Performance of compiler-generated and manually-parallelized DSMC codes

(Time in seconds) Compiler generated Manually parallelized

Processors 4 8 16 32 4 8 16 32

Reduce append 2·75 1·89 1·79 2·39 1· 83 1·41 1·49 2·05

Total time 15·47 8·99 6·71 5·30 8· 51 4·90 4·05 3·75

molecule which are changed by the molecule collision phase, and also include reduce ap-
pend operations for molecule movement. The table presents the time required for executing
the DSMC loop 50 times on the Intel iPSC/860. While the manually parallelized version
utilizes the functionality of CHAOS data migration primitives that automatically return the
new number of particles updated by reduce append operation, the compiler-generated code
explicitly computes it. Hence, the compiler-generated code performs additional communi-
cation by invoking CHAOS procedures.

C Reduce-append the particle information into new cells according to icell array
S1: call CHAOS schedule generator for data migration
S2: call CHAOS data migration primitives to relocate moved particles
C Compute the number of particles in each cell
L2: do j=1, local num cells

newsize(j)=0
enddo

S3: call CHAOS procedure to compute schedule for off-processor elements of newsize
L3: do j=1, local num cells

do i=1, size(j)
newsize(icell(i,j))=newsize(icell(i,j))+1

enddo
enddo

S4: call CHAOS procedure to scatter-add off-processor elements of newsize

Figure 17. Compiler-generated DSMC particle movement code

RELATED WORK

Several researchers have developed programming environments that target particular classes
of irregular or adaptive problems. Williams29 describes a programming environment (DIME)
for calculations with unstructured triangular meshes using distributed-memory machines.
Baden35 has developed a programming environment that targets particle computations. This
programming environment provides facilities that support dynamic load balancing.

There are a variety of compiler projects targeting distributed memory multiprocessors:
the Fortran D compiler projects at Rice and Syracuse1,4 and the Vienna Fortran compiler
project3 at the University of Vienna are two examples. The Jade project at Stanford,36 the
DINO project at Colorado,37 Kathy Yelick’s work38 at Berkeley, and the CODE project at
University of Texas, Austin provide parallel-programming environments. Runtime compi-
lation methods have been employed in four compiler projects: the Fortran D project,39 the
Kali project,40 Marina Chen’s work at Yale41 and the PARTI project.7,15,42 The Kali compiler
was the first compiler to implement inspector/executor type runtime preprocessing40 and the
ARF compiler was the first compiler to support irregularly distributed arrays.42
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CONCLUSIONS

The CHAOS procedures described in this paper form a portion of a portable, compiler-
independent, runtime-support library. The CHAOS runtime support library contains proce-
dures that:

1. support static and dynamic distributed-array partitioning,
2. partition loop iterations and indirection arrays,
3. remap arrays from one distribution to another, and
4. carry out index translation, buffer allocation and communication schedule generation.

This paper has introduced new features of CHAOS that enable parallelization of certain
types of adaptive irregular programs. These include light-weight communication schedules
and efficient schedule generation. A description has been given about how two real-life
adaptive applications, CHARMM and DSMC, were parallelized using the runtime support.

A description has also been given about how such adaptive codes can be automatically
parallelized by compilers. Computational templates extracted from a molecular dynamics
code and a PIC code were tested using a prototype compiler implementation. The per-
formance of the compiler-generated codes was compared to that of the hand-parallelized
codes.
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CHARMM, and also thank Robert Martino and DCRT for the general support and the use
of NIH iPSC/860.

REFERENCES

1. G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng and M. Wu, ‘Fortran D language
specification’, Department of Computer Science Rice COMP TR90-141, Rice University (December 1990).

2. D. Loveman (Ed.), ‘Draft high performance Fortran language specification, version 1.0’, Technical Report
CRPC-TR92225, Center for Research on Parallel Computation, Rice University, (January 1993).

3. B. Chapman, P. Mehrotra and H. Zima, ‘Programming in Vienna Fortran’, Scientific Programming, 1(1),
31–50 (1992).

4. Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka and M.-Y. Wu, ‘Compiling Fortran 90D/HPF
for distributed-memory MIMD computers’, Journal of Parallel and Distributed Computing, 21(1), 15–26
(1994).

5. R. v. Hanxleden, K. Kennedy and J. Saltz, ‘Value-based distributions in fortran d – a preliminary re-
port’, Technical Report CRPC-TR93365-S, Center for Research on Parallel Computation, Rice University
(December 1993). To appear in Journal of Programming Languages – Special Issue on Compiling and
Run-Time Issues for Distributed Address Space Machines.

6. Ravi Ponnusamy, Joel Saltz, Alok Choudhary, Yuan-Shin Hwang and Geoffrey Fox, ‘Runtime support
and compilation methods for user-specified irregular data distributions’, Technical Report CS-TR-3194 and



620 Y.-S. HWANG ET AL

UMIACS-TR-93-135, University of Maryland, Department of Computer Science and UMIACS (November
1993). To appear in IEEE Transactions on Parallel and Distributed Systems.

7. R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol and Kay Crowley, ‘Principles of runtime support
for parallel processors’, Proceedings of the 1988 ACM International Conference on Supercomputing, July
1988, pp. 140–152.

8. D. J. Mavriplis, ‘Three dimensional unstructured multigrid for the Euler equations, paper 91-1549cp’, AIAA
10th Computational Fluid Dynamics Conference, June 1991.

9. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, ‘Charmm: A
program for macromolecular energy, minimization, and dynamics calculations’, Journal of Computational
Chemistry, 4, 187 (1983).

10. P. K. Weiner and P. A. Kollman, ‘Amber:assisted model building with energy refinement. a general program
for modeling molecules and their interactions’, Journal of Computational Chemistry, 2, 287 (1981).

11. W. F. van Gunsteren and H. J. C. Berendsen, ‘Gromos: Groningen molecular simulation software’, Tech-
nical Report, Laboratory of Physical Chemistry, University of Groningen, Nijenborgh, The Netherlands
(1988).

12. P. Venkatkrishnan, J. Saltz and D. Mavriplis, ‘Parallel preconditioned iterative methods for the compressible
navier stokes equations’, 12th International Conference on Numerical Methods in Fluid Dynamics, Oxford,
England, July 1990.

13. Graeme A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press,
Oxford, 1994.

14. J. Saltz et al., ‘A manual for the CHAOS runtime library’, Technical Report, University of Maryland
(1993).

15. Joel Saltz, Harry Berryman and Janet Wu, ‘Multiprocessors and run-time compilation’, Concurrency:
Practice and Experience, 3(6), 573–592 (1991).

16. Richard G. Wilmoth, ‘Direct simulation Monte Carlo analysis of rarefied flows on paralle processors’,
AIAA Journal of Thermophysics and Heat Transfer, 5(3), 292–300 (1991).

17. Ravi Ponnusamy, Yuan-Shin Hwang, Joel Saltz, Alok Choudhary and Geoffrey Fox, ‘Supporting irregular
distributions in FORTRAN 90D/HPF compilers’, Technical Report CS-TR-3268 and UMIACS-TR-94-57,
University of Maryland, Department of Computer Science and UMIACS (May 1994). To appear in IEEE
Parallel and Distributed Technology, Spring 1995.

18. Raja Das, Mustafa Uysal, Joel Saltz and Yuan-Shin Hwang, ‘Communication optimizations for irregular
scientific computations on distributed memory architectures’, Journal of Parallel and Distributed Comput-
ing, 22(3), 462–479 (1994). Also available as University of Maryland Technical Report CS-TR-3163 and
UMIACS-TR-93-109.

19. M.J. Berger and S. H. Bokhari, ‘A partitioning strategy for nonuniform problems on multiprocessors’,
IEEE Trans. on Computers, C-36(5), 570–580 (1987).

20. B. Nour-Omid, A. Raefsky and G. Lyzenga, ‘Solving finite element equations on concurrent computers’,
Proc. of Symposium on Parallel Computations and theis Impact on Mechanics, Boston, December 1987.

21. B. R. Brooks and M. Hodoscek, ‘Parallelization of charmm for mimd machines’, Chemical Design Au-
tomation News, 7, 16 (1992).

22. D. F. G. Rault and M. S. Woronowicz, ‘Spacecraft contamination investigation by direct simulation Monte
Carlo – contamination on UARS/HALOE’, Proceedings AIAA 31th Aerospace Sciences Meeting and Ex-
hibit, Reno, Nevada, January 1993.

23. Shahid H. Bokhari, ‘Partitioning problems in parallel, pipelined, and distributed computing’, IEEE Trans-
actions on Computers, 37(1), 48–57 (1988).

24. David M. Nicol and David R. O’Hallaron, ‘Improved algorithms for mapping pipelined and parallel
computations’, IEEE Transactions on Computers, 40(3), 295–306 (1991).

25. F. Bodin, P. Beckman, D. Gannon, S. Narayana and S. Yang, ‘Distributed pC++: Basic ideas for an object
parallel languages’, Report, Indiana University, (January 1993).

26. A. Pathon, H. Simon and K. P. Liou, ‘Partitioning sparse matrices with eigenvectors of graphs’, SIAM J.
Matrix Analysis and Applications, 11, 430–452 (1990).

27. R. D. Williams and R. Glowinski, ‘Distributed irregular finite elements’, Technical Report C3P 715, Caltech
Concurrent Computation Program, (February 1989).

28. R. Das, D. J. Mavriplis, J. Saltz, S. Gupta and R. Ponnusamy, ‘The design and implementation of a parallel
unstructured Euler solver using software primitives’, AIAA Journal, 32(3), 489–496 (1994).

29. R. Williams, ‘Performance of dynamic load balancing algorithms for unstructured mesh calculations’,
Concurrency, Practice and Experience, 3(5), 457–482 (1991).



DISTRIBUTED-MEMORY MACHINES 621

30. N. Mansour, ‘Physical optimization algorithms for mapping data to distributed-memory multiprocessors’,
Technical Report, Ph.D. Dissertation, School of Computer Science, Syracuse University, (1992).

31. W. E. Leland, ‘Load-balancing heuristics and process behavior’, Proceedings of Performance 86 and ACM
SIGMETRICS 86, 1986, pp. 54–69.

32. R. v. Hanxleden and L. R. Scott, ‘Load balancing on message passing architectures’, Journal of Parallel
and Distributed Computing, 13, 312–324 (1991).

33. V. Venkatakrishnan, H. D. Simon and T. J. Barth, ‘A MIMD implementation of a parallel Euler solver for
unstructured grids, submitted to Journal of Supercomputing’, Report RNR-91-024, NAS Systems Division,
NASA Ames Research Center, (September 1991).

34. A. Vidwans, Y. Kallinderis and V. Venkatakrishnan, ‘A new parallel dynamic load balancing algorithm for
3d adaptive unstructured grids’, Proceedings of the 11th AIAA CFD Conference, Orlando FL, July 1993.

35. S. Baden, ‘Programming abstractions for dynamically partitioning and coordinating localized scientific
calculations running on multiprocessors’, SIAM J. Sci. and Stat. Computation., 12(1) (1991).

36. M. Lam and M. C. Rinard, ‘Coarse grain parallel programming in Jade’, Third ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, Williamsburg VA. ACM Press, 1991.

37. Matthew Rosing, Robert B. Schnabel and Robert P. Weaver, ‘The DINO parallel programming language’,
Journal of Parallel and Distributed Computing, 13(1), 30–42 (1991).

38. Soumen Chakrabarti and Katherine Yelick, ‘Implementing an irregular application on a distributed memory
multiprocessor’, Proceedings of the Fourth ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming (PPOPP), May 1993. ACM SIGPLAN Notices, 28(7).

39. S. Hiranandani, K. Kennedy and C. Tseng, ‘Compiler support for machine-independent parallel program-
ming in Fortran D’, in J. Saltz and P. Mehrotra (eds), Languages, Compilers and Run-time Environments
for Distributed Memory Machines, Elsevier Science Publishers B.V., 1992, pp. 139–176.

40. C. Koelbel, P. Mehrotra and J. Van Rosendale, ‘Supporting shared data structures on distributed memory
architectures’, 2nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM,
March 1990, pp. 177–186.

41. L. C. Lu and M.C. Chen, ‘Parallelizing loops with indirect array references or pointers’, Proceedings of
the Fourth Workshop on Languages and Compilers for Parallel Computing, Santa Clara, CA, August 1991.

42. J. Wu, J. Saltz, S. Hiranandani and H. Berryman, ‘Runtime compilation methods for multicomputers’,
Proceedings of the 1991 International Conference on Parallel Processing, Volume 2, 1991, pp. 26–30.




