
Runtime Parallelization of Legacy Code
on a Transactional Memory System

Matthew DeVuyst
University of California,

San Diego

mdevuyst@cs.ucsd.edu

Dean M. Tullsen
University of California,

San Diego

tullsen@cs.ucsd.edu

Seon Wook Kim
Korea University

seon@korea.ac.kr

ABSTRACT

This paper proposes a new runtime parallelization technique,
based on a dynamic optimization framework, to automati-
cally parallelize single-threaded legacy programs. It heavily
leverages the optimistic concurrency of transactional mem-
ory. This work addresses a number of challenges posed by
this type of parallelization and quantifies the trade-offs of
some of the design decisions, such as how to select good
loops for parallelization, how to partition the iteration space
among parallel threads, how to handle loop-carried depen-
dencies, and how to transition from serial to parallel exe-
cution and back. The simulated implementation of runtime
parallelization shows a potential speedup of 1.36 for the NAS
benchmarks and a 1.34 speedup for the SPEC 2000 CPU
floating point benchmarks when using two cores for parallel
execution.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming ; D.3.4 [Programming Lan-

guages]: Processors—Code Generation, Compilers; B.7.1
[Integrated Circuits]: Types and Design Styles—Memory

Technologies; C.1.2 [Processor Architectures]: Multiple
Data Stream Architectures (Multiprocessors)

General Terms

Design, Performance

Keywords

Parallelization, Dynamic optimization, Transactional mem-
ory

1. INTRODUCTION
The multi-core era is upon us, and as feature sizes con-

tinue to shrink, dies are divided up into ever more processing
cores. The increase in hardware parallelism has outpaced

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HiPEAC 2011 Heraklion, Crete, Greece
Copyright 2011 ACM 978-1-4503-0241-8/11/01 ...$10.00.

the software industry; there is a large body of applications
written for or compiled for a single thread of execution, and
these applications do not take advantage of the extra paral-
lelism being offered by modern microprocessors.

The growing need to produce parallel code also motivates
us to find better ways of making parallel code easier to
write and less error-prone. Transactional memory (TM) is a
promising improvement over lock-based synchronization. It
optimistically grants access to shared memory, forcing seri-
alization only when a real conflict is detected [5]. TM is an
area of active research and has been gaining increasing ac-
ceptance in industry [3]. We believe that in the near future
we will see more microprocessor vendors including hardware
support for transactional memory.

Leveraging this expected hardware support for TM, this
paper proposes a new technique to automatically (without
any user intervention) extract thread-level parallelism from
legacy single-threaded programs with minimal architectural
change. We find that transactional memory enables the par-
allel execution of many loops that are serialized by tradi-
tional synchronization. Our technique uses a dynamic opti-
mization framework: frequently executed loops are identified
by hardware at runtime, a dynamic re-compiler is spawned
in a free hardware context to transform the key loops into
parallel code, and the re-compiled parallel loops are patched
in to the running program. The dynamic re-compiler ana-
lyzes the loop (at the machine code level, not at the source
code level) and, if possible, transforms it into a loop that can
be executed in parallel. When the parallelized loop executes,
parallel threads are forked onto free hardware contexts.

The primary contribution of this paper is to show that the
reduced overhead and optimistic concurrency of hardware
transactional memory enables the effective parallelism of a
number of legacy codes, despite the existence of unknown
and unknowable memory aliasing.

This paper describes our parallelization technique and
quantifies its effectiveness across a number of benchmarks.
It is organized as follows. Section 2 is an overview of the
related work. Section 3 describes our baseline processor ar-
chitecture, including transactional memory and dynamic op-
timization implementations. Our parallelization technique is
described in Section 4. An important part of our paralleliza-
tion, code generation, is described in Section 5. Section 6
describes our experimental methodology. In Section 7 we
present our results. Section 8 concludes.

2. RELATED WORK

2.1 Transactional Memory
Our parallelization technique relies on detection and cor-

rect execution of memory-dependent computation. This re-
quires a mechanism to prevent erroneous execution that
arises from unanticipated memory aliasing between loop it-
erations. We achieve this through the use of transactional
memory.

Transactional Memory has been proposed as a hardware
implementation of lock-free concurrent synchronization [5].
The TM model provides the programmer with guarantees
about the memory accesses of instructions contained in trans-
actions. One guarantee is that writes to memory within a
transaction are not visible to other transactions until trans-
action commit (at which time all the writes in the trans-
action are atomically released). Another guarantee is that
memory aliasing among transactions (e.g., a write in one
transaction to the same address as a read in a concurrently-
executing transaction) are detected and appropriate recov-
ery actions taken (e.g., a transaction’s state will be discarded
and it will be restarted).

Both hardware [5] and software [13] transactional memory
implementations have been proposed. We assume hardware
transactional memory, but otherwise, we are relatively in-
sensitive to which implementation. We only require that the
TM implementation support ordered transactions. Ordered
transactions are only allowed to commit in a pre-defined or-
der; they have been proposed in [4, 1, 11].

2.2 Dynamic loop parallelization
Other researchers have proposed the use of dynamic opti-

mization to aid in runtime parallelization of loops.
Ootsu, et al. [9] propose a runtime parallelization tech-

nique for binaries using a dynamic optimization framework.
Their work builds on the parallelization technique of Tsai,
et al. [16] by adding binary translation at runtime instead of
transformation at compile-time to perform the paralleliza-
tion. Unlike our work, they don’t explore the use of any op-
timistic concurrency mechanisms to ensure correctness with
regard to concurrent memory access.

Yardimci and Franz [20] put forth a dynamic paralleliza-
tion and vectorization technique for single-threaded binaries.
Their technique involves only control speculation, not data
speculation. To this end, they introduce a complex control
flow analysis (especially to handle indirect branches); but
they do not parallelize loops whose induction registers do
not have deterministic fixed strides, loops that have stores
in conditionally-executed code regions, or loops with poten-
tial cross-iteration data dependencies. Because our approach
leverages transactional memory for data speculation, we find
ways around all these limitations and are thus able to par-
allelize more loops.

Vachharajani, et al. [18] add speculation to Decoupled
Software Pipelining (DSWP). DSWP parallelizes a loop by
partitioning the loop body into stages that are scheduled on
threads and executed in a pipelined manner, communicating
results via a message passing or buffering mechanism. Spec-
ulative DSWP aims to break some recurrence dependencies
so that the loop body can be broken into smaller pieces to in-
crease scalability and load balancing. Our work differs from
theirs in three ways: our technique works at the machine
code level, where analysis and transformation is more com-

l oop : sub r1 , r1 , 256
add r5 , r1 , r6
load r2 , 64(r5)
load r3 , 0(r2)
add r3 , r4 , r3
s t o r e r3 0(r2)
bne r1 , 0 , loop

Figure 1: Potential memory aliasing makes this loop

hard to parallelize.

plicated due to compiler optimization and loss of informa-
tion; we use a simpler, more common form of speculation,
Transactional Memory—they use a complicated versioned
memory system; their technique utilizes heavy inter-thread
(cross-core) communication, potentially requiring hardware
support for best performance.

Works by Zhong, et al. [23] and Von Praun, et al. [19]
leverage TM for parallelization, but rely on programmer
and/or heavy compiler support; our technique requires nei-
ther.

Speculative multithreading [15, 7, 6] is an alternate ap-
proach that attempts to get parallel speedup from serial
code. They do so by executing serial code in parallel and
recover from misspeculation. They typical rely heavily on
data value speculation and prediction, as well as some type
of memory versioning. Conversely, we create more conven-
tional parallel code (dynamically), without data prediction,
and only exploit speculative execution to the extent that
transactional memory already supports it.

3. ARCHITECTURE
Hardware transactional memory provides several key ad-

vantages over traditional synchronization, particularly with
regards to the problem of runtime parallelization. The key
problem in runtime parallelization that has made it an essen-
tially unsolvable problem except in the most simple cases,
is that in the absence of any high-level program informa-
tion, nearly all loads and stores must be treated as po-
tentially aliased—the necessarily conservative handling of
these potential dependences serializes the code. Transac-
tional memory, by supporting optimistic concurrency, solves
a whole set of problems. First, because code is only serial-
ized when there is true aliasing, conservative placement of
synchronization has no cost. Second, we can include many
writes in a single transaction, minimizing synchronization
overhead with no significant loss in concurrency. Because
transactional semantics requires no correlation between the
synchronization mechanism and the data that is protected,
parallelization is simply enabled yet still catches even unan-
ticipated dependences.

To illustrate the power of this technique, consider the
pseudo-assembly code of the loop in Figure 1. This code
loops over an array of structures: for each structure ele-
ment, a pointer field is extracted and followed, and the data
at that pointer location is modified. Assume this loop is ex-
ecuted many times, is part of a single-threaded application
(for which we do not have the source code), and it is running
on a modern multi-core processor on which there are one or
more unutilized cores.

Using hardware performance counters, a dynamic opti-
mization framework can detect that this loop executes fre-

f o r k f i x
branch btx

loop : EndTransaction
f i x : sub r1 , r1 , 256
btx : BeginTransact ion

sub r1 , r1 , 256
add r5 , r1 , r6
load r2 , 64(r5)
load r3 , 0(r2)
add r3 , r4 , r3
s t o r e r3 0(r2)
bne r1 , 0 , loop
EndAl lTransact ions

j o i n : . . .

Figure 2: Wrapping the loop body in a transaction al-

lows for safe and optimistic parallelization.

quently and can transform it automatically into parallel
code—with different iterations of the loop running in differ-
ent threads. Without the high-level code, we cannot guar-
antee that parallel iterations of this loop won’t attempt to
modify the same data in memory. With traditional lock-
based synchronization primitives, our parallelizer would trans-
form the loop such that a lock would have to be acquired
and released on every iteration of the loop. Since only one
thread may hold the lock at any time, even though the loop
would be parallelized across multiple threads, the frequent
synchronization would force a serialization of loop iterations.
However, if the loads and stores are not frequently aliased
in neighboring iterations, the serialization is unnecessary.

If the optimizer instead uses transactional memory to make
the code thread-safe, then when aliasing is infrequent, un-
necessary serialization does not hinder performance. Each
iteration is wrapped in a transaction and the transactions
execute concurrently. Thus, with minimal analysis of the
code, we still get guaranteed serialization of iterations when
there are dependences, and parallel execution in the absence
of dependences.

3.1 Code Transformation Overview
We now present a high-level overview of the code trans-

formation. Section 4 provides more details on this process.
Figure 2 shows what the transformed code from Figure 1

would look like, when targeting two parallel threads. Some
details (mostly for bookkeeping, such as numbering transac-
tions for ordering) have been omitted to simplify the exam-
ple. The first thing this code does is fork a new thread to
start executing at the label fix. This is a lightweight fork—
no new stack is created, only registers are copied and the
PC is set. The newly-created thread will execute the induc-
tion code to bring the loop-carried registers up to date in
preparation to execute the second iteration of the loop: in
this example, 256 is subtracted from register r1. Then a new
transaction is begun and the loop body is executed. Mean-
while, the original thread will branch to the label btx, open
a new transaction and execute the first iteration of the loop.
When each thread completes an iteration, i, of the loop, it
will close the transaction and open a new transaction to ex-
ecute iteration i + 2. The ordering of the transactions will
ensure that state from each iteration is committed (i.e., data
is stored to memory) in original program order. When the
loop is done executing, all the transactions will be closed,

the spawned threads will be terminated, and execution will
resume in the original thread at the join label.

Having ordered transaction commits ensures that we do
not commit values before all prior execution commits, and
also ensures that the last write of each memory location in
the loop is the write that is visible at loop exit.

4. PARALLELIZATION
There are several things we need to enable dynamic paral-

lelization of legacy serial code. First, we need some kind of
dynamic optimization framework that can (1) identify can-
didate code to parallelize, (2) spawn a thread to analyze
the code and generate parallel code, and (3) patch in the
new code. We also need hardware support to catch depen-
dences between iterations assumed to be parallel (transac-
tional memory, in our case). We need our parallelizer to
solve the problem of selecting the right granularity of paral-
lelism. We also need to ensure that we maintain the seman-
tics of sequential execution, particularly as viewed by the
code following the parallel region—transactions accomplish
this for memory, but registers must be handled in software.
Our solutions for each of these issues will be presented in
this section and the following one. This section focuses on
the overall design of the parallelization process, including
the dynamic optimization framework that orchestrates the
parallelization process and the scheduling of parallel code
on threads. The next section will focus on aspects of the
parallel code generation itself.

4.1 Dynamic Optimization Framework
The basic unit of optimization targeted by our technique

is loops. To identify loops most effectively, we combine
two techniques—a whole-program control-flow analysis that
identifies loops, combined with a hardware monitor that
identifies frequent branches. This provides a more accurate
view of important loops than trying to identify the loop
based on a hot-branch address.

When a new process is started, a loop analyzer begins in
a spare hardware context to perform a quick loop analysis
of the binary code. Since this is a static analysis, it can be
performed once and the results even saved to a file for all fu-
ture executions. The loop analyzer builds a dominator graph
among basic blocks to find natural loops [8]. It excludes
loops that contain system calls or computed branches (be-
cause parallelizing such loops would be problematic). The
static analysis is not required, but improves the quality of
discovered loops. Because it runs in a separate context and
typically requires only a few milliseconds, it neither slows
the main thread nor impedes our dynamic parallelizer in
any but the shortest of applications.

As the program executes, a hardware-based profiler, like
the Hot Path Profiler in [21], finds frequently executed loops,
called hot loops. When a hot loop is identified, hardware
monitors measure the average number of cycles required to
execute one iteration of the loop. Once the baseline perfor-
mance of the hot loop has been measured, a dynamic re-
compiler is spawned in a spare hardware context to attempt
to parallelize the hot loop. The operation of the dynamic
re-compiler will be described in the next section.

One of the first few instructions in the new version of
the loop is a fast fork instruction. When this instruction
is executed, a new thread is created on a spare hardware
context. This is not a traditional heavy-weight fork. No

new stack is created for the new thread and no registers are
set, except for the program counter, which is set by adding
the current PC to the offset encoded in the fork instruction.
Because only the PC has to be set in the newly-created
thread, the fork can be very fast.

As the parallel version of the loop executes, its perfor-
mance is monitored in hardware. If the parallel version of
the loop is not performing any better than the serial ver-
sion, the parallel version is eventually removed, as in [21].
When all iterations of a dynamic instance of a parallelized
loop complete, all forked threads are terminated, and serial
execution continues on the original thread.

4.2 Partitioning the iteration space
Loop iterations are distributed among threads in a round-

robin fashion. In our baseline implementation, this distri-
bution is done at the granularity of individual iterations.
We also experiment with distributing groups of iterations
among threads (called tiling), where each group is wrapped
in a single transaction. The tile size is the number of con-
secutive loop iterations grouped together and treated as a
unit of parallel work. Larger tile sizes can reduce transaction
overhead and increase cache locality.

Each loop has an ideal tile size based on factors such as
iteration count, loop body size, induction code size, trans-
actional overhead cost, probability of early exit, and prob-
ability of transaction restart. For most loops, tile size does
not significantly affect performance—other factors, like loop-
carried dependencies and transaction restarts play a much
greater role in determining the performance of a parallelized
loop.

Given the marginal performance improvements of finding
optimal tile sizes and the significant increase in the com-
plexity of analysis required (which is contrary to the design
philosophy of our fast dynamic re-compiler), we do tile size
selection two ways. First, we can statically select a tile size
that has been found to result in good performance, in gen-
eral, across all applications. For the results presented in this
paper, the tile size we selected was 16. Alternatively, we can
use the dynamic optimization framework to iteratively re-
parallelize loops and sample performance to discover better
tile sizes.

5. CODE GENERATION
This section describes the parallel code generation. There

are a number of necessary features to parallel code gen-
eration. Parallel code must be able to take advantage of
cross-iteration dependency checking (enabled by transac-
tional memory). It must maintain the semantics of sequen-
tial execution, handling explicitly what TM does not—data
flow through registers. And it must have some way of deal-
ing with function calls in parallelized code.

5.1 Transaction wrapping
The use of transactional memory in automatic paralleliza-

tion is a key element of our study. The key benefit provided
by TM is optimistic concurrency among parallel threads in
the face of statically unknown memory sharing. While loop-
carried dependencies though registers can be determined
statically, dependencies through memory cannot always be
determined a priori. Some memory sharing can be deter-
mined statically, but this can require a complicated and
costly analysis. The analysis is further complicated by the

applications we are targeting—single-threaded legacy bina-
ries with no source code available. For all these reasons,
our dynamic re-compiler analyzes loop-carried dependencies
through registers but does not explicitly analyze memory
sharing among parallel threads, relying on the TM system
at runtime to detect and recover from memory violations
caused by inter-iteration memory sharing.

Every loop iteration (or consecutive group of loop itera-
tions if tiling is used—see Section 4.2) is wrapped in an or-
dered transaction. The ordering of the transactions match
the original sequential ordering of the loop iterations.

5.1.1 Opening transactions

Individual transactions are started with the BTX (Be-
gin Transaction) instruction; this signals the Transactional
Memory Manager (TMM) that a new transaction is start-
ing. In our TM model, as in most TM proposals, register
state is saved when a transaction is begun in case the trans-
action fails to commit and has to be rolled back. We assume
a shadow register file for this purpose. Memory instructions
executed after the beginning of a transaction are said to
execute in the transaction and follow the transactionally-
extended cache coherence protocol (transactional bits are
marked as appropriate and written memory is prevented
from leaving the local cache).

5.1.2 Closing transactions

Transactions can end in three ways. The most common
way a transaction ends is by committing. When a trans-
action commits, the memory state written inside the trans-
action is made available to other threads. In the case of
our cache-based TM implementation this means that cache
words marked transactionally written can be copied to pri-
vate caches of other cores when requested, or written back
to the L2 cache if evicted. Most transactions commit when
they reach an ETX (End transaction) instruction and all
older transactions have committed. If an ETX instruction
is reached and there are uncommitted older transactions,
the thread executing the transaction is stalled. An ETX in-
struction is executed at the end of every loop iteration (after
the branch to a new iteration has been taken).

The second way that a transaction may end is by an ex-
plicit abort. We’ve implemented this functionally in the
ATX (Abort Transaction) instruction. This instructs the
TMM to invalidate all the local cache words marked as trans-
actionally written, effectively rolling back the memory state
of the transaction (and the register state via the shadow
register file). Explicit aborts also obey the transaction or-
dering semantics—no transaction may abort unless all older
transactions have committed. Otherwise, speculative trans-
actions with invalid data could cause aborts. ATX instruc-
tions are inserted down loop early-exit paths. An early exit
path is the path taken when a loop exits at a point different
from the loop continuation. A C/C++ break instruction in
the middle of a for loop is one example of an early exit.

The third way that a transaction may end is by a trans-
action restart. Restarts are triggered when a transactional
memory violation is discovered (for example, if it is discov-
ered that a store instruction in an older transaction wrote to
an address that a load in a younger transaction read from).
Violation detection is built into the cache coherence protocol
and happens eagerly (at execution of the violation-causing
memory instructions) instead of lazily (at the end of the

transaction). This means that a transaction may restart at
any time during execution. The semantics of a restart are
virtually identical to those of an explicit abort: cache words
marked transactionally written are invalidated and register
state is restored. Execution then starts again from the BTX
instruction that began the transaction.

5.2 Data flow through registers
Dependencies and data sharing through memory among

iterations are handled by the transactional memory system
at runtime, but dependencies and data sharing through reg-
isters must be analyzed by the dynamic re-compiler and han-
dled explicitly in the parallelized code. Dependency analy-
sis involving only registers is significantly less complex than
memory analysis, but there are several challenges to gener-
ating parallel code out of sequential. Loop-carried depen-
dences through registers are problematic because cores do
not share registers. Also, on loop exit, the continuing thread
must see a single register file with the latest update to each
register, even though the last write could have occurred in
any core. The latter issue requires register value updates
when (1) register values are conditionally written, or (2)
when the last iteration of the loop does not execute on the
original thread.

5.2.1 Loop-carried register dependencies

We can manage most loop-carried dependencies by treat-
ing the dependent computation as induction code. When the
dynamic re-compiler analyzes a loop before parallelization,
in addition to building a control-flow graph for the loop, it
builds a data-flow graph to model the flow of data though
registers. A list of registers that are loop-carried is gener-
ated by identifying all registers that are read before being
written to in the loop body. Induction code is extracted
from the loop by following the data-flow graph backwards,
starting at the last writes to each loop-carried register, in-
cluding every instruction that is necessary to compute the
new values of the loop-carried registers. This induction code
is added to the beginning of the loop body to generate the
correct live-ins.

5.2.2 Conditionally-written registers

Registers written in conditionally-executed basic blocks
are problematic for two reasons. When they are loop-carried
registers, the conditional statements can cause significant
induction code expansion. For non-loop-carried registers,
correctly identifying the last write to the register is difficult.
In both cases, we exploit the transactional memory system’s
facility of guaranteeing correct ordering.

To keep the induction code small, we have chosen not to
include control flow in induction code. Instead, both loop-
carried registers and non-loop-carried conditionally-written
registers are passed through memory and no induction code
needs to be generated for them—transactional memory will
ensure correct ordering. This is enabled though the use of
spill (store) and fill (load) instructions. Registers that are
last written in a conditional block are spilled to memory.
If the register is loop-carried as well, a fill instruction for
that register is inserted at the beginning of the loop. For all
conditionally-written registers, a spill instruction is inserted
in the loop prologue (to be executed before any iterations)
and a fill instruction is inserted in the loop epilogue and
down early exit paths. For loop-carried, conditional regis-

while (i < 1000) {
o ld count = count ;
i f (A[i] == ’ ! ’) {

count++;
l a s t = i ;

}
. . .

}

Figure 3: C code to illustrate two kinds of register

writes. Assuming that the compiler binds count and last

to registers, the registers representing these variables are

conditionally-written. count is loop-carried and last is

not.

ter dependences that are infrequent, this allows the code to
typically execute in parallel. When the dependences are fre-
quent, there will be frequent restarts and hardware monitors
will recognize our failure to achieve speedup on the loop; this
will cause the loop to revert to the original code.

The C code in Figure 3 illustrates both kinds of conditionally-
written registers. This loop iterates over a character array
and counts the number of exclamation marks found, record-
ing the location of the last mark for later reference. Assum-
ing the variables count and last are bound to registers, last

represents a non-loop-carried conditionally-written register
and count represents a loop-carried conditionally-written reg-
ister. The dynamic re-compiler will insert two register spill
instructions at the end of the basic block where count and
last are conditionally written to store the value of count and
last to memory. If the last iteration where last is updated
is executed on a forked thread, that thread can be safely
terminated and the correct value of last filled from memory
by the original thread after loop termination. The value of
count is filled from memory at the beginning of every iter-
ation. In the common case, where the last character was
not an exclamation point and the conditional code was not
executed, the private caches of all parallel threads will read-
share this value and the same value will be read every time.
When the conditional code is executed and the new value of
count is spilled to memory, parallel iterations that logically
follow that iteration will be restarted and will then read the
correct value for count.

Another type of control flow that complicates register de-
pendence handling is nested loops. If a loop-carried regis-
ter dependence is in a nested loop or depends on code in a
nested loop, then induction code would have to include the
nested loop; however, this is undesirable. Using the spill/fill
technique that we use for conditional code would hurt per-
formance as well. As a result, we do not currently parallelize
loops when the outer loop induction code would include reg-
ister values computed in an inner loop.

5.2.3 Register state of the last iteration

We must also identify the last writer of registers that
are not conditionally written. This is an easier problem,
but may still involve data transfer. Unlike conditionally-
written registers, at loop termination we know exactly which
thread had the correct, most up-to-date value of the non-
conditionally-written registers: the thread that executed the
last iteration of the loop. This allows us to track register val-
ues without any restart-inducing data sharing. At the end
of every loop iteration, register state is spilled to a thread-

specific memory location; no cache lines have to be write-
shared by different threads for this. Upon loop termination,
after the forked parallel threads have been halted, the orig-
inal thread fills the register state from the memory location
of the thread that executed the last loop iteration. The
dynamic re-compiler inserts the fill code in both the loop
epilogue and the early exit code.

5.3 Function calls
Function calls in loops introduce a difficult challenge for

a number of reasons. For example, we use a lightweight fork
mechanism, as described, that does not require us to allocate
a new stack for the forked threads—they all share the same
stack space. Because function calls grow the stack and allo-
cate stack-based variables, allowing function calls in parallel
loop iterations is problematic. Additionally, we cannot allow
our parallel code to call an uninstrumented function unless
we can guarantee that it returns to the call site. When deal-
ing with machine code, this is harder to guarantee than with
high-level source code; this is particularly true when the re-
turn address is written to memory (because it is difficult to
guarantee that that memory is not modified).

Both of these problems can be solved by inlining functions.
An inlined function is not allocated its own stack frame—so
we don’t have to deal with parallel threads allocating new
stack frames. The second problem is solved because as the
dynamic re-compiler analyzes and prepares a function for
inlining, it ensures that it returns to the call site.

Our re-compiler inlines one level of function calling. Any
function calls within called functions are replaced with early
exit points that facilitate the transition from parallel execu-
tion back to serial execution at the point of the function call
site. If the second-level call is only conditionally executed,
the early exit may not inhibit parallelism severely.

Also, function inlining allows us to easily modify a copy of
the function intended for parallel execution without making
changes to the original copy of the function intended for
sequential execution (when accessed by other call sites).

6. EXPERIMENTAL METHODOLOGY
This initial study of the use of hardware transactional

memory to facilitate automatic runtime parallelization of
legacy code is in some respects a feasibility study to de-
termine to what extent we can expose the available paral-
lelism. For that reason, we keep our execution model rela-
tively simple—we assume two cores. One core runs all the
serial portions of code as well as one of the parallel threads
in parallelized code regions. The other core executes paral-
lel threads when available and the dynamic compiler thread
(which only runs about 3% of the time). The maximum
expected parallel speedup is 2.0.

Each core is an in-order core. See Table 1 for more details
of our processor architecture. In the following section, we
will describe the architecture of our transactional memory
model.

6.1 Transactional Memory
We model a generic transactional memory system. The

only relatively uncommon characteristic that we require is
the support for ordered transactions. Many proposed trans-
actional memory systems view all concurrent transactions as
equal; however, to preserve program order we require pref-
erential treatment for transactions executing earlier (less-

Cores 2 Shared L3 cache 4M, 2 way
Total Fetch Width 4 L1-L1 transfer 14 cyc
Int/FP regs/core 100/100 Load-use, L1 hit 2 cyc
I cache/core 64k, 2 way Load-use, L2 hit 16 cyc
D cache/core 64k, 2 way Load-use, L3 hit 58 cyc
Shared L2 cache 512k, 2 way Load-use, L3 miss 158 cyc

Table 1: Architecture Detail

speculative) loop iterations. The ordering of transactions
is considered in decisions regarding which transaction(s) to
restart when a memory violation occurs, and in restricting
when a transaction can commit. The modifications neces-
sary to add ordering among transactions are straightforward
and a number of transactional memory proposals support
ordered transactions [4, 1, 11].

We have found that memory violation detection at cache
line granularity results in poor performance for many loops
due to frequent transaction restarts caused by false shar-
ing. Consider the case of a very simple loop that writes
successive elements in an array of integers. If each itera-
tion is wrapped in a transaction and executed concurrently,
conflict detection at cache line granularity would result in
false sharing as each parallel thread tries to write to different
parts of the same cache line. Because of the significant per-
formance advantages offered by violation detection at word
granularity, we will assume this granularity. Note that our
parallelization technique is compatible with cache line gran-
ularity violation detection and will still yield a speedup, just
not as great. A further discussion of some of the trade-offs
of granularity and a performance comparison can be found
in Section 7.2.

In trying to model as generic a Transaction Memory sys-
tem as possible, we assume a TM system that is similar to
the simple original model proposed by Herlihy and Moss [5].
Like many newer TM proposals, we model the buffering of
transactional state in the local caches instead of a special
Transactional Buffer. The traditional MESI cache coher-
ence protocol [10] is extended to support memory violation
detection (as is done in [4, 11], for example).

6.2 Simulation and Benchmarks
For these measurements, we simulate steady-state execu-

tion well into the program. Thus, we assume that prior to
the measurement interval, the one-time static program anal-
ysis has completed, and that loops that our system would
try to parallelize but fail to achieve speedup have already
been identified and rejected. The mechanics and efficiency
of the code-cache uninstallation process has been shown in
prior work (e.g. [21]). Thus, our results are somewhat op-
timistic; but in that prior work it was found that after an
initial warm-up, the code changed very infrequently.

We implemented the dynamic re-compiler to parallelize
loops in binaries compiled for the Alpha architecture. The
dynamic re-compiler was not designed to be a robust full-
featured compiler, but to be very small and lightweight, al-
lowing it to quickly re-compile loops at runtime.

We extended SMTSIM [17], an event-driven Chip Multi-
processor (CMP) and Simultaneous Multithreading (SMT)
processor simulator, to support transactional memory and a
dynamic optimization framework (a simplified version of the
one by Zhang, et al. [21]). The simulator was configured as
a CMP and executes Alpha binaries, including our dynamic

Figure 4: Speedups of NAS and SPEC FP benchmarks. The dark bars and data labels show performance when the

tile size is fixed at 16. The light bars show performance when an optimal tile size is selected for each loop.

Figure 5: Speedup across various tile sizes.

re-compiler compiled to the Alpha ISA.
Our primary target is legacy code, and in particular we

want to address two types of applications—those for which
thread-level parallelism is clearly available but the code was
compiled single-threaded to run on legacy processors, and
those clearly written for single-threaded execution, but some
thread-level parallelism may still be available. We use NAS
3.3 benchmarks to represent the former (except dc which
did not compile properly for Alpha OSF/4 using GCC) and
all the SPEC2000 CPU floating-point benchmarks to rep-
resent the latter. All the benchmarks were compiled with
GCC 4.3 at optimization level -O2. Even when thread-level
parallelism was clearly evident in the source code, we found
that compiling for a single thread at this high optimization
level seriously obfuscated that parallelism in many cases.

The NAS benchmarks were each fast-forwarded one billion
dynamic instructions before detailed simulation in order to
skip over program initialization. A SimPoint ([14]) analysis
was performed for each SPEC benchmark to find represen-
tative points of execution for detailed simulation. The A
inputs were used for the NAS benchmarks and the refer-
ence inputs were used for the SPEC benchmarks. For the
SPEC benchmarks that have multiple reference inputs, the
first (alphabetically ordered) inputs were used.

For the results we present in this paper, loops were paral-

lelized into two threads and the default tile size was 16.

7. RESULTS
The performance gains of our parallelization with constant

tile size are presented in Figure 4 (the dark bars). The av-
erage speedup among the NAS benchmarks is 1.36 and the
average speedup among the SPEC FP benchmarks is 1.34.
The performance of some benchmarks, like mg, mgrid, and
swim came close to the theoretical limit of 2X speedup. Oth-
ers, like facerec and fma3d (to name a couple), saw no per-
formance gain. In general, despite the challenges of identi-
fying, transforming, and exploiting parallelism in serial code
at runtime, we were successful, to some degree, in a signifi-
cant percentage of the applications.

There are three primary reasons why some benchmarks
could not benefit from parallelization. First, in some cases,
there is an inherent lack of thread-level parallelism. In other
cases, thread-level parallelism is present, but it is not ex-
pressed in a way that is amenable to our parallelization tech-
nique. For example, a reduction [12], like a loop that sums
up values in an integer array, has inherent parallelism. But
if it is not coded carefully to express that parallelism, a crit-
ical loop-carried dependence will be created between every
consecutive iteration of the summation. Since our dynamic
re-compiler operates at a very low level, it is not always able
to recognize and transform every expression of parallelism.
Third, and probably most importantly, some optimizations
(like software pipelining) and machine code generations dur-
ing original compilation obscure or impede subsequent par-
allelization. Thread-level parallelism that is evident in the
high-level language of the source code may not be obvious or
may not exist in the optimized single-threaded binary. The
poor performance on ep is clearly an example of this case.

7.1 Tile size
Figure 5 demonstrates how variance in tile size affects

performance. For benchmarks in both suites, some degree
of tiling is necessary in order to obtain the highest perfor-
mance gains; however, we find that tiling is not absolutely
necessary to see reasonable performance gain. The best tile

Figure 6: Speedups of NAS and SPEC FP benchmarks under different loop selection policies: innermost loops only,

outermost loops only, and unconstrained.

size for NAS benchmarks was 16, while the best tile size for
SPEC FP benchmarks was 8. As tile size increases much
beyond 16, performance decreases in spite of the decreasing
parallelization overhead. Because transactions are larger,
transaction restarts are more costly because more worthless
instructions are executed—instructions whose effects will be
undone. Also, high tile size often creates a load imbalance
among parallel threads during the last iterations of the loop.

When the tile size of each loop was varied and the best-
performing parallel loop version was selected, the distribu-
tion of best tile sizes was highly distributed: 19% of the
time the best tile size was 1, 9% of the time it was 2, 9%
of the time it was 4, 15% of the time it was 8, 8% of the
time it was 16, 14% of the time it was 24, 11% of the time it
was 32, and 15% of the time it was 64. These results imply
that for best performance, the dynamic optimization frame-
work should attempt parallelizations at a variety of tile sizes.
Conversely, if loop analysis can find the optimal tile size, it
could reduce the number of parallelized loop versions to be
tried. Event-driven dynamic compilation has been shown
to be quite effective at just this kind of trial-and-error opti-
mization [22], due to the very low overhead of recompiling
threads that run in another core.

The light bars in Figure 4 show speedup when the opti-
mal tile size per loop is selected. The average NAS bench-
mark speedup is 1.45 (a 9% performance improvement) and
the average SPEC FP speedup is 1.38 (a 4% performance
improvement). The performances of most benchmarks im-
prove very little when optimal tile sizes are selected on a
per-loop basis instead of a single static tile size. However,
a few benchmarks, like cg and galgel, showed a more sig-
nificant performance improvement. The performance of ap-
plu is slightly lower due to a negative interaction between
some of the loops of different tile sizes (minor second-order
caching effects) that our loop selection mechanism wasn’t
able to detect a priori.

In all of the results we have presented so far, parallel loops
of various degrees of nesting were installed. We experi-
mented with two (more constrained) selection policies. In
the first of these policies the dynamic optimization frame-

work selected only parallelizable innermost loops. Loops
that had no nested inner loops were included in this selec-
tion. In the second policy, only outermost loops were se-
lected. Loops that were not nested within any other loops
were included in this selection. Based on how we have de-
fined these policies, loops that are not nested in any other
loops and do not contain any nested loops themselves are se-
lected in both policies. Note that there are some loops that
fall in neither category: loops that are contained within an-
other loop and have a nested inner loop. We compared the
performance of parallelization under these two policies and
our unconstrained policy.

The performance results are given in Figure 6. For most
benchmarks, parallelization of the innermost loops results
in better performance than parallelization of the outermost
loops. There are three reasons why innermost loops are
generally better candidates for parallelization: the thread
level parallelism our technique exploits most readily is fine-
grained; fine-grain thread-level parallelism is more abundant
than coarse-grain thread-level parallelism in the code we run;
also, because the size of outer loops are greater, the restart
cost of a failed transaction is greater. Larger loops have a
greater potential for inter-iteration dependencies, resulting
in more transaction restarts that hurt parallel performance.
This figure, then, shows two key results. If we are trying
to really minimize the complexity of the dynamic compiler
threads, restricting it to innermost loops is very effective.
However, there is a reasonable gain to considering all loops
as candidates.

7.2 TM cache granularity
All of the results shown so far have been with the trans-

actional memory system configured at word granularity in-
stead of cache line granularity. Word granularity will be
more expensive, but will yield performance results even on
traditional transactional code [2]. We explore how that gran-
ularity affects performance.

Figure 7 compares performance across all the benchmarks
when transactional memory is implemented at word gran-
ularity verses cache line granularity. The average speedup

Figure 7: Speedups of NAS and SPEC FP benchmarks. The light bars show performance when TM is implemented

at word granularity. The dark bars and the data labels show performance when TM is implemented at cache line

granularity. The tile size in both cases is 16.

Figure 8: Speedup across various tile sizes when TM is

implemented at cache line granularity.

across the NAS benchmarks drops from 1.36 with word gran-
ularity to 1.16 for line granularity; and the average speedup
across the SPEC floating-point benchmarks drops from 1.34
to 1.21. While TM at word granularity increases data cache
complexity and size, it dramatically increases parallel per-
formance. TM at cache line granularity causes significant
false sharing, both write-after-write (WAW) false sharing
and read-after-write (RAW) false sharing. This increases
the transaction restart frequency which reduces parallel per-
formance.

When TM is implemented at cache line granularity, small
tile size results in more frequent false sharing. At higher
tile sizes, some false sharing can be eliminated as parallel
threads are more likely to operate on data in disjoint cache
lines. This affect is highlighted in Figure 8. Here we see
that performance is worse at lower tile sizes. We also note
that across all tile sizes, the average performance of the NAS
benchmarks is distinctly less than the average performance
of the SPEC FP benchmarks. This is not something we
observe at word granularity. This suggest that the NAS
benchmarks are more prone to false sharing.

Despite the expected frequency of false sharing between

iterations of legacy code compiled for single-threaded ex-
ecution, we still do see significant (albeit reduced) oppor-
tunity to find and exploit parallelism. This is because we
assume a system that can identify poor-performing loops;
thus, loops with frequent false-sharing induced transactional
restarts will be discarded.

8. CONCLUSION
In this paper we present a runtime parallelization tech-

nique that leverages the expected upcoming support for trans-
actional memory and the runtime flexibility and efficiency of
dynamic optimization. It allows single-threaded legacy bi-
naries to achieve performance improvements in the increas-
ingly common context of multi-core microarchitectures. Our
parallelization technique makes use of transactional memory
to provide optimistic concurrency and to make strong guar-
antees about correctness in code that a traditional compiler
would have a hard time proving correct. Furthermore, par-
allelization is accomplished without any need for assistance
from the user or programmer and without access to the orig-
inal source code.

We discuss some of the unique challenges posed by run-
time parallelization and show how we address these chal-
lenges in our design. Our runtime parallelization shows
the potential for 36% performance improvement across the
NAS benchmarks and 34% performance improvement across
the SPEC2000 floating-point benchmarks, utilizing two-core
parallelism. We show that a loop selection policy that con-
siders only loops at a particular nesting level (e.g. innermost
loops only) fails to achieve the highest performance. We
show that most applications are fairly intolerant of tile size
(the number of iterations per transaction). They are more
sensitive to the granularity of the underlying transactional
memory system, achieving significant gains when conflicts
are detected at a word granularity.

9. ACKNOWLEDGMENTS
The authors would like to thank the anonymous review-

ers for many useful suggestions. They would also like to
thank Leo Porter for his help with the Transactional Mem-
ory model. This work was supported in part by NSF grant
CCF-0702349 and a gift from Intel.

10. REFERENCES
[1] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk

disambiguation of speculative threads in
multiprocessors. In Proceedings of the 33rd Annual

International Symposium on Computer Architecture,
2006.

[2] M. Cintra, J. F. Mart́ınez, and J. Torrellas.
Architectural support for scalable speculative
parallelization in shared-memory multiprocessors. In
Proceedings of the 27th Annual International

Symposium on Computer Architecture, 2000.

[3] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early
experience with a commercial hardware transactional
memory implementation. In Proceeding of the 14th

International Conference on Architectural Support for

Programming Languages and Operating Systems, 2009.

[4] L. Hammond, V. Wong, M. Chen, B. Carlstrom,
J. Davis, B. Hertzberg, M. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency. In Proceedings of

the 31st Annual International Symposium on

Computer Architecture, 2004.

[5] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In
Proceedings of the 20th Annual International

Symposium on Computer Architecture, 1993.

[6] V. Krishnan and J. Torrellas. A chip-multiprocessor
architecture with speculative multithreading”. IEEE
Transactions on Computers, 48(9), 1999.

[7] P. Marcuello, A. González, and J. Tubella. Speculative
multithreaded processors. In 12th International

Conference on Supercomputing, 1998.

[8] S. S. Muchnick. Advanced Compiler Design and

Implementation, chapter 14. Morgan-Kaufmann
Publishers, 1997.

[9] K. Ootsu, T. Yokota, T. Ono, and T. Baba.
Preliminary evaluation of a binary translation system
for multithreaded processors. In Proceedings of the

International Workshop on Innovative Architecture for

Future Generation High-Performance Processors and

Systems, 2002.

[10] M. S. Papamarcos and J. H. Patel. A low-overhead
coherence solution for multiprocessors with private
cache memories. In Proceedings of the 11th Annual

International Symposium on Computer Architecture,
1984.

[11] L. Porter, B. Choi, and D. M. Tullsen. Mapping out a

path from hardware transactional memory to
speculative multithreading. In Proceedings of the 18th

International Conference on Parallel Architectures and

Compilation Techniques, 2009.

[12] B. Pottenger and R. Eigenmann. Idiom recognition in
the polaris parallelizing compiler. In Proceedings of the

9th International Conference on Supercomputing, 1995.

[13] N. Shavit and D. Touitou. Software transactional
memory. In Proceedings of the 14th Annual ACM

Symposium on Principles of Distributed Computing,
1995.

[14] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. In Proceedings of the 10th

International Conference on Architectural Support for

Programming Languages and Operating Systems, 2002.

[15] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar.
Multiscalar processors. In Proceedings of the 22nd

Annual International Symposium on Computer

Architecture, 1995.

[16] J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C.
Yew. The superthreaded processor architecture. IEEE
Transactions on Computers, 48(9), 1999.

[17] D. Tullsen. Simulation and modeling of a simultaneous
multithreading processor. In 22nd Annual Computer

Measurement Group Conference, 1996.

[18] N. Vachharajani, R. Rangan, E. Raman, M. J.
Bridges, G. Ottoni, and D. I. August. Speculative
decoupled software pipelining. In Proceedings of the

16th International Conference on Parallel Architecture

and Compilation Techniques, 2007.

[19] C. von Praun, L. Ceze, and C. Caşcaval. Implicit
parallelism with ordered transactions. In Proceedings

of the 12th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, 2007.

[20] E. Yardımcı and M. Franz. Dynamic parallelization
and vectorization of binary executables on hierarchical
platforms. Journal of Instruction-Level Parallelism,
10, 2008.

[21] W. Zhang, B. Calder, and D. M. Tullsen. An
event-driven multithreaded dynamic optimization
framework. In Proceedings of the 14th International

Conference on Parallel Architectures and Compilation

Techniques, 2005.

[22] W. Zhang, B. Calder, and D. M. Tullsen. A
self-repairing prefetcher in an event-driven dynamic
optimization framework. In Proceedings of the

International Symposium on Code Generation and

Optimization, 2006.

[23] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke.
Uncovering hidden loop level parallelism in sequential
applications. In Proceedings of the 14th International

Symposium on High-Performance Computer

Architecture, 2008.

