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Abstract Runtime enforcement is a powerful technique to ensure that a program will re-

spect a given set of properties. We extend previous work on this topic in several directions.

Firstly, we propose a generic notion of enforcement monitors based on a memory device and

finite sets of control states and enforcement operations. Moreover, we specify their enforce-

ment abilities w.r.t. the general Safety-Progress classification of properties. Furthermore,

we propose a systematic technique to produce a monitor from the automaton recognizing a

given safety, guarantee, obligation or response property. Finally, we show that this notion

of enforcement monitors is more amenable to implementation and encompasses previous

runtime enforcement mechanisms.

Keywords Runtime enforcement · Monitor · Safety-progress classification · Monitor

synthesis · Composition

1 Introduction

The growing complexity of nowadays programs and systems induces a rise of needs in

validation. With the enhancement of engineering methods, software components tend to be

more and more reusable. When retrieving an external component, the question of how this

code meets a set of proper requirements arises. Using formal methods appears as a solution
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to provide techniques to regain the needed confidence. However, these techniques should

remain practical enough to be adopted by software engineers.

Runtime monitoring (see [1, 2] for brief overviews) falls in this category. It consists in

supervising at runtime the execution of an underlying program against a set of expected

properties: using a dedicated monitor allows to detect occurrences of specific property vi-

olations. Such a detection might provide a sufficient assurance. However, for some kind of

systems a misbehavior might be not acceptable. To prevent this, a possible solution is to

enforce the desired property: the monitor not only observes the current program execution,

but it also controls it in order to ensure that the expected property is fulfilled.

Runtime enforcement monitoring was initiated by the work of Schneider [3] on security

automata. In this work the monitors watch the current execution sequence and halt the un-

derlying program whenever it deviates from the desired property. Such security automata

are able to enforce the class of safety properties [4], stating that nothing bad happens during

program execution. Later, Viswanathan [5] noticed that the class of enforceable properties

is impacted by the computational power of the enforcement monitor. As enforcement me-

chanisms can implement no more than computable functions, the enforceable properties are

included in the decidable ones. More recently, Ligatti et al. [6, 7] showed that it is possible

to enforce at runtime more than safety properties. Using more powerful enforcement me-

chanisms called edit-automata, it is possible to enforce the larger class of infinite renewal

properties, able to express some kinds of obligations used in security policies. To better cope

with practical resource constraints, Fong [8] studied the effect of memory limitations on en-

forcement mechanisms (called shallow-automata). The various mechanisms and operated

controls usually remain transparent, meaning that they always output the longest correct

prefix of the original execution sequences. Therefore the initial sequence is minimally al-

tered.

In this paper, we introduce a generic formalism for run-

time enforcement under the transparency constraint. The

proposed mechanism is schematically represented, in its

most general form, by the figure on the left. This represen-

tation encompasses several real software implementations

that can be assimilated to enforcement monitors, e.g., an

access control mechanism where the input sequence is produced by a user and the output

sequence is sent to a secured server.

A runtime enforcement monitor is a decision procedure dedicated to a property Π . It

reads a finite (and possibly infinite) sequence of events σ and produces in output a new

finite (and possibly infinite) sequence o. The monitor is equipped with an internal memory

and a set of operations on the input events (possibly using the memory). Some constraints

(e.g., transparency) may exist between σ and o that influence the operations performed

by the monitor while reading σ . For instance, let us consider a transactional property Π

to be enforced, stating that a given operation should be logged whenever it occurs. The

transparency constraint leads the monitor to store some events of σ (and thus not producing

them in output) as long as the transaction is not properly completed (the operation occurred,

but it has not been logged yet). On the other hand, whenever the property Π is satisfied, the

monitor simply dumps immediately each input event (together with the events previously

stored in its memory). In some particular cases, by examining Π , the monitor may also

determine that, at some point, whatever are the possible upcoming events, the input sequence

will never (resp. will always) satisfy the property in the future. In such a situation this input

sequence can be definitely blocked (resp. the monitor can be switched off, since it is not

required anymore).
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Our contributions In this paper, we propose to extend previous work in runtime enforce-

ment monitoring in several directions. Firstly, we study the problem of enforcement rela-

tively to the so-called Safety-Progress hierarchy of regular properties [9, 10]. This classi-

fication differs from the more classical safety-liveness classification [11, 12] by offering a

rather clear characterization of a number of interesting kinds of properties (e.g., obligation,

accessibility, justice, etc.). Thus, it provides a finer-grain classification of enforceable pro-

perties. Moreover, in this Safety-Progress hierarchy, each class of regular properties can be

characterized by a particular kind of finite-state automaton AΠ . Secondly, we introduce a

generic notion of enforcement monitor based on a finite set of control states and an auxil-

iary memory. This general notion of enforcing monitor encompasses the previous notions

of security automata, edit-automata and “shallow history” automata. Thirdly, we show how

to generate an enforcement monitor for Π in a systematic way, from a recognizing automa-

ton AΠ .

A preliminary version of this paper appeared in [13]. This paper brings the following ad-

ditional contributions. It first contains a more comprehensive theoretical basis as we revisit

and extend results about the Safety-Progress classification of properties. Moreover, this pa-

per introduces the notion of e-properties which are more suitable to represent and delineate

the space of enforceable properties. We added more details in each section, and complete

proofs of all mentioned theorems. Furthermore, we present the notion of enforcement mo-

nitor composition. At last we supply a comparison with related work and explain in details

the advantages of the model of enforcement monitors proposed in this paper.

Paper organization The remainder of this article is organized as follows. Section 2 intro-

duces some preliminary notations for our work. In Sect. 3 we recall briefly the necessary ele-

ments from the Safety-Progress classification of properties. We also add additional results to

this classification. Then, we present our notion of enforcement monitor and their properties

in Sect. 4. We address the problem of enforcement monitor composition in Sect. 5. Section 6

first exposes enforcement monitor synthesis and the proof of its correctness, and then stud-

ies enforcement capability of monitors w.r.t. Safety-Progress classes. Section 7 compares

these results and the enforcement monitors with previous work. Finally, Sect. 8 gives some

concluding remarks and directions for future work.

2 Preliminaries and notations

This section introduces some preliminary notations about the notions of program execution

sequences and program properties.

2.1 Sequences, and execution sequences

Sequences Considering a finite set of elements E, we define notations about sequences of

elements belonging to E. A sequence σ containing elements of E is formally defined by a

total function σ : I → E where I is either the interval [0, n] for some n ∈ N, or N itself (the

set of natural numbers). We denote by E∗ the set of finite sequences over E, by E+ the set

of non-empty finite sequences over E, and by Eω the set of infinite sequences over E. The

set E∞ = E∗ ∪ Eω is the set of all sequences (finite or not) over E. The empty sequence is

denoted ε. The length (number of elements) of a finite sequence σ is denoted |σ | and the

(i + 1)-th element of σ is denoted by σi . For two sequences σ ∈ E∗, σ ′ ∈ E∞, we denote

by σ · σ ′ the concatenation of σ and σ ′. When σ ∈ E∗, σ ′ ∈ E∞ \ {ε}, we denote by σ ≺ σ ′
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the fact that σ is a strict prefix of σ ′, that is, σ 	= ε ⇒ |σ | < |σ ′| ∧ ∀i ∈ [0, |σ | − 1], σi = σ ′
i .

When σ ′ ∈ E∗, we note σ 
 σ ′ def
= σ ≺ σ ′ ∨ σ = σ ′. For σ ∈ E∞ \ {ε}, we will need to

designate its sub-sequences. In particular, for n ∈ N, σ···n is the sub-sequence containing

the n + 1 first elements of σ . Also, when |σ | > n, the sub-sequence σn··· is the sequence

containing all elements of σ but the n first ones. For i, j ∈ N with i ≤ j , we denote by σi···j

the sub-sequence of σ containing the (i + 1)-th to the (j + 1)-th (included) elements.

Execution sequences A program P is considered as a generator of execution sequences.

We are interested in a restricted set of actions or events the program can perform. These ac-

tions influence the truth value of properties the program is supposed to fulfill. Such execution

sequences can be access events on a secure system to its resources, or kernel operations on

an operating system. In a software context, these events may be abstractions of relevant in-

structions such as variable modifications or procedure calls. We abstract these operations by

a finite set of events/actions, namely an alphabet Σ . We denote by PΣ a program for which

the alphabet is Σ . The set of execution sequences of PΣ is denoted Exec(PΣ ) ⊆ Σ∞. This

set is prefix-closed, that is ∀σ ∈ Exec(PΣ ),∀σ ′ ∈ Σ∗, σ ′ 
 σ ⇒ σ ′ ∈ Exec(PΣ ).

2.2 Properties

Properties as sets of execution sequences In this paper we aim to enforce properties on

programs. A property is generally defined as a set of execution sequences. More specifically

a set φ ⊆ Σ∗ of finite sequences of events (resp. ϕ ⊆ Σω of infinite sequences of events) is

called a finitary property (resp. an infinitary property). We denote by φ (resp. ϕ) the nega-

tion of φ (resp. ϕ), that is the complement of φ (resp. ϕ) in Σ∗ (resp. Σω), formally defined

as Σ∗ \ φ (resp. Σω \ ϕ). Considering a given finite (resp. infinite) execution sequence σ

and a property φ (resp. ϕ), when σ ∈ φ, denoted φ(σ) (resp. σ ∈ ϕ, denoted ϕ(σ)), we

say that σ satisfies φ (resp. ϕ). A consequence of this definition is that properties we will

consider are restricted to single execution sequences,1 excluding specific properties defined

on power-sets of execution sequences (like fairness, for instance). Moreover, for a finitary

property φ and an execution sequence σ ∈ Σ∞, we denote by Pref≺(φ,σ ) the set of all

(strict) prefixes of σ satisfying φ, i.e., Pref≺(φ,σ ) = {σ ′ ∈ φ | σ ′ ≺ σ }. This set is a chain

(i.e., a totally ordered set) regarding the order relation ≺. The (unique) maximal element of

the set Pref≺(φ,σ ), namely the longest prefix of σ satisfying φ (noted Max(Pref≺(φ,σ )))

is the maximal element regarding ≺ if Pref≺(φ,σ ) 	= ∅. Given a property φ ⊆ Σ∗ and

an execution sequence σ ∈ Σ∗, a straightforward property of the set Pref ≺(φ,σ ) is that

∀a ∈ Σ,¬φ(σ) ⇒ Max(Pref ≺(φ,σ · a)) = Max(Pref ≺(φ,σ )).

Enforcement properties In this paper we are interested in enforceable properties. As stated

in the introduction, enforcement monitors should output the longest “correct” prefix of an

execution sequence which does not satisfy the expected property. To do so, an enforcement

monitor decides property satisfaction using always a finite observation. Furthermore, as we

consider finite and infinite execution sequences (that a program may produce), enforceable

properties should characterize satisfaction for both kinds of sequences in a uniform way.

We advocate that the separation of finitary and the infinitary parts of a property clarifies

the understanding of monitoring. An enforcement monitor (or a monitor) can be seen as a

1This is the distinction, made by Schneider [3], between properties and (general) policies. The set of proper-

ties (defined over single execution sequences) is a subset of the set of policies (defined over sets of execution

sequences).
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decision procedure reading a finite prefix and examining the satisfaction of this prefix w.r.t.

a given correctness property.

Therefore, we introduce e-properties (enforcement properties) as follows. An e-property

is defined2 as a pair (φ,ϕ) ⊆ Σ∗ × Σω . Intuitively, the finitary property φ represents the

desirable property that finite execution sequences should fulfill, whereas the infinitary pro-

perty ϕ is the expected property for infinite execution sequences. The definition of negation

of an e-property follows from definition of negation for finitary and infinitary properties.

For an e-property (φ,ϕ), we define (φ,ϕ) as (φ,ϕ). Boolean combinations of e-proper-

ties are defined in a natural way. For ∗ ∈ {∪,∩}, (φ1, ϕ1) ∗ (φ2, ϕ2) = (φ1 ∗ φ2, ϕ1 ∗ ϕ2).

Considering an execution sequence σ ∈ Exec(PΣ ), we say that σ satisfies (φ,ϕ) when

σ ∈ Σ∗ ∧ φ(σ) ∨ σ ∈ Σω ∧ ϕ(σ). For an e-property Π = (φ,ϕ), we note Π(σ) when σ

satisfies (φ,ϕ).

3 A Safety-Progress classification of e-properties

This section recalls and extends some results about the Safety-Progress [9, 10] classification

of properties. In the original papers this classification introduced a hierarchy between regu-

lar properties3 defined as sets of infinite execution sequences. We extend the classification

to deal with finite-length execution sequences. As so we revisit this classification for regular

e-properties.

3.1 Informal description

The Safety-Progress classification is made of four basic classes over execution sequences.

Informally, the classes were defined as follows:

− Safety properties are the properties for which whenever a sequence satisfies a property,

all its prefixes satisfy this property.

− Guarantee properties are the properties for which whenever a sequence satisfies a pro-

perty, there are some prefixes (at least one) satisfying this property.

− Response properties are the properties for which whenever a sequence satisfies a pro-

perty, an infinite number of its prefixes satisfy this property.

− Persistence properties are the properties for which whenever a sequence satisfies a pro-

perty, all but finitely many of its prefixes satisfy this property.

Furthermore, two extra classes can be defined as (finite) Boolean combinations (union and

intersection) of basic classes.

− The obligation class can be defined as the class obtained by Boolean combination of

safety and guarantee properties.

− The reactivity class can be defined as the class obtained by Boolean combination of

response and persistence properties. This is the most general class containing all lin-

ear temporal properties [9]. In this paper, we will focus on sub-classes of reactivity to

characterize the set of enforceable properties.

2We advocate that a pair of sets makes the distinction between the finitary and the infinitary part of the

property more explicit. Though other notations could be considered as well.

3In the rest of the paper, the term property will stand for regular property.
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The requirements provided in the following example introduces the aforementioned classes

of properties. In Example 2, we formalize those requirements as e-properties.

Example 1 (Informal requirements) Let us consider an operating system with a secured

operation ops (needing an authentication) and an unsecured operation opu. The system is

endowed with three primitives related to authentication: r_auth (requesting authentication)

emitted by users, and g_auth (granting authentication), d_auth (denying authentication)

emitted by an internal authentication mechanism. Then,

− the requirement Π1 stating that “If ops ever occurs, then it should be immediately pre-

ceded by a granted authentication g_auth.” can be formalized as a safety e-property;

− the requirement Π2 stating that “Each work session of a user should contain a complete

authentication step terminated either by a grant (g_auth) or a deny (d_auth) operation.

In case of a successful authentication, the work session may contain secured and unse-

cured operations. Otherwise, it should contain only unsecured operation and it should be

terminated by a user disconnection (disco).” can be formalized as a guarantee e-property;

− the requirement Π3 stating that “The system should run forever; or, if a d_auth is issued,

then the user should be disconnected and then the system should terminate (end).” can

be formalized as an obligation e-property;

− the requirement Π4 stating that “Each occurrence of r_ auth should be first written in a

log file and then answered either with a g_auth or a d_auth without any occurrence of

ops or r_auth in the meantime.” can be formalized as a response e-property;

− the property Π5 stating that “After a d_auth, a (forbidden) use of operation ops should

imply that at some point any future call to r_auth will always result in a d_ auth answer.”

can be formalized as a persistence e-property.

The Safety-Progress classification is an alternative to the classical Safety-Liveness [11, 12]

dichotomy. Unlike this one, the Safety-Progress classification is a hierarchy and not a parti-

tion. It provides a finer-grain classification, and the properties of each class are characterized

according to four views [9]: a language-theoretic view, a topological view, a temporal logic

view, and an automata-based view. The language-theoretic view describes the hierarchy ac-

cording to the way each class can be constructed from sets of finite sequences. The topolog-

ical view characterizes the classes as sets with topological properties. The third view links

the classes to their expression in temporal logic. At last, the automata-view gives syntactic

characterization on the automata recognizing the properties of a given class. In this paper,

we consider only the automata view dedicated to e-properties.

3.2 The automata view of e-properties

For the automata view of the Safety-Progress classification, we follow [9, 14] and define

e-properties using Streett automata. For each class of the Safety-Progress classification it

is possible to syntactically characterize a recognizing finite-state automaton. We define4 a

variant of deterministic and complete Streett automata (introduced in [15] and used in [14])

for property recognition. These automata process events and decide properties of interest.

We add to original Streett automata a finite-sequence recognizing criterion in such a way

that these automata uniformly recognize e-properties.

4There exist several equivalent definitions of Streett automata dedicated to infinite sequences recognition. We

choose here to follow the definition used in [9] and also only consider finite-state automata in the remainder.
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Definition 1 (Streett automaton) A deterministic finite-state Streett automaton is a tuple

(Q,q
init

,Σ,−→, {(R1,P1), . . . , (Rm,Pm)}) defined relatively to a set of events Σ . The set

Q is the set of automaton states, q
init

∈ Q is the initial state. The function −→: Q×Σ → Q

is the (complete) transition function. In the following, for q, q ′ ∈ Q,e ∈ Σ we abbreviate

−→ (q, e) = q ′ by q
e

−→ q ′. The set {(R1,P1), . . . , (Rm,Pm)} is the set of accepting pairs,

for all i ≤ n, Ri ⊆ Q are the sets of recurrent states, and Pi ⊆ Q are the sets of persistent

states.

We refer to an automaton with m accepting pairs as an m-automaton. When m = 1,

a 1-automaton is also called a plain-automaton, and we refer to R1 and P1 as R and P .

In the following A = (QA , qA

init
,Σ,−→A , {(R1,P1), . . . , (Rm,Pm)}) designates a Streett

m-automaton.

For σ ∈ Σ∞, the run of σ on A is the sequence of states involved by the execution of

σ on A . It is formally defined as run(σ,A ) = q0 · q1 · · · where ∀i (qi ∈ QA ∧ qi

σi
−→A

qi+1) ∧ q0 = qA

init
. The trace resulting in the execution of σ on A is the unique sequence

(finite or not) of tuples (q0, σ0, q1) · (q1, σ1, q2) · · · where run(σ,A ) = q0 · q1 · · · .

Also we consider the notion of infinite visitation of an execution sequence σ ∈ Σω

on a Streett automaton A , denoted vinf (σ,A ), as the set of states appearing infi-

nitely often in run(σ,A ). It is formally defined as follows: vinf (σ,A )
def
= {q ∈ QA |

∀n ∈ N,∃m ∈ N,m > n ∧ q = qm with run(σ,A ) = q0 · q1 · · · }.

For a Streett automaton, the notion of acceptance condition is defined using the accepting

pairs.

Definition 2 (Acceptance condition (infinite sequences)) For σ ∈ Σω , we say that A ac-

cepts σ if ∀i ∈ [1,m], vinf (σ,A ) ∩ Ri 	= ∅ ∨ vinf (σ,A ) ⊆ Pi .

To deal with e-properties we need to define also an acceptance criterion for finite se-

quences.

Definition 3 (Acceptance condition (finite sequences)) For a finite-length execution se-

quence σ ∈ Σ∗ such that |σ | = n, we say that the m-automaton A accepts σ if

(∃q0, . . . , qn ∈ QA , run(σ,A ) = q0 · · ·qn ∧ q0 = qA

init
and ∀i ∈ [1,m], qn ∈ Pi ∪ Ri).

The hierarchy of automata The Safety-Progress hierarchy as defined in [14] can be seen

in the automata view by setting syntactic restrictions on a Streett automaton.

− A safety automaton is a plain automaton such that R = ∅ and there is no transition from

a state q ∈ P to a state q ′ ∈ P .

− A guarantee automaton is a plain automaton such that P = ∅ and there is no transition

from a state q ∈ R to a state q ′ ∈ R.

− An m-obligation automaton is an m-automaton such that for each i in [1,m]:

• there is no transition from q ∈ Pi to q ′ ∈ Pi ,

• there is no transition from q ∈ Ri to q ′ ∈ Ri .

− A response automaton is a plain automaton such that P = ∅.

− A persistence automaton is a plain automaton such that R = ∅.

− A reactivity automaton is any unrestricted automaton.

Figure 1 schematizes each basic class. The sets of persistent and recurrent states are repre-

sented by squares. Allowed transitions between the different kinds of states are represented

by arrows.
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Fig. 1 Shapes of Streett automata for the basic classes

Fig. 2 Streett Automata for the e-properties formalizing the requirements of Example 1

Automata and e-properties We say that a Streett automaton AΠ defines an e-property

(φ,ϕ) ∈ Σ∗ × Σω if the set of finite (resp. infinite) execution sequences accepted by AΠ

is equal to φ (resp. ϕ). Conversely, an e-property (φ,ϕ) ∈ Σ∗ × Σω is said to be specified

by an automaton AΠ if the set of finite (resp. infinite) execution sequences accepted by the

automaton AΠ is φ (resp. ϕ).
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Fig. 3 The Safety-Progress

classification of e-properties

Example 2 (Specifying e-properties by Streett automata) The requirements introduced in

Example 1 can be formalized as e-properties specified by the Streett automata represented

in Fig. 2. The requirement Ri is formalized by the e-property Πi specified by the automaton

AΠi
, i ∈ {1,2,3,4,5}, with initial state 1.

− For AΠ1
(Fig. 2a), the set of states is {1,2,3}, R = ∅, and P = {1,2}.

− For AΠ2
(Fig. 2b), the set of states is {1,2,3,4,5,6}, P = ∅, and R = {2,5}.

− For AΠ3
(Fig. 2c), the set of states is {1,2,3,4,5}, P = {1}, and R = {5}.

− For AΠ4
(Fig. 2d), the set of states is {1,2,3,4}, P = ∅, and R = {1}.

− For AΠ5
(Fig. 2e), the set of states is {1,2,3,4,5}, P = {3,4}, and R = ∅.

It is possible to relate the syntactic characterization on the automata to the semantic

characterization of the properties they specify. This is stated by the following definition

(transposed from the initial definition in [14]).

Definition 4 (e-properties classes) An e-property (φ,ϕ) is a regular κ-e-property if it is

specifiable by a finite state κ-automaton, where κ ∈ {safety,guarantee,obligation, response,

persistence, reactivity}. Moreover, when an obligation e-property is specified by an m-obli-

gation automaton, this e-property is said to be an m-obligation e-property.

Given an alphabet Σ , we note Safety(Σ) (resp. Guarantee(Σ), Obligation(Σ),

Response(Σ), Persistence(Σ)) the set of safety (resp. guarantee, obligation, response, per-

sistence) e-properties defined over Σ . Following [14], it can be shown that the Safety-

Progress classification of e-properties is a hierarchy, presented in Fig. 3.

3.3 Some useful facts about e-properties

We present some straightforward consequences of the definitions of safety and guarantee

e-properties.

Property 1 (Closure of e-properties) Considering an e-property Π specified by a Streett

automaton AΠ defined over an alphabet Σ , the following facts hold:

1. If Π is a safety e-property, all prefixes of a sequence belonging to Π also belong to Π .

That is, ∀σ ∈ Σ∞,Π(σ) ⇒ (∀σ ′ ∈ Σ∗, σ ′ ≺ σ ⇒ Π(σ ′)).
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2. If Π is a guarantee e-property, all continuations of a finite sequence belonging to Π also

belong to Π . That is, ∀σ ∈ Σ∗,Π(σ) ⇒ ∀σ ′ ∈ Σ∞,Π(σ · σ ′).

Proof The proof is given in Appendix A.1. It uses the acceptance conditions and syntactic

restrictions of Streett automata for safety and guarantee e-properties. �

Properties of automata Given a Streett m-obligation automaton (with m accepting pairs),

it is possible first to express it as a conjunction of 1-obligation properties and second to

characterize the languages accepted by “forgetting” some accepting pairs of the initial au-

tomaton. This is formalized as follows.

Lemma 1 (About obligation e-properties) Given an m-automaton AΠ = (Q, q
init

,Σ,−→,

{(R1,P1), . . . , (Rm,Pm)}) recognizing an m-obligation e-property Π . Π can be expressed

as
⋂m

i=1 Πi , where Πi is a 1-obligation e-property of the form Πi = Safetyi ∪ Guaranteei

where Safetyi and Guaranteei are respectively safety and guarantee e-properties. More-

over, given a subset X ⊆ [1,m], the automaton AΠ/X = (Q,q
init

,Σ,−→, {(Ri,Pi) | i ∈ X})

recognizes the property
⋂

i∈X Πi .

Proof For infinite execution sequences, this proof has been done in [14]. For finite execution

sequences, the proof is a straightforward adaptation. �

4 Property enforcement via enforcement monitors

Considering a program PΣ , we aim at constructing an enforcement monitor for an

e-property (φ,ϕ) over Σ .

4.1 Enforcement monitors

We now define the central notion of enforcement monitor. Such a runtime device monitors

a target program by watching its relevant events. It is an automaton-based mechanism en-

dowed with an internal memory. On each input event its state evolves and an enforcement

operation is performed. Enforcement operations operate a modification of the internal me-

mory of the enforcement monitor and potentially produce an output. Enforcement monitors

are parameterized by a set of enforcement operations Ops.

Definition 5 (Ops—Enforcement operations) Enforcement operations take as inputs an

event and a memory content (i.e., a sequence of events) to produce an output sequence

and a new memory content: Ops ⊆ 2(Σ×Σ∗)→(Σ∗×Σ∗).

Definition 6 (Generic enforcement monitor (EM(Ops))) An enforcement monitor A↓ is a

4-tuple (QA↓ , q
A↓

init ,−→A↓
,Ops) defined relatively to a set of events Σ and parameterized

by a set of enforcement operations Ops. The finite set QA↓ denotes the control states, q
A↓

init ∈

QA↓ is the initial state. The complete function −→A↓
: QA↓ × Σ → QA↓ × Ops is the

transition function. In the following we abbreviate −→A↓
(q, a) = (q ′, α) by q

a/α
−→A↓

q ′.

In the remainder of this section, σ ∈ Σ∞ designates an execution sequence, and A↓ =

(QA↓ , q
A↓

init ,−→A↓
,Ops) designates an EM(Ops).
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Definition 7 (Run and trace) The run of σ on A↓ is the sequence of states involved by the

execution of A↓ when σ is input. It is formally defined as run(σ,A↓) = q0 · q1 · · · where

q0 = q
A↓

init ∧∀i (qi ∈ QA↓ ∧qi

σi/αi
−→A↓

qi+1). The trace resulting in the execution of σ on A↓

is the sequence (finite or not) of tuples (q0, σ0/α0, q1) ·(q1, σ1/α1, q2) · · · (qi, σi/αi, qi+1) · · ·

where run(σ,A↓) = q0 · q1 · · · and ∀i, αi ∈ Ops.

We formalize the way an EM(Ops) reacts to an input sequence provided by a target

program through the standard notions of configuration and derivation.

Definition 8 (Configurations and derivations of an EM(Ops)) A configuration is a triplet

(q, σ,m) ∈ QA↓ × Σ∗ × Σ∗ where q denotes the current control state, σ the current input

sequence, and m the current memory content.

We say that a configuration (q ′, σ ′,m′) is derivable in one step from the configuration

(q, σ,m) and produces the output o ∈ Σ∗, and we note (q, σ,m)
o
→֒ (q ′, σ ′,m′) if and only

if σ = a · σ ′ ∧ q
a/α
−→A↓

q ′ ∧ α(a,m) = (o,m′).

We say that a configuration C ′ is derivable in several steps from a configuration C and

produces the output o ∈ Σ∗, and we note C
o

=⇒A↓
C ′, if and only if there exists k ≥ 0 and

configurations C0, C1, . . . , Ck such that C = C0, C ′ = Ck , Ci

oi
→֒ Ci+1 for all 0 ≤ i < k, and

o = o0 · o1 · · ·ok−1.

The notion of enforcement is based on how a monitor transforms a given input sequence

in an output sequence. For the upcoming definitions we will distinguish between finite and

infinite sequences.

Definition 9 (Sequence transformation) We define the transformation performed by an

EM(Ops) while reading an input sequence σ ∈ Σ∞ (produced by a program PΣ ) and

producing an output sequence o ∈ Σ∞. The total function ⇓A↓
⊆ Σ∞ × Σ∞ is defined

as follows:

− The empty sequence ε is transformed into itself by A↓, i.e., ε ⇓A↓
ε. This is the case

when the underlying program does not produce any event.

− The sequence σ ∈ Σ+ is transformed by A↓ into the sequence o ∈ Σ∗, which is noted

σ ⇓A↓
o, if ∃q ′ ∈ QA↓ ,∃m ∈ Σ∗, (q

A↓

init , σ, ε)
o

=⇒A↓
(q ′, ε,m). That is, if there exists a

derivation starting from the initial state and producing o.

− The sequence σ ∈ Σω is transformed by A↓ into the sequence o ∈ Σ∗, which is noted

σ ⇓A↓
o, if ∃σ ′ ≺ σ,σ ′ ⇓A↓

o ∧ ∀σ ′′ ∈ Σ∗, σ ′ ≺ σ ′′ ⇒ σ ′′ ⇓A↓
o. That is, the finite se-

quence o is produced if there exists a prefix of σ which produces o, and each continuation

of this prefix produces o as well.

− The sequence σ ∈ Σω is transformed by A↓ into the sequence o ∈ Σω , which is noted

σ ⇓A↓
o, if

∀o′ ∈ Σ∗, o′ ≺ o ⇒ ∃σ ′′, o′′ ∈ Σ∗, σ ′′ ≺ σ ∧ o′ ≺ o′′ ∧ σ ′′ ⇓A↓
o′′

∧ ∀σ ′, o′ ∈ Σ∗, σ ′ ≺ σ ∧ σ ′ ⇓A↓
o′ ⇒ o′ ≺ o.

That is, each prefix of o can be produced from a prefix of σ .
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4.2 Enforcing a property

Roughly speaking, the purpose of an EM(Ops) is to read some unsafe input sequence pro-

duced by a program and to transform it into an output sequence that satisfies a given e-

property Π . Before defining this notion more formally, we first explain what we mean ex-

actly by property enforcement, and what are the consequences of this definition on the set of

e-properties we shall consider.

Enforceable properties Property enforcement by an EM(Ops) is usually defined as the

conjunction of the two following constraints:

• soundness: the output sequence should satisfy Π ;

• transparency: the input sequence should be modified in a minimal way, namely if it al-

ready satisfies Π it should remain unchanged (up to a given equivalence relation), other-

wise its longest prefix satisfying Π should be issued.

A consequence of this definition of transparency is that an e-property (φ,ϕ) will be consid-

ered as enforceable only if each incorrect sequence has a longest correct prefix, or, equiva-

lently, if any infinite incorrect sequence has only a finite number of correct prefixes. We use

this criterion as a definition for enforceable properties. More formally:

Definition 10 (Enforceable e-property) An e-property (φ,ϕ) is enforceable iff:

∀σ ∈ Σω
(

¬ϕ(σ) ⇒ (∃σ ′ ∈ Σ∗, σ ′ ≺ σ,∀σ ′′ ∈ Σ∗, σ ′ ≺ σ ′′ ≺ σ ⇒ ¬φ(σ ′′))
)

The set of enforceable e-properties is denoted EP. Note that an EM(Ops) will output the

empty sequence ε in two distinct cases: either when ε is the longest correct prefix of the

input sequence, or when this input sequence has no correct prefix at all.5

Finally, since we have to deal with potentially infinite input sequences, the output se-

quence should be produced in an incremental way:6 for each current prefix σ of the input

sequence read by the EM(Ops), the current produced output o should be sound and trans-

parent w.r.t. Π and σ . Furthermore, deciding whether a finite sequence σ satisfies Π or not

should be computable in a finite amount of time (and by reading only a finite continuation

of σ ). It is indeed the case in our framework since we are dealing with regular properties.

This condition rules out particular properties saying for instance that “sequences contain-

ing an event e are accepted only if they are finite”.

Enforceable properties w.r.t. the Safety-Progress classification In [16], we have given a

characterization of the set of enforceable properties:

Theorem 1 (Enforceable properties [16]) The set of response e-properties is the set of en-

forceable properties w.r.t. the Safety-Progress classification.

Proof The formal proof can be found in [16]; we give here a sketch of this proof for the

sake of completeness.

5This latter case is avoided in [6] by assuming that properties under consideration always contain ε.

6This limitation can be seen from a runtime verification point of view: verifying infinitary properties at

runtime, on an execution sequence produced on-the-fly, should be done by checking finite prefixes of the

current execution sequence.
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First, we show that response e-properties are enforceable. Con-

sider a response e-property (φ,ϕ) recognized by a response au-

tomaton, with the shape depicted on the left. Consider an infi-

nite execution sequence σ ∈ Σω , and suppose that ¬ϕ(σ). This

means, according to the acceptance criterion for infinite sequences

(Definition 2), that the R-states are not visited infinitely often. In

other words, σ has finitely many prefixes for which the run ends in a R-state. According

to the acceptance criterion for finite sequences (Definition 3), finitely many prefixes of σ

belong to φ. Second, in order to explain that response properties are exactly the set of en-

forceable properties, [16] proceeds as follows. In the Safety-Progress hierarchy, it shows that

the subset of enforceable persistence e-properties is actually included in the set of response

e-properties. Indeed, it is possible to show that automata specifying enforceable properties

can be encoded as response automata. The reader is referred to the examples in Sect. 6.2.2

presenting (non enforceable) persistence e-properties. �

As a straightforward consequence, safety, guarantee, and obligation e-properties are en-

forceable. While Theorem 1 provides a useful characterization of enforceable properties,

there remain some fundamental questions: “How enforcement monitors should effectively

enforce properties?” and “How is it possible to obtain such enforcement mechanisms from

the definition of properties?”. These questions are respectively addressed in the remainder

of this section and in Sect. 6.

Property-enforcement We define the notion of property-enforcement by an EM(Ops). This

notion of enforcement relates the input sequence produced by the program and fed to the

EM(Ops) and the output sequence allowed by the EM(Ops) (correct w.r.t. the property un-

der consideration). In practice, it might be difficult for an EM(Ops) to produce the same

sequence since an EM(Ops) has to perform some additional statements to enforce the pro-

perty or some non-observable actions or events may occur.

As a consequence, in the general case, the comparison between input and output se-

quences is performed up to some equivalence relation ≈⊆ Σ∞ × Σ∞ (for which some

events may be not considered). Note that the considered equivalence relation should pre-

serve the e-property under consideration.

Definition 11 (Property-Enforcement≈) Let us consider an enforceable e-property Π =

(φ,ϕ) ∈ EP, we say that A↓ enforces the property (φ,ϕ), relatively to an equivalence rela-

tion ≈, on a program PΣ (noted Enf ≈(A↓, (φ,ϕ),PΣ )) iff for all σ ∈ Exec(PΣ ), there

exists o ∈ Σ∞, such that the following constraints hold:

σ ⇓A↓
o (1)

Π(σ) ⇒ σ ≈ o (2)

¬Π(σ) ∧ Pref ≺(φ,σ ) = ∅ ⇒ o ≈ ε (3)

¬Π(σ) ∧ Pref ≺(φ,σ ) 	= ∅ ⇒ o ≈ Max(Pref ≺(φ,σ )) (4)

(1), (2), (3), and (4) ensure soundness and transparency of A↓: (1) stipulates that the se-

quence σ is transformed by A↓ into a sequence o; (2) ensures that if σ already satisfied the

property then it is not transformed. When there is no correct prefix of σ satisfying the pro-

perty, (3) ensures that the EM(Ops) outputs nothing (the empty sequence ε). If there exists

a prefix of σ satisfying the property (4) ensures that o is the longest prefix of σ satisfying

the property.
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Soundness is due to the fact that the produced sequence o, when different from ε, always

satisfies the property Π . Transparency is ensured by the fact that, up to the equivalence

relation ≈, correct execution sequences are not changed, and incorrect ones are restricted to

their longest correct prefix.

One may remark that we could have set Max(Pref ≺(φ,σ )) to ε when Pref ≺(φ,σ ) = ∅

and merge the two last constraints. However, we choose to distinguish explicitly the case

in which Pref ≺(φ,σ ) = ∅ as it highlights some differences when an EM(Ops) produces ε.

Sometimes it corresponds to the only correct prefix of the property. But it can also be an

incorrect sequence w.r.t. the property. In practice, when implementing an EM(Ops) for a

system, this sequence can be “tagged” as incorrect.

4.3 Instantiating generic enforcement monitors

In the remainder of this article we will focus our study on some particular, but expressive

enough (regarding enforcement), enforcement monitors. This kind of monitor will comply

with the transparency constraint stated in Definition 10.

The considered enforcement operations allow enforcement monitors either:

− to halt the target program (when the current input sequence irreparably violates the pro-

perty), or

− to store the current event in a memory device (when a decision has to be postponed),7 or

− to dump the content of the memory device (when the input program comes back to a

correct behavior), or

− to switch off permanently the monitor (when the property is satisfied for ever).

We give a more precise definition of such enforcement operations.

Definition 12 (Enforcement operations {halt, store,dump,off }) In the following we con-

sider a set Ops
def
= {halt, store,dump,off }, where the enforcement operations are defined as

follows: ∀a ∈ Σ ∪ {ε},∀m ∈ Σ∗,

halt(a,m) = (ε,m) store(a,m) = (ε,m.a)

dump(a,m) = (m.a, ε) off (a,m) = (m.a, ε)

(a designates the input event of the monitor and m the memory device: its content).

Note that the off and dump operations have the same definitions. From a theoretical

perspective, the off operation is indeed not necessary. However, it has a practical interest: in

order to limit the monitor’s impact on the original program (performance wise), it is useful

to know when the monitor is not needed anymore.

We also distinguish two subsets of the set of states of an enforcement monitor instantiated

with the set of enforcement operations {halt, store,dump,off }: the states in Halt (resp. Off )

are used to represent the states in which the program (resp. monitor) should be stopped.

Intuitively, states in Halt (resp. Off ) are those entered by a transition labeled by a halt (resp.

off ) operation. Furthermore, we assume that, after performing a halt (resp. off operation),

an EM cannot perform another operation than halt (resp. off ).

7Note that postponing an event can be done only when there is no causal dependency with subsequent events

in the system.
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Definition 13 (Instantiated enforcement monitor) An EM is an instantiated EM(Ops)

(QA↓ , q
A↓

init ,−→A↓
,Ops) where Ops

def
= {halt, store,dump,off } and such that:

• HaltA↓
def
= {q ′ ∈ QA↓ | ∃a ∈ Σ,∃q ∈ QA↓ , q

a/halt
−→A↓

q ′},

and ∀q ∈ HaltA↓ ,∀a ∈ Σ,∀α ∈ Ops,∀q ′ ∈ QA↓ , q
a/α
−→A↓

q ′ ⇒ α = halt

• Off A↓
def
= {q ′ ∈ QA↓ | ∃a ∈ Σ,∃q ∈ QA↓ , q

a/off
−→A↓

q ′},

and ∀q ∈ Off A↓ ,∀a ∈ Σ,∀α ∈ Ops,∀q ′ ∈ QA↓ , q
a/α
−→A↓

q ′ ⇒ α = off

In the remainder of this article we consider only EMs.

Example 3 (Enforcement monitor) We illustrate the enforcement of some of the e-properties

introduced in Example 2 with EMs.

− Figure 7b (p. 21) shows an EM A↓Π1
for the safety e-property Π1. A↓Π1

has one halting

state, HaltA↓Π1 = {3}, and its initial state is 1. From this initial state A↓Π1
simply dumps

a first occurrence of g_auth and moves to state 2, where the ops operation is allowed

(i.e., dumped) and goes back to state 1. Otherwise, if the event ops occurs while not

being preceded by a g_auth, A↓Π1
moves to state 3 and halts the underlying program

forever.

− Figure 6b (p. 20) shows an EM A↓Π2
for the guarantee e-property Π2. The initial state

of A↓Π2
is state 1, HaltA↓Π2 = {6}, and Off A↓Π2 = {2,5}. Its behavior is the follow-

ing. Occurrences of secured and unsecured operations are stored in memory until the

answer of an authentication happens. If the authentication is granted, A↓Π2
dumps the

whole memory content and switches off. Otherwise (denied authentication), according

to whether the user tried to perform a secured operation or not, A↓Π2
either waits for

the disconnection (forbidding any operation) and switches off, or halts immediately the

underlying system.

4.4 Properties of enforcement monitors

We now study the properties of enforcement monitors with set of enforcement operations

{halt, store,dump,off }.

Property 2 (About sequence transformation) For an execution sequence σ ∈ Exec(PΣ ) ∩

Σω and an EM A↓, s.t. the run of σ on A↓ is expressed by

(q0, σ0/α0, q1) · (q1, σ1/α1, q2) · · · (qi, σi/αi, qi+1) · · · ,

the following properties hold:

• σ ⇓A↓
σ ⇒ ∀i ∈ N,∃j ∈ N, i ≤ j, σ···j ⇓A↓

σ···j , αj ∈ {dump,off }

• ∀i ∈ N,∃j ∈ N, i ≤ j,αj ∈ {dump,off } ⇒ σ ⇓A↓
σ .

That is, for an EM, producing as output the same input sequence is equivalent to performing

regularly a dump or a off operation.
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Property 3 (Relation between input, memory, and output) Input execution sequence,

memory content, and produced output are related by the following property: ∀σ ∈ Σ+,

∀σ ′ ∈ Σ∗,

∃q ∈ QA↓ , (q
A↓

init , σ · σ ′, ε)
o

⇒A↓
(q, σ ′,m)

⇒ (σ = o · m ∧ q ∈ QA↓ \ HaltA↓) ∨ (o ≺ σ ∧ q ∈ HaltA↓)

Proof The proof can be found in Appendix A.2. It is done by induction on the length of the

input sequence, according to the last enforcement operation performed. �

It follows that the equivalence relation considered for enforcement becomes the equality

relation. This is due to the semantics of the enforcement operations we considered. Thus the

enforcement predicate Enf ≈(A↓, (φ,ϕ),PΣ ) becomes Enf =(A↓, (φ,ϕ),PΣ ) (abbrevi-

ated Enf (A↓, (φ,ϕ),PΣ ) in the remainder of this article) when the e-property is enforced

by A↓ on PΣ . The following property is a straightforward consequence of Property 3 and

the definition of enforcement operations.

Property 4 (Last enforcement operation and property satisfaction) Given an EM A↓, an

e-property Π s.t. Enf (A↓, Π,PΣ ) and a finite execution sequence σ ∈ Exec(PΣ ) ∩ Σ+

(|σ | = n + 1) which run on A↓ is expressed (q0, σ0/α0, q1) · · · (qn, σn/αn, qn+1), we have:

• Π(σ) ⇒ αn ∈ {dump,off }

• ¬Π(σ) ⇒ αn ∈ {store,halt}

Meaning that, considering an EM which enforces an e-property, the last enforcement

operation performed while reading an input sequence is dump or off (resp. halt or store)

when the given sequence satisfies (resp. does not satisfy) the e-property.

Another consequence of these properties is that the produced output are always prefixes

of the input execution sequence, that is: ∀σ,o ∈ Σ∞, σ ⇓A↓
o ⇒ o 
 σ .

5 Operations on enforcement monitors

Current development of information systems makes specifications going more and more

complex. For assessing the value of EMs as a potential security mechanisms, it seems de-

sirable to offer techniques to compose them so as to cope with their related specifications.

In this section we describe and address the problem of EM composition. We give the for-

mal definition of monitor composition w.r.t. Boolean combinations: union, intersection and

negation, and prove their correctness.

5.1 Preliminary notations

We define the complete lattice (Ops,⊑) over enforcement operations, where halt ⊑ store ⊑

dump ⊑ off (⊑ is a total order). Moreover, we define a negation operation on enforcement

actions: for α ∈ Ops, α is the negation of α. We define dump as store, off as halt, and α

as α.
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5.2 Union and intersection

We show how disjunction (resp. conjunction) of basic (enforceable) properties can be en-

forced by constructing the union (resp. intersection) of their associated enforcement mo-

nitors. These operations between EMs are based on product constructions performed by

combining enforcement operations w.r.t. the complete lattice (Ops,⊑).

Definition 14 (Union of EMs) Given two EMs A↓1 = (QA↓1 , q
A↓1

init ,−→A↓1
,Ops), A↓2 =

(QA↓2 , q
A↓2

init ,−→A↓2
,Ops) defined relatively to a same input alphabet Σ , we define

A↓⊔ = Union(A↓1,A↓2) with QA↓⊔ = (QA↓1 × QA↓2), q
A↓⊔

init = (q
A↓1

init , q
A↓2

init ). The tran-

sition relation of this enforcement monitor is defined by getting the supremum (⊔) of en-

forcement operations. More formally →A↓⊔
: QA↓⊔ × Σ × Ops → QA↓⊔ is defined as

∀a ∈ Σ,∀q = (q1, q2) ∈ QA↓⊔ ,

q1

a/α1
−→A↓1

q1
′ q2

a/α2
−→A↓2

q2
′

A↓⊔

(q1, q2)
a/

⊔

({α1,α2})
−→A↓⊔

(q1
′, q2

′)

Note that HaltA↓⊔ = HaltA↓1 × HaltA↓2 and Off A↓⊔ = Off A↓1 × QA↓2 ∪ QA↓1 ×

Off A↓2 . Notice also that this construction does not introduce non-determinism. Indeed, since

the two initial EMs are deterministic, there is always one and only one transition with a given

element of Σ in the resulting automaton. However, one can notice that it may be not minimal

(as in Example 4).

The intersection operation between enforcement monitors is defined in a similar way by

using the infimum operator ⊓ between enforcement operations:

Definition 15 (Intersection of EMs) Given two EMs A↓1 = (QA↓1 , q
A↓1

init ,−→A↓1
, Ops)

and A↓2 = (QA↓2 , q
A↓2

init ,−→A↓2
,Ops) defined relatively to a same input alphabet Σ

and enforcement operations Ops, we define Intersection(A↓1,A↓2) = A↓⊓ with QA↓⊓ =

(QA↓1 × QA↓2), q
A↓⊓

init = (q
A↓1

init , q
A↓2

init ). The transition relation is defined by getting the in-

fimum (⊓) of enforcement operations. More formally →A↓⊓
: QA↓⊓ ×Σ × Ops → QA↓⊓ is

defined as ∀a ∈ Σ,∀q = (q1, q2) ∈ QA↓⊓ ,

q1

a/α1
−→A↓1

q1
′ q2

a/α2
−→A↓2

q2
′

A↓⊓

(q1, q2)
a/

⊔

({α1,α2})
−→A↓⊓

(q1
′, q2

′)

Note that HaltA↓⊓ = HaltA↓1 × QA↓2 ∪ QA↓1 × HaltA↓2 and Off A↓⊓ = Off A↓1 ×

Off A↓2 .

Example 4 (Union of EMs) Let us consider a system on which it is possible to evaluate two

atomic propositions a and b. At system runtime, events are fed to a monitor. Those events

contain the evaluations of a and b: either true or false.

Now let us consider the following requirement: “Either a is always true or b will be

eventually true”. Meaning that, for the observed sequence of events, a is evaluated to true in

every event or that in one of the event b is evaluated to true.

In order to build an EM for this requirement, we use two EMs, one for the requirement

“a is always true”, and the second for the requirement “b will be eventually true”. Next, we

build the union of EMs to obtain an EM for the initial requirement. The alphabet of the EMs
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Fig. 4 Union and intersection of two enforcement monitors: A↓e1
and A↓e2

is made of all possible evaluations of the atomic propositions a and b, Σ = {ab, ab, ab, ab}.

We use a Boolean notation, e.g., the event ab represents that a is evaluated to true and b to

false, the event a means ab ∨ ab.

The EMs we consider are depicted in Fig. 4, states in Halt (resp. Off ) are in red (resp.

green).

− A↓e1
enforces the requirement “a is always true”. HaltA↓e1 = {2},Off A↓e1 = ∅.

− A↓e2
enforces the requirement “b is eventually true”. HaltA↓e2 = ∅,Off A↓e2 = {2}.

− A↓⊔ enforces the requirement “a is always true or b is eventually true”. It is the EM

union A↓⊔ built from the EMs A↓e1
,A↓e2

. Following the definition of the construction,

the set of states is the Cartesian product QA↓e1 × QA↓e2 . The initial state is (1,1). Note

that there is no state in HaltA↓⊔ since HaltA↓e1 × HaltA↓e2 = ∅. A↓⊔ is not minimal

and can be easily minimized by merging the states (1,2) and (2,2), which are states in

Off A↓⊔ . One can notice that A↓⊔ complies to the constraints for states in HaltA↓⊔ and

Off A↓⊔ .

Example 5 (Intersection of EMs) Similarly to Example 4, we build an enforcement monitor

for the requirement “a is always true and b is eventually true” by using the intersection

construction. The resulting EM A↓⊓ is shown in Fig. 4d. HaltA↓⊓ = {(2,1), (2,2)} and

Off A↓⊓ = ∅. This EM is not minimal and can be easily minimized by merging the states

(2,1) and (2,2).

Theorem 2 (Union and Intersection of EMs) Given two EMs A↓Π1
= (QA↓Π1 , q

A↓Π1
init ,

−→A↓Π1
,Ops) and A↓Π2

= (QA↓Π2 , q
A↓Π2
init ,−→A↓Π2

,Ops), enforcing two enforceable

properties Π1,Π2 ∈ EP on a program PΣ , the property Π1 ∨ Π2 (resp. Π1 ∧ Π2) is en-

forced by the union (resp. intersection) enforcement monitor. More formally: ∀A↓Π1
,A↓Π2

,

• Union(A↓Π1
,A↓Π2

) and Intersection(A↓Π1
,A↓Π2

) are EMs

•

{

Enf (A↓Π1
,Π1,PΣ )

Enf (A↓Π2
,Π2,PΣ )

=⇒

{

Enf (Union(A↓Π1
,A↓Π2

),Π1 ∨ Π2,PΣ )

Enf (Intersection(A↓Π1
,A↓Π2

),Π1 ∧ Π2,PΣ )

The proof of this theorem can be found in Appendix A.3.
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5.3 Negation

Considering a safety or guarantee (enforceable) e-property,8 we show how to construct an

EM enforcing the negation of the original e-property.

Definition 16 (Negation of an EM) Given an EM A↓Π = (QA↓Π , q
A↓Π

init ,−→A↓Π
, Ops)

defined relatively to an input alphabet Σ and enforcing Π , a safety or guarantee e-property,

we define Negation(A↓Π ) = A↓Π = (QA↓Π , q
A↓Π

init ,−→
A↓Π

,Ops) as:

• QA↓Π = QA↓Π , q
A↓Π

init = q
A↓Π

init ,

• →
A↓Π

is the smallest relation verifying q
a/α
−→

A↓Π
q ′ if q

a/α
−→A↓Π

q ′.

Note that HaltA↓Π = Off A↓Π and Off A↓Π = HaltA↓Π .

Example 6 In Fig. 4, A↓e2
is the negation of A↓e1

if we replace b with a and b with a.

Theorem 3 (Negation of an EM) Given an EM A↓Π = (QA↓Π , q
A↓Π

init ,−→A↓Π
, Ops) de-

fined relatively to an input alphabet Σ and enforcing Π , a safety or guarantee e-property,

the EM Negation(A↓Π ) enforces Π . More formally: ∀A↓Π

Π ∈ Safety(Σ) ∪ Guarantee(Σ) ∧ Enf (A↓Π ,Π,PΣ )

⇒ Negation(A↓Π ) is an EM ∧ Enf (Negation(A↓Π ),Π,PΣ )

The proof can be found in Appendix A.4.

6 Enforcement w.r.t. the Safety-Progress classification

We now study how to practically enforce e-properties of the Safety-Progress hierar-

chy (Sect. 3). More precisely, we show which classes of properties can be effectively en-

forced by an EM, and more important, we provide a systematic construction of an EM for

an e-property Π ∈ EP from the Streett automaton defining this e-property.

6.1 From a recognizing automaton to an enforcement monitor

We define two general operations whose purpose is to transform a Streett automaton recogni-

zing an enforceable e-property into an enforcement monitor enforcing the same e-property.

The following operations use the set ReachAΠ
(q) of reachable states from a state q in AΠ

(denoted Reach(q) when clear from context). Given a Streett automaton AΠ with a set

of states QAΠ , we have ∀q ∈ QAΠ ,ReachAΠ
(q) = {q ′ ∈ QAΠ | ∃(qi)i, (ai)i, q

a0
−→AΠ

q0

a1
−→AΠ

q1 · · ·q ′}.

8It is only useful to deal with safety and guarantee e-properties: the negation of a response e-property is

a persistence (thus not enforceable), and obligation e-properties can be always written under conjunctive

normal form as a Boolean combination of safety and guarantee e-properties (Lemma 1).
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Fig. 5 A response-automaton and the corresponding EM for property Π4

6.1.1 Response e-properties

Definition 17 (Transformation for response e-properties) Given a Streett response au-

tomaton AΠ = (QAΠ , q
AΠ
init ,Σ,−→AΠ

, {(R,∅)}) recognizing a response (enforceable)

e-property Π ∈ Response(Σ), we define the transformation TransResponse(AΠ ) = A↓Π =

(QA↓Π , q
A↓Π

init ,−→A↓Π
,Ops) using the following rules for →A↓Π

:

• q
a/off
−→A↓Π

q ′ if q ′ ∈ R ∧ q
a

−→AΠ
q ′ ∧ ReachAΠ

(q ′) ⊆ R (TRESP1)

• q
a/dump
−→ A↓Π

q ′ if q ′ ∈ R ∧ q
a

−→AΠ
q ′ ∧ ReachAΠ

(q ′) 	⊆ R (TRESP2)

• q
a/store
−→ A↓Π

q ′ if q ′ /∈ R ∧ q
a

−→AΠ
q ′ ∧ ReachAΠ

(q ′) 	⊆ R (TRESP3)

• q
a/halt
−→A↓Π

q ′ if q ′ /∈ R ∧ q
a

−→AΠ
q ′ ∧ ReachAΠ

(q ′) ⊆ R (TRESP4)

An EM A↓Π obtained via the TransResponse(AΠ ) transformation, applied to an au-

tomaton AΠ recognizing a response e-property Π , processes the input execution sequence

and enforces Π . While the current execution sequence does not satisfy Π (the current state

is in R), it stores each event of the input sequence (or halts the underlying program if Π can

not be satisfied in the future). Once the execution sequence satisfies Π (the current state is

in R), it dumps the content of the memory and the events stored so far (or switches off if Π

is satisfied for ever).

Example 7 (Transformation for response e-properties) The right-hand side of Fig. 5 shows

the EM A↓Π4
enforcing the response e-property Π4, and obtained by TransResponse applied

to AΠ4
. We have HaltA↓Π4 = {4} and Off A↓Π4 = ∅.

6.1.2 Guarantee e-properties

The TransResponse transformation can be directly applied to guarantee properties. Indeed,

in guarantee automata, transitions leading from R-states to R-states are absent. Thus the

TransResponse transformation is applied for guarantee automata by ignoring (TRESP2).

Example 8 (Transformation for guarantee e-properties) Figure 6b shows the EM enfor-

cing Π2, obtained by TransResponse on AΠ2
. HaltA↓Π2 = {6} and Off A↓Π2 = {2,5}.

6.1.3 Safety e-properties

For safety e-properties, the TransResponse transformation can be also applied by “seeing”

the underlying Streett safety automaton as a response automaton. We first notice that a safety
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Fig. 6 A guarantee-automaton and the corresponding EM for property Π2

Fig. 7 A safety-automaton and the corresponding EM for property Π1

e-property with safety automaton AΠ = (QAΠ , q
AΠ
init ,Σ,−→AΠ

, {(∅,P )}) can be reco-

gnized by the response automaton A ′
Π = (QAΠ , q

AΠ
init ,Σ,−→AΠ

, {(P,∅)}): same states

and transitions, but different accepting conditions. P -states of AΠ become R-states of A ′
Π .

These automata recognize the same sequences. Indeed, since there is no transition in AΠ

from P -states to P -states, there is no transition from R-states to R-states in A ′
Π . According

to the acceptance conditions (Definitions 2 and 3) and transition restrictions, for AΠ and

A ′
Π there is no difference between P -states and R-states regarding the role they play in

the acceptance condition. Thus, using TransResponse on A ′
Π gives an enforcement monitor

for Π .

Example 9 (Transformation for safety e-properties) The right-hand side of Fig. 7 shows the

EM A↓Π1
obtained by first converting AΠ1

into a response automaton and by then applying

the transformation for response e-properties (i.e., TransResponse) to AΠ1
.

6.1.4 Obligation e-properties

Since an obligation e-property can be written as intersection of union of safety and gua-

rantee e-properties (Lemma 1), it is possible to obtain an EM for an obligation property by

using the TransResponse transformation and the Union and Intersection operations. How-

ever, building such an EM requires first to express the obligation property in conjunctive

normal form, and second the knowledge of the associated Streett safety and guarantee au-

tomata. Thus, we also define a direct transformation for obligation automata.
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Definition 18 (Transformation for obligation e-properties) Given a Streett m-obligation

automaton AΠ = (QAΠ , q
AΠ
init ,Σ,−→AΠ

, {(R1,P1), . . . , (Rm,Pm)}) recognizing an m-

obligation (enforceable) e-property Π ∈ Obligation(Σ), we define the transformation

TransObligation(AΠ ) = A↓Π = (QA↓Π , q
A↓Π

init ,−→A↓Π
,Ops) s.t.:

− QA↓Π = QAΠ , q
A↓Π

init = q
AΠ
init ,

− →A↓Π
is defined as the smallest relation verifying:

q
a/α
−→A↓Π

q ′ if q
a

−→AΠ
q ′ and α =

⊔

m

i=1(
⊔

(βi, γi)) where the βi and γi are obtained

in the following way:

• βi = off if q ′ ∈ Pi ∧ ReachAΠ
(q ′) ⊆ Pi ,

• βi = dump if q ′ ∈ Pi ∧ ReachAΠ
(q ′) 	⊆ Pi ,

• βi = halt if q ′ /∈ Pi ,

• γi = off if q ′ ∈ Ri ,

• γi = store if q ′ /∈ Ri ∧ ReachAΠ
(q ′) 	⊆ Ri ,

• γi = halt if q ′ /∈ Ri ∧ ReachAΠ
(q ′) ⊆ Ri .

Note that there is no transition from q ∈ Ri to q ′ ∈ Ri , and no transition from q ∈ Pi to

q ′ ∈ Pi . One can notice, as a direct consequence of the definition of →A↓Π
, that:

− HaltA↓Π = {q ∈
⋃m

i=1(Pi ∩ Ri) | ReachAΠ
(q) ⊆

⋃m

i=1(Pi ∩ Ri)}, and

− Off A↓Π = {q ∈
⋂m

i=1(Pi ∪ Ri) | ReachAΠ
(q) ⊆

⋂m

i=1(Pi ∪ Ri)}.

We note A↓Π = TransObligation(AΠ ).

Example 10 (Transformation for obligation e-properties) In Fig. 8b is depicted the EM en-

forcing the 1-obligation property Π3 of Example 2, obtained by the TransObligation trans-

formation. HaltA↓Π3 = {4} and Off A↓Π3 = {5}.

6.2 Enforcement w.r.t. the Safety-Progress classification

Using the aforementioned transformations it is possible to derive an EM for a given re-

gular (enforceable) property from its recognizing finite-state automaton. In the following,

we prove the correctness of the transformations. Furthermore, we discuss and justify the

enforcement limitation for non-enforceable properties.

6.2.1 Enforceable properties

Given any safety (resp. guarantee, obligation, response) Streett automaton recognizing a

property Π , one can synthesize an enforcing monitor for Π using the systematic trans-

formations previously presented. The following theorem proves the correctness of these

transformations. It also proves that safety, guarantee, obligation, and response properties are

enforceable by EMs.

Theorem 4 (Correctness of the transformations) Given a program PΣ , a regular safety

(resp. guarantee, obligation, response) e-property Π is enforceable on PΣ by an EM ob-

tained by the application of the previous transformations on the automaton recognizing Π .

More formally:

(Π ∈ Guarantee(Σ) ∧ A↓Π = TransResponse(AΠ )) ⇒ Enf (A↓Π ,Π,PΣ ),

(Π ∈ Obligation(Σ) ∧ A↓Π = TransObligation(AΠ )) ⇒ Enf (A↓Π ,Π,PΣ ),

(Π ∈ Response(Σ) ∧ A↓Π = TransResponse(AΠ )) ⇒ Enf (A↓Π ,Π,PΣ ),
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Fig. 8 A 1-obligation-automaton and the corresponding EM for property Π3

(Π ∈ Safety(Σ) ∧ AΠ = (QAΠ , q
AΠ
init ,Σ,−→AΠ

, (∅,P )))

⇒ A↓Π = TransResponse((QAΠ , q
AΠ
init ,Σ,−→AΠ

, (P ,∅)))

⇒ Enf (A↓Π ,Π,PΣ ).

Proof We have to show that ∀σ ∈ Exec(PΣ ),∃o ∈ Σ∗,

σ ⇓A↓Π
o (5)

Π(σ) ⇒ σ = o (6)

¬Π(σ) ∧ Pref ≺(φ,σ ) = ∅ ⇒ o = ε (7)

¬Π(σ) ∧ Pref ≺(φ,σ ) 	= ∅ ⇒ o = Max(Pref ≺(φ,σ )) (8)

Note first that we only need to prove the correctness of TransResponse and TransObligation.

We note A↓Π = (QA↓Π , q
A↓Π

init ,−→A↓Π
,Ops) the EM obtained from the transformation.

We only sketch the proofs, the full versions can be found in Appendixes A.5 and A.6.

For the TransResponse transformation we examine the run of an execution sequence

σ ∈ Exec(PΣ ), and, using the definition of TransResponse, we deduce the shape of the

sequence of enforcement operations performed by A↓Π .

− The first case is Π(σ). We distinguish whether σ is finite or not.

• If σ is a finite sequence, it means that the run of σ on AΠ ends in a R-state. Hence,

the last enforcement operation performed by A↓Π is either dump or off . The shape of

the sequence of enforcement operations is (store + dump)∗ · (dump + off ∗).

• If σ is an infinite sequence, it means that an R-state is visited infinitely often. Hence,

A↓Π performs regularly the dump operation or persistently the off operation. Then

the shape of the sequence of enforcement operations is (store∗ · dump)ω + ((store +

dump)∗ · off ω).
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Fig. 9 Automaton recognizing the persistence e-property Π5

− The second case is ¬Π(σ). We distinguish whether σ is finite or not.

• If σ is a finite sequence, it means that the run of σ on AΠ ends in a R-state. Hence,

the last enforcement operation performed by A↓Π is store or halt. The shape of the

sequence of enforcement operations is (store + dump)∗ · (store + halt∗).

• If σ is an infinite sequence, it means that R-states are visited finitely often. Hence,

A↓Π performs always the halt or the store operation from a certain prefix of σ .

Then the shape of the sequence of enforcement operations is (store + dump)∗ · (halt +

store)ω .

For the TransObligation transformation we perform an induction on k where Π is a

k-obligation e-property.

− Induction basis. We have k = 1, Π is a simple obligation recognized by a 1-obligation

automaton AΠ = (QAΠ , q
AΠ
init ,Σ,−→AΠ

, {(R,P )}). The proof is done by showing

that the two following EMs are equal:

• The first EM is obtained by decomposing Π into a conjunction of a safety and a

guarantee e-property. Then, we apply the TransResponse transformation to obtain two

EMs to which we apply the Intersection construction. The resulting EM is correct by

construction.

• The second EM is obtained by applying directly TransObligation to AΠ .

− Induction step. The proof is done by showing that the two following EMs are equal:

• The first EM is obtained by decomposing the (k + 1)-obligation automaton into the

intersection of one simple obligation and one k-obligation automata, using Lemma 1.

Then, we apply the TransObligation transformation to the two obligation automata and

the Intersection operation. The resulting EM is correct by construction.

• The second EM is obtained by the direct application of TransObligation on the au-

tomaton recognizing the (k + 1)-obligation property Π .

The equality is shown by exhibiting a bijection between those EMs. �

6.2.2 Non-enforceable properties

Pure persistence properties are not enforceable by our enforcement monitors and by any

enforcement mechanism complying to the soundness and transparency constraints [16]. By

discussing two examples of pure persistence properties, we explain with more details than

in [16] the enforcement limitation (Example 11) and why it is not desirable to enforce pure

persistence properties in practice (Example 12).

Example 11 (Non-enforceable pure persistence properties) Let us go back on the e-property

Π5 recognized by the Streett automaton in Fig. 9 (with acceptance criterion vinf (σ,AΠ5
)

⊆ P and P = {1,3}). This property is not enforceable since it has incorrect infinite se-

quences with an infinite number of correct prefixes. Indeed consider σbad = d_auth · ops ·
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(r_auth · d_auth · r_auth · g_auth)ω . Such an (infinite) execution sequence does not satisfy

Π5 since vinf (σbad ,AΠ5
) = {3,4,5} 	⊆ {3,4}. Moreover according to the acceptance crite-

rion for finite sequences, each prefix σ ′
bad of the form d_auth ·ops · (r_auth ·d_auth · r_auth ·

g_auth)∗ · r_auth · d_auth satisfies the property Π5. We have exhibited an infinite incorrect

execution sequence with no longest correct prefix.

The following example permits to understand why it would be unrealistic and undesirable

to enforce pure persistence properties.

Example 12 (Non-enforceable pure persistence properties) An example of (pure) persis-

tence property, defined on Σ ⊃ {a}, is Σ∗ · aω stating that “it

will be eventually true that the event a always occurs”. This

property can be formalized by the persistence automaton on

the left with P = {1}. This property is neither a safety, nor a

guarantee and nor an obligation property. As in the previous

example, this property admits infinite incorrect sequences with

an infinite number of correct prefixes.

One can explain the enforcement limitation intuitively with the following argument: if

this property was enforceable it would imply that an enforcement monitor could decide from

a certain point that the underlying program will always produce the event a. However such a

decision can never be taken by a monitor without memorizing the entire execution sequence

beforehand. This is unrealistic for an infinite sequence. From a more formal perspective, the

enforcement limitation can be understood as follows. As stated in Sect. 4.2, an e-property

(φ,ϕ) is enforceable if for all infinite execution sequences of the program when ¬ϕ(σ), the

longest prefix of σ satisfying φ (Max≺(Pref (φ,σ )) always exists; which is not the case for

this property.

Suppose that we try to build a sound and transparent enforcement monitor for the pro-

perty “it will be eventually true that a always occur”. Now, suppose that b ∈ Σ and the

sequence (a · b)ω is submitted in input to such a monitor:

− When receiving a, the monitor has to output the sequence a. Indeed, a is correct w.r.t.

the e-property and it is the longest correct prefix of the input sequence.

− When receiving a · b, the monitor does not produce a new output (the output is still a).

Indeed, a · b is incorrect w.r.t. the e-property.

− When receiving a · b · a, the monitor has to output the sequence a · b · a. Indeed, a · b · a

is correct w.r.t. the e-property and it is the longest correct prefix of the input sequence.

Thus the enforcement monitor would output the input sequence: (a ·b)ω; which is not correct

w.r.t. the considered e-property.

Remark 1 As a consequence, properties of the reactivity class (containing the persistence

class) are not enforceable by our enforcement monitors.

7 Related work and discussion

This section compares our results with related work in runtime enforcement monitoring.

Moreover, we refer to the comparison of enforcement mechanisms provided in [4] as it sets

up enforcement at runtime w.r.t. other enforcement mechanisms from a computational point

of view.
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7.1 Computability power of enforcement mechanisms

Hamlen, Morisett and Schneider proposed in [4, 17] a classification of enforceable proper-

ties considering a program as a Turing machine. Their purpose was to delineate the set of

enforceable properties according to the mechanism used for the enforcement purpose. Pro-

perties are classified according to the modifications that the enforcement mechanism can

perform on the underlying program. Notably each mechanism corresponds to a computabil-

ity class of property:

− Properties enforceable by static analysis of the underlying program. These are decidable

properties on the underlying program.

− Properties enforceable by runtime execution monitor. These are co-recursively enumer-

able properties.

− Properties enforceable by program rewriting. The set of enforceable properties depends

on the equivalence relation used between programs.

By modifying the execution sequence, our enforcement monitor can be seen as a restricted

form of program rewriting (also noticed in [4]). However we believe that the proposed me-

chanism can be affixed to a program using the constraints of a runtime mechanism. It seems

to us a good trade-off between pure runtime monitoring and program rewriting, in the sense

that we give more enforcement capability to our mechanism without any modification of the

underlying program. The only control we need on the underlying program is being able to

“encapsulate” events and delay them with minimal semantic impacts. There the EMs intro-

duced in this paper can be framed in the runtime execution monitor category of enforcement

mechanisms. In the following we focus on related works dedicated to this category.

7.2 Characterizing the set of enforceable properties in the Safety-Progress hierarchy

independently from any enforcement mechanism [16]

In [16], we presented a unified view of runtime verification and enforcement of properties in

the Safety-Progress classification. We characterized the set of properties which can be veri-

fied (monitorable properties) and enforced (enforceable properties) at runtime. In particular,

we proposed an alternative definition of “property monitoring” to the one classically used in

this context. This definition is parameterized by a truth domain of interest, and we showed

that it better suits practical needs of runtime verification tools. However, these characteriza-

tions were independent of any specific runtime enforcement mechanism, and they did not

tell how to build an enforcement monitor from a property.

7.3 Characterizing the set of enforceable properties with execution monitors

Security automata and decidable safety properties Schneider introduced security au-

tomata as the first runtime mechanism for enforcing properties. In [3], he defined a variant

of Büchi automaton which runs in parallel with an underlying program. These automata are

able to halt the program whenever the security automaton detects a violation of the property

under scrutiny. Schneider announced in this paper that the set of enforceable properties with

security automata is the set of safety properties. Then in [4] Schneider, Hamlen and Morisett

refined the set of enforceable properties using such a mechanism. They showed that security

automata are in fact restrained by some computational limits. Indeed, Viswanathan noticed

in [5] that the class of enforceable properties is impacted by the computational power of the

enforcement monitor. As the enforcement mechanism can implement no more than com-

putable functions, the enforceable properties are included in the decidable ones. Hence, it
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is shown in [4] that the set of safety properties is a strict superior limit to the power of

(execution) enforcement monitors defined as security automata. Since in this article we are

focusing on the regular fragment of safety properties, this fragment corresponds to the set

of enforceable properties with security automata and the set of enforceable properties as

defined in [4, 5].

Edit-automata and infinite renewal properties [6, 7, 18, 19] Ligatti et al. introduced edit-

automata as runtime execution monitors. They noticed that, by only halting the program,

the original security automata of Schneider were too restricted. Depending on the current

input and its control state, an edit-automaton can either insert a new action by replacing the

current input, or suppress the current input (possibly memorized in the control state for later

on). Enforcement with edit-automata was studied under the soundness and transparency

constraints. Thus, the insertions of events were performed after suppressions in order to

produce an output sequence which is always a prefix of the input sequence.

The properties enforced by edit-automata are called infinite renewal properties. They

have been defined as the properties for which every infinite valid sequence has an infinite

number of valid prefixes [6]. The set of renewal properties is a super-set of safety proper-

ties and contains some liveness properties (but not all). Formally, considering a common

alphabet Σ , the space of properties considered in [6, 7, 18] is 2Σ∞
. Then a property θ is

said to be an infinite renewal properties iff ∀σ ∈ Exec(PΣ ) ∩ Σ∞, θ(σ ) ⇔ ∀σ ′ ∈ Σ∗, σ ′ ≺

σ ⇒ ∃σ ′′, σ ′ 
 σ ′′ ≺ σ ∧ θ(σ ′′). The definition of renewal properties matches as expected

our definition of enforceable properties (Definition 10). Hence, according to Theorem 1, in

the Safety-Progress classification of e-properties, infinite renewal properties are response

e-properties.

Shallow History Automata and an information-based lattice of enforceable policies [8]

Fong studied some restricted forms of runtime execution monitors and their enforcement

capabilities. Shallow History Automata (SHA) keep as history a set of events the underlying

program performed, irrespectively to the order of their arrival. Fong showed that these au-

tomata can enforce a set of properties strictly contained in the set of properties enforceable

by Schneider’s automata. The result has been generalized by using abstraction mechanisms

on an equivalent variant of Schneider’s automata. It raised up an information-based lattice of

enforceable policies. At the top of this lattice is the set of properties enforceable by security

automata (SHA keeps history of all events). At the bottom of this lattice is the set of policies

prohibiting a set of events (SHA do not distinguish between prefixes of execution sequences

obtained from the same events).

Fong’s classification has a practical interest in the sense that it studies the effect of prac-

tical programming constraints (limited memory). It also shows that some classical security

policies remain enforceable using such shallow automata.

7.4 Comparing EM with previous runtime enforcement mechanisms (Fig. 10)

It is rather clear that our EMs look like edit-automata. Their computations are produced

from a set of operations performed on a memory device. In edit-automata the computation

is realized using a set of control states. However the enforcement mechanisms we propose

differ in several points. To the best of our knowledge these features are novel regarding

enforcement monitoring.

First, let us highlight the genericity of the EM(Ops) introduced in this paper. Security

automata of Schneider fall in the scope of our generic enforcement monitors. In fact one can
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Fig. 10 Enforceable properties and enforcement mechanisms w.r.t. the Safety-Progress classification of pro-

perties

notice that by restraining the set Ops of enforcement operations to the set {halt,dump}, it

is possible to find an equivalent enforcement monitor to any security automaton. As SHA

are a restriction of Schneider’s automata, they fall in the scope of our EMs. Edit-automata

fall also in the scope of our general enforcement monitors. Indeed one can notice that the

primitive sets of edit-automata and EMs are the same.

We propose a translation of a recognizing automaton into an enforcing one. This sys-

tematic transformation eases the definition of the enforcement mechanism. Finding and en-

coding an enforcement mechanism using edit-automata is not an intuitive task. In the case

where the property enforced by a security or edit automaton is known, we can synthesize a

more concise enforcement monitor in the number of states. Indeed, for a security automaton

or an edit-automaton enforcing a property Π , we synthesize an EM using TransObligation

or TransResponse applied on AΠ where AΠ is a recognizing automaton for Π .

Compared to edit-automata,9 our EMs propose a clear distinction between control states

(used for property recognition) and the sequence memorization (when the current execution

deviates from the property) in the memory device for potential replay (if the execution se-

quence meets the property again). Hence such a mechanism is easier to implement, since it

relies on a finite (and restricted) set of control states. Meanwhile, linking EMs to their im-

plementation is more compatible with formal reasoning. This provides more confidence in

the implementation of such mechanisms. Indeed, reducing the size of the trusted computing

mechanisms is a persistent challenge in the security domain.

7.5 Synthesis of runtime enforcement mechanisms

There is relatively few research effort dedicated to the synthesis of runtime enforcement

mechanisms.

9Edit-automata use a potentially infinite number of control states for property recognition and sequence mem-

orization. Thus, even for a simple guarantee property e.g., “eventually b” an edit-automaton needs an infinite

number of states to memorize the potential incorrect sequence of events belonging to Σ \ {b}. Furthermore,

one can notice that the size of an edit-automaton is here almost independent of the alphabet Σ under consid-

eration.
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In [20] Martinelli and Matteucci tackle the synthesis of enforcement mechanism as de-

fined by Ligatti. More generally the authors consider Schneider’s security automata (trun-

cation automata), insertion, suppression and edit-automata. The monitor is modeled by an

algebraic operator expressed in CCS. The program under scrutiny is then a term Y ⊲K X

where X is the target program, Y the controller program and ⊲K the operator modeling the

monitor where K is the kind of monitor (truncation, insertion, suppression or edit). The de-

sired property for the underlying system is formalized using μ-calculus. In [21] Matteucci

extends the approach in the context of real-time systems.

7.6 Implementations

The runtime enforcement monitoring approach was implemented in numerous tools

(see [22, 23] for instance). Most of them are based more or less on security automata,

whereas Polymer [19] introduces a more expressive framework based on edit-automata.

Polymer is a formal-semantics supported language and system which can be used to define,

compose and enforce security policies.

7.7 Discussion

In previous work in enforcement monitoring, as in our work, the enforcement mechanisms

are restrained to use a peculiar set of enforcement primitives. It may be interesting to notice

that, when considering enforcement with the transparency constraint (as in Definition 10)

the specialized enforcement mechanism we propose have enough enforcement abilities.

Thus, considering more general forms of EMs with alternative set of enforcement opera-

tions would not add any further enforcement ability.

Moreover, the previous development, starting from Sect. 4.3, can be conducted consid-

ering a set of enforcement operations {store,dump}. The interest of the operations halt and

off is only practical: the operation halt (resp. off ) is used to bound the size of the memory

when it is no longer necessary to memorize further events (resp. to suppress the monitor’s

performance overhead on the program execution when it is not worth monitoring the input

sequence anymore).

8 Conclusion and perspectives

Conclusion In this paper our purpose was to extend previous work on property checking

through runtime enforcement in several directions. Firstly, we proposed a generic notion of

enforcement monitors based on a memory device, finite sets of control states and enforce-

ment operations. This notion of EM encompasses previous similar ones: security-automata

(and consequently shallow-history automata) and edit-automata in a rather obvious way.

Moreover, we specified their enforcement abilities w.r.t. the general safety-progress classi-

fication of properties. It allowed a fine-grain characterization of the space of enforceable

properties. Furthermore, we studied the question of EM composition w.r.t. Boolean opera-

tors. Also, we proposed a systematic technique to produce an enforcing monitor from the

Streett automaton recognizing a given safety, guarantee, obligation or response property.

Perspectives An important working direction is now to make this runtime enforcement

technique better able to cope with practical limitations in order to deal with larger examples.

In particular it is likely that not all events produced by an underlying program can be freely
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observed, suppressed, or inserted. This leads to well-known notions of observable and/or

controllable events, that have to be taken into account by the enforcement mechanisms.

Moreover, it could be also necessary to limit the resources consumed by the monitor by

storing in memory only an abstraction of the sequence of events observed (i.e., using a bag

instead of a FIFO queue). From a theoretical point of view, this means to define enforcement

up to some abstraction preserving trace equivalence relations. We strongly believe that our

notion of enforcement monitors (with a generic memory device) is a suitable framework to

study and implement these features.

Similarly, it would be interesting to study the notion of enforcement when weakening the

transparency constraint. In this case, the more general form of edit-automata and our generic

EMs could be used. Their complete enforcement potentials remain to be studied. This per-

spective would involve defining other relations between the input and the output sequences;

and thus defining other enforcement primitives to enforce properties in an automatic fashion.

It seems to us that such alternative constraints should be motivated by practical needs.

Another working direction is a prototype tool, currently under development. To validate

and extend the previously defined approach we are elaborating a framework implemented as

a Java toolbox, using Aspect Oriented Programming [24] as an underlying technique. This

framework has been sketched in [25]. Taking, as input, an e-property Π specified by a Streett

automaton AΠ , encoded in XML, it uses a first tool (consisting mainly in implementing the

aforementioned transformations) to produce an EM for Π . Then a connected tool, using the

generated EM, produces an AspectJ aspect to be weaved with a target Java program. The re-

sulting program then meets property Π , in the sense that this property is actually enforced.

We believe that this prototype framework will be a good platform to investigate the im-

pact of the aforementioned practical constraints. Also, we are currently studying alternative

rewriting techniques (not based on aspects) to replace the tool for monitor integration in the

underlying program (such as BCEL [26] technology, or dynamic binary code insertion [27]).

The benefits would be to perform runtime enforcement from binary versions of the target

program.

Acknowledgements The authors would like to gratefully thank the anonymous referees for their helpful

remarks.

Appendix: Proofs

A.1 Proof of Property 1 (p. 9)

We prove the two facts successively:

1. As Π is a safety e-property, then there exists a Streett safety-automaton AΠ = (QAΠ ,

q
AΠ
init ,Σ,−→AΠ

, {(∅,P )}) specifying it. Let σ be a sequence belonging to Π , then σ is

accepted by AΠ . If σ is finite, it means that the last state visited during the run of σ on

AΠ is in P (Definition 3). Thus, each prefix of σ has its run ending in P since there is

no transition from P to P . According to the acceptance criterion of Streett automata for

finite sequences, all prefixes are accepted by AΠ and thus belong to Π . If σ is an infinite

sequence, it means that all states visited infinitely often during the run of σ on AΠ are

in P (vinf (σ,AΠ ) ⊆ P ). Since there is no transition from P to P , no prefix of σ visits a

state in P ; i.e., all prefixes of σ belong to Π .

2. Similarly, when considering a guarantee property and its specifying automaton, all ac-

cepted sequences (belonging to the property) have their run ending in a R-state. Finite
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continuations of accepted sequences still have their run ending in a R-state since there

is no transition from R to R. Infinite continuations of an accepted sequence visit at least

one state in R infinitely often: the R-state in which the run of the accepted sequence ends

in.

A.2 Proof of Property 3 (p. 16)

This proof is done by induction on the length of the input sequence σ .

Induction basis |σ | = 1; we have σ = a with a ∈ Σ . Using the definition of evolution

of configurations (Definition 8), we have ∃q ∈ QA↓ , (q
A↓

init , σ · σ ′, ε)
o

=⇒A↓
(q, σ ′,m) with

α(σ, ε) = (o,m) and q
A↓

init

σ/α
−→ q .

− If α = halt, then o = ε,m = ε and q ∈ HaltA↓ . We have o ≺ σ .

− Else, if α = store, then o = ε,m = σ . We have σ = o · m.

− Else (α = dump or α = off ), o = a,m = ε and σ = o · m.

Induction step Suppose that the property is verified for every execution sequence of length

n and consider an execution sequence σ · a of length n + 1, where a ∈ Σ . By reading

σ , A↓ enters a state q ∈ QA↓ , produces an output o, and has m in its memory: ∃q ∈

QA↓ , (q
A↓

init , σ ·a ·σ ′, ε)
o

=⇒A↓
(q, a ·σ ′,m). Moreover, the induction hypothesis gives: (q ∈

HaltA↓ ∧o 
 σ)∨ (q /∈ HaltA↓ ∧σ = o ·m). As A↓ is complete w.r.t. QA↓ ×Σ (definition

of EMs), ∃α ∈ Ops,∃q ′ ∈ QA↓ , q
a/α
−→A↓

q ′. So, ∃o′,m′ ∈ Σ∗, (q, a ·σ ′,m)
o′

→֒A↓
(q ′, σ ′,m′)

with α(a,m) = (o′,m′). Which results in (q
A↓

init , σ · a · σ ′, ε)
o·o′

=⇒A↓
(q ′, σ ′,m′) and (q ∈

HaltA↓ ∧ o 
 σ) ∨ (q /∈ HaltA↓ ∧ σ = o · m). We want to show that (q ′ ∈ HaltA↓ ∧ o · o′ 


σ · a) ∨ (q ′ 	∈ HaltA↓ ∧ σ · a = o · o′ · m′). Let us treat three cases for the enforcement

operation α.

− Case α = halt. We have α(a,m) = (ε,m). So o′ = ε and m = m′. And we also have, ac-

cording to the definition of EMs (Definition 6), q ′ ∈ HaltA↓ . Then, we apply the induc-

tion hypothesis with σ , and depending on the membership of q in HaltA↓ . If q ∈ HaltA↓ ,

o 
 σ ⇒ o · ε 
 σ · a. Else (q /∈ HaltA↓ ), we have o · ε 
 σ · a.

− Case α = store. We have q /∈ HaltA↓ , and α(a,m) = (ε,m · a), so o′ = ε and m′ = m · a.

By induction hypothesis, q ′ /∈ HaltA↓ (Definition 6) and σ = o · m. Hence, we have

σ · a = o · m · a = o · o′ · m′.

− Case α ∈ {dump,off }. We have q /∈ HaltA↓ , and α(a,m) = (m · a, ε). Then o′ = m · a

and m′ = ε. By induction hypothesis, we have necessarily q ′ /∈ HaltA↓ (Definition 6),

and σ = o · m. Hence, we have σ · a = o · m · a = o · o′ · m′.

A.3 Correctness of the Union and Intersection operations (Theorem 2, p. 18)

Note first that these constructions effectively build EMs. We only prove the Union operator.

For i ∈ {1,2}, Enf (A↓Πi
, Πi,PΣ ), i.e., ∀σ ∈ Exec(PΣ ), ∃oi ∈ Σ∗:

σ ⇓A↓Πi
oi (9)

Πi(σ ) ⇒ σ = oi (10)

¬Πi(σ ) ∧ Pref ≺(φi, σ ) = ∅ ⇒ oi = ε (11)

¬Πi(σ ) ∧ Pref ≺(φi, σ ) 	= ∅ ⇒ oi = Max(Pref ≺(φi, σ )) (12)
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Let us note A⊔ = Union(A↓Π1
,A↓Π2

) = (Q,q
init

,−→,Ops), Π = Π1 ∨ Π2, and ⇒ the

multistep derivation relation defined over configurations of A⊔ and −→. We have to show

Enf (A⊔,Π,PΣ ), that is, given σ ∈ Exec(PΣ ), ∃o ∈ Σ∗ s.t.,

σ ⇓A⊔ o (13)

Π(σ) ⇒ σ = o (14)

¬Π(σ) ∧ Pref ≺(φ,σ ) = ∅ ⇒ o = ε (15)

¬Π(σ) ∧ Pref ≺(φ,σ ) 	= ∅ ⇒ o = Max(Pref ≺(φ,σ )) (16)

We first consider σ ∈ Σ∗, and use induction on |σ |.

Induction basis For the induction basis, we have |σ | = 0 and σ = ε. Then we have (13)

and (14) as ε ⇓A↓Π
ε. Moreover, Pref ≺(φ, ε) = ∅ gives us (15).

Inductive step Let n ∈ N and suppose that for all sequences σ s.t. |σ | = n, there exists an

output o of A⊔ s.t. (13), (14), (15), and (16).

As σ ⇓A⊔ o (induction hypothesis), there exists a configuration (q, ε,m) ∈ Q × Σ∗ ×

Σ∗ s.t. (q
init

, σ, ε)
o

⇒ (q, ε,m), which implies that (q
init

, σ · a, ε)
o

⇒ (q, a,m). That is, after

reading σ , the EM A⊔ is in a state q with a as input, and m as memory content. Then from

the configuration (q, a,m), it evolves towards a configuration (q ′, ε,m′), that is (q, a,m)
o′

→֒

(q ′, ε,m′) with α(a,m) = (o′,m′), α ∈ Ops. By reading σ · a, A⊔ produces the output o · o′.

Also, reading of σ ·a on A↓Πi
, i ∈ {1,2}, induces the following evolution of configurations:

(q
init

, σ · a, ε)
oi
⇒ (qi, a,mi)

o′
i

→֒ (q ′
i, ε,m

′
i),

with αi(a,mi) = (o′
i,m

′
i);qi, q

′
i ∈ QA↓Πi ;mi,m

′
i, oi, o

′
i ∈ Σ∗.

There are two cases depending on φ(σ · a).

− φ(σ · a). In this case, either φ1(σ · a) or φ2(σ · a). Let us consider φ1(σ · a), φ2(σ · a) is

similar. As Enf (Π1,A↓Π1
,PΣ ),∃o1 ∈ Σ∗, σ · a ⇓A↓Π1

o1. Moreover, φ1(σ · a) implies

that o1 = σ · a. Inevitably the last enforcement operation α1 of A↓Π1
is dump or off

(Property 4). Then α =
⊔

({α1, α2}) = dump ∨ α = off . According to the definition of

enforcement operation and Property 3, σ · a ⇓A⊔ σ · a, i.e., (13) and (14).

− ¬φ(σ · a). Then ¬φ1(σ · a) ∧ ¬φ2(σ · a). Using the definition of enforcement, we have

four cases depending on whether Pref ≺(φi, σ · a) = ∅ or not, i ∈ {1,2}.

• The first case is Pref ≺(φi, σ ·a) 	= ∅, i ∈ {1,2}. For i ∈ {1,2}, as Enf (Πi,A↓Πi
, PΣ ),

¬φi(σ · a) gives ∃oi ∈ Σ∗, oi = Max(Pref ≺(φi, σ · a)). Now, we have either o1 ≺ o2,

o2 ≺ o1 or o1 = o2.

◦ o1 ≺ o2 (o2 ≺ o1 is symmetrical). We have ∀o′
1 ∈ Σ∗, o1 ≺ o′

1 
 σ · a ⇒ ¬φ1(o
′
1),

and ∀o′
2 ∈ Σ∗, o2 ≺ o′

2 
 σ · a ⇒ ¬φ2(o
′
2). Then o1 ≺ o2 implies that o2 =

Max(Pref ≺(φ,σ · a)). We have to show that σ · a ⇓A⊔ o2. Let us examine the se-

quence of enforcement operations performed by A⊔. We have o2 ⇓A⊔ o2, as the

last enforcement operation performed while reading o2 
 σ · a is a dump (A⊔ is

obtained by taking the upperbound of enforcement operations).

◦ If o1 = o2, o1 = o2 = Max(Pref ≺(φ,σ · a)). The previous reasoning holds.

• The second case is Pref ≺(φi, σ · a) = ∅, i ∈ {1,2}. For i ∈ {1,2}, as Enf (Πi,A↓Πi
,

PΣ ), ¬φi(σ · a) gives σ · a ⇓A↓Πi
ε, i ∈ {1,2}.
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• The third case is Pref ≺(φ1, σ · a) = ∅ ∨ Pref ≺(φ2, σ · a) = ∅. Since Enf (Πi,A↓Πi
,

PΣ ), i ∈ {1,2}, it gives us two sequences oi ∈ Σ∗, s.t. oi = Max(Pref ≺(φi, σ ·a)), i ∈

{1,2} that can be compared similarly to the first case.

For infinite sequences, the reasoning is similar to the one for finite sequences. It is done

on the shape of the sequence of enforcement operations and by distinguishing according

to whether ϕ(σ) or not. Indeed, depending on ϕ(σ), and using the fact that A↓Πi
enforces

A↓Πi
, i ∈ {1,2}, we associate the possible sequences of enforcement operations on A↓Πi

to

the sequence of enforcement operations on A⊔.

Note that we have indeed HaltA⊔ = HaltA↓Π1 × HaltA↓Π2 . Using the definition of A↓⊔,

we have:

HaltA⊔ = {q ′ ∈ QA⊔ | ∃a ∈ Σ,∃q ∈ QA⊔ , q
a/halt
−→A↓⊔

q ′}

= {(q ′
1, q

′
2) ∈ QA↓Π1 × QA↓Π2 |

∃a ∈ Σ,∃(q1, q2) ∈ QA↓Π1 × QA↓Π2 , (q1, q2)
a/halt
−→A⊔ (q ′

1, q
′
2)}

= {(q ′
1, q

′
2) ∈ QA↓Π1 × QA↓Π2 | ∃a ∈ Σ,

∃q1 ∈ QA↓Π1 ,∃q2 ∈ QA↓Π2 , q1

a/α1
−→A↓Π1

q ′
1 ∧ q2

a/α2
−→A↓Π2

q ′
2 ∧ α1 ⊔ α2 = halt}

=
{

(q ′
1, q

′
2) ∈ QA↓Π1 × QA↓Π2 | ∃a ∈ Σ,

(

∃q1 ∈ QA↓Π1 , q1

a/halt
−→A↓Π1

q ′
1

)

∧
(

∃q2 ∈ QA↓Π2 , q2

a/halt
−→A↓Π2

q ′
2

)}

= {q ′
1 ∈ QA↓Π1 | ∃a ∈ Σ,∃q1 ∈ QA↓Π1 , q1

a/halt
−→A↓Π1

q ′
1}

× {q ′
2 ∈ QA↓Π2 | ∃a ∈ Σ,∃q2 ∈ QA↓Π2 , q2

a/halt
−→A↓Π2

q ′
2}

= HaltA↓Π1 × HaltA↓Π2

Note also that the states in HaltA⊔ verify the constraint expressed in Sect. 4.3. That is

∀q ∈ HaltA⊔ ,∀a ∈ Σ,∀α ∈ Ops,∀q ′ ∈ QA⊔ , q
a/α
−→A⊔ q ′ ⇒ α = halt. It is a direct conse-

quence of the fact that HaltA⊔ = HaltA↓Π1 × HaltA↓Π2 and the fact that a halt operation is

performed on A⊔ iff the operation halt is performed on the two corresponding transitions in

A↓Π1
and A↓Π2

.

Similarly, we can show that first Off A⊔ = Off A↓Π1 × QA↓Π2 ∪ QA↓Π1 × Off A↓Π2 and

second that states in Off A⊔ verify the constraint of Definition 13. Therefore A⊔ is indeed

an EM.

The proof for the intersection operator is conducted similarly.

A.4 Correctness of the Negation operation (Theorem 3, p. 19)

Let the e-property Π be (φ,ϕ), with φ ⊆ Σ∗ and ϕ ⊆ Σω . Let us note A↓Π =

Negation(A↓Π ), and ⇒
A↓Π

the multistep derivation relation defined over configurations

of A↓Π and −→
A↓Π

. Also, since QA↓Π = QA↓Π , we will use Q to denote the set of

states of both EMs. Similarly q
init

denotes the starting states of both EMs. We have to show

Enf (A↓Π ,Π,PΣ ), that is, ∀σ ∈ Exec(PΣ ), ∃o ∈ Σ∞ s.t.
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σ ⇓
A↓Π

o (17)

Π(σ) ⇒ σ = o (18)

¬Π(σ) ∧ Pref ≺(φ,σ ) = ∅ ⇒ o = ε (19)

¬Π(σ) ∧ Pref ≺(φ,σ ) 	= ∅ ⇒ o = Max(Pref ≺(φ,σ )) (20)

The proof is in two steps: the first one is for finite sequences, the second one for infinite

sequences.

A.4.1 Finite sequences

The proof is done by induction on |σ |.

Induction basis |σ | = 0; σ = ε, so we have (17) and (18) as ε ⇓A↓Π
ε. Moreover,

Pref ≺(φ, ε) = ∅, which gives (19).

Inductive step Let n ∈ N and suppose that for all sequences σ s.t. |σ | = n, there exists an

output o ∈ Σ∗ s.t. the constraints (17), (18), (19) and (20) hold. Considering a ∈ Σ and a

sequence σ · a s.t. |σ · a| = n + 1, we study the effect of the submission in input of the last

event a. We will prove that there exists a new output s.t. the same constraints hold.

As σ ⇓
A↓Π

o (induction hypothesis), there exists a configuration (q, ε,m) ∈ Q ×

Σ∗ × Σ∗ such that (q
init

, σ, ε)
o

=⇒
A↓Π

(q, ε,m), which implies that (q
init

, σ · a, ε)
o

=⇒
A↓Π

(q, a,m). That is, after reading σ , A↓Π is in a state q with a in input, and m as memory

content. Then from the configuration (q, a,m), it evolves towards a configuration (q ′, ε,m′),

that is (q, a,m)
o′

→֒
A↓Π

(q ′, ε,m′) with α(a,m) = (o′,m′), α ∈ Ops. The reading of σ · a on

A↓Π induces the evolution of configurations:

(q
init

, σ · a, ε)
o

=⇒
A↓Π

(q, a,m)
o′

→֒
A↓Π

(q ′, ε,m′)

(q
init

, σ · a, ε)
p

=⇒A↓Π
(q, a,n)

p′

→֒A↓Π
(q ′, ε, n′),

with:

− q
a/α
−→

A↓Π
q ′, α(a,m) = (o′,m′), α ∈ Ops;q, q ′ ∈ Q;m,m′, o, o′ ∈ Σ∗;

− q
a/α′

−→A↓Π
q ′, α′(a,n) = (p′, n′), α′ ∈ Ops;q, q ′ ∈ Q;n,n′,p,p′ ∈ Σ∗.

There are two cases depending on φ(σ · a):

− φ(σ · a). As Enf (Π,A↓Π ,PΣ ), A↓Π produces σ · a, i.e., σ · a ⇓A↓Π
σ · a. Necessar-

ily, α′ ∈ {dump,off }. It corresponds to an operation α ∈ {store,halt} on A↓Π . Now we

distinguish according to whether φ(σ) or not.

• If φ(σ), using the induction hypothesis (|σ | = n), we have either o = ε (when

Pref ≺(φ,σ ) = ∅) or o = Max(Pref ≺(φ,σ )) (when Pref ≺(φ,σ ) 	= ∅).

◦ If Pref ≺(φ,σ ) = ∅, then we also have Pref ≺(φ,σ · a) = ∅. The output of A↓Π is

still ε, i.e., o · o′ = ε. We have (19).

◦ If Pref ≺(φ,σ ) 	= ∅, using the induction hypothesis, o = Max(Pref ≺(φ,σ )). Yet

φ(σ · a), it implies that o = Max(Pref ≺(φ,σ · a)). We have (20).
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• If ¬φ(σ), i.e., φ(σ), using the induction hypothesis, we have σ ⇓
A↓Π

o with σ = o.

Then σ = Max(Pref ≺(φ,σ )) since φ(σ). We also obtain (20).

− φ(σ · a). Then, we have Max(Pref ≺(φ,σ · a)) ≺ σ · a. It follows that α′ ∈ {store,halt}.

As a consequence α ∈ {dump,off } and σ · a ⇓
A↓Π

σ · a. We have (17) and (18).

A.4.2 Infinite sequences

We distinguish according to the class of Π . Let us consider σ ∈ Σω .

− Π is a safety e-property. We have two cases, depending on whether ϕ(σ) or not.

• ϕ(σ). As Enf (Π,A↓Π ,PΣ ), we have σ ⇓A↓Π
σ . Moreover as Π is a safety e-

property, all prefixes of σ satisfy φ (Property 1), that is ∀σ ′ ∈ Σ∗, σ ′ ≺ σ ⇒ φ(σ ′),

and consequently σ ′ ⇓A↓Π
σ ′. It follows (Property 4) that the sequence of enforcement

operations on A↓Π belongs to (dump)ω + dump∗ · off ω . Then using the definition of

Negation, we find that the sequence of enforcement operations on A↓Π belongs to

store∗ · haltω + storeω . It follows that σ ⇓
A↓Π

ε, i.e., (17). As Pref ≺(φ,σ ) = ∅, we

obtain (19).

• ¬ϕ(σ). As Enf (Π,A↓Π ,PΣ ), we have two cases: either Pref ≺(φ,σ ) = ∅∧o = ε or

∃o ∈ Σ∗, o = Max(Pref ≺(φ,σ )).

◦ Let us deal first with the case Pref ≺(φ,σ ) = ∅. We have ∀σ ′ ∈ Σ∗, σ ′ ≺ σ ⇒

¬φ(σ ′). It follows that the sequence of enforcement operations on A↓Π belongs

to store∗ · haltω + storeω . Using the definition of Negation, the sequence of enforce-

ment operations of A↓Π is off ω . It follows that σ ⇓
A↓Π

σ . We obtain (17).

◦ Let us deal now with the case Pref ≺(φ,σ ) 	= ∅. Let n = |o|. As Π is a safety

e-property, we have ∀1 ≤ i ≤ n,φ(σ···i−1) ∧ ∀i > n,¬φ(σ···i). Then using Pro-

perty 4, we can find the sequence of enforcement operations performed by A↓Π :

(dump)n · haltω . On A↓Π , using the definition of the transformation Negation, the

sequence of enforcement operations becomes storen ·off ω . It follows that σ ⇓
A↓Π

σ

(17). Then, ϕ(σ) and σ = σ ensure (18).

− Π is a guarantee e-property. We have two cases, depending on whether ϕ(σ) or not.

• ϕ(σ). As Enf (Π,A↓Π ,PΣ ), we have σ ⇓A↓Π
σ . Moreover as Π is a guarantee

e-property, there exists a prefix σ ′ of σ s.t. ∀σ ′′ ∈ Σ∗, σ ′ 
 σ ′′ ⇒ φ(σ ′′) ∧ ∀σ ′′ ∈

Σ∗, σ ′′ ≺ σ ′ ⇒ ¬φ(σ ′′). Let us note n = |σ ′|. Consequently, as Π is enforced by

A↓Π , we have ∀σ ′′ ∈ Σ∗, σ ′ 
 σ ′′ ⇒ σ ′′ ⇓A↓Π
σ ′′ ∧ ∀σ ′′ ∈ Σ∗, σ ′′ ≺ σ ′ ⇒ σ ′′

⇓A↓Π
ε. It follows that the sequence of enforcement operations on A↓Π is storen−1 ·

off ω . Note that for guarantee e-properties, the dump operation is never used: once a fi-

nite sequence satisfies a guarantee e-property, all its continuations also do. Then, using

the definition of the transformation Negation, we find that the sequence of enforcement

operations on A↓Π is dumpn−1 · haltω . It follows that σ ⇓
A↓Π

σ ′ (17). Moreover as

we have seen that φ(σ ′), we have (20).

• ¬ϕ(σ). Π is a guarantee e-property, ¬ϕ(σ) implies that there is no prefix of σ satisfy-

ing φ. As Enf (Π,A↓Π ,PΣ ), we have ∀σ ′ ≺ σ,σ ⇓A↓Π
ε. The sequence of enforce-

ment operations performed by A↓Π belongs to store∗ · haltω . Using the definition of

the Negation transformation, the sequence of enforcement operations on A↓Π belongs

to dump∗ · off ω . It follows that σ ⇓
A↓Π

σ . We have (17) and (18).

Finally, due to the definition of −→
A↓Π

we have easily HaltA↓Π = Off A↓Π and Off A↓Π =

HaltA↓Π . Moreover, the constraints for HaltA↓Π and Off A↓Π states are respected since they

are respected for states in Off A↓Π and HaltA↓Π , and A↓Π is an EM.
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A.5 Correctness of the TransResponse transformation (Theorem 4, p. 22)

Intuitively, the proof can be understood as follows. When a sequence satisfies a response

property, there exists an alternation in the satisfaction of the prefixes of this sequence. When

a sequence does not satisfy the property, there exists an index from which the run of the

recognized sequence is composed of “bad states” forever.

We note AΠ = (QAΠ , q
AΠ
init ,Σ,−→AΠ

, {(R,∅)}). Let us consider an execution se-

quence of the program σ ∈ Exec(PΣ ). We study the effect of the submission of σ to A↓Π .

We will associate the execution of σ on AΠ to the execution of σ on A↓Π . The execution of

σ on AΠ produces a trace (q0, σ0, q1) · (q1, σ1, q2) · · · (qi, σi, qi+1) · · · which corresponds

to a trace (q0, σ0/α0, q1) · · · (qi, σi/αi, qi+1) · · · on A↓Π with q0 = q
A↓Π

init . We distinguish

depending on whether the sequence σ satisfies Π or not.

− The first case is Π(σ). We know that the automaton AΠ accepts σ , let us distinguish

whether σ is finite or not.

* If σ ∈ Σ∗, then φ(σ). Let n = |σ |. As σ is accepted by AΠ , and according to the

acceptance criterion (Definition 3), there exists a state q ∈ R reachable from q
AΠ
init

s.t. the run of AΠ on σ ends in a R-state (we have P = ∅ since AΠ is a response

automaton).

If σ = ε, then we have (5) as ε ⇓A↓Π
ε. Moreover, Pref ≺(φ, ε) = ∅, which gives

(7).

If (σ 	= ε), according to the constraints of the transition relation of a response au-

tomaton, the run and the trace of σ on AΠ are such that qn ∈ R. According to (TRESP1)

and (TRESP2), the trace of σ on A↓Π is such that αn ∈ {off ,dump}.

From the execution trace on A↓Π and the definition of the enforcement operations,

we deduce the following derivations of configurations:

(q
A↓Π

init , σ, ε)
o0
→֒ (q1, σ1···,m1) · · ·

on−2
→֒ (qn−1, σn−1···,mn−1)

on−1
→֒ (qn, ε, ε)

with o0 · o1 · · ·on−1 = σ since the last enforcement operation (αn−1) is either off or

dump.

By deduction, using the multistep derivations, we have (q
A↓Π

init , σ, ε)
σ
⇒ (qn, ε, ε).

That is, σ ⇓A↓Π
σ , which ensures (5). Besides, according to the acceptance criterion

of e-properties, we have φ(σ), which permits to deduce (6), as σ = σ .

* If σ ∈ Σω, then ϕ(σ). Using Definition 3 and the definition of a response automa-

ton, we have vinf (σ,AΠ ) ∩ R 	= ∅. Formally, ∀i ∈ N,∃j ∈ N, j ≥ i ∧ qj ∈ R. It fol-

lows that the trace of σ on AΠ satisfies ∀i ∈ N,∃j ∈ N, j ≥ i ∧ (qj−1, σj−1, qj ) ∈

trace(σ,AΠ ) ∧ qj ∈ R. Then, we deduce that the trace on the enforcement moni-

tor A↓Π (using the definition of TransResponse, Definition 17) satisfies the property:

∀i ∈ N,∃j ∈ N, j ≥ i ∧ (qj−1, σj−1/dump, qj ) ∈ trace(σ,A↓Π ). That is: ∀i ∈ N,

∃j ∈ N, j ≥ i, αj ∈ {off ,dump}. Thus we deduce that (using Property 2) σ ⇓A↓Π
σ ,

i.e., (5). Moreover, we have (6) as ϕ(σ) ∧ σ = σ .

− The second case is ¬Π(σ). The sequence σ is not accepted by AΠ , let us distinguish

whether σ is finite or not.

• σ ∈ Σ∗ and then ¬φ(σ). Let n = |σ |. There are two cases depending on Pref ≺(φ,σ )

= ∅ or not.

◦ If Pref ≺(φ,σ ) = ∅, according to the acceptance criterion of response automata,

AΠ starts in R and stays in. We deduce that the execution trace of σ on AΠ is s.t.

∀i ≥ 0, qi /∈ R. Using the definition of TransResponse we can find trace(σ,A↓Π ).
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Then, the enforcement operation performed by A↓Π is always halt or store. That is

σ ⇓A↓Π
ε (5). Then Pref ≺(φ,σ ) = ∅ implies that ∀σ ′ ≺ σ,¬φ(σ). We have (7).

◦ If (Pref ≺(φ,σ ) 	= ∅), there is at least one prefix of σ satisfying φ. Let us note σgood

the longest prefix of σ satisfying φ: σgood = Max(Pref ≺(σ,φ)). Let k = |σgood |.

Then the run and the trace of AΠ on σ are s.t. qk ∈ R ∧ ∀i ∈ [k + 1, n], qi ∈ R.

According to the TransResponse transformation, the trace of σ on A↓Π is s.t.

αk−1 = dump ∧ ∀i ∈ [k,n − 1], αi ∈ {store,halt}. From the execution trace on A↓Π

and the definition of the enforcement operations, we deduce the following deriva-

tions of configurations:

(q
A↓Π

init , σ, ε)
o0
→֒ · · ·

ok−2
→֒ (qk−1, σk−1···,mk−1)

ok−1
→֒ (qk, σk···, ε)

(qk, σk···, ε)
ε
→֒ (qk+1, σk+1···,mk+1)

ε
→֒ · · ·

ε
→֒ (qn, ε,mn)

with σgood = σ···k−1 = o0 · o1 · · ·ok−1. Indeed we have dump(σk−1,mk−1) = (mk−1 ·

σk−1, ε) and ∀i ≥ k,αi ∈ {store,halt}, A↓Π produces ε in output (for k ≤ i ≤ n−1).

That is σ···k−1 ⇓A↓Π
σ···k−1 and σ ⇓A↓Π

σ···k−1. Which ensures (5). Besides, accord-

ing to the acceptance criterion of e-properties, we have ¬φ(σ), which proves (8),

as σ···k−1 = Max(Pref ≺(φ,σ )).

• σ ∈ Σω and then ¬ϕ(σ). This case is similar to the case ¬ϕ(σ) for guarantee proper-

ties. The acceptance criterion for response automata implies that vinf (σ,AΠ ) ∩ R =

∅. We deduce that there exists n such that the run of σ on AΠ is expressed as

run(σ,AΠ ) = q0 · · ·qn · · · with q0 = q
AΠ
init ∧ (∀i ≥ n,qi ∈ R). Let us consider nmin the

smallest integer n verifying this property. For k ≤ nmin, it is then possible to apply the

previous reasoning (the case φ(σ)) for σ···k . Hence we find an alternation in the run of

the execution sequence σ···nmin
between states belonging to R and R. We find in a simi-

lar way that for k > nmin, σ···k ⇓A↓Π
σ···nmin

and φ(σ···nmin
). It is easy to see that σ···nmin

is

the longest prefix (by definition of nmin) satisfying φ (σ···nmin
= Max(Pref ≺(φ,σ···k))).

A.6 Correctness of the TransObligation transformation (Theorem 4 continued, p. 22)

We rely on showing that the EM obtained by applying the TransResponse, Union and

Intersection transformations (this EM is correct by construction), and the EM obtained by

applying directly TransObligation, are equivalent. To do so, we perform an induction on k

where Π is a k-obligation e-property. Let us note A↓Π = TransObligation(AΠ ).

Induction basis We take k = 1, Π is a 1-obligation. Let AΠ = (QAΠ , q
AΠ
init ,Σ,−→AΠ

,

{(R,P )}). Let σ ∈ Σ∞. Π can be expressed Π = ΠS ∪ ΠG where ΠS (resp. ΠG) is

a safety (resp. guarantee) e-property recognized by the safety (resp. guarantee) automa-

ton AΠS
= (QAΠ , q

AΠ
init ,Σ,−→AΠ

, {(∅,P )}) (resp. AΠG
= (QAΠ , q

AΠ
init ,Σ,−→AΠ

,

{(R,∅)})). These automata differ from AΠ only on their accepting states. We can apply

the TransResponse transformation on AΠS
seen as a response automaton, and on AΠG

di-

rectly. It yields two enforcement monitors A↓ΠS
and A↓ΠG

.

Now, using the definition of TransResponse for A↓ΠS
, we have QA↓ΠS = QAΠS . More-

over, for any transition q
a/α
−→A↓ΠS

q ′ in A↓ΠS
, the enforcement operation α satisfies:

(q ′ ∈ P ∧ ReachAΠS
(q ′) ⊆ P ) ⇒ α = off

∧ (q ′ ∈ P ∧ ReachAΠS
(q ′) 	⊆ P ) ⇒ α = dump

∧ (q ′ ∈ P) ⇒ α = halt
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Similarly, using the definition of TransResponse for A↓ΠG
, for any transition q

a/β
−→A↓ΠG

q ′

in A↓ΠG
, the enforcement operation β satisfies:

(q ′ ∈ R ∧ ReachAΠG
(q ′) ⊆ R) ⇒ β = halt

∧ (q ′ ∈ R ∧ ReachAΠS
(q ′) 	⊆ R) ⇒ β = store

∧ (q ′ ∈ R) ⇒ β = off

Now, notice that every transition in A⊔ = Union(A↓ΠS
,A↓ΠG

) is in the form (q, q)
a/γ
−→A⊔

(q ′, q ′) where q, q ′ ∈ QA↓ΠS = QA↓ΠG = QAΠ . Moreover, γ satisfies γ = α ⊔ β where

q
a/α
−→A↓ΠS

q ′ and q
a/β
−→A↓ΠG

q ′. Furthermore, for any transition q
a/γ ′

−→A↓Π
q ′ in A↓Π ,

the enforcement operation γ ′ satisfies the same previous condition (α ⊔ β). Using the

definition of TransObligation, there is a bijection between TransObligation(AΠ ) and

Union(A↓ΠS
,A↓ΠG

): ∀q ∈ QAΠ , the state q in TransObligation(AΠ ) is in relation with

the state (q, q) in Union(A↓ΠS
,A↓ΠG

). This allows to state that TransObligation is correct

for 1-obligation properties.

Induction step Let n ∈ N
∗ and suppose that for k ≤ n, if Π is a k-obligation recognized by

a k-obligation automaton AΠ , then the EM A↓Π = TransObligation(AΠ ) enforces Π , that

is, we have Enf (A↓Π ,Π,PΣ ).

Now consider a (k + 1)-obligation Π , AΠ a recognizing (k + 1)-obligation automaton,

and A↓Π = TransObligation(AΠ ). As Π is a (k + 1)-obligation property, Π can be ex-

pressed as
⋂k+1

i=1 Πi where the Πi are 1-obligation properties (Lemma 1). The expression

of Π can be rewritten as Π = (
⋂k

i=1 Πi) ∩ Πk+1. Using Lemma 1, one can find two re-

cognizing automata AΠ/[1,k] recognizing
⋂k

i=1 Πi and AΠ/{k+1} recognizing Πk+1. Using

the induction hypothesis, we can apply TransObligation to these two automata to obtain

two EMs A↓Π/[1,k] enforcing
⋂k

i=1 Πi and A↓Π/{k+1} enforcing Πk+1. With the Intersection

construction (Definition 15), we obtain the EM A ′
↓Π = Intersection(A↓Π/[1,k],A↓Π/{k+1})

enforcing (Theorem 2) (
⋂k

i=1 Πi) ∩ Πk+1 =
⋂k+1

i=1 Πi , that is Π .

Now let us examine the EM A↓Π obtained by applying directly the TransObligation

transformation on AΠ . We compare it with A ′
↓Π obtained by the induction hypothesis and

the intersection construction; this EM is correct by construction.

− For A↓Π , according to Definition 18 of TransObligation:

• QA↓Π = QAΠ ,

• q
A↓Π

init = q
AΠ
init ,

• and ∀a ∈ Σ,q
a/α
−→A↓Π

q ′ where α =

⊔

k+1
i=1

⊔

({βi, γi}).

− For A↓Π
′, according to Definition 15 of the intersection between EMs:

• QA↓Π
′
= QA↓Π/{k+1} × QA↓Π/[1,k] = QAΠ × QAΠ ,

• q
A↓Π

′

init = q
A↓Π/{k+1}

init × q
A↓Π/[1,k]

init = q
AΠ
init × q

AΠ
init ,

• and ∀a ∈ Σ,q
a/α
−→A↓Π

′ q ′ where α =

⊔

k

i=1

⊔

({βi, γi}) ⊓ (
⊔

({βk+1, γk+1)), i.e., α =

⊔

k+1
i=1

⊔

({βi, γi}).

− where, ∀i ∈ [1, k + 1]:

• βi is

◦ off if q ′ ∈ Pi ∧ ReachAΠ
(q ′) ∩ Pi = ∅

◦ dump if q ′ ∈ Pi ∧ ReachAΠ
(q ′) ∩ Pi 	= ∅

◦ halt if q ′ /∈ Pi .
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• γi is

◦ off if q ′ ∈ Ri

◦ halt if q ′ /∈ Ri∧ 	 ∃q ′′ ∈ Ri, q
′′ ∈ ReachAΠ

(q ′)

◦ store if q ′ /∈ Ri ∧ ∃q ′′ ∈ Ri, q
′′ ∈ ReachAΠ

(q ′).

That is, we can exhibit a bijection relation between A↓Π
′ and A↓Π : for each state q ∈

QAΠ , q in A↓Π is in relation with the state (q, q) in A↓Π
′. Formally, between the

two EMs A↓Π and A↓Π
′, there is a relation R ⊆ (QAΠ × (QAΠ × QAΠ )) defined by

R = {(q, (q, q)) | q ∈ QAΠ }. The two EMs are equal (they differ only by the name of

their states). As a consequence, the EM produced by directly applying TransObligation

on AΠ , is correct. This concludes the proof for the TransObligation transformation and

Obligation properties.
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