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ABSTRACT
Research on High-Level Synthesis has mainly focused on ap-
plications with statically determinable characteristics and
current tools often perform poorly in presence of data-
dependent memory accesses. The reason is that they rely
on conservative static scheduling strategies, which lead to
inefficient implementations. In this work, we propose to ad-
dress this issue by leveraging well-known techniques used
in superscalar processors to perform runtime memory dis-
ambiguation. Our approach, implemented as a source-to-
source transformation at the C level, demonstrates signifi-
cant performance improvements for a moderate increase in
area while retaining portability among HLS tools.

1. INTRODUCTION
High-Level Synthesis (HLS) enables the derivation of cus-

tom hardware from high-level algorithmic specification (in
C, C++, SystemC, etc.) There exists several robust and ma-
ture HLS tools [1, 2] used as production tools by world-class
chip vendor companies. Even though these tools provide
impressive improvement in productivity, there is a large gap
between “accepted” codes and “efficiently handled” codes.
They hence rely on the designer to deeply restructure the
program source code and to use sophisticated compiler di-
rectives (usually in the form of #pragmas) to drive the syn-
thesis flow.

Many of the techniques used in HLS borrow from earlier
research results on optimizing compiler back-end for DSP
or VLIW processors. In such a compiler, instructions are
statically scheduled. Such an approach prevents scheduling
optimization opportunities for HLS tools. This choice in
design flow has not yet been questioned and this is easy to
explain: the application domain targeted by HLS mostly
consists of kernels for which the aforementioned approaches
perform relatively well.

However, as HLS usage becomes widespread, it is likely
that user expectations and target application domains will
expand beyond their current needs. For example, current
generation HLS tools perform poorly when trying to sched-
ule computations that have data-dependent memory ac-
cesses. For these kernels, it is generally not possible to assert
at compile time that two array/memory accesses will never
alias1, even if they very rarely (or even never) do in prac-
tice. In such situations, HLS tools fallback to a conservative
(worst case static) scheduling, which guarantees correctness
but is inefficient.

While this problem may currently be perceived as a corner
case by HLS tool providers, we believe that improving the

1That is, they will never access the same memory location.

support for such dynamic behavior is important to broaden
the use of HLS to more application domains. For exam-
ple, recent research work advocated the use of FPGA for
accelerating data-analytic applications [3] and sparse linear
algebra operations [4]. Both of these domains contain data-
dependent memory accesses. For such application domains,
providing efficient high-level design tools is a key issue and
current HLS tools are clearly not ready for that.

In this work, we study how dynamic scheduling techniques
can be used to improve the efficiency of HLS tools in the
presence of complex data-dependent memory accesses. More
precisely, we make the following two contributions:

• We propose a technique based on runtime memory dis-
ambiguation to improve the efficiency of loop pipelin-
ing in the presence of data-dependent memory depen-
dencies.

• We implement our approach as a semi-automatic (i.e.,
user driven) source-to-source transformation, enabling
portability among HLS tools.

We validate our approach on a set of representative ker-
nels using two leading-edge HLS tools, with FPGA as target
technology. Our results show that our technique can lead to
significant improvement in throughput at the price of mod-
erate area overhead.

The remainder of the article is organized as follows. Sec-
tion 2 describes the problem we address in this work. Sec-
tion 3 describes our technique and its implementation. Sec-
tion 4 provides experimental validation of our approach.
Conclusion and future direction are discussed in Section 5.
We provide detailed algorithms and results in Appendix A
and Appendix B respectively. Appendix C presents a sur-
vey of related work. Current limitations of our approach are
discussed in Appendix D.

2. PROBLEM STATEMENT
Loop pipelining is a key optimization in High-Level Syn-

thesis tools. It builds on the software pipelining technique
proposed by Lam et al. back in 1988 [5]. In this tech-
nique, parallelism across loop iteration is exploited by initi-
ating the next iteration of the loop before the completion of
the current iteration. This allows instructions from several
iterations to overlap and hence improve throughput. The
throughput achieved is limited by the delay between initi-
ations of two successive iterations. This delay is called as
the initiation interval(II ). Typically II is determined both
by hardware constraints and data dependencies in the ap-
plication. However, since HLS tools are not constrained by



a predefine micro-architecture, data dependencies alone de-
termine the minimum II that can be achieved. Thus, the
efficiency of loop pipelining in the context of HLS is de-
pendent on the accuracy of dependency analysis provided
by these tools. Most HLS tools employ basic (hence con-
servative) dependency analysis techniques, which limit the
applicability of loop pipelining.

For example, consider the loops shown in Figure 1. Loop
L1 contains a non-uniform, non-affine dependency that is
difficult to analyze. Hence, HLS tools are forced to make a
conservative assumption that the write in the current iter-
ation is consumed in the next iteration. This prevents the
tool from pipelining this loop. To cope with this limitation,
HLS tool vendors provide additional user directives (in the
form of pragmas). These directives allow users to bypass
the tool dependency analysis and force the compiler to gen-
erate a pipelined schedule. For example, asserting that the
minimum number of iterations between dependent memory
operations is 5 allows the HLS tool to overlap five iterations
of the loop. This enables the tool to pipeline the loop.

1 #pragma pipeline, max_latency=5
2 L1: for (int i=1; i<N; i++) {
3 // reuse distance >=5 when N>1
4 z[i*N+2] = foobar(z[i-1]);
5 }
6 L2: for (int i=0; i<N; i++) {
7 addr = lookup[i];
8 x[addr] = foo(x[addr]);
9 }

Figure 1: Two types of dependences.

However, in many cases it is impossible to determine de-
pendencies at compile-time. Such cases typically occur when
data-dependent array accesses are involved in the loop body.
This is the case of the loop L2 in Figure 1. For such loops,
the only solution to extract additional parallelism is to per-
form a dependency analysis at runtime, by using so-called
runtime memory disambiguation.

2.1 Related Work
In this section, we discuss an earlier work that employed

runtime memory disambiguation in the context of HLS.
Interested readers are referred to a more detailed discus-
sion of related work in Appendix C. Ravi et al. [6] pro-
posed the use of runtime memory disambiguation to obtain
higher throughput implementations for applications contain-
ing memory accesses that cannot be disambiguated at com-
pile time. The basic idea behind their technique is to gen-
erate two different schedules and to choose one of them at
runtime. One schedule assumes that there are no dependen-
cies between memory operations and hence provides more
opportunities to exploit parallelism. The other schedule is
conservative and assumes there is a dependency. Verifica-
tion operations are introduced to check for a dependency at
runtime. Depending on the outcome of these operations,
appropriate schedule is chosen at runtime. The verifica-
tion operations check for a dependency violation between
the current iteration and the previous iteration. This allows
only two loop iterations to overlap. We extend this idea by
allowing multiple iterations to overlap to achieve a higher
throughput. When multiple iterations overlap, it is neces-
sary to add multiple runtime checks, one for each pending
memory operation in the pipeline. We discuss this in detail
in section 3. Further, the earlier technique adds new states
to the FSM to incorporate different schedules and verifi-
cation operations. This could potentially lead to complex
FSM, which may affect the clock frequency. We borrow the

technique employed in superscalar processor by introducing
necessary control to stall the pipeline. Though our technique
also affects clock frequency, we expect it to have a smaller
impact. In the following, we discuss two issues that affect
efficiency of our approach.

2.2 Customizing Disambiguation Hardware
In the context of HLS, implementing runtime memory

disambiguation has much fewer drawbacks than in a com-
plex super-scalar processor. In HLS, the architecture is cus-
tomized for a given application kernel, hence it is possible to
analytically measure the benefit of dynamic disambiguation
for this kernel (or part if it) before deciding to use it.

For example, if the HLS compiler front-end fails to ana-
lyze a memory dependence and if profiling pass shows that
the probability for an actual manifestation of the depen-
dency during the loop execution is low, using this technique
is likely to be beneficial. The main challenge is to cus-
tomize the memory disambiguation hardware to have “good
enough” accuracy, while minimizing its hardware footprint
and critical path length.

2.3 Working at the Kernel C Source Level
Our approach should ideally be implemented in a com-

mercial HLS tools. However, these tools are closed source
compiler infrastructures and cannot be modified/extended
by third parties. Although it would be possible to use an
open-source HLS tool, it turns out that they lack the level of
robustness that we expect to be able to make our technique
work properly.

One solution is to implement this approach as a source-
to-source transformation operating directly at the C level.
Source-to-source (S2S) compilers are well known in the par-
allel computing community [7, 8], but are rarely used in the
context of HLS [9, 10].

In a S2S-HLS flow, the HLS tool is used as a back-end in
charge of low-level scheduling/binding stages. This permits
the S2S compiler to be vendor independent, and eases the
evaluation of the approach on several different HLS back-
ends. It however brings additional challenges, we cannot
have access or control the low-level scheduling/binding de-
cisions performed at the back-end level.

3. PROPOSED APPROACH
We propose to transform the loop structure in the initial C

specification to include additional control logic for memory
dependency hazard detection. This control logic is in charge
of stalling the pipelined schedule when necessary. Note that
our technique does not pipeline the loop; it transforms the
loop to allow pipelining of the loop. This section provides a
description of our technique and its implementation as an
automatic source-to-source transformation.

3.1 An Illustrative Example
We first illustrate our approach using a simple example

shown in Figure 2. In this kernel, which computes an image
histogram, the array hist[] holds the frequency of occur-
rence of pixel intensity values in pixel[][]. Array hist[]
is indexed by the value of the pixel at hand and its corre-
sponding occurrence count is incremented.

The innermost loop body contains a potential RAW (Read
After Write) loop carried dependency over array hist[].
Since the access pattern of array hist[] depends on the
data (pixel[i][j]) that is being processed, static depen-
dency analysis will fail at disambiguating memory references



uint i,j;
uchar val;
uchar pixel[W][H];
uint hist[256];
// histogram building loop
for (i=0; i<W; i++) {
for (j=0; j<H; j++) {
val = pixel[i][j];
hist[val] = hist[val]+1;
}

}

Figure 2: Histogram kernel and dependency graph

for hist[]. The loop pipeline scheduler will hence have to
consider this loop carried dependency when looking for a
pipelined schedule. Assuming one cycle latency for the ar-
ray read operation and one cycle latency for the addition,
we will obtain a lower bound for II = 3 as illustrated in
Figure 3.

RD
pix[i][j] hist[ind]

WR

hist[ind]

RD Add

RD
pix[i][j] hist[ind]

WR

hist[ind]

RD Add

"may-be"
Loop-carried dependency

 

II = 3

Figure 3: Original pipeline of the histogram kernel

However, since successive pixels within an image have a
relatively low probability of having exactly the same value,
this dependency will not manifest itself very often, mak-
ing the statically pipelined schedule inefficient. The use of
runtime disambiguation techniques brings the possibility of
implementing a tighter (II = 1+ε) pipeline schedule, at the
price of additional runtime checks to ensure the schedule
correctness. These runtime checks perform runtime address
disambiguation and consists checking if two pending mem-
ory reference addresses alias.

In the context of loop pipelining, there can be multiple
instances of the same instruction in-flight in the pipeline. It
is therefore necessary to check for a potential dependency
violation for each of the pending memory operations.

We use a shift register to store the addresses accessed by
write operations, on which other read operations could be
dependent. In the following, we refer to such set of write
operations as dynamic writes2, and similarly all read op-
erations that may alias as dynamic reads. Note that the
memory operations that can be statically analyzed and dis-
ambiguated are not considered as dynamic read/write. All
dynamic reads are checked against the addresses stored in
the shift register to detect any aliases, i.e. dependence vi-
olations at runtime. The entire loop body, including the
increment of the loop index, is guarded by the result of this
check. If we detect an alias at runtime, no new computa-
tion is issued (this can be seen as dynamically introducing
a bubble in the pipeline). In this approach, a distinct shift
register is needed for every dynamic write instruction. Sim-
ilarly, alias detection hardware is needed for related pairs
of dynamic reads/writes (This issue is further discussed in
Section 3.5).

To help the reader understand our approach, we show
in Figure 4 the transformed code corresponding to the his-
togram kernel. An array shift_reg[] is introduced to store

2Note that though we say writes, these operations could be
memory reads in the case of WAR dependencies as explained
later in Section 3.3.

the addresses of pending dynamic write operations in the
pipeline. Alias detection is performed by the loop labeled
L2, which we completely unroll (using a #pragma) to enable
parallel execution of the address comparisons (this is only
possible if the shift_reg[] is mapped to registers). Both
the depth of the shift register and the iteration count of the
loop depend on the latency of the pipeline.

#pragma II=1, ignore_dependency hist
for(i=0; i<H; i++) {

L1: while (j<W) {
val = pixel[i][j];
// dependency violation detection logic
#pragma UNROLL

L2: for(k=LATENCY-1, stall=0; k>0; k--) {
stall = stall | (shift_reg[k-1] == val);
shift_reg[k] = shift_reg[k-1];

}
shift_reg[0] = stall?(-1):val;
if (!stall ) {
hist[val] = hist[val] + 1;
j = j + 1;

}
}

}

Figure 4: Transformed code for histogram kernel.

The results of all the address comparisons are ored to
generate a stall signal. The value of this signal indicates if
an immediate execution of the current loop iteration induces
a memory dependency violation. If there is a violation, no
new operation is issued until the pending conflicting memory
operation has been completed. This is ensured by guarding
all the instructions in the loop body using the stall signal
as predicate. It is important to note that the loop increment
is also guarded by this condition.

In this transformed loop, since the stall logic detects any
possible violation and stalls the execution, the while loop
(labeled L1) can now be safely pipelined, by forcing the HLS
tool to ignore the target memory dependency. An illustra-
tion of the pipelined execution is provided in Figure 5. In
the following sections, we discuss various aspects of this tech-
nique in detail.
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Figure 5: Pipeline of the transformed histogram ker-
nel.

3.2 Identifying Ambiguous Memory Accesses
The first step in transforming the loop is to identify mem-

ory accesses that need to be handled by this approach. In
this work, we restrict the use of the technique to arrays
mapped to on-chip memory banks, where no inter-array alias
is allowed (inter-array alias is usually not supported by HLS
tools).

The detailed algorithm to identify ambiguous memory ac-
cesses pairs is provided in Appendix A (algorithm 1). This
algorithm analyzes RAW, WAR and WAW dependencies.
In the case of a RAW or WAW dependency we check that a
memory read (resp. memory write) does not alias a pend-
ing write operation (we hence need to keep track of write



addresses). In the case of WAR dependencies, we check is-
suing writes against pending reads (hence keeping track of
the read address).

However, it is to be noted that not all dependencies re-
quire dynamic memory disambiguation. In the following, we
explain which dependencies are relevant for our approach.

1. Fully-static dependences consist of memory accesses
that can be statically analyzed and the compiler is able
to prove the absence of alias. Obviously, these need not
be considered by our approach.

2. Partially-static dependences consist of accesses that
can be statically analyzed but for which the compiler
identifies a subset of the loop iteration domain where
alias happens (see Appendix C.1). Some of these refer-
ences may be good candidates for our technique which
could be more area efficient than fully static solu-
tions [10].

3. Fully-dynamic dependences consist of all pairs of mem-
ory accesses that cannot be statically analyzed and for
which designer cannot assert that alias will never oc-
cur. An example of such a dependency is shown in our
earlier example in Figure 2.

3.3 Extracting Address Expressions
Once we have computed potentially aliasing memory ac-

cesses, we must identify their index/address expressions. In
the case of multi-dimensional arrays, index expressions for a
given dimension are ignored for disambiguation when they
are found to be the same in both elements of the pair.

Once identified, the set of index expressions that require
disambiguation must be sliced3 out of the loop body where
these indices are originally computed. An example of a pro-
gram and the slice corresponding to the computation of the
index val is shown in Figure 6.

for ( i = 2; i < n; i++ ) {
inc = 10;
if ( i == X[i] ) {

val = Y[i];
inc = inc + 30;

} else {
val = Y[i] + 10;

}
C[i] = foo(C[val]) + inc;

}

int slice(...) {
if ( i == X[i] )
val = Y[i];
else
val = Y[i] + 10;
return val;

}

Figure 6: Example showing the program slice of in-
dex expression

This step is very important as this slice will be moved
out of the initial body and will become part of the pipeline
stalling control logic. Note that it is possible only if the
execution of the slice is side-effect free and if the slice does
not involve ambiguous memory accesses (these limitations
are discussed in Appendix D).

3.4 Simplifying Disambiguation Logic
Since we are deriving a custom micro-architecture tailored

to a specific kernel, we also have the opportunity to cus-
tomize the disambiguation logic to minimize its hardware
footprint. Instead of storing a complete pending address in
the shift register it is possible to use a hash of its value, to
store (and compare) a smaller number of bits. This kind

3Program slicing [11, 12] is a well studied program transfor-
mation that we don’t detail here.

of technique is used in super-scalar processors to reduce the
hardware cost of the disambiguation engine [13, 14].

This saving in area comes at a cost: using fewer bits to
encode the address will lead to false positives in the alias
detection, leading to increases in number of (unnecessary)
stall cycles.

However, because we are designing application specific
hardware, we can tailor the choice of the hashing function
to the kernel at hand (such a customization can be driven
by memory access execution traces of the kernel). One can
for example search for the sub-set of bits in the address
that, when used as hash, minimize the numbers of conflicts4.
More sophisticated hashing functions used for super-scalar
processors and based on Bloom filters [13] or non-singular
binary matrix multiplication [15] could also be considered.
However, their larger hardware footprint makes them un-
practical for our approach.

Depending on the hashing function employed, not all bits
in the address are required to check if the pipeline has to
be stalled. This in turn can shorten the combinatorial path
of alias detection logic, as we may start detecting a possible
alias even before all address bits have been computed.

3.5 Reducing Shift Register Area Cost
As mentioned earlier, we introduce a shift register to hold

addresses (either for a read or for a write) for all in-flight
memory operations involved in an ambiguous dependency
pair. One obvious simplification is to make sure a same ad-
dress sequence is not mapped to two different shift registers.

It is also possible to take advantage of memory operations
occurring in mutually exclusive execution paths inside the
loop body. In this case, the same shift-register and alias de-
tection logic can be used for both memory operations. Find-
ing the minimum number of such registers is a classical re-
source conflict allocation problem that can be modeled (and
solved) as a graph coloring problem, where non-mutually
exclusive registers are considered as conflicting nodes in the
graph. Our current implementation however uses a simple
greedy strategy detailed in Algorithm 2.

In addition to the number of shift register components,
we also need to determine their individual depths. These
depths depend on the number of stages separating ambigu-
ous access pairs in the loop pipeline. In our running example
in Figure 2, the number of entries in the shift register de-
pends on the schedule of the write operation in the pipeline
and its corresponding read. In this example, the write is
scheduled at stage 3, while the read is scheduled at stage 1.
This hence requires a two-entry shift register.

Since we are implementing this technique as a front-end
optimization, such a detailed knowledge about the pipelined
schedule may not be available. In our current implementa-
tion, we assume the worst-case latency, which is the latency
of the pipeline itself. We assume that this information is pro-
vided by the user through a compiler directive. This could
be improved and automated as most HLS tools provide a
script based interface to access cycle accurate schedule in-
formation.

4. IMPLEMENTATION & RESULTS
In this section, we first briefly describe the implementation

of our technique in an existing compiler infrastructure and
then present some experimental results

4Our work on automating the selection of a hashing function
is still on-going.



4.1 Implementation in an S2S Compiler
The technique discussed in this paper was implemented

as a part of GeCoS5, a source-to-source compiler frame-
work targeted at High-Level-Synthesis. To implement this
transformation we leverage the compiler high-level interme-
diate representation that offers an SSA based representation,
while preserving the program structure. Our SSA model
is able to deal with both scalars and array accesses (using
may/must dependency information) as we assume no inter-
array alias and do not support pointers.

For these experiments, we consider that all the memory
read/write pairs that do not alias have been flagged either by
the compiler or by user directives. The remaining ambigu-
ous access pairs are then considered for runtime dependency
analysis. In our current prototype, the choice of the hash-
ing function is limited to simple function where the hash
is a concatenation of the n least significant bits from index
expression of each dimension of the array.

4.2 Chosen Benchmark
There are currently very few publicly available benchmark

suites for HLS tools. The CHStone[16] seems the only one
containing kernels with loops and array accesses. However
it only contains examples that are well supported by most
HLS tools (regular access patterns, no complex loop carried
dependencies, etc.). It is therefore irrelevant in our case.

To validate our approach we hence chose a set of ker-
nels with memory dependencies for which our approach can
be applied. The first set of kernels exposes partially-static
memory dependencies. They are the same as those used by
Morvan et al. [10] in their work and correspond to loop nest
that underwent a loop coalescing transformation. This set
includes BBFIR, Matrix-mult, Floyd-Warshall and Jacobi-
2D kernels. For the sake of completeness, we compared our
results with their approach (which provides a compile-time
schedule correction mechanism). This comparison is dis-
cussed in Table 1 of Appendix B.

The second set of kernels contains fully-dynamic depen-
dencies. It consists of Knapsack, histogram and tree-
traversal kernels. For these loops, performance improve-
ments provided by our technique are data-set dependent.
Rather than trying to characterize realistic workloads (which
is inherently difficult since these kernels can be used in a
wide variety of applications), we provide performance im-
provement by using synthetic benchmarks with two different
probabilities (10% and 50% chances) for a memory depen-
dency to manifest during the kernel execution.

4.3 Experimental Results
We used two leading edge commercial High-Level Synthe-

sis tools, which we are not allowed to name due to licensing
issues. The first one, that we will name LEC-HLS, is con-
sidered as being one of the most efficient and robust HLS
tool currently on the market. The second one is targeted
for a FPGA technology vendor X and is now sold as a stan-
dard component of their FPGA design flow. We will call
this second tool FPGA-HLS.

Each kernel was transformed into several versions, each
one with a different hashing strategy. The goal is to explore
the trade-off between the alias detection accuracy (minimiz-
ing false positive dependencies) and area and clock speed
overhead of the detection logic. We synthesized both the
original and transformed kernels for Virtex-6 and Stratix-
IV FPGAs and compared their area, frequency, clock cycles

5http://gecos.gforge.inria.fr/doku.php
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Figure 7: Area/performance trade-off for LEC-HLS
and FPGA-HLS

count (#cycles) and overall performance (combining both
frequency and #cycles). Due to page limit, the complete
results are provided in Appendix. We also discuss the im-
pact of increasing pipeline depth on area and performance
in Appendix B.

We provide a graphical summary of the results in Fig-
ure 7. We normalized the area and execution time of each
transformed kernel by scaling them w.r.t the area and exe-
cution of their corresponding original kernel. For few ker-
nels, inner-most loop did not contain any dependencies and
hence it was possible to pipeline the loop without employing
our technique. For such kernels, the comparison shown in
the figure is with that of the pipelined version. We refer
to this implementation as pipeline-1D. For such kernels, our
technique is applied on the coalesced loop [10], which allows
pipelining of outer levels of the loopnest in addition to the
inner-most loop.

Performance is shown for two versions of each benchmark
kernel (the L-suffix stands for large iteration count, the S
suffix stands for small iteration count). Area is provided
for full address alias detection (e.g. no hashing) and for a
hashing based on the 4 least significant bits of the address.
On average, we observe an increase of 18% overhead in area
and a reduction of 74% in execution time for LEC-HSL tool
and 29% and 25% for FPGA-HLS tool over pipeline-1D im-
plementation.

To quantify the benefit of our approach, we compared our
results against a theoretic/hypothetical optimization which,
given an extra area of x% would decrease execution time by
the same amount. This reference is represented in Figure 7
as dashed diagonal lines. Additionally we represent in the
figure three regions named 1 , 2 and 3 , which correspond
to different cases of performance/area trade-offs.

• Region 1 contains all transformed kernels for which
our optimization is counter-productive. Those include
(in both HLS tools) Floyd-Warshall and Jacobi-2D
(for large iteration counts). They correspond to situa-



tions where the number of false dependence eliminated
using our technique is limited and where the degrada-
tion in clock frequency due to the alias detection logic
is high.

• Region 2 contains all transformed kernels where
our optimization helps improving overall performance,
but for a considerable area overhead. These include
Matrix-mult and knapsack kernels. In both these ker-
nels the inner-loop is parallel and can be pipelined
without using our technique. Hence, the scope for per-
formance improvement is limited.

• Region 3 contains all transformed kernels for which
our optimization significantly improves the efficiency
of the accelerator at a minor area overhead. These
include tree-traversal and BBFIR in both tools. In
LEC-HLS tool, histogram also belongs to this region.
In FPGA-HLS tool, though we could achieve perfor-
mance improvement for histogram kernel, the area
overhead is also significant. So this belongs to Region
2 in FPGA-HLS tool. area overhead.

Interestingly, kernels in regions 2 and 3 are different
from one tool to another. However, it seems that the LEC-
HLS better supports our technique. Nevertheless the results
show that the approach is beneficial to kernels where data-
dependent memory accesses prevent pipelining (for ex: tree
traversal, histogram). It also performs relatively well in
less favorable cases where inner loop can be pipelined with-
out our technique (for ex: BBFIR, knapsack).

5. CONCLUSION
In this paper, we have proposed an original technique for

improving the ability of current HLS to deal with loops in-
volving dynamic memory dependencies. Our approach was
implemented in a source-to-source compiler and shows sig-
nificant performance improvements.

We consider our work as the first step toward more aggres-
sive dynamic scheduling technique which could borrow from
approaches used in high-performance processors. We believe
that there exist many interesting challenges that could ben-
efit from advanced source-to-source transformations mixing
aggressive static analysis features with customized specula-
tive micro-architectures.

Acknowledgments
This work was funded in part by French ANR Compa and
INRIA-STMicroelectronics Nano2012-S2SHLS projects.

6. REFERENCES
[1] M. Graphics, “Catapult-C Synthesis.”

http://www.mentor.com.
[2] Xilinx corp., Xilinx Vivado Design Suite User Guide :

High-Level Synthesis, ug902 (v2012.2) ed., 2012.
[3] B. Betkaoui, D. Thomas, W. Luk, and N. Przulj, “A

Framework for FPGA Acceleration of Large Graph
Problems: Graphlet Counting Case Study,” in
International Conference on Field-Programmable
Technology, pp. 1 –8, December 2011.

[4] J. Johnson, T. Chagnon, P. Vachranukunkiet,
P. Nagvajara, and C. Nwankpa, “Sparse LU
Decomposition using FPGA,” in International
Workshop on State-of-the-Art in Scientific and
Parallel Computing, 2008.

[5] M. S. Lam, “Software Pipelining: An Effective
Scheduling Technique for VLIW Machines,” in
Proceedings of the ACM SIGPLAN conference on
Programming Language design and Implementation,
PLDI ’88, pp. 318–328, 1988.

[6] S. Ravi, G. Lakshminarayana, and N. K. Jha,
“Removal of Memory Access Bottlenecks for
Scheduling Control-flow Intensive Behavioral
Descriptions,” in Proceedings of the IEEE/ACM
international conference on Computer-aided design,
pp. 577–584, 1998.

[7] R. Keryell, C. Ancourt, F. Coelho, B. Creusillet,
F. Irigoin, and P. Jouvelot, “PIPS: A Framework for
Building Interprocedural Compilers, Parallelizers and

Optimizers,” Technical Report 289, CRI, École des
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APPENDIX
A. DETAILED ALGORITHMS

In this section, we provide formal specification of the algo-
rithms. Algorithm 1 is used to identify ambiguous memory
operations. The input for this algorithm is a dependency
graph that includes anti, output and true dependencies.

Algorithm 1 Identify the dependent memory operations

Require: DG dependency graph that includes anti and output
dependencies, ∆ the latency of the pipeline
procedure IdentifyDependentPairs(DG,∆)

for all d ∈ DG do
if depDist(d) ≥ ∆ over entire iteration space then

continue;
end if
if d holds over whole iteration space then

continue;
end if
src← source(d)
tgt← target(d)
depPairs ← depPairs ∪ (src, tgt)

end for
end procedure

Another optimization we briefly mentioned in section 3.5
is to reuse shift registers across memory operations that are
on mutually exclusive paths. To motivate the need for such
an optimization, consider a case shown in Figure 8.

1 for ( int i = 0; i < N; i++ ) {
2 for ( int j = 0; j < W; j++ ) {
3 if ( j > w[i] ) {
4 lab1: T[i][j] = f(T[i][a[i]);
5 output[i] = f(T[i][w[i]);
6 } else {
7 lab2: T[i][b[i]] = g(T[i-1][b[i]]);
8 }
9 lab3: output[i] = k(T[i][j]);

10 }
11 }

Figure 8: An example kernel

Using a simple scheme, we would require three shift reg-
isters, one per each memory operation. However, shift reg-
isters can be shared between two write operations (at labels
lab1 and lab2) since they are on mutually exclusive paths.
Algorithm 2 describes the method to assign shift registers
to memory operations.

B. DETAILED RESULTS
In this section, we summarize the experimental results.

Table 1 summarizes the hardware area (in terms of LUTs,
Flipflops and DSPs) and the frequency of each of the im-
plementations obtained using LEC-HLS tool. Table 5 sum-
marizes the area and frequency of the implementations ob-
tained using FPGA-HLS tool. The performance comparison
of these implementations is summarized in tables Table 3
and Table 4 for LEC-HLS and FPGA-HLS tools respectively.
We compare the results obtained using LEC-HLS tool with
the results of approach proposed by Morvan et al.[MDQ11].

Another interesting aspect to study is the impact of
pipeline depth on the efficiency of the our technique. In-
creasing pipeline depth leads to an increase in the number
of entries in the shift register and the comparison logic. The
secondary effect on area is due to the increase in number

Algorithm 2 Assigning shift registers for dependent mem-
ory operations

procedure AssignShiftReg(depPairs, latency) .
If latency is not available for all operations, we assume a worst
case latency of ∆

regMap ← MergeDepPairs(depPairs);
for all reg ∈ regMap do

maxLat← maxLatency(regMap[reg], latency)
numEntries[reg]← maxLat

end for
end procedure
procedure MergeDepPairs(depPairs)

workingSet ← depPairs
while workingSet 6= ∅ do

mergedSet ← ∅
for all pair ∈ workingSet do

tgt← target(pair)
if tgt is mutually exclusive to mergedSet then

mergedSet ← mergedSet ∪ pair
end if

end for
tgtOps← tgtOps−mergedSet
regMap[regi]← mergedSet
i← i + 1

end while
returnregMap

end procedure
procedure maxLatency(regPairs, latency)

maxLat← −1
for all pair ∈ regPairs do

src← source(pair)
if latency[src] ≥ maxLat then

maxLat← latency[src]
end if

end for
return(maxLat)

end procedure

Application
Version

Hardware characteristics
ALUT REG DSP Freq

(MHz)

BBFIR

original 553 152 4 185
[MDQ11] 649 241 4 241
FullAddr 534 175 4 173
4bit Hash 469 144 4 175

ProdMat

original 489 215 4 272
[MDQ11] 559 226 4 231
FA-16bit 499 230 4 230

8-bit 466 215 4 225
4bit Hash 295 276 4 242

FloydWarshal

original 383 74 0 271
[MDQ11] 859 87 0 210
FA-16bit 569 206 0 160

8-bit 504 172 0 173
4bit Hash 475 160 0 173

Jacobi-2D

original 1012 845 8 164
[MDQ11] 1417 975 8 172
FA-16bit 1143 825 8 143

8-bit 1065 827 8 150
4bit Hash 929 754 8 143

Knapsack
original 372 84 0 282
FA-8bit 429 167 0 336

4bit Hash 423 155 370

Histogram
original 159 71 1 372
FA-8bit 126 65 1 318

4bit Hash 112 49 1 320

TreeTraversal
original 370 123 0 295
FA-8bit 307 167 0 227

4bit Hash 273 159 0 222

Table 1: Hardware characteristics of different im-
plementations using LEC-HLS tool

of bits used in the hash function. As the pipeline depth in-
creases, the number of false positives would also increase.



In order to maintain the same rate of false positives, we
have to increase the number of bits used for hashing the
address of memory operations. The number of additional
bits required depends on the actual data pattern. Further,
increase in the number of pipeline stages also increases the
penalty we pay in the case of an actual dependency. Ta-
ble 2 shows the results we obtained for an example kernel
by increasing the number of stages from 5 to 22. The ex-
ample contains a series of 32 bit multiplications guarded by
conditions based on the output of previous multiplication.
We obtain implementations with various pipeline stages by
controlling the required clock frequency. To measure the
impact on performance, we assume uniform probability for
a memory dependence to manifest at runtime. The table
shows the incremental performance/area overhead over the
implementation with fewer stages.

Pipeline HashSize ALUT REG Freq % inc % inc
Depth (in bits) (in MHz) Area perf.

5 8 746 193 31.3 - -
8 10 913 345 57 33.9 20.88
13 12 1073 604 99.1 33.3 7.3
22 13 1074 1113 148.6 30.4 2.49

Table 2: Impact of pipeline stages on Area and Per-
formance

C. DISCUSSION ON RELATED WORK
Runtime dependence analysis (and also dependency anal-

ysis) is a widely studied topic and is studied in various con-
texts. In the following, we summarize some of the important
research work.

C.1 Compiler Based Dependency Analysis
Dependency information is important for parallelizing

compilers. Hence, static dependency analysis6 has been
(and is still) a very widely studied topic. Earlier works
have focused on regular (i.e. affine) access patterns such
as those found in scientific codes. The developed ap-
proaches range from fast but very conservative, to exact
ones [Fea91, Pug91]. More recent works focus on extending
the scope of these analyses to more irregular computation
patterns [CBF95, OR12].

Dependency information obtained from such static anal-
ysis is used by compilers when performing optimizations.
In the context of loop pipelining, the dependency informa-
tion is an important factor that determines the efficiency of
the pipeline schedule. In many cases, a loop-carried depen-
dency will hold only over a sub-set of the iteration space and
sophisticated analysis can compute this information. This
information can be used to perform an index set splitting
transformation, which isolates the iteration subset that can
be pipelined (or parallelized) [GFL00]. Another approach,
specifically targeted at HLS corrects the loop schedule by in-
serting wait-states at compile time. This approach was pro-
posed by Morvan et al. [MDQ11] for correcting dependency
violations occurring after a loop coalescing transformation.

C.2 Software Runtime Dependency Analysis
The idea of performing software based runtime depen-

dency analysis was proposed as early as 1989 by Nico-
lau [Nic89]. The basic technique is to introduce checks in the
source code to disambiguate memory references at runtime.

6The book of Allen and Kennedy [KA02] offers a good sur-
vey of the topic.

Application
Version

Hardware characteristics
ALUT REG DSP Freq

(MHz)

BBFIR
original 216 290 3 185.6
FA-8bit 383 339 3 186

4bit Hash 346 311 3 186

Prodmat

original 231 304 3 185.7
FA-16bit 422 444 3 186
8bit Hash 396 388 3 186
4bit Hash 356 360 3 185.8

FloydWarshall

original 233 155 0 311.5
FA-16bit 428 214 0 208.5
8bit Hash 331 166 0 214.1
4bit Hash 307 160 0 275.9

Jacobi-2D

original 385 307 4 182
FA-16bit 892 517 4 162
8bit Hash 578 422 4 165.2
4bit Hash 522 404 4 167.5

Knapsack

original 340 201 0 342.9
FA-8bit 378 206 0 235.9

4bit Hash 367 185 0 188.9

Histogram
original 62 29 1 528.5
FA-8bit 107 73 1 325.6

4bit Hash 104 57 1 380

TreeTraversal
original 188 83 0 411
FA-8bit 192 117 0 264.9

4bit Hash 192 105 0 321.2

Table 5: Hardware characteristics of different im-
plementations using FPGA-HLS tool

This allows compiler to aggressively schedule operations as-
suming memory references do not alias on one path. Huang
et al. [HH94] present a similar technique for architectures
that support conditional execution. They employ predicates
to guard the statements instead of explicit branches.

Salami et al. [SCAV02] extend this technique to disam-
biguate an entire loop instead of disambiguating at the level
of iterations. This was proposed in the context of multime-
dia applications. Another work by Rus et al. [RRH03] uses a
representation called RT LMAD, Run-Time Linear Mem-
ory Access Descriptor to summarize the memory references
in the program. This representation is used to disambiguate
memory references at the level of loops efficiently. Both of
these approaches aim at detecting loops containing DOALL
parallelism.

C.3 Hardware Runtime Dependency Analysis
The idea of performing memory dependence analysis

at the micro-architectural level dates back to early 80s.
Smith [Smi84] proposed Decoupled Access Execute archi-
tectures to perform “an associative compare of each newly
issued load address with all the addresses in the Write Ad-
dress Queue” to ensure store forwarding for aliasing load/s-
tore pairs.

This kind of mechanism was later extensively used in
Load-Store Queues (LSQ) of wide issue out-of-order su-
perscalar processor architectures to handle dependence vi-
olations due to speculative execution of load/store opera-
tions. Such super-scalar processors have very deep execu-
tion pipelines (31 stages for the Pentium D). This mecha-
nism is therefore quite costly in terms of transistor count.
For such architectures, the challenge is to provide a scal-
able mechanism to deal with hundreds of in flight instruc-
tions [BZ06, SDB+03]. In the context of embedded hard-
ware platforms, the energy consumed by such an approach
also needs to be taken into account. In most of the embed-
ded platforms even when the processor pipeline depth and
issue width remain limited, the performance improvement
provided by this mechanism rarely outweighs its area and



Application Size orig [MDQ11] FA-16bit 8bitHash 4bitHash

BBFIR
256 × 8 22413.3 9279 - 11895.24 11751.18

1024 × 32 221790.66 148050 - 189456.84 203727.09

ProdMat
43 1182.72 294 295.1 301.92 280.16

1283 15457812.48 9078597 9101657 9311372.64 8640282.72

FloydWarshall
163 31454.08 22816 25750 23813.6 29131.2
1283 10760494.08 11650905 13107350 12132844.24 14453814.8

Jacobi-2D
30 × 16 91816.2 44000 62539.5 59587.02 103431.03

30 × 256 14382664.2 11262604 13751755.5 13264369.02 24248289.03

Knapsack
128 × 16 1034.48 - - 454.672 612.5
1024 × 64 8238.32 - - 3549.456 4812.5

Histogram
128 8223.54 - - 5646.96 5782.5
1024 231898.42 - - 99143.44 101425.5

TreeTraversal
128 × 4 9065.94 - - 6670.62 6375.24

1024 × 16 246500.82 - - 199221.66 183598.92

Table 3: Execution time (in ns) for different implementations synthesized using LEC-HLS tool

Application Size orig FA-16bit 8bitHash 4bitHash

BBFIR
256 × 8 24914.1 - 11162.6 11156.4

1024 × 32 230067.6 - 176408.6 176552.0

ProdMat
43 882.8 569.6 569.6 570.2

1283 11818828.6 11270127.0 11270127.092 11282710.04

FloydWarshall
163 17976 19749.9 19231.06 16217.4
1283 7046592 10058046.5 9800961.6 7692168.3

Jacobi-2D
30 × 16 63828.9 52830.9 51795.5 53055.3

30 × 256 11255393.7 12143992.5 11907988.2 11852163.3

Knapsack
128 × 16 728.4 - 441.6 512.6
1024 × 64 5814.1 - 3468.3 4046.0

Histogram
128 4673.7 - 4354.0 3595.5
1024 127063.4 - 81187.4 66969.9

TreeTraversal
128 × 4 7467.8 - 9512.3 12489.6

1024 × 16 203049.8 - 284335.1 359979.2

Table 4: Execution time (in ns) for different implementations synthesized using FPGA-HLS tool

energy overheads.
Interestingly, some mixed static/dynamic approaches

have also been proposed. In the work of Gallagher et
al. [GCM+94] the hardware support for runtime dependency
analysis is only activated for load/store pairs that are flagged
by the compiler as being possibly dependent and use com-
piler generated repair code in case of a dependency viola-
tion. This technique was later extended by Mahadevan et
al. [MNJH00] in the context of modulo scheduled loops tar-
geting the EPIC IA64 architecture.

C.4 Runtime Scheduling in HLS
High-Level Synthesis frameworks focus on kernels that ex-

hibit limited data-dependent behavior7 inside loop kernels.
For this reason, most of HLS tools have been relying on
static scheduling techniques.

Several research work [KW02, RB94, GSK+01, VCG05]
have addressed issues related to runtime scheduling (in
which we include speculative techniques) in order to sup-
port efficient scheduling (in both latency and area) over pos-
sibly complex control-flow execution paths. However these
contributions do not employ runtime dependency analysis
techniques and assume that memory disambiguation is per-
formed at compile time (hence conservatively).

More recently, Thielman et al. [THK11] studied the au-
tomatic generation of speculative application specific micro-
architecture from high-level specifications. While similar in
its goal, their approach differs from ours in two ways: (1)
They focus on value prediction techniques to reduce impact
of external memory accesses. However, they do not consider
runtime hardware memory disambiguation techniques. (2)
They focus on a specific architectural model (the PreCORE
machine); whereas our approach aims at a seamless integra-

7When it does, the data dependent behavior does not impact
parallelization opportunities.

tion into existing HLS flows.

D. LIMITATIONS OF THE APPROACH
In this section, we discuss the limitation of the approach

both from the point of efficiency and from the applicability
of the technique.

D.1 Performance Bottleneck
It is important to understand how our stall logic mecha-

nism is implemented to realize its limitations.
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Figure 9: Block diagram to illustrate the technique

Figure 9 shows the organization of our pipeline stall logic.
It comprises two critical loops that limit the initiation in-
terval of the pipeline. One dependency is through the incre-
ment of the loop index variable and the second is the update
to the shift register. Both these operations are conditional
and are control dependent on the stall signal. Thus, the



computation of stall signal is on the critical path. Further,
update to the shift register requires computation of index
expressions of memory operations that are being analyzed
by our technique. This computation may become critical
depending on the complexity of the index computation.

For example, consider a hypothetical example shown in
Figure 10. To obtain accurate information about the write
accesses to array T we need to evaluate the condition j
> w[i] * w[i]. Evaluating such complex conditions may
stretch the initiation interval and/or increase the clock width
thereby degrading the performance obtained.

1 for ( int i = 0; i < N; i++ ) {
2 for ( int j = 0; j < W; j++ ) {
3 if ( j > (w[i] * w[i]) ) {
4 T[i][j] = max(T[i-1][j],T[i-1][j-w[i]] + v[i

])
5 } else {
6 T[i][j-1] = T[i-1][j];
7 }
8 }
9 }

Figure 10: A hypothetical example to illustrate the
critical path of our approach

One way to work around this problem is to compromise
on accuracy and record both writes without evaluating the
condition. Note that, in such cases, we need to provide
two different shift registers, one for each write operation.
In such cases, the optimization discussed in Section 3.5 (of
merging shift registers on mutually exclusive paths) cannot
be performed. Another way to improve performance is to
use speculation to reduce the critical path by allowing the
pipeline to proceed as long as there is no change to the global
state. We are still looking at the details of this technique.

D.2 Scope of the Approach
Our approach cannot find a schedule with an II = 1 for

applications that contain dynamic memory references in the
program slice (refer section 3.3) of the index expression. To
be able to pipeline such a loop we need to use speculation.
To illustrate such a case, consider the example in Figure 11.
In this example, the index1, which is used to access data
from array Y, is based on a read to the same array Y. The
reads and writes to the array Y are data dependent and
cannot be statically disambiguated. Hence, we cannot read
value from Y before computing the stall logic. However, we
require a read to the array for computing the stall logic.
This causes a circular dependency and can only be broken
using speculation.

1 for ( int i = 0; i < N; i++ ) {
2 index0 = X[i];
3 index1 = foo(Y[index0]);
4 Y[i] = bar(Y[index1]);
5 }

Figure 11: Chained ambiguous memory access
pairs
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