
Runtime Power Monitoring in High-End Processors:

Methodology and Empirical Data

Canturk Isci and Margaret Martonosi
Department of Electrical Engineering

Princeton University�
canturk,martonosi ✁ @ee.princeton.edu

Abstract

With power dissipation becoming an increasingly vexing
problem across many classes of computer systems, measur-
ing power dissipation of real, running systems has become
crucial for hardware and software system research and de-
sign. Live power measurements are imperative for studies
requiring execution times too long for simulation, such as
thermal analysis. Furthermore, as processors become more
complex and include a host of aggressive dynamic power
management techniques, per-component estimates of power
dissipation have become both more challenging as well as
more important.

In this paper we describe our technique for a coor-
dinated measurement approach that combines real total
power measurement with performance-counter-based, per-
unit power estimation. The resulting tool offers live total
power measurements for Intel Pentium 4 processors, and
also provides power breakdowns for 22 of the major CPU
subunits over minutes of SPEC2000 and desktop workload
execution. As an example application, we use the generated
component power breakdowns to identify program power
phase behavior. Overall, this paper demonstrates a proces-
sor power measurement and estimation methodology and
also gives experiences and empirical application results
that can provide a basis for future power-aware research.

1. Introduction

Energy and power density concerns in modern proces-
sors have led to significant computer architecture research
efforts in power-aware and temperature-aware computing.
As with any applied, quantitative endeavors in architecture,
it is crucial to be able to characterize existing systems as
well as to evaluate tradeoffs in potential designs.

Unfortunately, cycle-level processor simulations are
time-consuming, and are often vulnerable to concerns about
accuracy. In certain cases,very long simulations can be re-
quired. This is particularly true for thermal studies, since it
takes a long time for processors to reach equilibrium ther-

mal operating points [24]. Furthermore, researchers often
need the ability to measure live, running systems and to cor-
relate measured results with overall system hardware and
software behavior. Live measurements allow a com-
plete view of operating system effects, I/O, and many other
aspects of “real-world” behavior, often omitted from simu-
lation.

While live measurements gain value from their com-
pleteness, it can often be difficult to “zoom in” and dis-
cern how different subcomponents contribute to the ob-
served total. For this reason, many processors provide hard-
ware performance counters that help give unit-by-unit views
of processor events. While good for understanding proces-
sor performance, the translation from performance coun-
ters to power behavior is more indirect. Nonetheless, some
prior research efforts have produced tools in which per-
unit energy estimates are derived from performance coun-
ters [16, 17].

Prior counter-based energy tools have been geared to-
wards previous-generation processors such as the Pen-
tium Pro. Since these processors used little clock gating,
their power consumption varied only minimally with work-
load. As a result, back-calculating unit-by-unit power divi-
sions is fairly straightforward. In today’s processors, how-
ever, power dissipation varies considerably— 50 Watts or
more—on an application-by-application and cycle-by-cycle
basis. As such, counter-based power estimation warrants
further examination on aggressively-clock-gated super-
scalar processors like the Intel Pentium 4.

The primary contributions of this paper are as follows:✂
We describe a detailed methodology for gather-
ing live, per-unit power estimates based on hard-
ware performance counters in complicated and
aggressively-clock-gated microprocessors.✂
We present live total power measurements for SPEC
benchmarks as well as some common desktop applica-
tions.✂ As an application of the component power estimates,
we describe a power-oriented phase analysis using
Bayesian similarity matrices.

The remainder of this paper is structured as follows. Sec-
tion 2 gives an overview of our performance counter and

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

0-7695-2043-X/03 $17.00 © 2003 IEEE

power measurement methodology. Sections 3 and 4 then
go into details about our mechanisms for live monitoring
of performance counters and power. Following this, Sec-
tion 5 develops a technique for attributing power to individ-
ual hardware units like caches, functional units, and so forth
by monitoring appropriate performance counters. Section 6
gives results on total power and per-unit power measure-
ments for collections of SPEC and desktop applications,
and Section 7 gives an example use of component power
estimates to track program power phases. Finally, Section 8
discusses related work and Section 9 gives conclusions and
offers ideas for future work.

2. Overall Methodology

The fundamental approach underlying our power mea-
surements is to use sampled multimeter data for overall to-
tal power measurements, and to use estimates based on per-
formance counter readings to produce per-unit power break-
downs. Figure 1 shows our basic approach.

Ethernet

System

Under

Study

RS232

Ammeter

Readings

Hardware
Performance

Counters

Counter Based Estimation

and Total Power Plots

Logging

System

Figure 1. Overall power measurement and es
timation system flow.

Live power measurements for the running system are ob-
tained from a clamp ammeter measuring current on the ap-
propriate power lines. The clamp ammeter plugs into a dig-
ital multimeter for data collection. A separate logging ma-
chine queries the multimeter for data samples and then gen-
erates runtime power plots and power logs for arbitrarily
long timescales. Section 4 describes the power measure-
ment setup in more detail and presents several power traces
to demonstrate the power measurement scheme.

In parallel, per-unit power estimates are derived from ap-
propriate weightings of Pentium 4 hardware performance
counter readings. To access the P4 performance counters,
there are a small number of pre-written counter libraries
available [10, 25]. For efficiency and ease-of-use we have
written our own Linux loadable kernel module (LKM) to
access the counters. Our LKM-based implementation offers
a mechanism with sufficient flexibility and portability, while
incurring almost zero power and performance overhead so
that we can continuously collect counter information at run-
time and generate runtime power statistics.

Section 5 describes our power estimation technique
based on the performance counter readings obtained from
a live program run. From a Pentium 4 die photo, we break
the processor into sub-units such as L1 cache, branch pre-
diction hardware, and others. For each component, we
develop a power estimation model based on combina-
tions of events available to P4 hardware counters as well as
heuristics that translate event counts into approximate ac-
cess rates for each component. Some components, such as
caches, are relatively straightforward since there are hard-
ware event counters that map directly to their accesses.
Other components, such as bus logic, have less straightfor-
ward translations, as discussed in Section 5. As the last step,
we use the real power measurements obtained from the am-
meter in conjunction with logging system’s counter-based
power estimates to synchronize and provide a compar-
ison between the measured and estimated total power
measures.

The machine used in our power measurement and es-
timation experiments is a 1.4GHz Pentium 4 processor,
0.18 ✄ Willamette core. The CPU operating voltage is 1.7V
and published typical and maximum powers are 51.8W and
71W, respectively [13]. The NetBurst microarchitecture of
P4 is based on a 20-stage misprediction pipeline with a
trace cache to remove instruction decoding from the main
pipeline. In addition to a front-end BPU a second smaller
BPU is used to predict branches for uops within traces. It
has two double-pumped ALUs for simple integer opera-
tions. L1 cache is accessed in 2 cycles for integer loads,
while the L2 cache is accessed in 7 cycles.

The processor implements extremely aggressive power
management, clock gating, and thermal monitoring. Almost
every processor unit is involved in power reduction and al-
most every functional block contains clock gating logic,
summing up to 350 unique clock gating conditions. This
aggressive clock gating provides up to approximately 20W
power savings on typical applications [4].

The following sections present our runtime power mod-
eling methodology in progressive manner. We first describe
event monitoring with performance counters, then Section 4
describes the real power measurement setup and finally Sec-
tion 5 discusses the power estimators we have developed.

3. Using Pentium 4 Performance Counters

Most of today’s processors include some dedicated hard-
ware performance counters for debugging and measure-
ment. In general, performance counter hardware includes
event signals generated by CPU functional units, event de-
tectors detecting these signals and triggering the counters,
and configured counters incrementing according to the trig-
gers.

Intel introduced performance counting into IA32 archi-
tecture with Pentium processors and has gone through two
more counter generations since then. The Pentium 4 per-
formance counting hardware includes 18 hardware coun-
ters that can count 18 different events simultaneously and

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

0-7695-2043-X/03 $17.00 © 2003 IEEE

0%

20%

40%

60%

80%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Desired Hit Rate (Benchmark Input)

A
c

q
u

ir
e
d

 H
it

 R
a

te
s

Ideal Hit Rate Acquired L1 Hit Rate L1 hit rate from L2 Access

Figure 2. L1 hit rate validation.

in parallel with pipeline execution. 18 counter configu-
ration control registers (CCCRs), each associated with a
unique counter, configure the counters for specific count-
ing schemes such as event filtering and interrupt genera-
tion. 45 event selection control registers (ESCRs) specify
the P4 events to be counted and some additional model spe-
cific registers (MSRs) for special mechanisms like replay
tagging. In addition to the 18 event counters, there exists a
special time stamp counter (TSC) that increments with pro-
cessor clock cycle [11, 26]. Intel P4 performance monitor-
ing events comprise 59 event classes that enable counting
several hundred specific events as described in Appendix A
of [11]. The event metrics are broken into categories such as
general, branching, trace cache and front end, memory, and
others [12]. A more comprehensive description of event de-
tection and counting can be found in [26].

In order to use the performance counters, we implement
two LKMs. The first LKM, CPUinfo, is simply used to
read information about the processor chip installed in the
system being measured. This helps the tool identify archi-
tecture specifications and discern the availability of per-
formance monitoring features. The second LKM, Perfor-
manceReader, implements six system calls to specify the
events to be monitored, and to read and manipulate coun-
ters. The system calls are: (i) select events: Updates the
ESCR and CCCR fields as specified by the user to de-
fine the events, masks, and counting schemes, (ii) reset
event counter: Resets specified counters, (iii) start event
counter: Enables specified counter’s control register to be-
gin counting, (iv) stop event counter: Disables specified
counter’s control register to end counting, (v) get event
counts: Copies the current counter values and time stamp
to user space, and (vi) set replay MSRs: updates special
MSRs required for “replay tagging”.

The performance reader is very lightweight and low-
overhead. The start, stop, and reset event counter system
calls are only three assembly instructions. The system call
for getting event counts at the end of a measurement is
longer as it requires copying data elsewhere in memory, but
need not be executed during the core of an application. Be-
cause the performance reader has a simple and lightweight
interface, we can completely control and update counters
easily from within any application.

To validate the performance reader, we wrote mi-
crobenchmarks targeting specific processor units. The

0%

20%

40%

60%

80%

100%

0 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1

Desired Taken Branch Rate

A
c
q

u
ir

e
d

 B
ra

n
c
h

 R
a
te

s

Approximated Mispredict Rate Measured Taken Branch Rate

Figure 3. Branch rate validation.

first benchmark, shown in Figure 2, generates a de-
sired L1 cache hit rate by executing 1 billion iterations of
traversal through a large linked list of pointers in a pseudo-
random sequence, with the sequence length guided by the
user-specified desired hit rate. We use two metrics to evalu-
ate the L1 hit rates. The first metric uses an event counter di-
rectly counting load instructions that are tagged due to a
load miss replay. The second, less direct, metric uses L2 ac-
cesses as a proxy for L1 misses as long as data is expected
to reside in L2 cache and other application/system ac-
cesses to L2 are minimal. The figure shows that both
methods of measuring L1 cache performance track the tar-
get quite closely, particularly for hit rates of 50% or more.
Both counter-measured hit rates are slightly below the pro-
gram’s target; this is due to initialization effects, conflicts
and sharing of cache among processes. In the main bench-
mark loop of the cache experiment, there are 8 IA32
instructions, and so we expect 8 billion retired instruc-
tions from the full program. The actual value read from the
counters is ☎✝✆ ✞✝✟✠✟☛✡☞✟✌✞✠✍ , where most of the additional in-
structions are due to OS scheduling. Thus, the perfor-
mance reader operates accurately and with trivial overhead,
as long as sampling intervals are kept on the order of mil-
liseconds.

The second benchmark, illustrated in Figure 3, gener-
ates a desired rate of taken branches by comparing a large
random data set to a threshold set to generate the desired
branching rate. Moreover, the randomness of the data en-
ables us to approximately specify the expected mispredict
rate as: ✎✑✏✓✒✕✔✗✖✙✘✛✚✜✏✣✢✥✤✓✦★✧✩✤✓✘✫✪✬✞✗✆ ✭✫✮✰✯ ✱✲✧✴✳✴✘✌✵☞✶☛✖✛✧✩✵☞✢✸✷✹✦★✧✩✤✓✘✺✮✞✝✆✻✭✗✯ . As the figure shows, the branch microbenchmark pro-
duces the desired amount of taken branches effectively. Ad-
ditionally, the mispredict rates generated are closely related
to our expectation, usually shooting around 10% higher in
20-40% expected misprediction range.

4. Real Power Measurements

In Figure 4 we show the details of our power measure-
ment setup, where CPU power is measured with the clamp
ammeter. While some prior work has used series or shunt re-
sistors to measure power dissipation [21, 28], we chose the
clamp ammeter approach because it avoids the need to cut
or add any wires on the system being measured.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

0-7695-2043-X/03 $17.00 © 2003 IEEE

1mV/Adc

conversion

Clamp ammeter around

12V lines on measured CPU

Voltage readings

via RS232 to

logging machine

Convert to Power

vs. time window

DMM reading

clamp voltages

Logger Machine

collecting power data
Power

Monitor

Figure 4. Processor power measurement setup.

The main power lines for the CPU operate at 12V, and
then are fed to a voltage regulator module, which converts
this voltage to the actual processor operating voltage and
provides tight control on voltage variations [30]. There-
fore, we use our current probe to measure the total current
through the 12V lines. To verify our setup, we measured the
current through each of the 17 power lines in our system,
while running a microbenchmark that creates high fluctu-
ations in processor power. In accordance with our choice
of power lines, three 12V lines yielded current variations
that followed the processor activity tracked by the perfor-
mance reader, while other lines presented an uncorrelated
power behavior, usually with insignificant power variation.

We use a Fluke i410 current probe connected to an Agi-
lent 34401 digital multimeter (DMM). The DMM sends the
voltage readings to a second logging machine, a 2.2GHz
Pentium 4 Processor, via the serial port. The logger machine
gets voltage data from serial port and converts these values
into processor power dissipation with the power relation:✼✾✽❀✿❂❁ ❃❄✽❆❅✛❇☛❁✹❈❉✿❋❊✙●■❍✓❏✠❑▼▲✙◆❖❏✩P❘◗✹●■▲▼❙ ✿✲❚❱❯❲❁❳❅✌❨✜❨✜❨

. It then dis-
plays the measured runtime power in a power monitor with
a sliding time window, while also logging time vs. voltage
information.

In our experiments, we sample 1000 readings per second
with 4 ❩❬ digit resolution, which corresponds to 0.12W power
resolution. The DMM can generate around 55 ASCII read-
ings per second to RS232, so we collect the data in the log-
ger machine at 20ms intervals. The logging machine then
computes a moving average within an even longer second
sampling period that is used to update the on-screen power
monitor and the data log. (We use this second sampling pe-
riod so that we can likewise use coarse sampling periods to
read performance counters in Section 5.)

We close this section with a selection of total power
observations from the SPEC benchmarks. In Figure 5, we
demonstrate the power traces for Spec2000 benchmarks gcc
and vpr, compiled with gcc-2.96 with -O3 -fomit-frame-
pointer compiler flags, for full benchmark runs over several
minutes. Despite their similar average powers (see Figure
14 (a), non-idle average measured power), the two bench-
marks show a very different power behavior during their
runtimes. The vpr benchmark maintains a very stable power,
while gcc produces significant power fluctuations. The ap-
plications also clearly demonstrate several phases of execu-
tion during their lifetimes. Given the long timescales over
which these data were collected, it is clear that live power
measurements are crucial to future power-aware research,
since simulation times to gather such data would be pro-
hibitive.

5

15

25

35

45

55

65

0 50 100 150 200

Time (s)

P
o

w
e

r
[W

a
tt

s
]

5

15

25

35

45

55

0 100 200 300 400 500

Time (s)

P
o

w
e

r
[W

a
tt

s
]

Figure 5. SPEC gcc (upper) and vpr (lower)
power traces.

5. Modeling Power for Processor Sub-Units

While total power measurements for long-running pro-
grams are already useful, we also wish to be able to es-
timate how power subdivides among different hardware
units. Prior work has developed counter-based or profile-
based estimates for much simpler processors [3, 16, 19, 28].
In our approach, we estimate physical component powers
using counter-based measures, and also generate reasonable
total power estimates.

Our modeling technique is distinct from prior work in
the following ways. We estimate power for a much more
complicated modern processor, with extremely aggressive
clock gating and high power variability. Second, we con-
sider strictly physical components directly from the die lay-
out, as opposed to “proxy” categories aggregated for conve-
nience but not present as a single hardware unit on the die.
Finally, we estimate power for all levels of processor uti-
lization for arbitrarily long periods of time, rather than re-
stricting our technique only to power variations at high pro-
cessor utilization. The latter two are particularly important
for thermal studies. In this section, we first walk through our
methodology and then demonstrate the experimental setup.

5.1. Defining Components for Power Breakdowns

The processor components for which the power break-
downs are generated might be chosen in different ways,
with varying granularity and interpretations. For example,
one can consider the four processor subsystems described
in [8]: memory, in-order front end, out of order engine, and

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

0-7695-2043-X/03 $17.00 © 2003 IEEE

execution. Or instead, one might use a more conceptual in-
terpretation similar to [16] in which categories such as is-
sue, execution, memory, fetch and reorder-related are con-
sidered. The first option lacks the fine granularity we de-
sire, while the second doesn’t provide a direct mapping to a
physical layout.

In our approach, we choose a reasonably fine granular-
ity, and—most importantly—our categories are strictly co-
located physical components identifiable on a die photo.
This decision is based on the ultimate endgoal of our project
which is to support thermal modeling and processor temper-
ature distributions, both of which rely on actual processor
physical parameters. Consequently, based on an annotated
P4 die photo we define 22 physical components: Bus con-
trol, L1 cache, L2 cache, L1 branch prediction unit (BPU),
L2 BPU, instruction TLB & fetch, memory order buffer,
memory control, data TLB, integer execution, floating point
execution, integer register file, floating point register file, in-
struction decoder, trace cache, microcode ROM, allocation,
rename, instruction queue1, instruction queue2, schedule,
and retirement logic.

5.2. P4 Counter Events to Drive Estimation

For each of the 22 components, we need a performance
counter event or a combination of events that can approxi-
mate the access count of that component. The finalized set
of heuristics that define these access counts involve 24 event
metrics composed in various ways for the 22 defined pro-
cessor components. While the full set of heuristics is too
large to present here, Table 1 gives a sample of proces-
sor components and the corresponding performance counter
metrics we devised. The full complement is available in
[15].

For example, bus control access rates can be obtained
by configuring IOQ Allocation to count all bus transactions
(all reads, writes and prefetches) that are allocated in the
IO Queue (between the L2 cache and bus sequence queue)
by all agents (all processors and DMAs). FSB data activ-
ity is configured to count all DataReaDY and DataBuSY
events on the front side bus, when processor or other agents
drive/read/reserve the bus. The bus ratio (3.5 in our imple-
mentation) is the ratio of processor clock (1400MHz) to bus
clock (400MHz), and converts the counts in reference to
processor clock cycles.

Trace cache activity can be discerned by configuring the
“Uop queue writes” metric to count all speculative uops
written to the small in-order uop queue in front of the out-
of-order engine. These come from either trace cache build
mode, trace cache deliver mode or microcode ROM.

As a final example, there is no direct counter event for
the total number of integer instructions executed. Instead,
we total up the counters for the eight types of FP instruc-
tions, giving us an estimate of total FP operations issued.
We then subtract this from the total written speculative uops
to get an integer estimated total. Integer operations that are
not load/store or branch are scaled by 2 as they use the dou-
ble pumped ALU. On the other hand, load/stores use ad-

dress generation units and branch processing is done in the
complex ALU, along with shifts, flag logic and multiplies.
The counters do not let us differentiate multiply and shifts
and therefore they are also scaled by 2. Also, some x87 and
SIMD instructions are decoded into multiple uops, which
may cause undercounting.

Ultimately, we use 15 counters with 4 rotations. The
P4 events and counter assignments minimize the counter
switches required to measure all the metrics needed. At
least four rotations are unavoidable. This is because float-
ing point metrics involve 8 different events, of which only
two at a time can be counted due to the limitations of P4
counters in ESCR assignments.

5.3. Counterbased Component Power Estimation

We use the component access rates—either given di-
rectly by a performance counter or approximated indirectly
by one or more performance counters— to weight com-
ponent power numbers. In particular, we use the access
rates as weighting factors to multiply against each compo-
nent’s maximum power value along with a scaling strategy
that is based on microarchitectural and structural proper-
ties. In general, all the component power estimations are
based on Equation 1, where maximum power and condi-
tional clock power are estimated empirically during imple-
mentation. The ❭❫❪ in the equation are the hardware compo-
nents, 1 through 22.

❴❛❵✛❜✲❝✌❞✴❡ ❭ ❪✓❢❤❣ ✐✫❥❲❥ ❝✙❦✛❦♠❧★♥✩♦✓❝▼❡ ❭ ❪❉❢❖♣✐ ❞ ❥♠q✝r ♦✓❝ ❥ ♦✣st❞✛♥▼✉✇✈ ❥ ♥▼✉ r②①④③ ❡ ❭❫❪ ❢⑤♣⑥⑦♥✩⑧✹❴❛❵✛❜✫❝♠❞✴❡ ❭✺❪ ❢⑩⑨❶❷❵ ①☞❸ ♥✩♦✓❝✛❹ ❭ ✉■❵ ❥✸❺ ❴❛❵✛❜✫❝♠❞✴❡ ❭ ❪✣❢ (1)

Of the 22 components, six issue logic units (trace cache,
allocation, rename, schedule and both instruction queues)
require a special piecewise linear approach. This is because
of nonlinear behavior, in which an initial increase from idle
to a relatively low access rate causes a large increase in pro-
cessor power, while further increases in access rates pro-
duce much smaller power variations. Therefore, for the is-
sue logic components, we apply a conditional clock power
factor in addition to linear scaling above a low threshold
value.

As an example of our overall technique, consider the
trace cache. It delivers three uops/cycle when a trace is ex-
ecuted and builds one uop/cycle when instructions are de-
coded into a trace. Therefore, the access rate approximation
in deliver mode is scaled by 1/3, while access rate from in-
struction decoder is scaled with 1. These rates are then used
as the weighting factor for estimated maximum trace cache
power.

We construct the total power, shown in Equation 2, as
the sum of 22 component powers calculated as above, along
with a fixed idle power of 8W from the total power measure-
ments described in Section 4. Hence, this fixed 8W base
includes some portion of globally non-gated clock power,
whereas the conditionally-gated portion of clock power is

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

0-7695-2043-X/03 $17.00 © 2003 IEEE

Bus Control ❻❽❼❿❾➁➀④➂➃➂➅➄✕➆✣➇❽➈➊➉➋➄✕➌➍❖➎❿➏ ➆✇➂❳➐✓➑➓➒ ➔
→↔➣ ➑④↕☞➇❽➈➊➉➅➄❲➙ ➛❿➜ →➞➝ ➇❽➈■➇⑤➀☞➆✇➈➊➉➅➟✥➉➠➈ ➏➍❖➎❿➏ ➆✇➂❳➐✓➑✣➡

Front End BPU ➢❲➙ ❻❽➤t➥ → ↕☞➐✓➦✛➐✣➧❽➐✣➌✜➆✣➐➍❖➎❿➏ ➆✇➂❳➐✓➑ ➒ ➔
→ ➧➨➇❲➌✜➆✣➩➫↕☞➐②➈➊➉➅➧❽➐✓➭➍❖➎⑩➏ ➆✇➂❳➐✓➑ ➡

Secondary BPU
→ ➧❽➇✥➌✜➆✣➩➯↕☞➐②➈➊➉➅➧➨➐✓➭➍❖➎❿➏ ➆✇➂➅➐✓➑ ➡

L1 Cache ➥✗➭⑩➲❿➄➓➧✕➈▼↕☞➐❉➳❲➂❳➇ ➏❲➵ ➜✠➈✝➲❿➄✕➧✕➈▼↕☞➐✇➳✥➂➅➇ ➏➍❖➎❿➏ ➆✇➂❳➐➓➑ ➒ ➔ ➛❿➧➨➄✕➌✙➈✴➸❿➌✜➭⑩➸❿➟❲➐✓➌✙➈➍❖➎❿➏ ➆✇➂❳➐✓➑ ➡
MOB ➺ ❼ → ➥✹➄✕➇❲➭⑩↕☞➐❉➳❲➂❳➇ ➏➍❖➎❿➏ ➆✇➂❳➐✓➑✣➡
Trace Cache ➻ ➄✣➳❖❾ ➣ ➐ ➣ ➐↔➼➽➧➨➉➠➈■➐✓➑➍❖➎⑩➏ ➆✇➂❳➐✓➑✕➒
Integer Execution ➾➪➚✜➶✛➻ ➄②➳➯❾ ➣ ➐ ➣ ➐↔➼➽➧✕➉❳➈■➐✓➑➍❖➎⑩➏ ➆✇➂❳➐✓➑➓➒ ➹➴➘❛➷➮➬❋➱✹✃✩❐

❒✫❮❲❮
✃✙❰✛❰ÐÏ★Ñ✠Ò✓✃

Ó
➹➴ÔÖÕÖ×★Ñ

❮✸Ø
✃
❒✲❮✸❮

✃✙❰✌❰✲Ï★Ñ✠Ò✓✃Ö➹
→ ➧➨➇❲➌✜➆✣➩➫↕☞➐②➈➊➉➅➧❽➐✓➭➍❖➎⑩➏ ➆✇➂❳➐✓➑✓➡

L2 Cache
→ ➜✩❾ ➎ ➇❲➆✣➩✛➐④↕☞➐✓➦➍❖➎⑩➏ ➆✇➂❳➐✓➑✕➒

DTLB ÔÖÕÖ×★Ñ
❮✸Ø

✃
❒✲❮❲❮

✃✛❰✛❰ÐÏ★Ñ✩Ò✓✃ ➔ÚÙÜÛ★Ý
❒✲❮✸❮

✃✙❰✌❰✲Ï★Ñ✠Ò✓✃
ITLB ❻❽➤✹➥ → ↕☞➐✓➦➍❖➎❿➏ ➆✇➂❳➐✓➑➓➒ ➔

→ ➲ ➻ ➛❿➐②➈■➆✣➩✺↕☞➐✓Þ➍❖➎❿➏ ➆✇➂❳➐➓➑✣➡
Table 1. Examples of processor components and access rate heuristics, which are used as corre
sponding power weightings for the components.

distributed into component power estimations.

ß✲à
Ò✓Ñ▼át➷

à✛â
✃♠ã❋ä

å✕åæ
➉❳ç↔è ➷

à✛â
✃✌ã ➶ × ➉

Ó
➔êé✩ë á❉✃Ö➷

à✛â
✃✌ã (2)

For initial estimates of each component’s “maxpower”
value, Ù Ñ✠➱t➷

à✛â
✃✌ã ➶ × ➉

Ó
in Equation 1, we used physical ar-

eas on the die. We scaled the documented maximum pro-
cessor power by the component area ratios. In many cases,
these areas serve as good proportional estimates. To fur-
ther tune these maximum power estimates, we developed
a small set of training benchmarks that exercise the CPU
in particular ways. By measuring total power with a mul-
timeter, we could compare true total power over time to
the total power estimated by summing our component es-
timates. We thus observed how diferent settings of “max-
power” weight factors affect the accuracy of our power es-
timations for the training benchmarks. After several experi-
ments with the training benchmarks, we arrived at a final set
of maxpower and non-gated clock power values for each of
the components. These are hard-coded as the P4 specific
weighting factors in the final implementation of our power
estimation setup.

Figure 6 shows a screenshot of the resulting power es-
timations for the training benchmarks, together with the
measurement data in the combined total power monitor.
The dark colored estimated power is plotted synchronously
with the lighter colored measured runtime power. The left-
most benchmark, fast, is very simple code with two inte-
ger and one floating-point operation inside a computation-
dominated loop. The next two benchmarks are the branch
microbenchmark and cache microbenchmark described in
section 3. Finally, the last application in the timeline is
called hi-lo, an iterative stressmark designed to repeatedly
change power dissipation from very low to very high, which
produces a roughly 30W power swing. One can see that the
final maxpower settings lead to very good total power esti-
mates over a wide range of power levels and application be-
haviors.

Figure 6. Total power after tuning of maximum
component powers and idle power assump
tions.

5.4. Final Implementation

To summarize, in our final implementation, we use our
performance reader to provide the system with the required
counter information and the logger machine collects all the
counter and measurement information to generate the com-
plete runtime component power modeling and total power
verification system. We verify component based estimates
against total power measurements using the setup in Fig-
ure 4.

Measured processor current is again sent by the DMM
to the logger machine via RS232 and the logger machine
converts the current information to power as before. On the
measured machine, PowerServer collects counter informa-
tion every 100 ms, for the P4 events chosen to approximate
component access rates; it also applies counter rotations and
timestamping. Every 400ms, it sends collected information
to the logging machine over Ethernet. While this perturbs
system behavior slightly, it is done as infrequently as pos-
sible to minimize the disturbance. On the logger machine,

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

0-7695-2043-X/03 $17.00 © 2003 IEEE

PowerClient collects measured ammeter data from the se-
rial port, and raw counter information from Ethernet. Com-
bining the two, it applies the access rate and power model
heuristics, and generates component power estimates for the
defined components. After the processing of collected data,
PowerClient generates the runtime component power break-
down monitor as well as runtime total power plots for both
measured and counter estimated power after synchronizing
the modeled and measured powers, over a 100 second time
window, with an average update rate of 440ms.

5.5. Microbenchmark Results

To begin, we show generated power breakdowns for
branch and cache microbenchmarks, that were introduced
in Section 3. As one cannot gain physical access to per-
component power to measure, and since per-component
power values are not published, we use the close match
of measured (ammeter) total power to estimated (counter-
based) total power as a gauge of our model’s accuracy.

0

4

8

12

16

20

24

28

32

36

40

44

48

52

ì➊í î➋ï➠ð➠ñ✸ì➅ò➋ï➠ð➃ñ➋ó❽î➋í ôöõ➊î❳ð➠ñ➠ò✸ì➅ò➋ï➠ð➠ñ➅ó❽î➋í ô÷ ø❉ù ú ñ✸û❳ü ø❉ù ý þ ÿ õ■î❳ð➃ñ❳ò❲ì➋ò➅ï❳ð➃ñ➋ó❽î➋í ô÷ ø✇ù ú ñ✸û➠ü✁� ù þ þ ò þ✄✂ø✇ù ú ñ❲û✆☎ ø✇ù ý þ✻ÿ õ➊î❳ð➠ñ➠ò✸ì➅ò➋ï➠ð➠ñ➅ó❽î➋í ô÷ ø✇ù ú ñ✸û❳ü ✂ û✆☎� ù þ þ ò þ✻ÿ

C
o

m
p

o
n

e
n

t
P

o
w

e
rs

 [
W

a
tt

s
]

RETIRE

Schedule

Inst Queue2

Inst Queue1

Rename

Allocation

Ucode ROM

1st Level BPU

Trace Cache

Inst Dec

FP Regfile

INT Regfile

FP Exec

INT Exec

Data TLB

MEM control

MOB

L1 cache

ITLB & Fetch

2nd Level BPU

L2 Cache

Bus Control

IDLE

Figure 7. Power breakdowns for branch and
cache benchmarks.

The leftmost bar of Figure 7 shows the estimated power
breakdowns for our branch exercise microbenchmark. This
is a very small program that is expected to reside mostly in
trace cache and that is mostly L1 bound. This microbench-
mark is a high uops per cycle (UPC), high-power integer
program. The breakdowns show high issue, execution and
branch prediction logic power, while as expected L2 cache
and bus for main memory dissipate lower power.

Second bar of Figure 7 shows breakdowns for cache ex-
ercise microbenchmark with an almost perfect L1 hit rate.
Once again, the component breakdowns track our intuition
well. The breakdowns show high L1 power consumption
and relatively high issue and execution power as we do not
stall due to L1 miss and memory ordering/replay issues.
Both L2 and bus power are relatively low.

In the third bar of Figure 7, we configure the cache mi-
crobenchmark to generate high L1 misses, while hitting al-
most perfectly in L2. The power distribution of L2 cache

is seen to increase significantly, while execution and is-
sue cores start to slow down due to replay stalls. Moreover
memory order buffer shows slight increase due to increas-
ing memory load and store port replay issues.

Finally, in the rightmost bar of Figure 7 we also gener-
ate high L2 misses and therefore bus power climbs up, while
execution core slows down even further due to higher main
memory penalties. Although total L2 accesses actually in-
crease, due to significantly longer program duration, access
rates related to L2 drop and aggregate L2 power decreases.

Overall, this sequence of microbenchmarks, while sim-
ple, builds confidence that the counter-based power esti-
mates are showing reasonable accuracy. In the sections that
follow, we present more large-scale, long-running experi-
ments on SPEC and desktop applications.

6. Power Model Results

In the preceding section we showed some initial per-
component power results for our microbenchmarks. Here,
we provide power breakdowns and total power estimates
for the full runtimes of selected SPEC benchmarks, as
well as some practical desktop applications. Additional
measurement and estimation data is available in [15]. The
SPEC2000 benchmarks shown in this paper are compiled
using gcc-2.96 and with compiler flags of “-O3 -fomit-
frame-pointer”. We use the reference inputs with a single it-
eration of run. In order to demonstrate our ability to model
power closely even at low CPU utilizations, we also experi-
mented with practical desktop tools: AbiWord for text edit-
ing, Mozilla for web browsing and Gnumeric for numeri-
cal analysis. All these benchmarks share the common prop-
erty of producing low CPU utilization with only intermit-
tent power bursts.

6.1. SPEC Results

In this section, we show SPECint programs vpr and
twolf, and equake from SPECfp. Figures 8–13 show total
power estimates and component power breakdowns for vpr,
twolf and equake. Similar data for gcc are included in Fig-
ure 16. For reference inputs, the vpr benchmark actually
consists of two separate program runs. The first run uses ar-
chitecture and netlist descriptions to generate a placement
file, while the second run uses the newly-generated place-
ment file to generate a routing descriptor file [27]. Although
the total average power for the two runs is quite similar,
Figure 8 shows a noticeable phase change at around 300s
when the second run begins. Figure 9 demonstrates even
more clearly how distinct the power behavior in the second
phase is. Although the first run, the placement algorithm,
dissipates very stable power, the second phase’s routing al-
gorithm has a much more variable and periodic power be-
havior. As [18] discusses, the initial placement phase pro-
duces higher miss rates than the routing part. This is be-
cause routing benefits from the fact that placement brings
much of the dataset into memory. The per-component power

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

0-7695-2043-X/03 $17.00 © 2003 IEEE

breakdowns corroborate this: there is higher L1 power in
first half due to memory ordering issues and increased L2
power in second phase. Although it is an integer bench-
mark, our breakdown also shows that vpr consumes signif-
icant amount of FP unit power. This is due to the SIMD in-
structions it employs which use the FP unit. (The counter
x87 SIMD moves uops indicates a upc of 0.08 in place-
ment and 0.22 in routing.)

Twolf is a transistor layout generation program that per-
forms standard cell placement and connection. It performs
several loop computations, traversing the memory and po-
tentially producing cache misses. The high memory utiliza-
tion of twolf is observed in the power breakdowns of Figure
11. Moreover, although twolf exhibits almost constant to-
tal power in Figure 10, individual component powers are
not constant; there are slight increases in L1 cache and mi-
crocode ROM powers and decreases in L2 cache power over
the runtime.

As an example of floating point benchmarks, we show
the equake benchmark in Figures 12 and 13. Equake mod-
els ground motion by numerical wave propagation equa-
tion solutions [2]. The algorithm consists of mesh gener-
ation and partitioning for the initialization, and mesh com-
putation phases. In Figure 12, we can already clearly iden-
tify the initialization phase and computation phase. Figure
13 demonstrates the high microcode ROM power as the
initialization phase uses complex IA32 instructions exten-
sively. The mesh computation phase, then exhibits the float-
ing point intensive computations.

In addition to vpr, twolf and equake, we have gener-
ated similar power traces for several other Spec2000 bench-
marks. Gcc is included in section 7 and counter based power
estimations are seen to track the highly variant gcc power
trace very favorably. Power traces for the rest of the inves-
tigated benchmarks are available in [15]. Figures 14 (a) and
(b), however, present statistical measures that further con-
firm accuracy of our modeling framework, for a larger set
of SPEC2000 benchmarks.

In Figure 14, we show the average powers computed
from real power measurements and counter estimated to-
tal powers, for both the whole runtime of the benchmarks
also including the idle periods and for the actual execution
phases, excluding idle periods. Hence, the idle-inclusive
measures cannot be considered as standard results, as the
idle periods vary in each experiment - i.e. equake has a long
idle period logged at the end of experiment, thus producing
a very high standard deviation due to lowered full-runtime
average power, around which the deviation is computed.
They are of value, however, for comparing counter-based
totals to measured totals, because one of our aims is to be
able to characterize low utilization powers as well, with rea-
sonable accuracy. For the estimated average powers, the av-
erage difference between estimated and measured powers is
around 3 Watts, with the worst case being equake (Figure
12), with a 5.8W difference. For the standard deviation, the
average difference between estimated and measured powers
is around 2 Watts, with the worst case being vortex, with a
standard deviation difference of 3.5W.

6.2. Desktop Applications

In addition to SPEC, we investigated three Linux desk-
top applications as well. These help demonstrate our power
model’s ability to estimate power behavior of practical
desktop programs; because of their interactive nature, they
typically present periods of low power punctuated by in-
termittent bursts of higher power. The three applications,
shown in Figure 15, are AbiWord for text editing, Mozilla
for web browsing and Gnumeric for numerical analysis.

In the web browsing experiment in Figure 15(a), the
power traces represent opening the browser, connecting to
a web page, downloading a streaming video and closing the
browser. In the text editing experiment in Figure 15(b), the
power traces represent opening the editor, writing a short
text, saving the file and closing the editor. In the Gnumeric
example in Figure 15(c), the power traces represent open-
ing the program, importing a large text of 370K, perform-
ing several statistics on the data, saving the file and clos-
ing the program. The power traces reveal the bursty nature
of the total power timeline for these benchmarks; this is
particularly true at the moments of saving data to memory
and computations. Overall, the long idle periods mean that
the benchmarks have low average power dissipation. The
power traces for the desktop applications also reveal that our
counter based power model follows even very low power
trends with reasonable accuracy. Together with the SPEC
results, this demonstrates that our counter-based power es-
timates can perform reasonably accurate estimations inde-
pendent of the range of power variations produced by dif-
ferent applications, without any realistic bounds on the ob-
served timescale. To our knowledge, we are the first to pro-
duce live power measurements of this type for a processor
as complex as the P4.

7. Power Phase Behavior Analysis

As a possible application of our technique, we demon-
strate here how we can use component-based power break-
downs to identify power phases of programs. Several prior
papers have proposed methods for detecting or exploiting
program phases[1, 5, 9, 22, 23, 29]. Our example here is
distinct because we focus on power phases rather than per-
formance phases. A more detailed description of our power
phase research can be found in [14].

We use the similarity matrix approach of [23] to deduce
power phase behavior over the program runtime. We con-
sider generated component breakdowns as coordinate vec-
tors in the possible power space. Proceeding similarly to
prior work on basic block vectors, we consider the manhat-
tan distance between pairs of vectors as the “power behav-
ior dissimilarity” between the two vectors. We do not nor-
malize the power breakdown vectors, as our measure is al-
ready based on power and scaled power values should not
be considered as similar power behavior. Consequently, we
construct the power similarity matrix from manhattan dis-
tances of all the combination pairs of component power vec-

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

0-7695-2043-X/03 $17.00 © 2003 IEEE

0

10

20

30

40

50

0 100 200 300 400 500

Time (s)

P
o

w
e

r
[W

a
tt

s
]

MEASURED POWER COUNTER ESTIMATED POWER

Figure 8. SPECint vpr total measured and mod
eled runtime power.

0

1

2

3

4

5

6

0 100 200 300 400 500
Time (s)

P
o

w
e

r
[W

a
tt

s
]

L2 Cache

L1 cache

MOB

INT Exec

FP Exec

Ucode ROM

Figure 9. Estimated power breakdowns for vpr.

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800 900

Time (s)

P
o

w
e

r
[W

a
tt

s
]

MEASURED POWER COUNTER ESTIMATED POWER

Figure 10. SPECint twolf total measured and
modeled runtime power.

0

1

2

3

4

5

6

0 200 400 600 800

Time(s)

P
o

w
e

r
[W

a
tt

s
]

L2 Cache

L1 cache

Inst Dec

Trace Cache

Ucode ROM

Figure 11. Estimated power breakdowns for
twolf.

0

10

20

30

40

50

60

0 50 100 150 200 250
Time (s)

P
o

w
e

r
[W

a
tt

s
]

MEASURED POWER COUNTER ESTIMATED POWER

Figure 12. SPECfp equake total measured and
modeled runtime power.

0

1

2

3

4

5

0 50 100 150 200 250

Time (s)

P
o

w
e

r
[W

a
tt

s
] L1 cache

Data TLB

FP Exec

Inst Dec

Ucode ROM

RETIRE

Figure 13. Estimated power breakdowns for
equake.

tors. A single matrix entry is computed as shown in equa-
tion 3, where

✝✟✞✡✠☞☛✍✌✏✎✒✑ ✓
represent the sample power vec-

tors and ✔✖✕ represent the individual components. The diag-
onal of the matrix represents the time axis and the entries to
the right of the diagonal denote similarity between the cur-
rent time sample and future samples. Entries above the cur-
rent sample show similarity with respect to previous sam-
ples.

✗✙✘✛✚✜✘✣✢✥✤ ✌ ✘✛✦✣✧✩★✪✤✫✦ ✌ ✘✛✬✮✭ ✌✰✯✒✱✍✲✴✳✶✵✒✵✷
✕✹✸✻✺

✼ ✝✟✞✡✠✽☛✏✌✍✎ ✭ ✔✖✕ ✲✿✾❀✝✟✞✡✠✽☛✏✌✏✓ ✭ ✔❁✕ ✲ ✼

(3)
In Figure 16, we present the acquired power phase sim-

ilarity matrix for SPEC2000 benchmark gcc. In the upper-
most matrix plot, the top left corner represents the start of
the timeline and the lower right corner represents the end
of the timeline. Darker regions represent higher similar-
ity between the corresponding component power vectors.
In the lower graphs of the figure, we also show the total
power and component power breakdown estimations with
the same timescales as the similarity matrix.

Even with gcc, which has very unstable power behavior,
several similarities are highlighted by the similarity matrix.
For example, consider the almost identical power behavior
around the 30s, 50s and 180s points in the timeline. More-

over, by using component power breakdowns as power “sig-
natures”, the similarity matrix helps differentiate power be-
havior even in cases where the total power is measured to
be quite similar. For example, although measured power is
similar for gcc’s regions around 88s, 110s, 140s, 210s and
230s, the similarity matrix reveals that the 88s, 210s and
230s regions are much more similar than the other two re-
gions, which are also shown to be mutually dissimilar. On
the other hand, other applications we have studied, such
as gzip, show more regular patterns with several similar
phases. By providing a foundation for power phase analy-
sis, counter-based component power estimates are useful in
power and thermal aware research. As our technique works
at runtime, it is quite efficient and can be used to home in
accurately on repetitive program phases even when little ap-
plication information is available.

8. Related Work

While there has been significant work on proces-
sor power estimations, much has been based purely on
simulations. Our approach, in contrast, uses live perfor-
mance counter measurements as the foundation for an
estimation technique.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

0-7695-2043-X/03 $17.00 © 2003 IEEE

0

10

20

30

40

50

G
zi
p

Vpr
G
cc

C
ra

fty

Par
se

r
G
ap

Vort
ex

B
zi
p2

Tw
olf

M
es

a
A
rt

Equak
e

A
v

e
ra

g
e

 P
o

w
e

r
[W

a
tt

s
]

Overall (Measured)

Overall (Model)

Non-Idle
(Measured)

Non-Idle (Model)

(a) Average power

0

4

8

12

16

20

G
zi
p

Vpr
G
cc

C
ra

fty

Par
se

r
G
ap

Vort
ex

B
zi
p2

Tw
olf

M
es

a
A
rt

Equak
e P

o
w

e
r

S
td

 D
e

v
 [

W
a

tt
s

]

(b) Power standard deviation

Figure 14. Average (left) and standard deviation (right) of measured and counter estimated power for
SPEC2000 benchmarks. For each benchmark, the first set of power values represents averaging and
standard deviation over the whole runtime of the program. The second set represents averaging and
standard deviation only over nonidle periods.

5

10

15

20

25

30

35

40

45

50

55

0 40 80 120Time (s)

P
o

w
e

r
[W

a
tt

s
]

(a) Mozilla

5

10

15

20

25

30

35

40

45

50

55

135 160 185 210Time (s)

P
o

w
e

r
[W

a
tt

s
]

(b) AbiWord

5

10

15

20

25

30

35

40

45

50

55

220 270 320 370Time (s)

P
o

w
e

r
[W

a
tt

s
]

(c) Gnumeric

Figure 15. Total measured (light) and counter estimated (dark) runtime power for 3 desktop applica
tions.

One category of related work is research involving live
measurements of total power. While these are numerous,
we touch on a few key examples here. In early work, Ti-
wari et al. developed software power models for an Intel
486DX2 processor and DRAM and verified total power by
measuring the current drawn while running programs [28].
They used the information to generate instruction energy
cost tables and identify inter-instruction effects. Russell et
al. likewise did software power modeling for i960 embed-
ded processors, and validated using current measurements
[20]. Flinn et al. developed the PowerScope tool, which
maps consumed energy to program structure at procedural
level [6]. This OS-oriented research uses a DMM to do live
power measurements, and then uses energy analyzer soft-
ware to attribute power to different processes or procedures.

More recently, Lee et al. used energy measurements
based on charge transfer to derive instruction energy con-
sumption models for a RISC ARM7TDMI processor [19].
They use linear regression to fit the model equations to
measured energy at each clock cycle. These techniques are
aimed at very simple processors with almost no clock gat-
ing, however, and therefore need to track and model only
minimal cycle-by-cycle power variation. As a first example
of Pentium 4 power measurement studies, Seng and Tullsen
have investigated the effect of compiler optimizations on
average program power, by measuring the processor power
for benchmarks compiled with different optimization levels
[21]. They use two series resistors in Vcc traces to measure

the processor current. However, they do not present com-
ponent power breakdowns or power-oriented phase analy-
sis.

Next, we present prior work on performance counters
and power metrics. Bellosa uses performance counters, to
identify correlations between certain processor events, such
as retired floating point operations, and energy consump-
tion for an Intel Pentium II processor [3]. He proposes
this counter-based energy accounting scheme as a feed-
back mechanism for OS directed power management such
as thread time extension and clock throttling. Likewise, the
Castle tool, developed by Joseph et al. [16], uses perfor-
mance counters to model component powers for a Pentium
Pro processor. It provides comparisons between estimated
total processor power and total power measured using a se-
ries resistor in processor power lines. Our work makes sig-
nificant extensions in both infrastructure and approach in
order to apply counter-based techniques to a processor as
complex as the P4. Furthermore, to our knowledge, neither
Bellosa nor Joseph used their measurements to do phase
analysis. Kadayif et al. use the Perfmon counter library to
access performance counters of the UltraSPARC processor
[17]. They collect memory related event information and
estimate memory system energy consumption based on an-
alytical memory energy model; they did not consider the
rest of the processor pipeline. And finally, Haid et al. [7],
propose a coprocessor for runtime energy estimation for
system-on-a-chip designs. Essentially, the goal of that work

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

0-7695-2043-X/03 $17.00 © 2003 IEEE

Gcc Component Power Breakdowns

0

1

2

3

4

5

6

P
o

w
e

r
[W

a
tt

s
]

L1 cache Trace Cache RETIRE

Gcc Total Power

0

10

20

30

40

50

60

0 50 100 150 200 250Time (s)

P
o

w
e

r
[W

a
tt

s
]

MEASURED POWER COUNTER ESTIMATED POWER

0

1

2

3

0 50 100 150 200 250Time (s)

P
o

w
e

r
[W

a
tt

s
]

ITLB & Fetch Inst Dec

Figure 16. Gcc power phase similarity matrix.

(Vertical lines extending from the similarity matrix plots correspond to

their projected time value in the power traces)

is to describe what event counters would work best if power
measurement, instead of or in addition to performance mea-
surement, were the design goal.

9. Conclusion and Future work

In this paper we present a runtime power modeling
methodology based on using hardware performance coun-
ters to estimate component power breakdowns for the In-
tel Pentium 4 processor. Our total power estimates validate
with good accuracy, despite P4’s complex pipeline and ag-
gressive clock gating. By using real power measurements to
compare counter-estimated power against measured proces-
sor power, we have a real-time measurement and validation
scheme that can be applied at runtime with almost no over-
head or perturbation. We used our power model to measure
long runs from the SPEC2000 suite and typical practical
desktop applications. The power results show that our tech-
nique is able to track closely even very fine trends in pro-
gram behavior. Because our technique has per-component
power breakdowns, we can also get unit-by-unit power es-
timates. Furthermore, we can treat this “vector” of com-
ponent power estimates as a power signature that can ef-
fectively distinguish power phase behavior based on simple
similarity analysis.

This research differs from previous power estimation
work in several aspects. Our model is targeted towards a
complex high-performance processor with fine microarchi-
tectural details and highly variable power behavior. Our
power measurement technique is non-disruptive, and the
LKM-based implementation is highly-portable. The com-
ponent breakdowns we produce are based on physical enti-
ties co-located on chip, as opposed to conceptual groupings.
As a result, these component breakdowns can offer a foun-
dation for future thermal modeling research. The fact that
detailed power data can be collected in real-time is also im-
portant for thermal research, since the large thermal time
constants mandate long simulation runs. Our counter-based
power model estimates even very low processor power ac-
curately, by using both linear and piecewise linear combi-
nations of event counts.

There are several key contributions of this work. The
measurement and estimation technique itself is portable,
and can offer a viable alternative to many of the power sim-
ulations currently guiding research evaluations. The compo-
nent breakdowns offer sufficient detail to be useful on their
own, and their properties as a power signature for power-
aware phase analysis seem to be even more promising.
In conclusion, this work offers both a measurement tech-
nique, as well as characterization data about common pro-
grams running on a widely-used platform. We feel it offers a
promising alternative to purely simulation-based power re-
search.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

0-7695-2043-X/03 $17.00 © 2003 IEEE

References

[1] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu,
and S. Dwarkadas. Memory hierarchy reconfiguration for
energy and performance in general-purpose processor archi-
tectures. In International Symposium on Microarchitecture,
pages 245–257, 2000.

[2] H. Bao, J. Bielak, O. Ghattas, L. F. Kallivokas, D. R.
O’Hallaron, J. R. Shewchuk, and J. Xu. Large-scale Sim-
ulation of Elastic Wave Propagation in Heterogeneous Me-
dia on Parallel Computers. Computer Methods in Applied

Mechanics and Engineering, 152(1–2):85–102, Jan. 1998.

[3] F. Bellosa. The benefits of event-driven energy account-
ing in power-sensitive systems. In Proceedings of 9th ACM

SIGOPS European Workshop, September 2000.

[4] B. Bentley. Validating the Intel Pentium 4 microprocessor.
In Design Automation Conference, pages 244–248, 2001.

[5] A. Dhodapkar and J. Smith. Managing multi-configurable
hardware via dynamic working set analysis. In 29th Annual

International Symposium on Computer Architecture, 2002.

[6] J. Flinn and M. Satyanarayanan. Powerscope: a tool for pro-
filing the energy usage of mobile applications. In Second

IEEE Workshop on Mobile Computing Systems and Applica-

tions, pages 2–10, Feb. 1999.

[7] J. Haid, G. Kafer, C. Steger, R. Weiss, , W. Schogler, and
M. Manninger. Run-time energy estimation in system-on-a-
chip designs. In Asia and South Pacific Design Automation

Conference (ASP-DAC), Jan. 2003.

[8] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The microarchitecture of the Pen-
tium 4 processor. Intel Technology Journal, First Quarter

2001, 2001. developer.intel.com/technology/itj/.

[9] M. Huang, J. Renau, and J. Torrellas. Profile-Based Energy
Reduction in High-Performance Processors. In 4th ACM

Workshop on Feedback-Directed and Dynamic Optimization,
December 2001.

[10] Intel Corp. VTune ❂❄❃ Performance Analyzer 1.1.
http://developer.intel.com/software/products/vtune/vlin/.

[11] Intel Corp. IA-32 Intel Arch. Software Developer’s Man-
ual, Vol. 3: System Programming Guide, 2002. devel-
oper.intel.com/design/pentium4/manuals/245472.htm.

[12] Intel Corp. Intel Pentium 4 and Intel Xeon
Processor Opt. Ref. Man., 2002. devel-
oper.intel.com/design/Pentium4/manuals/248966.htm.

[13] Intel Corp. Intel Pentium 4 Processor in the 423 pin

package / Intel 850 chipset platform, 2002. devel-
oper.intel.com/design/chipsets/designex/298245.htm.

[14] C. Isci and M. Martonosi. Identifying program power phase
behavior using power vectors. In Proceedings of the IEEE In-

ternational Workshop on Workload Characterization (WWC-

6), 2003.

[15] C. Isci and M. Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. Tech-
nical report, Princeton University Electrical Eng. Dept., Sep
2003.

[16] R. Joseph and M. Martonosi. Run-time power estimation in
high performance microprocessors. In International Sympo-

sium on Low Power Electronics and Design, pages 135–140,
2001.

[17] I. Kadayif, T. Chinoda, M. T. Kandemir, N. Vijaykrishnan,
M. J. Irwin, and A. Sivasubramaniam. vEC: virtual energy
counters. In Workshop on Program Analysis for Software

Tools and Engineering, pages 28–31, 2001.

[18] A. KleinOsowski, J. Flynn, N. Meares, and D. J. Lilja.
Adapting the SPEC2000 benchmark suite for simulation-
based computer architecture research. In Workshop on Work-

load Characterization, International Conference on Com-

puter Design, Sept. 2000.

[19] S. Lee, A. Ermedahl, S. L. Min, and N. Chang. An accu-
rate instruction-level energy consumption model for embed-
ded RISC processors. In LCTES/OM, pages 1–10, 2001.

[20] J. Russell and M. Jacome. Software power estimation and
optimization for high performance, 32-bit embedded pro-
cessors. In Proceedings of the International Conference on

Computer Design, October 1998.

[21] J. S. Seng and D. M. Tullsen. The effect of compiler opti-
mizations on Pentium 4 power consumption. In 7th Annual

Workshop on Interaction between Compilers and Computer

Architectures, Feb. 2003.

[22] T. Sherwood, E. Perelman, and B. Calder. Basic block dis-
tribution analysis to find periodic behavior and simulation
points in applications. In International Conference on Par-

allel Architectures and Compilation Techniques, Sept. 2001.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Auto-
matically characterizing large scale program behavior, 2002.
In Tenth International Conference on Architectural Support
for Programming Languages and Operating Systems, Octo-
ber 2002. http://www.cs.ucsd.edu/users/calder/simpoint/.

[24] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. Temperature-aware microarchitec-
ture. In Proceedings of the 30th International Symposium on

Computer Architecture, June 2003.

[25] B. Sprunt. Brink and Abyss Pentium 4 Per-

formance Counter Tools For Linux, Feb. 2002.
www.eg.bucknell.edu/b̃sprunt/emon/brink abyss.

[26] B. Sprunt. Pentium 4 performance-monitoring features.
IEEE Micro, 22(4):72–82, Jul/Aug 2002.

[27] The Standard Performance Evaluation Corporation. SPEC
CPU2000 Suite. http://www.specbench.org/osg/cpu2000/.

[28] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embed-
ded software: A first step towards software power minimiza-
tion. IEEE Transactions on VLSI Systems, 2(4):437–445, De-
cember 1994.

[29] A. Weissel and F. Bellosa. Process cruise control: Event-
driven clock scaling for dynamic power management. In
Proceedings of the International Conference on Compilers,

Architecture and Synthesis for Embedded Systems (CASES

2002), Grenoble, France,, Aug. 2002.

[30] M. T. Zhang. Powering Intel(r) Pentium(r) 4 generation pro-
cessors. In IEEE Electrical Performance of Electronic Pack-

aging Conference, pages 215–218, 2001.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)

0-7695-2043-X/03 $17.00 © 2003 IEEE

