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ABSTRACT

One of the main reasons why cloud computing has gained
so much popularity is due to its ease of use and its ability
to scale computing resources on demand. As a result, users
can now rent computing nodes on large commercial clusters
through several vendors, such as Amazon and rackspace.
However, despite the attention paid by Cloud providers,
performance unpredictability is a major issue in Cloud com-
puting for (1) database researchers performing wall clock ex-
periments, and (2) database applications providing service-
level agreements. In this paper, we carry out a study of the
performance variance of the most widely used Cloud infras-
tructure (Amazon EC2) from different perspectives. We use
established microbenchmarks to measure performance vari-
ance in CPU, I/O, and network. And, we use a multi-node
MapReduce application to quantify the impact on real data-
intensive applications. We collected data for an entire month
and compare it with the results obtained on a local cluster.
Our results show that EC2 performance varies a lot and
often falls into two bands having a large performance gap
in-between — which is somewhat surprising. We observe in
our experiments that these two bands correspond to the dif-
ferent virtual system types provided by Amazon. Moreover,
we analyze results considering different availability zones,
points in time, and locations. This analysis indicates that,
among others, the choice of availability zone also influences
the performance variability. A major conclusion of our work
is that the variance on EC2 is currently so high that wall
clock experiments may only be performed with considerable
care. To this end, we provide some hints to users.

1. INTRODUCTION
Cloud Computing is a model that allows users to easily

access and configure a large pool of remote computing re-
sources (i.e. a Cloud). This model has gained a lot of pop-
ularity mainly due to its ease of use and its ability to scale
up on demand. As a result, several providers such as Ama-
zon, IBM, Microsoft, and Yahoo! already offer this technol-
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Figure 1: Runtime for a MapReduce job.

ogy. For many users, especially for researchers and medium-
sized enterprises, the cloud computing model is quite at-
tractive, because it is up to the cloud providers to maintain
the hardware infrastructure. However, despite the attention
paid by cloud providers, some cloud computing nodes may
attain orders of magnitude worse performance than other
nodes [12]. This indeed may considerably influence perfor-
mance of real applications. For example, we show the run-
times of a MapReduce job for a 50-node EC2 cluster and
a 50-node local cluster in Figure 1. We can easily see that
performance on EC2 varies considerably. There exist sev-
eral reasons why such performance inconsistencies may oc-
cur. In particular, contention for non-virtualized resources
(e.g. network bandwidth) is clearly one of the main reasons
for performance unpredictability in the cloud.

Performance unpredictability in the cloud is in fact a ma-
jor issue for many users and it is considered as one of the
major obstacles for cloud computing [12]. For example, re-
searchers expect comparable performance for their applica-
tions at any time, independent of the current workload of
the cloud; this is quite important for researchers, because
of repeatability of results. Another example are enterprises
that depend on Service Level Agreement (SLA), e.g. a Web
page has to be rendered within a given amount of time.
Those enterprises expect cloud providers to make Quality of
Service (QoS) guarantees. Therefore it is crucial that cloud
providers offer SLAs based on performance features — such
as response time and throughput. However, cloud providers
typically base their SLAs on the availability of their offered
services only [1, 2, 10].

Therefore, there is currently a clear need for users — who
have to deal with this performance unpredictability — to
better understand the performance variance in a cloud.
Contributions. In this paper, we focus on this issue and
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exhaustively evaluate the performance of Amazon EC2 —
which is by far the most known and widely used cloud in-
frastructure today. Our major contributions are as follows.

1. We perform our experiments at three different levels:

• single EC2 instances, which allows us to estimate
the performance variance of a single virtual node,

• multiple EC2 instances, which allows us to esti-
mate the performance variance of multiple nodes,

• different locations (US and Europe), which allows
us to estimate the performance variance of differ-
ent data centers in different locations.

2. We provide an analysis of our results focussing on:

• distribution, mean, and coefficient of variation
(COV) of the measurements,

• variance when increasing the size of a virtual clus-
ter, i.e. increasing the number of virtual nodes,

• the impact of variance on the performance of a
real application (MapReduce).

3. We identify that, performance can be divided in two
bands and, among other factors, the virtual system
type used by EC2 is a major source of performance
variability. We also provide some hints to users to re-
duce the performance variability of their experiments.

Additionally, we show a decomposition of the variability by
day, hour of the day, and weekday in Appendix A.

We expect this study to have a major positive impact
in practice for three main reasons: (i) it helps researchers
to better understand their results obtained from running
experiments on Amazon EC2, (ii) it allows enterprises to
better understand the QoS they get from Amazon EC2 and
hence what they can offer to their end-users and (iii) it offers
some hints on how to deal with this variance . To the best of
our knowledge, this is the first work providing a performance
study to such an extent.

This paper is structured as follows. We survey related
work in Section 2. We provide a detailed view on Amazon
EC2 in Section 3. We discuss, in Section 4, different inter-
esting aspects when measuring the performance of EC2 and
present the different benchmarks we use in our experiments.
In Section 5, we present the results and provide in Section 6
a variability analysis of our results. Section 7 analyzes the
impact of performance variability on larger clusters of vir-
tual nodes and real applications. We then provide in Sec-
tion 8 some advice to users in order to allow for meaningful
experimental results and repeatability on EC2.

2. RELATED WORK
Cloud computing has been the focus of several research

works and is still gaining more attention from the research
community. As a consequence, many cloud evaluations have
been done with different goals in mind. Armbrust et al. [12]
mention performance unpredictability as one of the major
obstacles for cloud computing. They found that one of the
reasons of such unpredictability is that certain technologies,
such as PCI Express, are difficult to virtualize and hence to
share. Lenk et al. [21] propose a generic cloud computing
stack with the aim of classifying cloud technologies and ser-
vices into different layers, which in turn provides guidance
about how to combine and interchange technologies. Binnig
et al. [13] claim that traditional benchmarks (like TPC) are

not sufficient for analyzing the novel cloud services as they
require static settings and do not consider metrics central to
cloud computing such as robustness to node failures. Li et
al. [22] discuss some QoS guarantees and optimizations for
the cloud. Ristenpart et al. focus on security aspects and
conclude that fundamental risks arise from sharing phys-
ical infrastructure between mutually distrusful users [26].
Cryans et al. [14] compare the cloud computing technol-
ogy with database systems and propose a list of comparison
elements. Kossmann et al. [20] evaluate the cost and per-
formance of different distributed database architectures and
cloud providers. They mention the problem of performance
variance in their study, but they do not evaluate it further.
Other authors [17, 24] evaluate the different cloud services
of Amazon in terms of cost and performance, but he does
not provide any evaluation of the possible impact that per-
formance variance may have on users applications. Dejun
et al. [16] also study the performance variance on EC2, but
they only focus on an application level (MySQL, Tomcat
performance). Therefore, they do not provide detailed in-
sight to the source of the performance variance issue.

Finally, new projects that monitor the performance of
clouds have recently emerged. For example, CloudCli-
mate [5] and CloudKick [6] already perform performance
monitoring of different clouds. EC2 also offers Cloud-
Watch [7] which provides monitoring for Amazon Web Ser-
vices cloud resources. However, none of the above works fo-
cuses on evaluating the possible performance variability in
clouds or even give hints on how to reduce this variability.

There also exist a number of studies comparing the actual
performance difference between cloud computing and tradi-
tional high performance clusters so as to evaluate the ap-
plicability of cloud computing to scientific applications [19,
23]. Nonetheless, they focus on the overall runtime and not
on performance variability.

3. AMAZON EC2 INFRASTRUCTURE
The Amazon Elastic Computing Cloud (EC2) was not ini-

tially designed as a cloud platform. Instead, the main idea
at Amazon was to increase the utilization of their servers,
which only had a peak around Christmas. When EC2 was
released in 2006 it was the first commercial large scale pub-
lic cloud offering. Nowadays, Amazon offers a wide range
of cloud services besides EC2: S3, SimpleDB, RDS, and
Elastic MapReduce. Amazon EC2 is very popular among
researchers and enterprises requiring instant and scalable
computing power. This is the main reason why we focus
our analysis study on this platform.

Amazon EC2 provides resizable compute capacity in a
computational cloud. This platform changes the economics
of computing by allowing users to pay only for the ca-
pacity that their applications actually need (pay-as-you-go
model). The servers of Amazon EC2 are Linux-based vir-
tual machines running on top of the Xen virtualization en-
gine. Amazon calls these virtual machines instances. In
other words, it presents a true virtual computing environ-
ment, allowing users to use web service interfaces to acquire
instances for use, load them with their custom applications,
and manage their network access permissions. Instances are
classified into three types: standard instances (which are
well suited for most applications), high-memory instances
(which are especially for high throughput applications),
and high-cpu instances (which are well suited for compute-
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intensive applications). We consider small instances in our
performance evaluation, because they are the default in-
stance size and frequently demanded by users. Standard
instances are classified by their computing power which is
claimed to correspond to physical hardware:

(1.) small instance (Default), corresponding to 1.7 GB of
main memory, 1 EC2 Compute Unit (i.e. 1 virtual core with
1 EC2 Compute Unit), 160 GB of local instance storage,
and 32-bit platform;
(2.) large instance, corresponding to 7.5 GB of main mem-
ory, 4 EC2 Compute Units (2 virtual cores with 2 EC2 Com-
pute Units each), 850 GB of local instance storage, 64-bit
platform;
(3.) extra large instance, corresponding to 15 GB of main
memory, 8 EC2 Compute Units (4 virtual cores with 2 EC2
Compute Units each), 1690 GB of local instance storage,
and 64-bit platform.

One EC2 Compute Unit is claimed to provide the “equiva-
lent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007
Xeon processor” [2]. Nonetheless, as there exist many mod-
els of such processors in the market, it is not clear what is
the CPU performance any instance can get.

While some resources like CPU, memory, and storage are
dedicated to a particular instance, other resources like the
network and the disk subsystem are shared amongst in-
stances. Thus, if each instance on a physical node tries
to use as much of one of these shared resources as possible,
each receives an equal share of that resource. However, when
a shared resource is underutilized, it is able to consume a
higher share of that resource while it is available. The per-
formance of shared resources also depends on the instance
type which has an indicator (moderate or high) influenc-
ing the allocation of shared resources. Moreover, there exist
currently three different physical locations (two in the US
and one in Ireland) with plans to expand to other locations.
Each of these locations contains different availability zones
being independent of each other in case of failure.

4. METHODOLOGY
To evaluate the performance of a cloud provider, one can

run typical cloud applications such as MapReduce [15] jobs,
which are frequently excecuted on clouds, or databases ap-
plications. Even though these applications are a relevant
measure to evaluate how well the cloud provider operates in
general, we also wanted a deeper insight of application per-
formance. This is why we focus on a lower level benchmark
and hence measure the performance of individual compo-
nents of the cloud infrastructure. Besides a deeper under-
standing of performance, measuring at this level also allows
users to predict performance of a new application to a cer-
tain degree. To relate these results to real data intensive
applications, we analyze the impact of the size of virtual
clusters on variance and the impact on MapReduce jobs.
In the following, we first discuss the different infrastructure
components and aspects we focus on and then present the
benchmarks and measures we use in our study.

4.1 Components and Aspects
We need to define both the set of components of which

we want to measure the performance and the way we want
to carry out our study. In other words, we have to answer
the following two important questions:

What to measure? We focus on the following components
that may considerably influence the performance of actual
applications (we discuss benchmark details in Section 4.2).

1. Instance startup is important for cloud applications in
order to quickly scale up during peak loads,

2. CPU is a crucial component for many applications,

3. Memory speed is crucial for any application, but it is
even more important for data-intensive applications
such DBMSs or MapReduce,

4. Disk I/O (sequential and random) is a key component
because many cloud applications require instances to
store intermediate results on local disks if the input
data may not be processed in main memory or for
fault-tolerance purposes, such as MapReduce,

5. Network bandwidth between instances is quite impor-
tant to consider because cloud applications usually
process large amounts of data and exchange them
through the network,

6. S3 access from outside of Amazon is important because
most users first upload their datasets to S3 before run-
ning their applications in the cloud.

How to run the measurements? For each of the pre-
vious components there are three important aspects that
may influence the performance. First: Do small and large
instances have different variations in performance? Second:
Does the EU location suffer from more variance performance
than the US location? Do different availability zones impact
performance? Third: Does performance depend on the time
of day, weekday, or week?

In this paper, we study these three aspects and provide
an answer to all these questions.

4.2 Benchmarks Details
We now present in more detail the different benchmarks

we use for measuring the performance of each component.
Instance Startup. To evaluate this component, we mea-
sure the elapsed time from the moment a request for an
instance is sent to the moment that the requested instance
is available. To do so, we check the state of any starting
instance every two seconds and stop monitoring when its
status changes to “running”.
CPU. To measure CPU performance of instances, we use
the Unix Benchmark Utility (Ubench) [11], which is widely
used and stands as the definitive Unix synthetic benchmark
for measuring CPU (and memory) performance. Ubench
provides a single CPU performance score by executing 3
minutes of various concurrent integer and floating point cal-
culations. In order to properly utilize multicore systems,
Ubench spawns two concurrent processes for each CPU
available on the system.
Memory Speed. We also use the Ubench benchmark [11]
to measure memory performance. Ubench executes random
memory allocations as well as memory to memory copy-
ing operations for 3 minutes concurrently using several pro-
cesses. The result is a single memory performance score.
Disk I/O. To measure disk performance, we use Bonnie++
benchmark which is a disk and filesystem benchmark. Bon-
nie++ is a c++ implementation of Bonnie [4]. In contrast
to Ubench, Bonnie++ reports several numbers as results.
These results correspond to different aspects of disk perfor-
mance, including measurements for sequential reads, sequen-
tial writes, and random seeks, in two main contexts: byte by
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CPU Memory Sequential Read Random Read Network
[Ubench score] [Ubench score] [KB/second] [seconds] [MB/second]

Mean x 1,248,629 390,267 70,036 215 924
Min 1,246,265 388,833 69,646 210 919
Max 1,250,602 391,244 70,786 219 925
Range 4,337 2,411 1,140 9 6
COV 0.001 0.003 0.006 0.019 0.002

Table 1: Physical Cluster: Benchmark results obtained as baseline

byte I/O and block I/O. For further details please refer to [4].
In our study, we report results for sequential reads/writes
and random reads block I/O, since they are the most influ-
encing aspects in database applications.
Network Bandwidth. We use the Iperf benchmark [8]
to measure network performance. Iperf is a modern alter-
native for measuring maximum TCP and UDP bandwidth
performance developed by NLANR/DAST. It measures the
maximum TCP bandwidth, allowing users to tune various
parameters and UDP characteristics. Iperf reports results
for bandwidth, delay jitter, and datagram loss. Unlike other
network benchmarks (e.g. Netperf), Iperf consumes less sys-
tem resources, which results in more precise results.
S3 Access. To evaluate S3, we measure the required time
for uploading a 100 MB file from one unused node of our
physical cluster at Saarland University (which has no net-
work contention locally) to a newly created bucket on S3
(either in US or EU location). The bucket creation time
and deletion time are included in the measurement. It is
worth noting that such a measurement also reflects the net-
work congestion between our local cluster and the respective
Amazon datacenter.

4.3 Benchmark Execution
We ran our benchmarks two times every hour during 31

days (from December 14 to January 12) on small and large
instances. The reason for making such a long measurements
is because we expected the performance results to vary con-
siderably over time. This long period of testing also allows
us to do a more meaningful analysis of the system perfor-
mance of Amazon EC2. We have even one month more
of data, but we could not see any additional patterns than
those presented here1. We shut down all instances after 55
minutes, which allowed us to enforce Amazon EC2 to create
new instances just before running again all benchmarks. The
main idea behind this is to better distribute our tests over
different computing nodes and hence to get a real overall
measure for each of our benchmarks. To avoid that bench-
mark results were impacted by each other, we sequentially
ran all benchmarks so as to ensure that only one benchmark
was running at any time. Notice that, as sometimes a single
run can take longer than 30 minutes, we ran all benchmarks
only once in such cases. To run the Iperf benchmark, we
synchronized two instances just before running it, because
Iperf requires two idle instances. Furthermore, since two
instances are not necessarily in the same availability zone,
network bandwidth is very likely to be different. Thus, we
ran different experiments for the case when two instances
are in the same availability zone and when they are not.

4.4 Experimental Setup
We ran our experiments on Amazon EC2 using one small

1The entire dataset is publicly available on the project web-
site [9].

standard instance and one large standard instance in both
locations US and EU (we increased the number of instances
in Section 7.1). Please refer to Section 3 for details on the
hardware of these instances. For both types of instances we
used a Linux Fedora 8 OS. For each instance type we cre-
ated one Amazon Machine Image per location including the
necessary benchmark code. We used standard instances lo-
cal storage and mnt partitions for both types when running
Bonnie++. We stored all benchmark results in a MySQL
database, hosted at our local file server.

To compare EC2 results with a meaningful baseline, we
also ran all benchmarks — except instance startup and S3 —
in our local cluster having physical nodes. It has the follow-
ing configuration: one 2.66 GHz Quad Core Xeon CPU run-
ning 64-bit platform with Linux openSuse 11.1 OS, 16 GB
main memory, 6x750 GB SATA hard disks, and three Giga-
bit network cards in bonding mode. As we had full control
of this cluster, there was no additional workload on the clus-
ter during our experiments. Thus, this represents the best
case scenario, which we consider as baseline.

We used the default settings for Ubench, Bonnie++, and
Iperf in all our experiments. As Ubench performance also
depends on compiler performance, we used gcc-c++ 4.1.2
on all Amazon EC2 instances and all physical nodes of our
cluster. Finally, as Amazon EC2 is used by users from all
over the world, and thus with different time zones, there is
no local time. This is why we decided to use CET as the
coordinated time for presenting results.

4.5 Measure of Variation
Let us now introduce the measure we use to evaluate the

variance in performance. There exist a number of measures
to represent this: range, interquartile range, and standard
deviation among others. The standard deviation is a widely
used measure of variance, but it is hard to compare for dif-
ferent measurements. In other words, a given standard devi-
ation value can only indicate how high or low the variance is
in relation to a single mean value. Furthermore, our study
involves the comparison of different scales. For these two
reasons, we consider the Coefficient of Variation (COV),
which is defined as the ratio of the standard deviation to
the mean. Since we compute the COV over a sample of re-
sults, we consider the sample standard deviation. Therefore,
the COV is formally defined as follows,

COV =
1

x
·

v

u

u

t

1

N − 1
·

N
X

i=1

(xi − x)2

Here N is the number of measurements; x1, .., xN are the
measured results; and x is the mean of those measurements.
Note that we divide by N − 1 and not by N , as only N − 1
of the N differences (xi − x) are independent [18].

In contrast to the standard deviation, the COV allows us
to compare the degree of variation from one data series to
another, even if the means are different from each other.
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(a) CPU perf. on small instances x: 116,167, COV: 0.21
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(b) CPU perf. on large instances x: 465,554, COV: 0.24
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(c) Memory perf. on small instances x: 70,558, COV: 0.08
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(d) Memory perf. on large instances x: 291,305, COV: 0.10

Figure 2: EC2: Benchmark results for CPU and memory.

5. BENCHMARK RESULTS
We ran our experiments with one objective in mind: to

measure the variance in performance of EC2 and analyze
the impact it may have on real applications. With this aim,
we benchmarked the components as described in Section 4.
We show all baseline results in Table 1. Recall that base-
line results stem from benchmarking the physical cluster we
described in Section 4.4.

5.1 CPU
The results of the Ubench benchmark for CPU are shown

in Figures 2(a) and 2(b). These results show that the CPU
performance for both instances varies considerably. We iden-
tify two bands: the first band is from 115, 000 to 120, 000
for small instances and from 450, 000 to 550, 000 for large
instances; the second band is from 58, 000 to 60, 000 for
small instances and from 180, 000 to 220, 000 for large in-
stances. Almost all measurements fall within one of these
bands. The COV in large instances is also higher than for
small instances: it is 24%, while for small instances it is 21%.
Note that the mean for large instances x = 465, 554 over
x = 116, 167 for small instances is 4.0076 which corresponds
to the claimed CPU difference of factor 4 (see Section 3)
almost exactly. The COV of both instances is at least by a
factor 200 worse than in the baseline results (see Table 1).

In summary, our results show that the CPU performance

of both instances is far less stable as one would expect.

5.2 Memory Speed
The results of the Ubench results for memory speed are

shown in Figures 2(c) and 2(d). Both figures show two bands
of performance. Thus unlike for CPU performance, we can
see two performance bands for both instance types. Small
instances suffer from slightly less variation than large in-
stances, i.e. a COV of 8% versus 10%. In contrast, the COV
on our physical cluster is 0.3% only. In addition, for small
instances the range between the minimum and maximum
value is 26,174 Ubench memory units, while for our physical
cluster it is only 2,411 Ubench memory units (Table 1). This
is even worse for large instances: they have a range value
of 202,062 Ubench memory units. Thus, also for memory
speed the observed performance on EC2 is by at least an
order of magnitude less stable than on a physical cluster.

5.3 Sequential and Random I/O
We measure disk IO from three points of view: sequen-

tial reads, sequential writes, and random reads. However,
since the results for sequential writes and reads are almost
the same, we only present sequential read results in Fig-
ure 3. We can see that the COVs of all these results are
much higher than the baseline. For instance, Figure 3(a)
shows the results for sequential reads on small instances.
We observe that the measurements are spread over a wide
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(a) Seq.block read small instances, x: 60,544, COV: 0.17
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(b) Seq. block read large instances, x: 81,186, COV: 0.20
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(c) Random read small instances, x: 219, COV: 0.09
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(d) Random read large instances, x: 267, COV: 0.13

Figure 3: EC2: Disk IO results for sequential and random

range, i.e. a band from approximately 55,000 to 75,000. The
COV is 17%, which is much higher than baseline results (see
Table 1). Figure 3 shows an interesting pattern: the mea-
surements for random I/O on large instances differ consider-
ably from the ones obtained in the EU. One explanation for
this might be different types of disk used in different data
centers. Overall we observe COVs from 9% to 20%. In con-
trast, on our physical cluster we observe COVs from 0.6%
to 1.9% only. So again, the difference in COV is about one
order of magnitude. We expect these high COVs to have a
non-negligible effect when measuring applications perform-
ing large amounts of I/O-operations, e.g. MapReduce.

5.4 Network Bandwidth
The results for network performance are displayed in Fig-

ure 4. The results show that instances in US location have
slightly more oscillation in performance than in EU location.
The COV for both instances is about 19% which is two or-
ders of magnitude larger than the physical cluster having a
COV of 0.2%. As for startup times, the performance varia-
tion of instances in US location is more accented than that
of instances in EU location. In theory, this could be because
EC2 in the EU is relatively new and the US location is more
demanded by users. As a result, more applications could be
running on US location than on EU location and hence more
instances share the network. However, we do not have inter-
nal information from Amazon to verify this theory. Again,
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Figure 4: EC2: Network perf., x =640, COV: 0.19

we observe that the range of measurements is much bigger
than for the baseline (Table 1): while the range is 6 KB/s
in our physical cluster, it is 728 KB/s on EC2.

5.5 S3 Upload Speed
As many applications (such as MapReduce applications)

usually upload their required data to S3, we measure the
upload time to S3. We show these results in Figure 5. The
mean upload time is x =120 with a COV of 54%. As men-
tioned above the COV may be influenced by other traffic on
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(b) US large instance random I/O.
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(d) US large instance Ubench CPU perf.
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(e) EU large instance Ubench CPU perf.
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Figure 6: Distribution of measurements for different benchmarks
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Figure 5: EC2: S3 upload time, x =120, COV: 0.54

the network not pertaining to Amazon. Therefore we only
show this experiment for completeness. Observe that during
weeks 53 and 1 there is no data point for EU location. This
is because Amazon EC2 threw us a bucket2 exception due
to a naming conflict, which we fixed later on.

6. ANALYZING VARIABILITY
We observed in previous section that, in general, Amazon

EC2 suffers a lot from a high variance in its performance.
In the following, we analyse this in more detail. In addition,
Appendix A contains a variability decomposition analysis.

6.1 Distribution Analysis
Bands. A number of previous results (e.g. Figure 2(a))
showed two performance bands in which measurements are

2Generally speaking, a bucket is a directory on the Cloud.

Cutoff percent of measurements in
Lower Segment

CPU Large 320,000 22
Small 75,000 17

Memory Large 250,000 27
Small 65,000 36

Table 2: EC2: Distribution of measurements be-
tween two bands for Ubench benchmark

clustered. In this section we quantify the size of some of
those bands. Table 2 shows how measurements are clustered
when dividing the domain of benchmark results into two
partitions: one above and one below a cutoff line. The Cut-
off column expresses the Ubench unit that delimits the two
bands and the Lower Segment column presents the percent
of measurements that fall into the lower segment. We can
see that for CPU on large instances 22% of all measure-
ments instances fall into the lower band having only 50%
the performance of the upper band. In fact, several Ama-
zon EC2 users already experienced this problem [3]. For me-
mory performance we may observe a similar effect: 27% of
the measurements are in the lower band on large instances,
36% on small instances. Thus, the lower band represents a
considerable portion of the measurements.
Distributions. To analyze this in more detail, we also
study the distribution of measurements of the different
benchmarks. We show some representative distributions
in Figure 6. We observe that measurements for Fig-
ures 6(a)& 6(b), US random I/O, and Figure 6(f), US net-
work performance, are normally distributed. All other dis-
tributions show two bands. Most of these bands do not fol-
low a normal distribution. For instance, Figure 6(c) depicts
sequential I/O for large US instances. We see two bands:
one very wide band spanning almost the entire domain from
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Figure 7: Variability of CPU perf. per processor.

45,000 to 70,000 KB/s. In addition, we see a narrow band
from 87,000 to 97,000 KB/s. None of the individual bands
seems to follow a normal distribution. A possible explana-
tion for this distribution might be cache effects, e.g. warm
versus cold cache. However, a further analysis of our data
could not confirm this. We thus carry out a further analysis
in the following sections.

6.2 Variability over Processor Types
As indicated in [2], the EC2 infrastructure consists of two

different systems — at least of two processor types3. We
conducted an additional Ubench experiment so as to analyze
the impact on performance that these different system types
might have. To this end, we initialized 5 instances for each
type of system and ran Ubench 100 times on each instance.

We illustrate the results in Figure 7. These results ex-
plain surprisingly in great part the two bands of CPU per-
formance we observed in Section 5.1. This is surprising
because both instances are assumed to provide the same
performance. Here, we observe that the Opteron proces-
sor corresponds to the lower band while the Xeon proces-
sor corresponds to the higher band. The variance inside
these bands is then much lower than the overall variation:
a COV of 1% for Xeon and a COV of 2% for Opteron —
while the COV for the combined measurements was 35%.
Furthermore, we could observe during this experiment that
the different bands of memory performance could also be
predicted using this distinction. The corresponding COV
decreased from 13% for combined measurements to 1% and
6%, respectively, for Xeon and Opteron processors. Even for
disk performance we found similar evidence for two seperate
bands — again depending on processors.

6.3 Network Variability for Different
Locations

As described in Section 4.4, we did not explicitly consider
the availability zone as a variable for our experimental setup
and hence we did not pay too much attention on it in Sec-
tion 5. Amazon describes each availability zone as “distinct
locations that are engineered to be insulated from failures
in other availability zones” [2].

In this section we analyze the impact of using different
availability zones for the network benchmark. Our hypoth-
esis is that whenever the two nodes running the network

3This can be identified by examining the /proc/cpuinfo file
where the processor characteristics are listed.
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Figure 8: Variability of network perf. for EU.
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Figure 9: Variability of network perf. for US.

benchmark are assigned in the same availability zone, the
network performance should be better; vice versa when the
two nodes are assigned to different availability zones, their
network benchmark result should be worse. If this holds, we
could conclude that different availability zones correspond
to units (possibly physical units) where the network con-
nections inside units are better than among those units.

Figure 8 shows the results for the EU. Here red indicates
that both nodes run in the same availability zone, green
indicates they run in different availability zones. Unfortu-
nately, we observe that in the EU most instance pairs get
assigned to the same availability zone. This changes however
if we inspect the data for the US (see Figure 9). All mea-
surements vary considerably. However, the measurements
inside an availability zone have a mean of 588, the measure-
ments among different availability zones have a mean of 540.
Thus inside an availability zone the network performance is
by 9% better. We validated this result with a t-test: the
null hypotheses can be rejected at p = 1.1853× 10−11.

We believe that the variability of network performance we
could observe so far might stem from the scheduler policy
of EC2 — which always schedules virtual nodes of a given
user to different physical nodes. This is supported by Ris-
tenpart et al. who observed that a single user never gets two
virtual instances running on the physical node [26]. As a
consequence, this results in more network contention.

6.4 CPU Variability for Different Availability
Zones

In this section we analyze how different availability zones
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Figure 10: CPU distribution over different availabil-
ity zones for large instances

impact CPU performance. Figure 10 shows the same data as
Figure 2(b). However, in contrast to the latter, we only show
data from the US and depict for each measurement its avail-
ability zone. We observe that almost none of the nodes was
assigned to us-east-1a or us-east-1b. All nodes were assigned
to us-east-1c and to us-east-1d. Interestingly, we observe
that all measurements in the second lower band belong to
us-east-1c. Thus, if we ran all measurements on us-east-1d
only, all measurements would be in one band. Furthermore
the COV would decrease. These results confirm that indeed
availability zones influence performance variation. In fact,
we also observed the same influence for small instances and
for other benchmarks as well, such as network performance.
We believe that this is, in part, because some availability
zone mainly consist of one processor type only, which in
turn decreases the performance variability as discussed in
Section 6.2. Hence, one should specify the availability zone
when requesting its instance.

6.5 Variability over Different Instance Types
In this section, we examine the impact of different instance

types on performance. Figure 11 shows the same data as
Figures 2(a) and 2(b). However, in contrast to the latter we
do not differentiate by location. As observed in Figure 11 the
mean CPU performance of a large instance is almost exactly
by a factor 4 larger than for small instances. The standard
deviation for large instances is about four times higher than
for small instance. However, the COVs are comparable as
the factor four is removed when computing the COV. The
COV is 21% for small instances and 24% for large instances.
It is worth noting that the small and large instances are ac-
tually based on different architectures (32/64 bit platforms,
respectively), which limits the comparability between them.
However, we also learn from these results is that for both
instance types (small and large) several measurements may
have 50% less CPU performance. instances are in the lower
band? We answer this question in the next section.

6.6 Variability over Time
In previous section, we observed that, from the general

point of view, most of the performance variation is indepen-
dent of time. We now take a deeper look at this aspect by
considering the COV for each individual weekday. Figure 12
illustrates the COV for individual weekdays for the Ubench
CPU benchmark. As the COV values for other components,
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Figure 12: Variability of CPU perf. per weekday

such as memory and network, are quite similar to those pre-
sented here, we do not display those graphs. At least for
the US instances we observe a lower variation in CPU per-
formance of about 19% on Mondays and weekends. From
Tuesday to Friday the COV is above 26%. For the EU this
does not hold. The small COV for US location on Mon-
day strengthen this assumption since in Unite States it is
still Sunday (recall we use CET for all measurements). We
believe the reason for this is that users mainly run their ap-
plications during their working time. An alternative expla-
nation could be that people browse and buy less on Amazon
and therefore Amazon assigns more resources to EC2.

7. REAL WORLD IMPACT
So far, we ran microbenchmarks in small clusters of vir-

tual nodes. Thus, natural next steps are to analyze (1)
whether the performance variability observed in previous
sections will average out when considering larger clusters of
virtual nodes and (2) to which extent this micro variances
influences actual data-intensive applications. As MapRe-
duce applications are frequently performed on the Cloud,
we found them to be a perfect candidate for such analysis.

7.1 Allocating Larger Clusters
For a random variable such as measurement performance

one would expect that the average cluster performance will
have less variance due to the larger number of ‘samples’.
Therefore we experimented with different virtual cluster
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Figure 13: 50 Nodes Mean CPU Performance.

sizes up to 50 nodes. However, we could not observe a sig-
nificant relationship among the number of nodes and the
variance. Note however, that also for the cluster 20%-30%
of the measurements fall into the low performance band.
Here we only show results for the largest cluster of 50 nodes
we tried. As for previous experiments, we reallocated the
cluster every hour. We performed this measurement for 35
hours in a row. For each hour we report the mean CPU
performance of the cluster.

Figure 13 shows the results. As we may observe from
the figure even when running 50 instances concurrently, the
mean performance still varies considerably. Thus, a large
cluster does not necessarily cancel out the variance in a way
that the performance results become stable. This is because
performance still depends on the number of Xeon proces-
sors that composes a cluster of virtual nodes as discussed
above for single virtual instances (Figure 7). It might of
course be that the variance of the means will be reduced
for larger clusters of several hundred nodes. Whether the
means are then useful for any practical purposes or realistic
applications for smaller systems as Yahoo! or Google is left
to future work.

7.2 Impact on a Real Application
A natural question at this point is: How does all this

variance impact performance of applications? To answer
this question we use a MapReduce job as benchmark for
two main reasons. First, MapReduce applications are cur-
rently one of the most executed applications on the cloud
and hence we believe this benchmark results would be of
great interest for the community. Second, a MapReduce job
usually makes intensive use of I/O (reading large datasets
from disk), network (shuffling the data to reducers), CPU
and main memory (parsing and sorting the data).

For this, we consider the following relation (as sug-
gested in [25]), UserVisits(UV)=(sourceIP, visitedURL,

visitDate, adRevenue), which is a simplified version of a
relation containing information about the revenue generated
by user visits to webpages. We use an analytic MapReduce
job that computes the total sum of adRevenue grouped by
sourceIP in UserVisits and executed it on Hadoop 0.19.2.
We consider two variations of this job: one that runs over
a dataset of 100GB and other that runs over a dataset of
25GB. We ran 3 trials for each MapReduce job every 2 hours
over 50 small virtual nodes (instances). For EC2, we created
a new 50-virtual nodes cluster for each series of 3 trials. In
our local cluster, we executed it on 50 virtual nodes running
on 10 physical nodes using Xen.

As results for the small and large MapReduce jobs follow
the same pattern, we only illustrate the results for the large
MapReduce job. We showed in fact these results in Figure 1
as motivation in the introduction. We observe that MapRe-
duce applications suffer from much more performance vari-
ability on EC2 than in our cluster. More interesting, we
could again observe during these experiments that both
MapReduce jobs perform better on EC2 when using larger
percentage of Xeon-based systems than Opteron-based sys-
tems. For example, when using more than 80% Xeon-based
systems the runtime for the large MapReduce job is 840 sec-
onds on average; when using less than 20% Xeon-based sys-
tems the runtime is 1, 100 seconds on average. This amounts
to an overall COV of 11%, which might significantly impact
experiments repeatability. However, even if we consider a
single system type, performance variability is by an order of
magnitude higher than on our local cluster.

8. LESSONS LEARNED: HINTS ON RE-

DUCING VARIABILITY
A major lesson learned from this paper is that, to run

meaningful runtime experiments on EC2, users should be
aware of the different physical system types4. Unfortunately,
it is currently not possible to specify the processors type us-
ing the EC2 API. Instead, users could report the percentage
of different processors types together with their results. This
would not only allow them to better predict the performance
of their applications, but also to repeat their experiments.
Furthermore, as re-allocating the cluster might change the
system type ratio, users should use equivalent virtual cluster
when comparing two applications.

We also experienced that certain availabilities zones (e.g.
us-east-1d) suffer from much less performance variability as
it seems they have a different ratio of processor types. Thus,
users should specify one availability zone and not let the
choice up to the scheduler if predictability or repeatability
is crucial for their applications.

We observed that performance variability is quite high
and makes it difficult to run meaningful experiments for
researchers and to guarantee performance-based SLAs for
companies. Thus, it is important that cloud providers of-
fer performance-based SLAs guarantees to users. Further-
more, given the difference in performance between Xeon
and Opteron processors, we believe that EC2 should allow
users to request virtual nodes using a particular underlying
physical hardware confguration (CPU, memory speed, disk,
network locality). For example, it seems rackspace uses so
far a single processor type (Quad-Core AMD Opteron(tm)
2374 HE) only. We observed in an additional experiment
on rackspace a COV of 2% for Ubench CPU performance.
This is comparable to EC2 variance when only considering
a single processor type. Again, it is still by an order of
magnitude higher than on a local cluster.

9. CONCLUSION
This paper has provided an extensive study on the vari-

ance of the current most popular Cloud computing provider
Amazon EC2. We showed that performance variance on the
cloud impacts a concrete MapReduce application on a 50-
node cluster. We benchmarked performance micro measures
4Here, identified by processors type, but also having differ-
ent hard disk and memory characteristics.
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each hour for over one month. Our analysis clearly shows
that both small and large instances suffer from a large vari-
ance in performance: a COV of 24% for CPU performance;
a COV of 20% for I/O performance; a COV of 19% for
network performance. We could observe that one of the rea-
sons of such variability is the different system types used
by virtual nodes, e.g. Xeon-based systems have better per-
formance than Opteron-based systems. We compared the
variance on the cloud with the variance on a physical clus-
ter: the results show that the MapReduce job suffered from
a significantly higher performance variance on EC2.

We learned that naive runtime measurements on the cloud
will suffer from high variance and will only be repeatable to a
limited extent. Users should therefore conduct experiments
on EC2 with care. For example, to reduce the impact of this
problem, our experimental study suggests to consider the
different systems type and report the used underlying sys-
tem type together with the results. We also observed that as
overall variance is high and measurements are not normally
distributed, it may also be difficult to define meaningful,
i.e. narrow, confidence intervals for measurements. However,
for measurements trying to answer whether a System A is
considerably better than System B, EC2 may already be
used to a certain extent as explained in [18].

The performance study we presented in this paper shows
many interesting avenues for further research. First, it would
be interesting to discuss our results with Amazon and think
about ways to reduce the variance and provide tighter
SLAs. In particular, it is important to analyze how cloud
providers could offer virtual nodes (instances) that allow
researchers and companies to run meaningful performance
experiments. Second, it would be interesting to further in-
vestigate whether other cloud providers suffer from the same
variance. Also, there might be even more system types.
We leave this study to future work. Third, we believe that
future applications can be made variance-aware. This de-
mands new techniques and algorithms which, however, goes
beyond an experiments and analysis study.
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APPENDIX

A. VARIABILITY DECOMPOSITION
We have seen so far that Amazon EC2 suffers from a high

variation in its performance. In this appendix, we decom-
pose the performance variability in order to better under-
stand such a variation in performance. For this, we de-
compose the COV analysis into two parts with the aim of
identifying from where the variance arises. To this end, we
analyze the data using four different aggregation-levels: (i)
day, (ii) hour, (iii) hour of the day, (iv) day of the week. We
partition our measurements x1, .., xN into disjoint and com-
plete groups G1, .., Gk, k ≤ N where each group corresponds
to an aggregate of an aggregation level (i)–(iv). Then, we
analyze the aggregates in two ways:

(1.) between aggregation-levels. We compute the mean
for each aggregate; then we compute the COV of all means.
In other words, for each group Gi we compute its mean xGi

.
For all means xGi

we then compute the COVxGi
. The idea

of this analysis is to show the amount of variation among
different aggregation-levels. For instance, we may answer
questions like ‘does the mean change from day to day?’ Ta-
ble 3 shows the results.
(2.) in aggregation-levels. We compute the COV for
each aggregate; then we compute the mean of all COVs.
In other words, for each group Gi we compute its COVGi

.
For all COVGi

we then compute the mean xCOVGi
. The idea

is to show the mean variation inside different aggregation-
levels. For instance, we may answer questions like ‘what is
the mean variance within a day?’ Table 4 shows the results.
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Small instances

COVxGi
All Day HourOfDay DayOfWeek

US EU US EU US EU US EU

Startup Time 1.399 0.439 0.306 0.263 0.211 0.121 0.122 0.079
S3 Upload Time 0.395 0.481 0.132 0.210 0.448 0.147 0.371 0.094
Bonnie Seq. Out 0.199 0.136 0.080 0.055 0.049 0.029 0.030 0.015
Bonnie Random Read 0.102 0.085 0.043 0.018 0.037 0.017 0.019 0.002
CPU 0.237 0.179 0.075 0.033 0.031 0.004 0.032 0.028
Memory 0.097 0.070 0.036 0.028 0.014 0.015 0.013 0.011
Iperf 0.201 0.124 0.045 0.028 0.044 0.026 0.026 0.021

Large instances

COVxGi
All Day HourOfDay DayOfWeek

US EU US EU US EU US EU

Startup Time 2.022 0.479 0.330 0.231 0.292 0.087 0.163 0.094
S3 Upload Time 0.395 0.481 0.132 0.210 0.448 0.147 0.371 0.094
Bonnie Seq Out 0.226 0.191 0.091 0.069 0.060 0.038 0.070 0.037
Bonnie Random Read 0.043 0.056 0.043 0.056 0.027 0.030 0.019 0.031
CPU 0.230 0.243 0.078 0.079 0.031 0.033 0.032 0.028
Memory 0.108 0.097 0.038 0.032 0.020 0.016 0.014 0.021
Iperf 0.201 0.124 0.045 0.028 0.044 0.026 0.026 0.021

Table 3: between aggregation-level analysis: COV of mean values

Small instances

xCOVGi
All Day HourOfDay DayOfWeek

US EU US EU US EU US EU

Startup Time 1.399 0.439 0.468 0.357 0.636 0.429 0.914 0.436
S3 Upload Time 0.395 0.481 0.356 0.406 0.371 0.448 0.383 0.472
Bonnie Seq Out 0.199 0.136 0.177 0.123 0.199 0.132 0.198 0.135
Bonnie Random Read 0.102 0.085 0.091 0.074 0.096 0.081 0.019 0.085
CPU 0.237 0.179 0.207 0.162 0.229 0.173 0.228 0.174
Memory 0.097 0.070 0.085 0.050 0.096 0.065 0.097 0.068
Iperf 0.201 0.124 0.204 0.121 0.196 0.122 0.205 0.123

Large instances

xCOVGi
All Day HourOfDay DayOfWeek

US EU US EU US EU US EU

Startup Time 2.022 0.479 0.330 0.330 0.812 0.416 1.192 0.451
S3 Upload Time 0.395 0.481 0.356 0.406 0.371 0.448 0.383 0.472
Bonnie Seq Out 0.226 0.191 0.227 0.183 0.227 0.192 0.317 0.189
Bonnie Random Read 0.114 0.149 0.112 0.141 0.114 0.148 0.113 0.147
CPU 0.237 0.243 0.208 0.222 0.235 0.242 0.236 0.242
Memory 0.108 0.097 0.093 0.085 0.105 0.096 0.107 0.095
Iperf 0.201 0.124 0.204 0.121 0.196 0.122 0.205 0.123

Table 4: in aggregation-level analysis: Mean of COV values

For better readability, all results in-between 0.2 and 0.4
are shown in orange text color, and all results greater equal
0.4 are shown in red text color.

We first discuss results in Table 3 focussing on some of
the numbers marked red and orange. The results for small
and large instances are very similar. Therefore we focus on
discussing small instances. For small instances we observe
that the mean startup time varies considerably for both US
and EU: respectively 139% and 43.9% of the mean value.
When aggregating by HourOfDay S3 upload times vary by
44.8% in the US but only 14.7% in the EU. When aggregat-
ing by DayOfWeek we observe that mean S3 upload times
also vary by 37.1% in the US but only by 9.4% in the EU.
Thus, the weekday to weekday performance is more stable
in the EU. CPU performance for a particular hour of the day
is much more stable: 3.1% in the US and 0.4% in the EU.
In addition, CPU performance for a particular day of the
week is also remarkably stable: 3.2% in the US and 2.8%
in the EU. We conclude that means for different hours of
the day, and different days of the week show little variation.
Thus a particular hour of the day or day of the week does
not influence the mean performance value. Table 4 shows

results of the in-aggregation-level analysis. Here the results
for small and large instances differ more widely. We focus
again on small instances. For Startup Time we observe that
the mean COV for Day is 46.8% in the US and 35.7% in
the EU. If we aggregate by HourOfDay or DayOfWeek, we
observe very high means of the COVs for both locations,
e.g. up to 91.4% for DayOfWeek in the US. Thus, the mean
variance for hours of the day and days of the week is very
high. Still, the results in Table 3 show that the variance
among the means of a particular hour of the day or day
of the week is far less. For CPU performance we observe
that in the US the mean COV is above 20% when aggre-
gating by Day, HourOfDay, or DayOfWeek. In other words,
CPU performance varies considerably inside each aggregate
over all aggregation-levels. The variation among different
aggregation-levels is not that high anymore as observed in
Table 3. This indicates a certain stability of the results: the
measurements inside a single aggregate may be enough to
predict the mean CPU performance with little error. How-
ever, recall that for our data each aggregate consists of sev-
eral individual measurements: Day: 84, HourOfDay: 62,
and DayOfWeek: 96 measurements.
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