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Abstract

Runtime monitoring support serves as a foundation for the impor-
tant tasks of providing security, performing debugging, and im-
proving performance of applications. Often runtime monitoring
requires the maintenance of information associated with each of
the application’s original memory location, which is held in cor-
responding shadow memory locations. Unfortunately, existing ro-
bust shadow memory implementations are inefficient. In this pa-
per, we present OASES: OS and Architectural Support for Efficient
Shadow memory implementation for multicores that is also robust.
A combination of operating system support (in the form of coupled
allocation of memory pages used by the application and associated
shadow memory pages) and architectural support (in the form of
ISA support and exposed cache events) is proposed. Our page al-
location policy enables fast translation of original addresses into
corresponding shadow memory addresses; thus allowing implicit
addressing of shadow memory. By exposing the cache events to the
software, we ensure in software that the shadow memory instruc-
tions execute atomically with their corresponding original memory
instructions. Our experiments show that the overheads of runtime
monitoring tasks are significantly reduced in comparison to previ-
ous software implementations.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging – debugging aids, monitors

General Terms Design, Reliability, Performance, Experimenta-
tion

Keywords Shadow Memory, Atomic Updates, Exposed cache
events

1. Introduction

There has been significant research on the online monitoring of run-
ning programs using various dynamic analyses for a variety of pur-
poses. For example, LIFT (16) and Taint-Check (15) are software
tools that perform taint analysis to ensure the execution of a pro-
gram is not compromised by harmful inputs; Memcheck (13) is a
popular memory checking tool that is widely used to detect mem-
ory bugs; and Eraser (18) is a tool for detecting data races. A com-
mon element among these tools is that they make use of shadow
memory (13). With each memory location used by the application,
a shadow memory location is associated to store information about
that memory location. Original instructions in the application that
manipulate memory locations are accompanied by instructions that
manipulate corresponding shadow memory locations. For example,
in taint analysis, with every memory location a taint value is asso-
ciated that indicates whether that memory location is data depen-
dent on an (tainted) input. Each original instruction that stores the
value of a register into a memory location is accompanied by an
additional store that moves the taint value of the register into the
shadow memory location. Similarly each original instruction that

loads a value from a memory location to a register is accompa-
nied by an instruction that loads the corresponding taint value from
shadow memory location. Thus, monitoring requires that loads and
stores present in an application be accompanied by shadow mem-
ory loads and stores.
Although the need for shadow memory support across variety

of monitoring tasks is well recognized, supporting robust shadow
memory that can be efficiently accessed and manipulated remains
a challenge that has not been successfully addressed. There are two
key issues at the heart of this challenge:

Shadow Memory Management. An important issue in shadow
memory design, that affects the speed and the robustness of the
shadow memory implementation, is the organization of the shadow
memory in the address space of the application process (13). A sim-
ple half-and-half scheme (3; 16) roughly divides the virtual mem-
ory into two halves, the original memory and the corresponding
shadow memory. While this has the advantage of a fast transla-
tion of original addresses into corresponding shadow memory ad-
dresses, its less flexible layout means that it fails for some programs
in linux and is incompatible with operating systems with restrictive
layouts (13). Moreover, it does not scale when we need to associate
more than one shadow value per memory location. To improve ro-
bustness, Valgrind’s Memcheck tool (13) implements a two-level
page table in software. Although, several optimizations are pro-
posed, the slowdown can still be as high as 22x for SPEC programs,
about half of which may be due to shadow memory accesses (13).

Atomic Updates. For multithreaded programs, it is essential that
original memory instructions (OMIs) and the shadow memory in-
structions (SMIs) accompanying them be carried out atomically in
order to correctly maintain the shadow values. Since OMIs and
SMIs are really separate instructions, maintaining atomicity incurs
an additional cost. Existing software monitoring schemes (14; 13)
prevent race conditions that can lead to incorrect shadow values by
ensuring that a thread switch does not occur in the middle of execu-
tion of OMI and its corresponding SMI. Unfortunately, the problem
still exists when a multithreaded program is being run on, the now
ubiquitous, multicores. To overcome this problem of concurrent
updates on multicores, threads can be serialized and made to run
on one core (14). However, this is clearly inefficient as parallelism
is sacrificed. Alternatively, in the fine grain locking approach, the
thread that wants to perform a SMI along with the OMI, grabs a
lock associated with that memory region and releases the lock af-
ter completion. However, this approach suffers from the overhead
of executing additional instructions including the expensive atomic
instructions.
In this paper, we present OASES, a robust shadow memory im-

plementation for multicores that addresses the above challenges of
efficient address translation and atomic updates. Our design cou-
ples shadow memory management (i.e., its allocation, addressing,
and coherence) with the management of original memory in a man-
ner that enables the required goals to be met.
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Monitoring Application Meta Data Tracked by Shadow Memory Code Instrumentation Required

DIFT (16; 15; 3) (Dynamic Information Flow Tracking)

is used to track whether contents of memory locations

are data dependent upon insecure inputs.

With each memory location (byte) a taint bit is associ-

ated, which indicates whether that memory location is

data dependent upon an insecure input. Consequently,

the taint bit has to be manipulated for every memory

instruction.

(Loads) For every load, the taint bit corresponding to

the loaded memory location has to be read; (Stores)

For every store, the taint bit corresponding to the stored

memory location has to be updated.

Eraser (18) is used to track information to enable data

race detection.

With every memory word Eraser associates the status

and the lockset. The status tells if the current word is

shared across threads or exclusive to one thread, while

the lockset indicates the set of locks used to access that

memory location.

(Loads/Stores) Each memory access, either by a load or

a store, must be accompanied with reading and writing

of both status and lock-set.

Memcheck (13) is used for debugging memory bugs. Every location is associated with two values, the A bit

and the V bits. While the A bit indicates if that particu-

lar memory location is addressable, the V bits indicate

whether the corresponding bits in the memory location

have been defined.

(Loads) The A bit is read and updated while V bits are

read on every load; (Stores) The A bit and the V bits are

read and updated on every store.

MemProfile (1) is a simple memory profiler that keeps

count of number of reads and writes to each memory

location.

With each memory location two counts are associated:

ReadCount and WriteCount.

(Loads) The ReadCount is read and updated on every

load; (Stores) The WriteCount is read and updated on

every store.

Table 1. Applications Requiring Runtime Monitoring.

2. Runtime Monitoring: Applications and Costs

Runtime monitoring serves as a foundation of a variety of tasks
aimed at providing security, performing debugging, and improving
performance of applications. In this section we describe the role of
monitoring in context of four popular monitoring tasks. In addition,
we analyze the execution time overhead of runtime monitoring as
well as degree to which various factors contribute to this overhead.
Table 1 describes four popular monitoring tasks: DIFT (15)

for runtime monitoring of software attacks, Memcheck (13) a tool
for runtime checking of memory errors, Eraser (18) for runtime
detection of data races, and Memprofile a runtime memory profiler
(1). Each of these monitoring tasks require the following:

• With each data memory location, shadow memory location(s)
are associated to track the meta data required by the monitoring
task. The second column of Table 1 describes the meta data
maintained by these applications. The number of distinct items
of information to be associated with a memory location can vary.
While DIFT associates just one value, the taint bit, for every
memory location, Eraser and Memcheck associate two values
per memory location. Thus, in general, capability of associating
multiple shadow values for every memory location is needed.

• Application code must be instrumented by associating operations
for maintaining the meta data with the memory operations (loads
and stores) in the application. The third column of Table 1 de-
scribes the function of shadow memory instructions (SMIs) that
instrument each original memory instruction (OMI) for each of
the monitoring tasks.

• An OMI and its associated SMI(s) must be performed atomically.
For example, if during DIFT a value in an original memory
location and its taint bit are read, atomicity must guarantee that
the taint bit corresponds to the value read from the original
memory location and not to some old value that once resided in
the memory location. Note that the SMI inDIFT is symmetric, i.e.
for every original load there is an associated shadow load and for
every original store, there is a shadow store. However, in general,
for every original memory access (load, store), the associated

shadow memory may need to be both read and updated. In fact
this is the case for Eraser.

Atomicity
Instrumentation.
Address Translation
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Figure 1. Overhead Imposed by Current Shadow Memory Tools.

To get an idea of the performance overhead imposed by the cur-
rent shadow memory tools, we measured the overhead of perform-
ing the above monitoring tasks for the SPLASH (23) benchmarks
on a 4 core processor. As shown in Fig. 1, we broke up the runtime
overhead of monitoring into three components: the overhead for
performing address translation, overhead for maintaining atomicity
of OMIs and SMIs, and finally the overhead due to execution of in-
strumentation code required by the monitoring task. As we can see
the overhead in performing the monitoring tasks can be as high as
25x, with a significant percentage of overhead (about 50%) spent
in performing address translation and enforcing atomicity.
The goal of OASES is to reduce the runtime overhead of mon-

itoring tasks. For this purpose, we focus on providing support that
reduces the overhead due to the two components that are common
to all the monitoring tasks, i.e. address translation of shadow mem-
ory references and enforcing atomicity of OMIs and SMIs. The
third component, code instrumentation, varies from one monitoring
task to another. Thus, the ability to program the instrumentation to
accommodate the requirements of different monitoring tasks must
be maintained. We do not provide any specialized hardware support
to reduce the cost of executing the instrumentation code as different
monitoring applications will require different hardware support.
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3. Shadow Memory Design for Multicores

We begin by providing an overview of our approach for efficiently
enforcing atomicity and performing address translation. Then in
subsequent sections we present our solutions in full detail. Let us
first consider the problem of performing atomic updates of original
memory locations and corresponding shadow memory locations.

Atomic Updates. First let us see why an OMI and its SMI(s) must
be performed atomically. Consider the example shown in Fig. 2.
Processor A executes two store instructions (St1 and St2) and their
corresponding shadow store instructions (SSt1 and SSt2) while
Processor B executes a load instruction Ld and its corresponding
shadow load SLd. We assume that all these instructions target the
same virtual address. As we can see in Fig. 2a, if no special care is
taken, Ld in Processor B may see the value produced by St1 while
SLd may see a value produced at SSt2. Atomic SMIs will guaran-
tee that Ld and SLd see either values produced by (St1, SSt1) or
(St2,SSt2) as shown in Fig. 2b. Prior solutions have used thread
serialization or fine grained locking to ensure atomicity of OMIs
and SMIs. However, they are inefficient as we saw earlier: while
thread serialization is clearly inefficient since it compromises on
concurrency, the expensive atomic instructions and memory fences
involved in locking are also inefficient. Although the above exam-
ple illustrates a scenario in which there is a race in the original
program, the same problem can manifest itself even if the original
program is devoid of races; the introduction of SM can break the as-
sumed atomicity of instructions such as compare-and-swap which
are used to implement a variety of synchronization primitives and
lock-free data structures. (4)

Figure 2. Atomic Updates of Shadow Memory.

Our solution for enforcing atomicity is based upon the following
key observations. First, given a memory location and a correspond-
ing shadow value, we must maintain multiple memory locations
for this shadow value. More specifically, a distinct shadow loca-
tion must be provided for each distinct place where the shadow
value can reside, i.e. corresponding to each processor’s cache we
must provide a shadow memory location and corresponding to the
memory we must provide a shadow memory location. Second, we
must provide a protocol for updating the shadow values in a manner
that guarantees atomicity. We name this protocol as the Coupled
Shadow Coherence (CSC) protocol because it couples the coher-
ence of shadow values with coherence actions of the original values
to achieve the effect of atomicity.
The need for maintaining multiple shadow locations to imple-

ment a single shadow value and the requirements placed on the
CSC protocol for maintaining these shadow locations are illustrated
by two scenarios shown in Fig. 3. Let us consider the first scenario,
Fig. 3(a), in which the Ld and SLd performed by processor B must
access values v and v′ respectively. However, the execution of Ld
and SLd at Processor B is intervened by execution of a St and SSt
at Processor A that update values v and v′ tow andw′ respectively.

The contents of the memory location and the two corresponding
shadow locations for the two processors are shown in the figure as
the execution proceeds. It should be noted that to guarantee atom-
icity of Ld and SLd at Processor B, the following must be done.
After the execution of SSt at Processor A, although the contents
of shadow location for Processor A are changed to w′, the contents
of the shadow location for Processor B must remain unchanged as
v′ till v′ has been read by SLd at Processor B. While this scenario
shows that an update of a shadow location may need to be delayed
till a SLd had been executed, the second scenario in Fig. 3b shows
the reverse situation, i.e. the execution of SLd must be stalled till
the shadow location has been updated.

Figure 3. Timing of Shadow Value Updates.

In the first scenario, there is a period of time during which the
shadow values at the two processors must be different. This justi-
fies the need for separate shadow locations for the two processors.
The requirements of delaying the update of a shadow location (first
scenario) and waiting for the update of a shadow location (second
scenario) must be enforced by the CSC protocol that will be im-
plemented in software. For example, in the first scenario, following
Processor B’s execution of its SLd operation, any future references
by Processor B to the memory location and its shadow location
should result in the delivery of values w and w′ respectively. While
delivery ofw is guaranteed by the hardware cache coherence mech-
anism, the delivery ofw′ requires that this value be copied from the
shadow location for Processor A to the shadow location for Proces-
sor B. The CSC protocol will be responsible for ensuring that this
copying operation is performed. Similarly, in the second scenario
the CSC protocol will cause the execution of SLd to stall till it is
able to copy the value w′ from shadow location for Processor A to
shadow location for Processor B.
The actions performed by the CSC protocol to maintain the con-

sistency of shadow memory locations are coupled with the actions
performed by the cache coherence protocol to maintain the consis-
tency of the memory locations cached at various processors. The
example in Fig. 4 shows how cache events trigger corresponding
CSC actions. To implement the CSC protocol we provide architec-
tural support in the form of exposing the cache events to the soft-
ware which then performs the corresponding actions of the CSC
protocol. Whenever the cache controller of a processor receives a
cache-coherence event, such as a data value reply, it interrupts the
processor and passes the control to the CSC protocol. The CSC pro-
tocol is implemented as a sent of handler functions – one handler
for each distinct cache coherence event. One key aspect of the CSC
protocol is that there are no changes to the original hardware cache
coherence protocol.
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Figure 4. Coupled Shadow Coherence.

Efficient Address Translation. The process of addressing shadow
memory needs to be both robust and efficient. We employ a design
that meets these goals. We use the same virtual address to refer-
ence an original memory location and the corresponding shadow
memory location. During translation to physical addresses, differ-
ent physical addresses are produced for the original and SMIs re-
ferring to the same virtual address. In particular, for every original
page there are corresponding shadow memory pages and during
page translation virtual page is translated to different appropriate
physical pages. This approach is robust as unlike the half-and-half
strategy it does not require an application to reserve half of its vir-
tual address space for shadow memory. To enable efficient transla-
tion of original memory addresses into shadow memory addresses
we take the following approach. A page of memory belonging to
the application and the corresponding shadow memory pages are
all allocated consecutive physical memory pages. Thus, from the
address of a original memory location, the address of correspond-
ing shadow memory locations can be efficiently computed. Fur-
thermore, we ensure that at any point in time if an original mem-
ory page resides in main memory then the corresponding shadow
memory pages also resides in main memory. Thus, while page table
entries are created for original memory pages, no additional page
table entries are required for the corresponding shadow pages.
In the remainder of this section we describe the detailed design

and implementation of the solutions outlined above. First we de-
scribe instruction set support for identifying memory instructions
that must be executed atomically as well as distinguishing an OMI
from its SMIs. Next we present the details of the OS and architec-
tural support for efficient translation of original memory addresses
to shadow memory addresses. Finally we describe the details of
our CSC protocol that ensures atomic updates of original memory
locations and corresponding shadow memory locations.

3.1 Instruction Set Support

We need instruction set support for two purposes. First, since each
OMI and all of its SMIs must execute atomically, we need a mech-
anism for identifying them as an atomic block. Second, since the
same virtual address is specified in addressing a memory loca-
tion and its corresponding shadow locations, for correct address
translation there is a need to provide a means for distinguishing
the OMI and SMIs for various shadow values. We propose two
new instructions that simultaneously meet the above requirements.
As shown below, the two new instructions, shadow-start and
shadow-end, are used to define an atomic block. The operands of
the shadow-start instruction, init-SVC and pid, allow us to dis-
tinguish between OMI and SMIs for various shadow values.

shadow-start init-SVC, pid

. . .

shadow-end

The pid operand identifies the processor id of the processor whose
copy of a shadow value is to be accessed. The pid operand is an
optional operand. If no value is specified as the processor id, the
processor id is implicitly assumed to be the current processor’s pro-
cessor id. The operand init-SVC enables us to distinguish between
the OMI and various SMIs within an atomic block. All memory in-
structions in the atomic block that access the same virtual address
as the OMI are recognized as SMIs. If init-SVC is specified as 0,
the first memory operation in the atomic block is treated as the OMI
and subsequent memory operations that access the same virtual ad-
dress are treated as SMIs. Moreover, the second memory operation
refers to the first shadow value, the third memory operation refers
to the second shadow value and so on. However, a non zero init-
SVC is used to handle situations in which only shadow values need
to be accessed without the accessing original values. For example,
if init-SVC is 1, the first memory access refers to the first shadow
value and so on. In other words, initSVC is specified as a parameter
to give us additional flexibility in accessing the shadow values. It
should be noted that we assume that multiple shadow reads (writes)
correspond to different shadow values. We are able to do this since
each shadowmemory location is read and written once in an atomic
block. It is not necessary to explicitly read (or write) to the same
shadow memory location more than once inside the atomic block –
the shadow memory value can be copied on to the stack, manipu-
lated and then copied back.

Figure 5. Some Code Sequences for Accessing Shadow Values.

Given the above interpretation of init-SVC, the compiler must
generate instructions within an atomic block in the appropriate or-
der. Fig. 5 shows some examples that show how the compiler gen-
erates code for accessing various shadow values. For the purpose
of this example, let us assume that there are 2 processors with 2
shadow values. The first scenario shows the inlined instrumenta-
tion for accessing both original and shadow memory values. Since
original memory values are involved, the value of init-SVC is set
to 0, specified as an operand to shadow-start instruction. Accord-
ingly, the first memory access is an original memory access and
subsequent accesses are for shadow values. Since the shadow-start
instruction does not specify any pid operands, the current proces-
sor id is used in the translation process and so the shadow cache
contents of the current processor are accessed. The second scenario
shows code generated for the handler. The purpose of this handler
is to read the contents of shadow cache of processor 1 and write it to
shadow memory. Accordingly the first two loads access the shadow
cache contents of processor 1. To enable these accesses, init-SVC
is set to 1 through the shadow-start instruction; this is because
there are no original memory accesses involved. Furthermore, by
the specifying the pid as 1, the shadow cache contents of proces-
sor 1 are accessed. Finally, in the last example, the two stores are
made to write to the shadow memory contents. This is enabled by
specifying the pid as 3; since there are only, 2 processors, a pid of
3 denotes shadow memory.
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3.2 Address Translation for Shadow Memory Accesses

Since the same virtual address is used by the OMI and the corre-
sponding SMIs, we must implement an address translation scheme
that efficiently translates the virtual address used by SMIs into ap-
propriate physical addresses of shadow locations. To ensure that
the translation can be performed efficiently, we make use of a page
layout scheme that fixes the relative location of an original phys-
ical page and its corresponding shadow physical pages. For every
original page, the OS allocates p + 1 shadow pages per shadow
value, where p is the number of processors. Therefore, if there are
n shadow values, the processor allocates n×(p+1) shadow pages.
Moreover, consecutive set of physical pages are allocated by the
OS. Thus, given the physical address of an original memory loca-
tion, the physical addresses of the various associated shadow values
can be easily determined. Given the values of SVC (shadow value
count), the pid, and N the number of processors, address transla-
tion proceeds by multiplying N with the pid and adding the result
with SVC. The resultant is added to the physical page fetched from
the TLB, if it is a shadow memory access (SVC is non zero); if it
is an original memory access, the resultant is 0, since the value of
SVC is 0 and hence the fetched page from TLB is used. The above
page layout and addressing scheme is illustrated in Fig. 6 for the
scenario where there are 2 processors and 2 shadow values. As we
can see, the first page denotes the original page, while the rest de-
note shadow pages. The second and third pages denote the shadow
cache pages of the first processor, while the fourth and fifth denote
the shadow cache pages of the second processor, and finally the last
two pages refer to the shadow memory pages.

Virtual Page # Offset

Virtual Page # Offset
+

Original Memory Access

Shadow Memory Access

Offset

TLB

Physical Page + Shadow Page 1

Memory

Original Page

Shadow Cache 1

Shadow Cache 2

Shadow Cache 1

Shadow Page  1

SVC

x

N

pid

Shadow Page 2

Shadow Page 2

Shadow Cache 2

Shadow Mem 
Shadow Page 1

Shadow Mem
Shadow Page 2

Figure 6. Address Translation.

The OS treats every original memory page and its correspond-
ing shadow pages as a single entity. When the OS decides to swap
out an original page on to the disk, it also swaps out the asso-
ciated shadow pages. Similarly, both original page and its asso-
ciated shadow pages are swapped in together. The above transla-
tion process is highly efficient. Another important consequence of
this scheme is that shadow memory does not require any additional
TLB entries. Finally, since an application may not require monitor-
ing, we add an extra flag to the process descriptor which indicates
whether that particular process requires shadow memory support.
When this flag is set, the OS allocates shadow page(s) along with
every original page that it allocates; otherwise no shadow pages are
allocated.
Given the manner in which code within atomic blocks is or-

ganized, we next show how this organization can be used to gen-
erate the Shadow Value Count (SVC) needed for address transla-
tion in Fig. 6. The state machine in Fig. 7 generates the value of
SVC. The state machine is in initial state “Outside Atomic Block”

and when shadow-start is encountered it moves to state ”In-
side Atomic Block” initializing SVC to init-SVC the value spec-
ified as an operand to the shadow-start instruction. For now,
let us assume that the value of init-SVC is a 0, which means the
first memory instruction encountered refers to the OMI. When the
OMI (load or store) is encountered – the virtual address is remem-
bered in vaddr; counts LoadSVC and StoreSVC are set to initSVC;
and transition to state ”Inside Instrumentation Code” takes place.
In this state when a shadow load (store) is encountered, LoadSVC
(StoreSVC) is incremented and its value is assigned to SVC for use
by address translation logic. If shadow-end is encountered, transi-
tion to initial state “Outside Atomic Block” occurs.

other

shadow−start

In

Instrm.

Code

lo
ad addr s

t a
ddr=

=vaddr

store addr st addr==vaddr

shadow−end

other

Outside

Atomic

Block

Atomic

Block

Inside

SVC=0

SVC=0

SVC = LoadSVC++

SVC = StoreSVC++

addr

LoadSVC  

 = StoreSVC  

vaddr = addr

= initSVC

load/store

Figure 7. Generating Shadow Value Count.

Small Sized Shadow Values. In the above discussion we assumed
that each memory location used by an application requires equal
sized shadow values. For some monitoring tasks, each word of
original application does not require an equal size shadow value.
For example, in DIFT each memory byte is associated with only
a shadow bit. Association of a byte of shadow value with every
byte of original application, in this instance, will lead to wastage of
memory. It is also possible to extend our scheme to support small-
sized shadow values as discussed in (10).

Optimizing Shadow Cache Organization. The memory over-
head of maintaining shadow cache can be reduced. This is based on
the simple observation that the cache can only hold a fixed amount
of data and so the size of the shadow cache can be limited. Thus one
way of organizing shadow cache is to reserve a small portion of the
virtual memory for the shadow cache. For example, for an L1 cache
of size 32KB with 8 processors and 4 shadow values, it is sufficient
to allocate 1MB of virtual memory for shadow cache. However,
such a scheme will only be applicable for a direct mapped cache;
otherwise tag checks that are performed in parallel in hardware will
have to performed in software, which can be very expensive.

3.3 Atomic Updates of Shadow Memory

As we have already discussed, in a multithreaded application, we
need to ensure that an OMI and its corresponding SMI(s) are ex-
ecuted atomically. In this section, we present the CSC protocol to
ensure atomicity and describe how we implement CSC in software
with the help of exposed cache events. To implement our CSC
scheme in software, the only requirement is that cache controller
expose the specified events to the software. Consequently, our im-
plementation does not rely on any particular coherence protocol
used or the memory consistency model enforced by the system.
In CSC, the coherence of the shadow memory values is cou-

pled with the coherence of the original memory. In particular, to
achieve atomicity, the CSC scheme we develop ensures dependence
mirroring between OMI and SMIs; dependences exercised among
SMIs are made to mirror the dependences exercised among OMIs.
Let M1 and M2 denote a pair of OMIs and SM1 and SM2 de-
note their corresponding SMIs. If M2 is dependent (e.g., RAW)
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uponM1 during an execution, then SM2 must be similarly depen-
dent upon SM1. To enforce dependence mirroring, we ensure that
whenever there is a transfer of original memory values from one
local cache to memory (or another local cache), it is accompanied
by a corresponding co-transfer of shadow memory values. To im-
plement this in software, we propose exposing cache events to the
software. Whenever the cache controller receives a pre-specified
cache event for a processor’s local cache, it can be programmed
to interrupt the processor, and call a predefined handler function;
by suitably programming the handler, we can enforce dependence
mirroring in software.

Events. To implement CSC scheme in software we expose the
following specific cache events:

• When a processor exclusively holding a block, is about to send
the data value reply

• When a processor receives a data value reply

• When a processor experiences a read miss for a block uncached
in any of the processors

• When a processor is about to write back a block

The first two events capture dependencies that are exercised
through cache coherence network, while the last two events capture
dependences exercised via the main memory.

Handler Semantics. The coherence controller interrupts the pro-
cessor and calls the handler function, when one of the specified
events takes place. When the specified event occurs, the current in-
structions in the pipeline are flushed and a call to handler function
is made at once. However, if the processor is in the midst of execut-
ing an atomic block (between shadow-start and shadow-end),
then the call to the handler is delayed until the atomic block is
fully executed (shadow-end instruction commits). The handler is
made to reside in the user space and the semantics of the call to
the handler is similar to a function call. The programmer is respon-
sible for saving and restoring the values of registers that are used
in the handler. However, the hardware is responsible for providing
event related information to the handler as function call parame-
ters: for example, the block address associated with the event and
the remote processor id associated with the event, if applicable. The
hardware pushes these two values (proc and addr) into the stack,
before calling the handler. The programmer notifies to the hard-
ware through the handler instruction, which handler to call for
what event. While the event is expressed via the predefined event-
code, the handler is specified with its start instruction address.

Figure 8. State Maintained to Implement CSC.

State Maintained for Implementing CSC. Since we are imple-
menting CSC in software, we need to maintain shadow coherence
state in software as shown in Fig. 8. Every original memory block,
addr, that is present in the local cache of each processor p is
shadowed by shadow-cache(p, addr); likewise, each original mem-
ory address in the main memory is shadowed by shadow(addr).
When original memory dependences are enforced via the coher-
ence network, enforcing the dependences of shadow values entails

that the two processors involved in the dependency synchronize
with each other. For achieving this pair-wise synchronization, we
maintain a flag for each processor pair (i, j) which is referred to as
ready(i, j). Finally when dependences are enforced through the
main memory, we need to ensure that co-transfer of shadow val-
ues to and from shadow memory, take place in the same order of
the transfer of original values to and from shadow memory. For
achieving this, we maintain a count referred to as shadow-event-
cnt, to uniquely identify each memory event.

Handlers for CSC. We now explain how the individual steps
involved in CSC scheme are implemented within the software han-
dlers, which is shown in Fig. 9. For this discussion, we assume
macros for reading and writing into the shadow memory (steps 48
through 55) and shadow cache (steps 31 through 45).

Figure 9. Handlers for Various Cache Coherence Events.

(Co-transfer through coherence.) Whenever processor i re-
ceives a data reply from processor j, processor i is interrupted
and the handler is called. Within the handler, we copy the corre-
sponding shadow block from processor j to processor i and thus
implement co-transfer in software. However, we have to ensure that
the value in the shadow block copied is consistent. A situation may
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arise where the shadow block from processor j is yet to update
the shadow block (it is in the midst of an atomic block), when it
receives a request for the shadow block, as shown in Fig. 10(b).

Figure 10. Co-transfer Pathological Scenarios.
Likewise, processor j may have updated the shadow block by a
later SMI, by the time it is copied, as shown in Fig. 10(a). To deal
with these scenarios, we make sure that processors synchronize
with each other before co-transfer is performed. To implement this
synchronization, whenever a processor receives a request for data
reply, it calls a handler (data-reply-request). Accordingly, proces-
sor j is interrupted and the handler is called when it first receives
a request for data reply. If the processor j is in the midst of exe-
cuting an atomic block, the calling of the handler is delayed until
the atomic block is completed; this avoids the problem shown in
Fig. 10(b). Within the handler, we set the ready(i,j) flag to true,
meaning that the shadow block is now ready to be copied (step
3-6). Likewise, when processor i receives a data reply and calls
the handler, we spin and wait for the ready(i,j) flag to be true.
Once it becomes true, we proceed with the copying to accomplish
the actual co-transfer (step 10-14). Fig. 11 shows the CSC actions
performed in software for the delayed shadow read scenario.

Figure 11. Cache Coherence Events and CSC Actions.

(Co-transfer through memory.) In the CSC scheme, we need
to ensure that shadow blocks are brought in (and written back)
from the memory along with original blocks. To implement this,
we expose the read miss and writeback events to the software.
Whenever, the cache controller performs a write back of an original
block, it interrupts the processor and calls a handler. Within the
handler we copy the shadow cache contents of the original block
to the shadow memory (step 19). Likewise, whenever the cache
controller fetches an original block from the main memory, handler
is called and within the handler we copy the shadow block from
the shadow memory to the shadow cache (step 26). However, we
have to ensure that the shadow transfers to and from the memory,
take place in the order of the original transfers. To this end, the

coherence controller maintains a global count of the total number
of write-back and read-miss events in the event-cnt counter. For
every write-back or read-miss event, it increments event-cnt count
by one and passes it as a parameter to the handler. The handlers
in turn maintains a shadow-event-cnt counter in software which is
incremented by one just before returning from the handler (step 20
and step 27). Additionally, at the start of the handler the value of the
shadow-event-cnt counter is compared with the event-cnt counter
that is passed as a parameter (step 18, step 25); a value match
guarantees that all prior handlers have completed executing and
thus ensures that handlers are executed in the order of the original
memory transfers.

Preventing Nested Handler Invocations.We prevent nested han-
dler invocations by ensuring that only OMIs (those which have
SVC = 0) inside shadow-start and shadow-end can cause han-
dler invocations. It should be noted that the handler code does not
involve OMIs within shadow-start and shadow-end. Thus, no
nested handler invocations can occur.

Figure 12. Transformation to Handle General SMIs.

Handling general SMIs. Let us discuss how we deal with gen-
eral SMIs, where an original memory load is accompanied by both
shadow loads and shadow stores. As we can see from Fig. 12(a),
the load Ld1 from processor A is accompanied by shadow load
SLd1 and a shadow store SSt1. Intuitively, the shadow load from
processor B, SLd2, needs to get its value from the shadow store
SSt1. However, since each of the OMI are loads, there is no trans-
fer of original blocks through the coherence network, which in turn
means that co-transfer of shadow blocks is not possible. To enable
co-transfer, we convert the original load into a load followed by a
(silent) store that writes the same loaded value back to the mem-
ory, as shown in Fig. 12(b). This will mean that St1 will invalidate
the original block in processor 2 and the original block will be in
exclusive state in processor 1. Consequently, Ld2 will get its value
from St1 through coherence network. This will enable co-transfer
and so the shadow load SLd2 will get its value from SSt1. It is im-
portant to note that this transformation (of loads into a load and a
silent store) is not required if the monitoring tool uses symmetric
SMIs.

4. Experimental Evaluation

In this section, we perform experimental evaluation of our shadow
memory support. But before we discuss our experimental results,
we briefly discuss our implementation.

4.1 Implementation

We implemented our shadow memory support including the OS
support and support for exposed cache events in the SESC (17)
simulator, targeting the MIPS architecture. The simulator is a cycle
accurate multicore simulator which also simulates primary func-
tions of the OS including memory allocation and TLB handling.
To implement ISA changes, we used unused opcodes of the MIPS
instruction set to implement the newly added instructions. We then
modified the decoder of the simulator to decode the new instruc-
tions and implemented their semantics by adding the hardware
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structures to the simulator. We implemented our address transla-
tion support by modifying the OS page allocation algorithm to al-
locate additionally the shadow pages along with the original pages.
We also modified the page replacement algorithm to consider the
original and shadow pages as a single entity and replace them to-
gether. Finally, we implemented our exposed cache events support
for an invalidate based snooping protocol for a multicore architec-
ture with shared L2 cache. The architectural parameters for our im-
plementation are presented in Table. 2. We evaluated our shadow

Processor 4 processor, out of order

L1 Cache 64 KB 4 way 1 cycle latency

L2 Cache shared 1024 KB 8 way 9 cycle latency

Memory 4 GB, 500 cycle latency

Coherence Bus based invalidate

Table 2. Architectural Parameters.

memory support with four monitoring/profiling applications viz.
DIFT(16), Memcheck(13), Eraser(18) and MemProfile(1). We very
briefly describe how we performed the instrumentation for each of
the monitoring tasks. For implementing DIFT, we associated a byte
of shadow value for every original memory word that kept track
of the taintedness of that word. We modified the system calls (that
were emulated by the simulator) to initialize the taint values. Eraser
is a tool for identifying data races. We implemented the first part of
the algorithm which characterizes each memory word as virgin, ex-
clusive, shared or shared-modified. We did not implement the sec-
ond part of the algorithm that then uses this information to maintain
the locksets. With each memory word, we associated two bytes of
information: one byte for maintaining the above four states, and
another byte for maintaining the thread-id of the thread that last
accessed that memory location. We implemented Memcheck-lite,
a version of Memcheck in which the register level V-bits propaga-
tion is not implemented. We implemented a version that has been
optimized for word based memory operations. For implementing
MemProfile, we associated two words of data along with each orig-
inal memory word, used for maintaining the number of reads and
writes to that memory word.
We performed instrumentation by modifying the assembler out-

put generated by the gcc-4.1 compiler. One limitation of using the
assembler for performing instrumentation, is that the library files
are not instrumented. However, the performance results are likely
to be close to our experimental results since the SPLASH-2 pro-
grams spend relatively lesser time in the libraries. It is worth not-
ing that our shadow memory support is equally applicable to other
binary translation systems (8; 14). We only used the help of the as-
sembler to perform the instrumentation, since we were not aware
of publicly available dynamic translation tools that let us perform
instrumentation for the MIPS architecture. We used the SPLASH-2
(23), a standard multithreaded suite (Table 4.1), benchmarks for
our evaluation. We could not get the program VOLREND to com-
pile using the compiler infrastructure that targets the simulator and
hence we omitted VOLREND from our experiments.

Programs LOC Input Description

BARNES 2.0K 8192 Barnes-Hut alg.

FMM 3.2K 256 fast multipole alg.

OCEAN 2.6K 258 × 258 ocean simulation

RADIOSITY 8.2K batch diffuse radiosity alg.

RAYTRACE 6.1K tea ray tracing alg.

WATER-NSQ 1.2K 512 nsquared

WATER-SP 1.6K 512 spatial

Table 3. SPLASH-2 Benchmarks Description.

4.2 Efficiency of Shadow Memory Support

Recall that shadow memory support has two components: ad-
dress translation and atomicity. Address translation can be either
achieved using a Valgrind style software implemented page table
structure VAL or using our hardware assisted implicit addressing
scheme SM. Atomicity can be achieved using thread serialization
ser that is currently used in Valgrind; or with the help of fine-
grained locking fgl; or using the CSC scheme with the help of
exposed cache events. We explore the performance of implement-
ing various monitoring tools with different ways of achieving ad-
dress translation and atomicity. The results of this experiment are
presented in Fig. 13, which shows the execution time overhead
of performing four different monitoring tasks: DIFT, Memcheck,
Eraser and MemProfile. In each of the graphs the first bar repre-
sents the performance of using Valgrind’s address translation with
thread serialization VAL:serial. The second bar represents the per-
formance of using Valgrind’s address translation with fine-grained
locking VAL:fgl. The third bar represents the performance of using
our implicit addressing scheme with fine grained locking SM:fgl
and finally the last bar represents the performance of using implicit
addressing with CSC scheme for achieving atomicity SM:csc.
As we can see, the overhead of performing monitoring using

VAL:ser can be quite high. On an average it slows down the pro-
gram by a factor of 25 for performing DIFT (45x for Memcheck,
35x for Eraser, and 27x for MemProfile). Using fine-grained lock-
ing VAL:fgl obviates the need for thread serialization and reduces
overhead to a factor of 13 slowdown for DIFT (20x for Memcheck,
21x for Eraser, 15x for MemProfile). Using implicit addressing of
shadow memory proposed in this paper along with fine-grained-
locking SM:fgl obviates the need for performing address transla-
tion in software and further reduces the overhead to a factor of 9
for DIFT (14.4x for Memcheck, 16x for Eraser, 9.5x for MemPro-
file). Finally our CSC scheme SM:csc all but eliminates the cost for
performing locking and reduces the overall overhead to a factor of
4.5 slowdown for performing DIFT (9.8x for Memcheck, 8.8x for
Eraser, 5.5x for MemProfile).

4.3 Break-Up of Overheads

To make more sense of the experimental results observed we break
down the costs of performing monitoring into three categories:
address translation cost, instrumentation cost and atomicity cost.
While address translation cost involves execution of instructions
to compute the shadow memory addresses for the original mem-
ory addresses and then access the shadow memory, instrumenta-
tion cost involves the execution of instructions for performing the
particular monitoring task and atomicity cost refers to the cost of
ensuring that OMIs and its corresponding SMIs are executed atom-
ically. For this section, let us limit our discussion to the results of
MemProfile.
First, let us consider the VAL:ser implementation. As we can

see from Fig. 13, the atomicity costs dominate VAL:ser. This is
not surprising as atomicity is enforced by thread serialization and
since SPLASH-2 programs scale well, serialization almost quadru-
ples the slowdown (we used 4 processors in our simulation). Fine-
grained-locking offers a slightly better alternative compared to se-
rialization as we can infer from the results for VAL:fgl. However,
as we can see, using fine grained locks to implement atomicity ad-
ditionally slows down the program by a factor of 2. This is because
additional instructions (including costly atomic instructions) need
to be executed for implementing locking.
Next, let us compare the overheads of SM:fgl with VAL:fgl.

Since we use implicit addressing in SM:fgl, the cost of address
translation is all but eliminated. The only cost of address translation
is the small cost of executing the shadow-start and shadow-end
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Figure 13. Monitoring Overhead with Various Shadow Memory Implementations.

instructions for identifying SMI. However, this cost is negligible
compared to overall instrumentation overhead.
Finally, as we can see in SM:csc, the cost of implementing atom-

icity is greatly reduced. This is because using our CSC scheme,
there is no need to execute additional instructions to perform lock-
ing. On the contrary, our CSC scheme serializes OMI and SMI from
two processors, only if they potentially race with each other. As
we can see from Fig. 13, the cost for performing this limited se-
rialization is small across all benchmarks for various monitoring
tools. However, it is important to note that for enforcing atomicity,
we needed to maintain per processor shadow caches; this results in
slightly increased L2 miss rates. The effect of this increased miss
rates causes slight increase in instrumentation costs especially for
the ocean and the barnes programs. For other programs, there is no
perceptible change in the memory system performance.
Finally, it is important to note that that the overhead of perform-

ing monitoring using SM:csc is almost equal to the instrumentation
cost that is inherent to each monitoring task. Thus we observe that
the two forms of architectural support added in this work: implicit
addressing support and cache coherence are effective in limiting the
overhead of performing a variety of monitoring tasks.

4.4 Variation across Monitoring Tasks.

We observe that while instrumentation costs vary across various
monitoring tasks (highest for Memcheck and lowest for DIFT),
the address translation cost stays almost the same across the var-
ious monitoring tasks. It is also worth noting that the cost of im-
plementing atomicity is slightly larger for Eraser and MemProfile
in comparison with DIFT and Memcheck. This is because Eraser
and MemProfile involve general SMIs – More specifically, original
memory reads in these monitoring tools are accompanied by both
reads and writes to corresponding shadow memory values. Thus
shared reads in the original application, which would have caused
read hits will now cause misses for corresponding accesses, causing
additional slowdown.

5. Related Work

There has been significant research on monitoring a program as the
program executes. Monitoring techniques can be broadly divided
into hardware and software based approaches.

Hardware-based Monitoring Schemes: While hardware based
monitoring (5; 11; 22; 6; 19; 24) tools are fast, they require spe-
cialized hardware support in the form of wholesale changes to the
processor pipeline, memory management and the caches. For ex-
ample, hardware based DIFT (5; 19) requires that loads and stores
in the program also load and store the respective taint values. More
importantly, the hardware changes are specific to the monitoring
task, which means each monitoring task requires a different set of
hardware changes. However, recent work (2) proposes a flexible
hardware solution that is applicable over a range of monitoring
applications. The above work can be used in conjunction with the
shadow memory support provided in this work, to further reduce
the instrumentation cost.

Software-based monitoring schemes: On the contrary, soft-
ware based monitoring schemes, use program instrumentation tech-
niques (8; 14) to instrument the original application with additional
code that is able to perform the monitoring. Unfortunately, the main
issue with software monitoring has been the speed. For example
Dynamic taint checking (15), which is one of the first schemes for
software based monitoring causes very high overhead, in the or-
der of 40 fold for SPEC programs. There has been several efforts
(16; 3; 13) to optimize the high overhead of software monitoring.
In this paper, we provide ISA and OS support to efficiently support
shadow memory. Thus, the support provided is able to be used effi-
ciently in a variety software based applications. Another important
limitation of software based monitoring schemes is its inefficiency
in dealing with multithreaded programs. Currently, multithreaded
programs have to be be serialized to maintain correctness (14). This
is because of the need to execute the OMIs and the SMIs atomically.
In this paper, we deal with this problem without the serialization of
the threads, by implementing our CSC scheme in software.

Half-and-half memory schemes: Several runtime monitoring
approaches that use shadow memory (3; 16; 6; 22) split virtual ad-
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dress space apriori so that the translation between original address
to the shadow address can be achieved very efficiently.However, it
was found by (13) that these class of approaches (known as half-
and-half scheme) due its less flexible layout means that it fails for
some programs in linux and is incompatible with operating sys-
tems with restrictive layouts (13). Moreover, it does not scale when
we need to associate more than one shadow value per memory loca-
tion. To improve robustness, Valgrind’sMemcheck (13) implements
a two-level page table in software. In this paper, we propose simple
support to achieve the efficiency of the former, without sacrificing
on the robustness.

TM for atomicity: There has been a recent proposal (4) to use
transactional memory support to execute the SMIs and the OMIs
concurrently, but is does not discuss the efficient addressing of
SMIs which is also an important inefficiency in current software
based shadow memory tools. TM support (7) or hardware atomic-
ity support proposed in (12), if available, could also be used in con-
junction with our efficient addressing scheme to enforce atomicity.
However, our CSC scheme, in comparison with TM, does not re-
quire support for checkpointing (9) or conflict detection since there
is no rollback or re-execution.

Other work: The address translation and OS support proposed
in this work is related to support provided for handling superpages
(21; 20). However, while the above work focuses on mainly in-
creasing the performance and the reach of the TLB, we use the
extra shadow pages for the purpose of monitoring.

6. Conclusion

In this paper, a combination of architectural support (in form of
ISA support and exposed cache events) and operating system sup-
port (in form of coupled allocation of memory pages used by the
application and associated shadow memory pages) was used, to de-
rive a shadow memory implementation that is both efficient and
robust. By exposing cache events to the software, we were able to
couple the cohere of shadow memory with the coherence of the
main memory, thereby ensuring that SMIs execute atomically with
their corresponding OMIs. Our page allocation policy enables fast
translation of original addresses into corresponding shadow mem-
ory addresses; thus allowing implicit addressing of shadow mem-
ory.
We implemented our shadowmemory support into a cycle accu-

rate multicore simulator (17), which also models OS services. We
evaluated our approach with four monitoring tasks DIFT, Mem-
check, Eraser and MemProfile and found that our shadow memory
implementation was able to ensure atomicity of OMIs and SMIs
efficiently. Furthermore, it was also able to significantly reduce the
overhead involved in address translation.
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