
Runtime Prediction of Real Programs on Real Machines*

Kurt Mehlhorn*

Abstract

Ulrich Finkler’

Algorithms are more and more made available as part of

libraries or tool kits. For a user of such a library statements

of asymptotic running times are almost meaningless as he

has no way to estimate the constants involved. To choose

the right algorithm for the targeted problem size and the

available hardware, knowledge about these constants is im-

portant.

this question. It is however true that a well-trained al-

gorithms person who knows program and analysis can
make a fairly good guess.

Methods to determine the constants based on regression

analysis or operation counting are not practicable in the

general case due to inaccuracy and costs respectively. We

present a new general method to determine the implementa-

tion and hardware specific running time constants for com-

binatorial algorithms. This method requires no changes of

the implementation of the investigated algorithm and is ap-

plicable to a wide range of of programming languages. Only

some additional code is necessary.

l Algorithms are more and more made available as

part of software libraries or algorithms tool kits, LEDA

is a widely used example [lo]. For a user of such

a library statements of asymptotic running times are
almost meaningless as he has no way to estimate the

constants involved. After all, the purpose of a tool kit

is to hide the implementations from the end user.

The determined constants are correct within a constant

factor which depends only on the hardware platform. As an

example the constants of an implementation of a hierarchy

of algorithms and data structures are determined. The hi-

erarchy consists of an algorithm for the maximum weighted

bipartite matching problem (MWBM), Dijkstra’s algorithm,

a Fibonacci heap and a graph representation based on ad-

jacency lists. The errors in the running time prediction of

these algorithms using exact execution frequencies are at

most 50 % on the tested hardware platforms.

The two items above clearly indicate that we need
more than asymptotic analysis in order to have a theory

with predictive value. The ultimate goal of analysis
of algorithms must be a theory that allows to predict

the actual running time of an actual program on an

actual machine with reasonable precision (say within a
factor of two). We must aim for the following scenario:

When a program is installed on a particular machine
a certain number of well-chosen tests is executed in
order to learn about machine parameters relevant for

the execution of the program. This knowledge about the
machine is combined with the analysis of the algorithm
to predict running time on specific inputs. In the

context of an algorithms library one could even hope
to replace statements about asymptotic execution times

by statements about actual execution times during

installation of the library.

1 Introduction
Asymptotic analysis of algorithms approximates the

running time T(t) of an algorithm on input 1: as

Big-O analysis of algorithms is concerned with the

asymptotic analysis of algorithms, i.e., with the behav-
ior of algorithms for large inputs. It does not allow the

prediction of actual running times of real programs on
real machines and therefore its predictive value is lim-

ited.

l An algorithm with linear running time O(n) is faster

than an algorithm with running time O(n2) for suffi-

ciently large n. Is n = lo6 large enough? Asymp-

totic analysis of algorithms is of little help to answer

where fi(z) measures the frequency of execution of a

certain set of operations M; and Ci measures the exe-
cution time of Mi on an idealized Random Access Com-
puter. The theoretical analysis provides approximations

for the execution frequencies fi (z), for example in the

worst or average case.

Supported by Graduiertenkolleg ‘Effizienz und Komplexitllt

von Algorithmen und Rechenanlagen’, UniversitHt Saarbriicken,

Germany.

Due to computer architectures with registers,

caches, pipelines etc. the execution time of a subset Iwi
of the code is context sensitive and hence the execution

time is

tMax-Planck-Institut fiir Informatik, Saarbriicken.
tMax-Planck-Institut fiir Informatik, Saarbriicken.

i llj<fi(S)

380

381

where Ci,j,z is the time for the j-th execution of Mi
on input I, taking into account whether or not data
are present in the cache, for example. The coefficients

G,j,z may vary by a factor F, which is the quotient

between the fastest and slowest possible execution of an
instruction. The execution time for a single instruction
may vary widely, e.g. on one of the architectures used

for experiments (Pentium with 8-3-3-3-burst and 60
MHz external clock) F is close to 30 for a 200 MHz

CPU (the burst access to main memory takes about
130 ns to transfer the first 64 bit package which is 26
times the clock cycle of the processor). Nevertheless

we will argue in section 3 that the execution time

of many interesting programs can be approximated as
in equation (1.1) within a constant factor p which is
much smaller than F. Moreover, the set of necessary

constants Ci is fairly small, even for complex algorithms

[6] and can be determined with automated experiments,
executed once for each platform.

There are basically two approaches for the determina-
tion of the Gi in the literature:

Regression analysis: It is easy to instrument a pro-

gram such that the total running time T(t) and the
execution frequencies fi(x) are determined during a pro-

gram run ([6],[8]). It is therefore tempting to measure

T(t) and fii(z) f or a large number of inputs t and to
determine the constants Ci by regression analysis. We
will argue in section 4.1 that this approach is unsound in
general because of systematic measurement errors. For

example, we should expect the Ci to systematically de-
pend on input size, e.g., due to cache misses. However,

regression analysis is only meaningful when measure-
ment errors are statistically distributed.

Operation counting: This technique basically counts

the operations of a program and estimates the time
for the execution of the underlying assembler structure.

[2] describes a technique called ‘mem-counting’, which
charges memory references by insertions of counter in-

structions into the source code for each such instruction.
Methods based on operation counting provide feasible
running time predictions, but they are costly to auto-
mate (section 4.2).

In this paper we present a new approach for the au-

tomated determination of the coefficients Ci, which we
call timing of equivalent code fragments. We will argue,

that it is possible to design experiments which execute

a fragment in isolation (so that the interpretation of the
timing needs no regression analysis), which execute the

fragment approximately within its real context (so that
the timing reflects the actual running time) and which
execute the fragment many times (so as to minimize the

effect of measurement errors).

In order to reach these three goals the experiments
time slightly modified code fragments. The fragments
are similar to the original as far as the executed oper-

ations and the locality of memory references are con-

cerned. We calls such fragments equivalent code frag-

ments.
As a test for our approach we have chosen an im-

plementation in C of a hierarchy of algorithms and data
structures. The top level consists of an algorithm for the

maximum weighted bipartite matching (MWBM) prob-

lem which uses Dijkstra’s algorithm as a subroutine.
The implementation of Dijkstra’s algorithm is based on

a Fibonacci heap. Both algorithms use a graph repre-
sentation based on adjacency lists.

This test set has many properties which complicate

running time prediction. It consists of several levels of

algorithms, only an amortized analysis of the costs is

possible and the execution frequencies depend strongly
on the distribution of the edge weights as well as the

order in the adjacency lists, not only on the number of

edges and nodes. Additionally, the Fibonacci heap is
a fairly complicated data structure which uses heavily
dynamic memory allocation for small objects.

We performed experiments on a variety of machines

with Pentium (CISC) and Spare (RISC) architecture

and different operating systems (Linux, SunOS and
Solaris) (section 4.3.1,page 6). We used random inputs
for the experiments, the execution frequencies of each
instance were determined experimentally. The input

sizes varied from 1000 up to 100000 nodes and 1000 to
400000 edges. The actual execution times varied from
a few milliseconds up to several minutes. In all cases
the measured time was within 50 % of the predicted
time (and usually closer, fig. 3, page 9). The actual

execution times varied from a few milliseconds up to
several minutes. Moreover, for the determination of

the running time constants inputs with less than 50000

nodes or edges were sufficient, since the constants reach
asymptotically a maximum once memory usage exceeds
the size of the cache. Thus our method allows not only
interpolation, but also extrapolation.

Due to the arguments in section 3 and the experi-
menta1 results it is likely that the method will produce

useful results for combinatorial algorithms in general.
The identification of code fragments and their replace-

ment by equivalent code fragments is a potential source

of error. We implemented redundant experiments for

several code segments and found that different experi-

ments produced similar running time coefficients. We
conclude that the method is robust.

Additionally, the hierarchical structure demon-
strates the compatibility of our approach with the hier-
archical structure of algorithms. The constants of sub

382

algorithms can be reused in the running time prediction

as the methods in implementations.
Running time constants can be combined with any

kind of theoretical analysis {known execution frequen-

cies, best case frequencies, worst case frequencies, aver-

age case frequencies) to make predictions. If the theoret-
ical analysis provides the execution frequencies within

a constant factor, time prediction is possible within a

constant factor. In the other cases the error in the time

prediction is dominated by the error of the theoretical

analysis. An example is given with an average case anal-
ysis of Dijkstra’s algorithm (page 8). Additionally the
constants evaluated with our method allow comparisons

between different implementations and hardware.

2 Code Fragments

How does one find feasible code fragments to be used in

equation (l-l)? A code fragment is a piece of straight-
line code with ‘holes’. The identifying property of code

fragments is that execution of the program executes

every instruction of the fragment the same number of
times. Due to this fact feasible code fragments are de-

fined quite naturally as loop bodies, branches of con-

ditionals and function bodies. The holes correspond to
nested fragments, e.g. nested loop or nested function
bodies.

Frequently one may merge code fragments into

larger units without violating this property, e.g. when

both branches of a conditional execute an approximately
equal set of instructions or a function call has constant
execution time. We found identification of feasible code

fragments a fairly straightforward task.

3 Context Sensitivity

As mentioned, the execution time of an instruction
depends on its context. In this section we will show,

that for many interesting programs the variation of the

execution time of a code segment due to caching and
pipelining can be expected to be much smaller than the

worst case variation of the execution time of a single

instruction.

We discuss caching first. We call a reference to
memory local if no cache miss occurs, and nonlocal
otherwise. The 90/10 rule [3] states that a program

executes 90 % of its instructions in 10 % of its code,
which we call the ‘core’ of the program. An example

calculation in [3] assumes, that only the fraction of the

core which fits into the cache simultaneously produces
no cache misses. But the experimental results in the

same book show much better cache hit rates. Already

1 kB 2-way associative cache reduces the cache misses

on a Unix machine to 20 % of the instructions.
This result is not surprising. In most programs

the code of inner loops is smaller than a few thousand

bytes. The core of a program consists of many small
pieces which are executed in the cache one after the

other. Therefore it is realistic to assume that 80-90 %
of the instructions are local. So a highly associative

cache (2-way or more), that is bigger than the average
loop size, gives a minimum hit rate of about $0 % for

instructions. By the above, we should expect this hit
rate independent of program size.

Data access is less local than instruction access [3].

However, even for data references there are frequently
at least two local data references for every nonlocal
reference. For example, for a nonlocal access to an array

element, the access to the base address of the array and

to the offset are usually local. The experimental data
in [3] confirm, that at least 50 % of the data references

are local.
In the case of some kB highly associative cache

and ordinary programs the following rules of thumb are

plausible:

1. There are at least as many code references as data

references.
2. At least 50 % of the data references are local.

3. At least 80 % of the code references are local.

Consider a sequence of n, accesses to instructions

and nd accesses to data, and let n = fzc + nd. Under the

assumptions above the maximum experienced slowdown

S due to cache misses is

For F = 30, we have 6 5 11.15. We will next argue that

the actual factor is much smaller for equivalent code

fragments.
A code fragment, that belongs to a leading term

in the running time, is executed many times. It will be
embedded in a loop or recursion. After a certain number
of repetitions, the context of the loop is dominated by

the loop itself, Together with an input for the fragment

which produces a similar locality of code and data
references, caching efficiency between experiment and
original will not differ too much. For a similar context

the efficiency of a pipeline is similar too.

There are cases, in which the context cannot be
reproduced well. These are code fragments, which are

executed multiple times, but between their executions
intermediate code is executed. But already with an

instruction cache of a few kB either the probability,

that the fragment is still present in the cache at the
time of the next execution, is high or the intermediate

code dominates the running time.

383

Usually the code fragments are about 1 kB or
smaller. If enough code is executed between two
repetitions of our hypothetic fragment to push it out
of several kB of instruction cache, it has to take several

times longer. Worst case scenarios can be constructed,

but the empirical results [3] show that they are not

likely to happen. Altogether, we conclude that for each

code fragment there is a constant Cj such that the

context-sensitive execution time of the fragment lies in

some interval [Cj /F, Cj F] for some hardware dependent

F<<&

The approximation neglects pipelining. The exper-

iments in [3] show that the speedup resulting from a
pipeline depends strongly on the optimization of the

compiler and the individual pipeline. There are three

classes of events that decrease the efficiency of a pipeline

by producing a ‘stall’ [3]:

1. A resource conffict of the hardware. An instruction

pair can not be executed with overlap.
2. A data conflict, if an instruction needs the result of
a previous instruction.

3. Instructions that change the program counter, as

branches and jumps.

The proposed method of equivalent code fragments
times code fragments that are very similar to the actual

code fragments. Thus approximately the same number
of stalls is to be expected and therefore pipelining has
very little influence on the quality of our predictions.

4 Methods

A first idea about the execution time of an algorithm
can be obtained by simply running it on a few different
inputs. Together with the theoretical analysis this
simple approach gives the order of magnitude of the
expected execution time in many cases. But no claim
about the accuracy of the determined values can be

made and automation requires generators for feasible

inputs and a more sophisticated analysis, which leads

us back to the determination of a set of running time
constants. Two approaches to determine the constants
Ci are described in the literature.

4.1 Regression Methods

The first class of methods is the numerical analysis
of experiments. It is for example used in [6] and [S].

‘Counters’ at feasible positions in the program provide

the execution numbers for individual inputs. Even for
complex algorithms the number of necessary counters

is limited. In [6] the authors represent code subsets
with so called ‘bottleneck operations’. Even if not only
the leading terms are taken into account, the number
of necessary counters is small. For Dijkstra’s algorithm
based on a Fibonacci heap 9 counters are sufficient.

The result of a set of N measurements with different
inputs is a set of N data points (t;, &(” . . .ji”‘), i =

1 v-*-t N where ti is the measured running time and $”

is the execution frequency of the I-th code fragment. We

also have a functional relationship

T= ~f’j’cj(l+Ej)
j=l

with unknown constants Ci and small &j’s depending
on the context of the j-th execution. Fit methods

determine constants (~1,. . . , cry such that the model

function T’ = Cf(jj oj approximately passes through

the given data points. There is no reason to believe that

this implies that the crj’s approximate the Cj’s. In fact

we saw negative values for aj’s in experiments (which
used singular values decomposition [5] for the fit.

4.1.1 Least Square Approximation

Least square approximation is a popular fit method.

It assumes that the deviation

in the i-th measurement is normally distributed with
some standard deviation c (independent of i) and that
the errors in the measurements are independent. Under
this assumption the probability P for a given set of N

measurements (assuming the cryi to be correct) is given

by

P=fi (1 [(t.-t(f!“,...,f!y 2
exp -- ’ ’ z

2)I 1 At

i=l
u

Least square approximation determines the parameters

~I,.*., a&f so as to maximize P.

In our case the deviation Ai consists of two parts,

namely the modeling error C fi(3)CjEj and the mea-

surement error (the difference between the true running
time and the measured running time). Only the mea-
surement error is statistical, the modeling error is sys-

tematic.

4.1.2 Systematic Errors

For the time measurements described in section 3,

the dominating error is caused by the context sensitivity
of the execution time of an instruction, since the model

does not take features as caching and pipelining into
account. For example, an input with high locality is

processed significantly faster than an input with lower

locality. This is a systematic error.
How does this systematic error influence the fit of

a running time function? The systematic error defines

384

a qualitative behavior that is approximated by the fit.
Assume a model function

m(N)=A+BlogN+CN

and a set of measurements of m(N) for different N,
where N is the input size and a smaller N is equiva-

lent to a higher locality in the program. A cache causes
a positive second derivative of m(N). The fit approxi-

mates this positive second derivative by increasing the

value of C and by making B negative. The relative error

of B is bigger than 1. Additionally, the leading coeffi-

cient is increased by an unknown factor that depends
on the choice of the input sizes.

Fit methods are extremely sensitive against system-

atic errors as they appear in the running time measure-

ments. Even if a set of experiments is chosen ‘well’,

bounding the errors in the coefficients is impossible,

since the conditions for the statistical analysis, correct-
ness of the model function and a known error distribu-

tion, are not fulfilled.

4.2 Operation Counting

The second class of methods basically counts all
operators, function calls and references in a program.

Since these instructions can be mapped to assembler

code, the expected number of clock cycles for the
execution is known and on this base a time constant

can be calculated. This method gives feasible results [Z]
but it is difficult to automate.

One approach for automation is the modification

of a compiler. The compiler just counts the weighted
operators (function calls are represented by the ()

operator) in a loop or function for subsets of code

identified by the user. But this solution depends on
the compiler which has to be available on all different

hardware platforms and for the different programming
languages. Additionally the calculation of the context

dependent weights and the modification of a compiler is
costly.

Operator overloading provides a second way to

count operators automatically. The operations of a pro-

gram are replaced with versions, which count themselves

depending on the context. But in this case a data struc-

ture has to be maintained that tracks the context during
the execution of the program. The implementation of

t,his data structure is basically as complex as the in-

vestigated algorithm itself. Additionally, this approach

depends strongly on the language and requires usually
changes in the implementation of the algorithm. In

C++ the whole class of pointer declarations can not
be overloaded. For example each declaration of an ar-

ray type a[] and each access a[i] has to be replaced in
the implementation by defining an appropriate class.

A profiler determines directly the running times for

code fragments. If the profiler provides the execution
time for each line of code, the running time constants
can be determined out of these data. But the profiler

requires additional code in the program and code opti-

mization is impossible or disturbs the measurement of

the profiler. The profiler gives information about the
relations between the running times of a program, but

not the absolute values.

As a result, operation counting provides feasible

values for the constants, but the automation is costly

and depends on the language or the compiler.

4.3 Equivalent Code Fragments

Since fitting data for different inputs is not sufficient

to control the error in the time prediction, a different

method is necessary to determine the constants Ci. The

following properties are required:

1. The constants Ci are determined within a constant

factor, that depends only on the hardware. It is
sufficient to control the error in the single coefficients,
since the running time is a linear function in these

coefficients.

2. The results are compatible with modular or object

oriented programming. If an algorithm is used as a

subroutine, its constants can be reused. Only the new

code has to be investigated.

3. No changes in existing code are necessary. For

the automatic determination of the constants only an

additional set of functions, or methods from the object
oriented point of view, is necessary. The concept is
independent of the programming language in a certain
range (C, C++, Pascal, assembler, . ..). Programming

environments that include the execution of indirect

tasks, like automatic garbage collection, are not allowed.

Such tasks are separate algorithms which have to be

analyzed separately.

The concept of equivalent code fragments provides

these properties. As we mentioned, even complex

algorithms consist of a limited number of subsets of
code (code fragments), executing each fragment with

a certain frequency. The target is the approximation of
the running time of the individual code fragments that

are the constants Ci in the model function.

Since the separation of individual constants by

a fit is not feasible, the constants are determined
with individually designed experiments. However, real
problem instances and the original code are not used,

they are represented by modified code fragments and

special inputs for these fragments. The modified code

fragments have to be similar in the number of operations
and the locality to the original code fragments, they are

equivalent.

385

As an example we present here one of the equivalent
code fragments for the investigated implementation of
Dijkstra’s algorithm, the interior of the loop which

cuts nodes out of the heap during a DECREASEKEY-

operation. MFHEAPCUT is a function with code,
which is executed once per call. The code fragment
is embedded in a loop performing the repetitions to

achieve sufficiently long execution times.

InitHeasureO ;
for (j=O;j<r;j++) {

r = parent;

do I
y = x->paxent;
HFHeapCut(H,r);
if (x->kay < I+>min-ptr-lkey)

E-ABin-ptr = XI;

) while (t%ark) ;
1
EndHeasure (1;
blackhole(1, k(B->min-ptr->key));

Two problems have to be considered in the determi-

nation of the constants. The first is the design of feasible
equivalent code fragments for the individual constants.
The second is the automation of measurements and their

analysis. If a measurement is not successful this has to
be recognized instead of providing a wrong constant if

possible.
Goal of the experiments is the determination of the

running time for the execution of a code fragment of
the implementation. From the analysis of the possible

errors follow some rules for the design of equivalent code
fragments.

l The running time of the experiments depends on the
amount of memory that is used, since this influences the

locality of the references. An experiment should use a

similar amount of memory as the original code. In the

memory range, that requires no swapping, the running

time approaches asymptotically a maximum. As a
result a good extrapolation behavior can be expected.
l To guarantee a sufficient accuracy of the time mea-

surement, ‘minimum measurement time loops’ (MMTL)
should be used wherever possible. The experiment mea-

sures the time for a number of repetitions of the code

fragment. This number is increased if the total time is
smaller than some constant. All tested systems provide

a timer with an accuracy of at least 50 ms, so a mini-

mum time of 2000 ms guarantees a sufficient accuracy.

l The measured code should execute at least 5 times

more instructions than the MMTL environment.
l The system calls ma&c and free have to be handled
with care. They do not have a constant running time
per call on all systems. They are separate algorithms,
that have to be analyzed separately. The SunOS version
of free has a worst case running time that is linear

in the number of earlier allocated blocks. The Linux
version does not show this effect. But on the tested
platforms the assumption of constant execution time for
these functions is feasible.

l Experiments have to be designed in a way, so that an
optimizer isn’t able to remove repetitions. A function
blackhole can be used which accepts a pointer as an

argument and is compiled in its own module. Calling
this function with a data structure ‘by reference’ outside

of the measurement loop is a helpful tool for this task.

4.3.1 Automation

The determination of the running time constants is

performed automatically by two additional programs,

the controller and the worker. They perform the

individual experiments and calculate the execution time

constants. We discuss some design issues for the
controller and the worker.

0 Cumulative memory fragmentation from one exper-
iment to the next has to be avoided. For this pur-

pose, the experiments are combined in one program (the
worker), which performs one of them per call, controlled

by command line parameters. The management of the

experiments is done by a second process (the controller),
which starts the worker with the Unix system call ‘sys-
tern0 or an equivalent system function on other sys-
tems. Due to this structure each experiment starts with

a freshly initialized internal memory management of the
worker.

l To consider different cache hierarchies and timing ac-
curacies on the target platforms, the experiments accept

parameters to control the number of repetitions, the

minimum execution time and the amount of elements
(memory) for the execution. As a result the dependency

of constants on memory usage can be investigated.
l During the experiments, only the necessary system

processes are allowed to run, since the elapsed time
is measured, not the CPU time. CPU time does not

consider minor and major page faults and time spent
with waiting for data from hard-disk or network [9].
Programs which use dynamic storage allocation cause

minor page faults even if no swapping is necessary. CPU

time can be used as an approximation but then only
CPU time is predicted, not elapsed time.

l If not enough free memory is available for the algo-
rithm, inactive code is swapped or rearranged to obtain

sufficient connected memory. Repeated execution of the

experiment and careful evaluation of the data insures,

that the calculated constants are not disturbed by this
effects. As a result, the execution of the algorithm in
a program might take a small and constant amount of

time longer than the predicted time, depending on the
total amount of memory the system has to provide for

386

it.. But for bigger instances which need more than a
few seconds this error is neglectable. The times for real

problem instances given in figure 3 are measured execut-
ing the algorithm once, but with sufficient free memory

for the process.

l Obviously the predicted running times apply only if
there is sufficient memory to keep algorithm and data

in main memory during execution.

Experiments were performed on the following hard-
ware platforms:

1. Pentium 133 MHz, 32 MB RAM (60 ns), 8 kB in-

ternal cache for instructions and 8 kB for data, 256 kB
external pipeline-burst-cache, operating system Linux.

2. Spare ELC, 16 MB RAM, operating system SunOS.

3. Spare 5, 85 MHz, 64 MB RAM, 16 kB internal cache

for instructions and 8 kB internal cache for data, oper-

ating system Solaris.

4.Sparc 4, 110 MHz, 64 MB RAM, internal cache, 16
kB for instructions and 8 kB for data, operating system

Solaris.

Since only a few basic system calls are used, the
sources, makefiles and scripts could be used on all

platforms without change. Only a possibility for time
measurement and the execution of processes out of
another process are necessary, so the transfer to non-

Unix systems is not costly.

4.3.2 Analysis of the Measurement Results
Each experiment provides one (single run) or a

sequence of values (MMTL) for a constant. For the time
measurement the function gettimeofday() is used. The

evaluation of the measurements is non-trivial. There
are systematic errors and outliers. Outliers, which are
much higher than the other values, occurred in many of

our experiments. They occur especially on multitasking
systems, but not only on them. Even if no other

user processes are running, some interruptions by the

system are possible. Another typical error is observed
in the results of MMTLs. The short total time of a

small number of repetitions produces an error due to

the accuracy of the time measurement. For a high
number of repetitions the memory management causes

an increase of the values even before the system reports

a major page fault in the result of a getrusageo call,
due to minor page faults.

To eliminate outliers before calculating the average,
a robust method is necessary for the evaluation. Fig. 1

shows a sequence from a MMTL run, which contains

several outliers.
If no other processes disturb the measurements, a

cumulation of values can be expected. This property is
used to eliminate strongly defective values. Let M be

a set of N measurements. We choose a constant A > 1

b-4

0.40 -

0.20 -

0.00 -

**
*

**** ***
**

**

2 8 16
repetitions

Figure 1: Sequence of values from a MMTL

with 1, 2, 4, 8, . . . repetitions.

(we used A = 10) and search for an interval

[R-f, R] with #([R- %]“&I) > :N,

i.e. a short interval containing the majority of the data

points. All data points outside the interval [R - R/A]

are considered outliers.
The measurement values are sorted by their value

and the algorithm starts with an interval I,. = [R -
R/A, R] where R is the biggest value. Now smaller

measurement values are chosen in decreasing order for R

as long as I, contains less than N/2 values. If no interval
is found the set of measurements is not accepted,
otherwise the average of the values in the interval with
lowest R found is returned as approximation of the

constant.

5 Example Algorithms

As mentioned above we have chosen a hierarchy of algo-
rithms to test our method.The top layer is a MWBM-

algorithm which determines the heaviest matching in a
weighted bipartite graph (Contrary to the assignment

problem, the maximum matching does not have to be

perfect).

The MWBM-implementation uses a modified ver-
sion of Dijkstra’s algorithm. The modification is an
additional condition which stops execution if a feasible

augmenting path is found. The original implementation

of Dijkstra’s algorithm as well as the modified version

both use the implementation of a Fibonacci heap as

priority queue and a data structure GRAPH based on
adjacency lists. Due to the similarity the modified ver-

sion of Dijkstra’s algorithm is assumed to have the same

execution time constants as the original.

Running time predictions for these algorithms is
complicated by the following facts: Only an amortized

387

analysis of the costs is possible and the execution
frequency of the code fragments depends strongly on
the choice of the edge weights and the order of the edges

in the adjacency lists, not only on the size of the input

graph G.
Dijkstra’s algorithm needs O(N + M) steps of

constant time and N INSERT, N DELETEMIN and O(M)

DECREASEKEY operations on the priority queue for a

graph with N nodes and M edges. Let Gb = (V,, Vb, M)

be a bipartite graph, and V, the smaller set of nodes

without loss of generality. Our implementation of the
weighted bipartite matching algorithm starts Dijkstra’s

algorithm for each node 2 E V, to determine a feasible

augmenting path starting at 2, augments along this

path by reversing the edges and updates the node

potentials. N, = IV,\ calls of Dijkstra’s algorithm, N,

augmentations along paths with a length of at most 2N,
and N, updates of at most N, + Nb node potentials are
performed.

5.1 Running Time

Although a detailed description of the implemen-
tations and the resulting constants exceeds this paper,

we give expressions for the different running times as
examples for possible types of running time predictions.

5.1.1 Fibonacci Heap

The basic operations Insert, DeleteMin, De-

creaseh’ey, CreateHeap and DestroyHeap can be ex-

pressed in terms of 8 counters and 12 constants. Each
execution time is an equation of the type (1.1). The set
of constants is determined by 13 experiments.

The additional operation DestroyHeap deallocates
the elements in the heap by traversing the data structure

recursively, which is more efficient than repeated calls
of DeleteMin. This allows an improvement in the

MWBM-implementation, since the modified version of

Dijkstra’s algorithm used by the MWBM-algorithm
does not remove all elements from the heap.

The worst case analysis provides an upper bound
for each counter in the execution time. Replacing the

counters with this bounds gives a worst case approxima-
tion of the running time. For a sequence of N Insert-,

L DeleteMin- and M DecreaseKey-operations we have

Theap(N, L, M) 5 cH1 + (N - L) cH2

+NCH~+MCH~+LCH~

+ 1.5L log,(N) CHs

The constants CH= in this expression are sums of
subsets of the 13 values determined experimentally. If
each DecreaseKey violates the heap conditions, this
prediction is tight within a small constant factor.

5.1.2 Dijkstra’s Algorithm

The execution time for Dijkstra’s algorithm involves

four additional constants.

TDijk() = NDI CD1 + ND~ CD2

N Dccliey

+ ND~ CD3 + c TDec~ey(j)

j=l

ND3

+ CD4 + T~estroy 0 + c TDelMin (j)

j=l

With upper bounds for the counters N, the worst case

execution time is approximated by

TDijk(N, M) 5 M CDI + Tkeap (N, N, W

+ CD4 + N (CD2 + cD3)

for an input graph with N nodes and M edges.
For random connected graphs the execution

can be approximated by

time

TDijk(Nt M) X CD4 -I- CHI -I- M CD1

-i- N (KD~ + KD~ •F CHA -I- CHA)

+ 1.5 N log,(N) CH5

+ (N log, (1 + M/N) - N) 0.5 cH4

since it is unlikely that the shortest paths contain a
number of edges [ll] [12].

large

The execution time for the maximum bipartite
matching algorithm is

TMwbm() = E[TDijk(i) + TA4Aug(i) + Trued]
i=l

+CMwbm

TAug(i) = CAFE + NAug(i) C’A~~L

TW(i) = CUpd + Nupd(i) CQ,dL

The code of the main loop can be neglected compared

to the function calls. In the worst case, the execution

time is

TMwbm(Na, Nb, M) =

CMwbn + [NA + NB] CMlnitL + NA CMwbmL

+Na [TDijk(Nt N, M) + TAU&%) + T+d(N)]

5.1.3 A Code Fragment - CutLoop

In this section the experiments for the code frag-
ment listed in section 4.3 are described as an exam-
ple. The code fragment corresponding to the con-

stant Ccvthp is performed during the DECREASEKEY-

operation. Two experiments were implemented to de-

termine Ccut~oop to get the possibility to compare the

388

bl

6.0

3.0

0.0

. * . . * - -

. - - . *

. . . . * - -

- *

********** ****** ******* ;gg;g;;oeii
%‘%8%880 O

128 2k 32k 512k ml

Figure 2: The dependency of Ccvt~oop on memory

usage, with and without optimization. (. = ELC ; *

= Spare 5 ; * = Spare 4 ; 0 = Pentium 133) .

results of a direct loop on the original code and a mod-

ified code fragment in a MMTL. Both experiments use

the same special heap structure that results in N exe-
cutions of the loop.

The difference of the 2 experiments is the function

call to cut a node. The first version of the experiment
uses the original function FHEAPCUT, the second ver-

sion uses a modified version MFHEAPCUT that per-
forms almost the same operations, but without chang-
ing the data structure. This means the nodes are not
really cut. Since the first experiment changes the data
structure, no MMTL is possible in this case.

The amount of memory usage is 64 bytes per

element. The cache structure of the different platforms
is visible in the experiments (Figure 2). The direct

experiments with 100000 elements give similar values
to the values in figure 2 (P133 -g: 0.951 ps , -0: 0.811

,us; Spare 5 -g: 1.9 ps , -0: 1.25 ps; Spare ELC -g:
7.6 ,us , -0: 4.6,~~).

5.1.4 Time Prediction

The running time constants were automatically de-

termined with identical code on the different hardware

platforms. Constants for code fragments with fixed

memory usage were calculated as the average of 10 mea-
surements. The constants for scalabIe experiments were

determined out the set of values given by the MMTL.

First the smallest value is identified. This value belongs

to an experiment with low memory usage. As a sec-

bl
150

2 x 10000 nodes

100
0
*

50

15

10

5

0

0.4

0.3

0.2

0.1

MWBM
2 x 1000 nodes

P133 8

8

&

8 8

-
10 40 100 400

Dijkstra *

1000 nodes ;:
P133

4 10 40 100 400

MWBM 8
2 x 10000 nodes
Sparc 4 f

*
0

I
T -1 I r

4 10 40 100 400

t

d

MWBM
2 x 1000 nodes
Spare 4

8

I I I I-
4 10 40 100 400

Dijkstra
.

1000 nodes *
Spare 4

6
*

4 10 40 100 400
x 1000 edges

Figure 3: Execution times (* = predicted
with frequencies ; * = average case analysis; o
= measured), compiled with ‘gee -0’.

higher memory usage than the first identified experi-

ment is chosen. This prevents taking errors into account

due to the MMTL environment code which increases the
constants for very low memory usage in some cases.

Although with A = 10 a strong stability criteria

was used during the elimination of strongly defective
data points, most experiments were successful. Only a

few values for a certain size of an experiment were not
determined in the first run. But in this case sufficient

values for other sizes were obtained to calculate the me-

dian out of the values for different sizes. An experiment
is called successful if the point elimination terminated.

The algorithm stops without result if no intervals with

more than 50 % of the data points are found.

If an experiment is not successful, an automatic 3

step strategy is possible to get a result. In many cases a
simple repetition of the experiment is successful, if the

ond value the biggest value out of the experiments with drop out was caused by a temporary interruption. If the

389

experiment used an MMTL, the rate of the exponential
increase of the repetitions can be decreased. So more
points in the range with high accuracy are obtained. As

a last step the parameter A can be decreased.

6 Conclusion

As the experimental results show, the concept of equiva-

lent code fragments provides a method for the automatic
determination of running time constants within a small

constant factor. Even without the investigation of the

memory dependency of the constants good approxima-

tions can be expected by choosing experiments with a

memory usage in the order of magnitude of the size of
the cache.

Only basic system functions are used, which are

available in most programming environments. Since the

experiments are supposed to be similar to the original
code fragments, their design and implementation is less

costly than the implementation of the algorithm itself.

The calculated coefficients are compatible with the

concepts of modular and object oriented programming
when the algorithm is used in a wider context.

The comparison with operation counting shows,

that the method of equivalent code fragments is less

costly to automate. Additionally the context of the
executions is considered partly due to the similarity

between code and experiments, which is very difficult

in the case of pure operation counting.

References

[l] Donald E.Knuth, The Art of Computer Programming.

Addison- Wesley (1968)

[2] D.E. Knuth. The Stanford Graph Base. Addison Wes-

ley, New York (1994)

[3] J.L. Hennessy, D.A. Patterson. Computer Architecture

- A Quantitative Approach. Morgan Kaufmann Pub-

lishers, Inc., California (1990)

[4] T.H. Cormen, C.E. Leiserson, R.L. Introduction to

Algorithms. MIT Press, Cambridge, Massachusetts

(1990)

[5] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vet-

terling. Numerical Recipes in C. Cambridge University

Press (1988)

[6] R.K. Ahuja, T.L. Magnanti, J.B. Orlin. Network

Flows: Theory, Algorithms, Applications. Prentice

Hall, Englewood Cliffs, NJ (1993)

[7] A.V. Aho, J.E. Hopcraft, J.D. Ullman. Data Struc-

tures and Algorithms. Addison Wesley, Reading, Mass.

(1983)
[8] R.G. Bland, D.L. Jensen. On the computational be-

havior of a polynomial-time network flow algorithm.

Mathematical Programming, 54 (1992) 1-39

[9] Kevin Dowd. High Performance Computing. O’Reilly

& Associates, Inc., 103 Morris Street, Sebastopol, CA

954 72 (1993)

[lo] Kurt Mehlhorn, Stefan Nliher. LEDA, a Platform for

Combinatorial and Geometric Computing. Communi-

cations of the ACM, volume 38, (1995), pp. 96-102

[11] Koshei Noshita. A Theorem on the Expected Complez-

ity of Dijkstra’s Shortest Path Algorithm. J. Algorithms

6, (1985), pp. 400-408
[12] A,V, Goldberg, R.E. Tarjan. Expected Performance

of Dijkstra’s Shortest Path Algorithm. NEC Research

Institute Report 96-062.

