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Abstract 

Ulrich Finkler’ 

Algorithms are more and more made available as part of 

libraries or tool kits. For a user of such a library statements 

of asymptotic running times are almost meaningless as he 

has no way to estimate the constants involved. To choose 

the right algorithm for the targeted problem size and the 

available hardware, knowledge about these constants is im- 

portant. 

this question. It is however true that a well-trained al- 

gorithms person who knows program and analysis can 
make a fairly good guess. 

Methods to determine the constants based on regression 

analysis or operation counting are not practicable in the 

general case due to inaccuracy and costs respectively. We 

present a new general method to determine the implementa- 

tion and hardware specific running time constants for com- 

binatorial algorithms. This method requires no changes of 

the implementation of the investigated algorithm and is ap- 

plicable to a wide range of of programming languages. Only 

some additional code is necessary. 

l Algorithms are more and more made available as 

part of software libraries or algorithms tool kits, LEDA 

is a widely used example [lo]. For a user of such 

a library statements of asymptotic running times are 
almost meaningless as he has no way to estimate the 

constants involved. After all, the purpose of a tool kit 

is to hide the implementations from the end user. 

The determined constants are correct within a constant 

factor which depends only on the hardware platform. As an 

example the constants of an implementation of a hierarchy 

of algorithms and data structures are determined. The hi- 

erarchy consists of an algorithm for the maximum weighted 

bipartite matching problem (MWBM), Dijkstra’s algorithm, 

a Fibonacci heap and a graph representation based on ad- 

jacency lists. The errors in the running time prediction of 

these algorithms using exact execution frequencies are at 

most 50 % on the tested hardware platforms. 

The two items above clearly indicate that we need 
more than asymptotic analysis in order to have a theory 

with predictive value. The ultimate goal of analysis 
of algorithms must be a theory that allows to predict 

the actual running time of an actual program on an 

actual machine with reasonable precision (say within a 
factor of two). We must aim for the following scenario: 

When a program is installed on a particular machine 
a certain number of well-chosen tests is executed in 
order to learn about machine parameters relevant for 

the execution of the program. This knowledge about the 
machine is combined with the analysis of the algorithm 
to predict running time on specific inputs. In the 

context of an algorithms library one could even hope 
to replace statements about asymptotic execution times 

by statements about actual execution times during 

installation of the library. 

1 Introduction 
Asymptotic analysis of algorithms approximates the 

running time T(t) of an algorithm on input 1: as 

Big-O analysis of algorithms is concerned with the 

asymptotic analysis of algorithms, i.e., with the behav- 
ior of algorithms for large inputs. It does not allow the 

prediction of actual running times of real programs on 
real machines and therefore its predictive value is lim- 

ited. 

l An algorithm with linear running time O(n) is faster 

than an algorithm with running time O(n2) for suffi- 

ciently large n. Is n = lo6 large enough? Asymp- 

totic analysis of algorithms is of little help to answer 

where fi(z) measures the frequency of execution of a 

certain set of operations M; and Ci measures the exe- 
cution time of Mi on an idealized Random Access Com- 
puter. The theoretical analysis provides approximations 

for the execution frequencies fi (z), for example in the 

worst or average case. 
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where Ci,j,z is the time for the j-th execution of Mi 
on input I, taking into account whether or not data 
are present in the cache, for example. The coefficients 

G,j,z may vary by a factor F, which is the quotient 

between the fastest and slowest possible execution of an 
instruction. The execution time for a single instruction 
may vary widely, e.g. on one of the architectures used 

for experiments (Pentium with 8-3-3-3-burst and 60 
MHz external clock) F is close to 30 for a 200 MHz 

CPU ( the burst access to main memory takes about 
130 ns to transfer the first 64 bit package which is 26 
times the clock cycle of the processor). Nevertheless 

we will argue in section 3 that the execution time 

of many interesting programs can be approximated as 
in equation (1.1) within a constant factor p which is 
much smaller than F. Moreover, the set of necessary 

constants Ci is fairly small, even for complex algorithms 

[6] and can be determined with automated experiments, 
executed once for each platform. 

There are basically two approaches for the determina- 
tion of the Gi in the literature: 

Regression analysis: It is easy to instrument a pro- 

gram such that the total running time T(t) and the 
execution frequencies fi(x) are determined during a pro- 

gram run ([6],[8]). It is therefore tempting to measure 

T(t) and fii(z) f or a large number of inputs t and to 
determine the constants Ci by regression analysis. We 
will argue in section 4.1 that this approach is unsound in 
general because of systematic measurement errors. For 

example, we should expect the Ci to systematically de- 
pend on input size, e.g., due to cache misses. However, 

regression analysis is only meaningful when measure- 
ment errors are statistically distributed. 

Operation counting: This technique basically counts 

the operations of a program and estimates the time 
for the execution of the underlying assembler structure. 

[2] describes a technique called ‘mem-counting’, which 
charges memory references by insertions of counter in- 

structions into the source code for each such instruction. 
Methods based on operation counting provide feasible 
running time predictions, but they are costly to auto- 
mate (section 4.2). 

In this paper we present a new approach for the au- 

tomated determination of the coefficients Ci, which we 
call timing of equivalent code fragments. We will argue, 

that it is possible to design experiments which execute 

a fragment in isolation (so that the interpretation of the 
timing needs no regression analysis), which execute the 

fragment approximately within its real context (so that 
the timing reflects the actual running time) and which 
execute the fragment many times (so as to minimize the 

effect of measurement errors). 

In order to reach these three goals the experiments 
time slightly modified code fragments. The fragments 
are similar to the original as far as the executed oper- 

ations and the locality of memory references are con- 

cerned. We calls such fragments equivalent code frag- 

ments. 
As a test for our approach we have chosen an im- 

plementation in C of a hierarchy of algorithms and data 
structures. The top level consists of an algorithm for the 

maximum weighted bipartite matching (MWBM) prob- 

lem which uses Dijkstra’s algorithm as a subroutine. 
The implementation of Dijkstra’s algorithm is based on 

a Fibonacci heap. Both algorithms use a graph repre- 
sentation based on adjacency lists. 

This test set has many properties which complicate 

running time prediction. It consists of several levels of 

algorithms, only an amortized analysis of the costs is 

possible and the execution frequencies depend strongly 
on the distribution of the edge weights as well as the 

order in the adjacency lists, not only on the number of 

edges and nodes. Additionally, the Fibonacci heap is 
a fairly complicated data structure which uses heavily 
dynamic memory allocation for small objects. 

We performed experiments on a variety of machines 

with Pentium (CISC) and Spare (RISC) architecture 

and different operating systems (Linux, SunOS and 
Solaris) (section 4.3.1,page 6). We used random inputs 
for the experiments, the execution frequencies of each 
instance were determined experimentally. The input 

sizes varied from 1000 up to 100000 nodes and 1000 to 
400000 edges. The actual execution times varied from 
a few milliseconds up to several minutes. In all cases 
the measured time was within 50 % of the predicted 
time (and usually closer, fig. 3, page 9). The actual 

execution times varied from a few milliseconds up to 
several minutes. Moreover, for the determination of 

the running time constants inputs with less than 50000 

nodes or edges were sufficient, since the constants reach 
asymptotically a maximum once memory usage exceeds 
the size of the cache. Thus our method allows not only 
interpolation, but also extrapolation. 

Due to the arguments in section 3 and the experi- 
menta1 results it is likely that the method will produce 

useful results for combinatorial algorithms in general. 
The identification of code fragments and their replace- 

ment by equivalent code fragments is a potential source 

of error. We implemented redundant experiments for 

several code segments and found that different experi- 

ments produced similar running time coefficients. We 
conclude that the method is robust. 

Additionally, the hierarchical structure demon- 
strates the compatibility of our approach with the hier- 
archical structure of algorithms. The constants of sub 
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algorithms can be reused in the running time prediction 

as the methods in implementations. 
Running time constants can be combined with any 

kind of theoretical analysis {known execution frequen- 

cies, best case frequencies, worst case frequencies, aver- 

age case frequencies) to make predictions. If the theoret- 
ical analysis provides the execution frequencies within 

a constant factor, time prediction is possible within a 

constant factor. In the other cases the error in the time 

prediction is dominated by the error of the theoretical 

analysis. An example is given with an average case anal- 
ysis of Dijkstra’s algorithm (page 8). Additionally the 
constants evaluated with our method allow comparisons 

between different implementations and hardware. 

2 Code Fragments 

How does one find feasible code fragments to be used in 

equation (l-l)? A code fragment is a piece of straight- 
line code with ‘holes’. The identifying property of code 

fragments is that execution of the program executes 

every instruction of the fragment the same number of 
times. Due to this fact feasible code fragments are de- 

fined quite naturally as loop bodies, branches of con- 

ditionals and function bodies. The holes correspond to 
nested fragments, e.g. nested loop or nested function 
bodies. 

Frequently one may merge code fragments into 

larger units without violating this property, e.g. when 

both branches of a conditional execute an approximately 
equal set of instructions or a function call has constant 
execution time. We found identification of feasible code 

fragments a fairly straightforward task. 

3 Context Sensitivity 

As mentioned, the execution time of an instruction 
depends on its context. In this section we will show, 

that for many interesting programs the variation of the 

execution time of a code segment due to caching and 
pipelining can be expected to be much smaller than the 

worst case variation of the execution time of a single 

instruction. 

We discuss caching first. We call a reference to 
memory local if no cache miss occurs, and nonlocal 
otherwise. The 90/10 rule [3] states that a program 

executes 90 % of its instructions in 10 % of its code, 
which we call the ‘core’ of the program. An example 

calculation in [3] assumes, that only the fraction of the 

core which fits into the cache simultaneously produces 
no cache misses. But the experimental results in the 

same book show much better cache hit rates. Already 

1 kB 2-way associative cache reduces the cache misses 

on a Unix machine to 20 % of the instructions. 
This result is not surprising. In most programs 

the code of inner loops is smaller than a few thousand 

bytes. The core of a program consists of many small 
pieces which are executed in the cache one after the 

other. Therefore it is realistic to assume that 80-90 % 
of the instructions are local. So a highly associative 

cache (2-way or more), that is bigger than the average 
loop size, gives a minimum hit rate of about $0 % for 

instructions. By the above, we should expect this hit 
rate independent of program size. 

Data access is less local than instruction access [3]. 

However, even for data references there are frequently 
at least two local data references for every nonlocal 
reference. For example, for a nonlocal access to an array 

element, the access to the base address of the array and 

to the offset are usually local. The experimental data 
in [3] confirm, that at least 50 % of the data references 

are local. 
In the case of some kB highly associative cache 

and ordinary programs the following rules of thumb are 

plausible: 

1. There are at least as many code references as data 

references. 
2. At least 50 % of the data references are local. 

3. At least 80 % of the code references are local. 

Consider a sequence of n, accesses to instructions 

and nd accesses to data, and let n = fzc + nd. Under the 

assumptions above the maximum experienced slowdown 

S due to cache misses is 

For F = 30, we have 6 5 11.15. We will next argue that 

the actual factor is much smaller for equivalent code 

fragments. 
A code fragment, that belongs to a leading term 

in the running time, is executed many times. It will be 
embedded in a loop or recursion. After a certain number 
of repetitions, the context of the loop is dominated by 

the loop itself, Together with an input for the fragment 

which produces a similar locality of code and data 
references, caching efficiency between experiment and 
original will not differ too much. For a similar context 

the efficiency of a pipeline is similar too. 

There are cases, in which the context cannot be 
reproduced well. These are code fragments, which are 

executed multiple times, but between their executions 
intermediate code is executed. But already with an 

instruction cache of a few kB either the probability, 

that the fragment is still present in the cache at the 
time of the next execution, is high or the intermediate 

code dominates the running time. 
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Usually the code fragments are about 1 kB or 
smaller. If enough code is executed between two 
repetitions of our hypothetic fragment to push it out 
of several kB of instruction cache, it has to take several 

times longer. Worst case scenarios can be constructed, 

but the empirical results [3] show that they are not 

likely to happen. Altogether, we conclude that for each 

code fragment there is a constant Cj such that the 

context-sensitive execution time of the fragment lies in 

some interval [Cj /F, Cj F] for some hardware dependent 

F<<& 

The approximation neglects pipelining. The exper- 

iments in [3] show that the speedup resulting from a 
pipeline depends strongly on the optimization of the 

compiler and the individual pipeline. There are three 

classes of events that decrease the efficiency of a pipeline 

by producing a ‘stall’ [3]: 

1. A resource conffict of the hardware. An instruction 

pair can not be executed with overlap. 
2. A data conflict, if an instruction needs the result of 
a previous instruction. 

3. Instructions that change the program counter, as 

branches and jumps. 

The proposed method of equivalent code fragments 
times code fragments that are very similar to the actual 

code fragments. Thus approximately the same number 
of stalls is to be expected and therefore pipelining has 
very little influence on the quality of our predictions. 

4 Methods 

A first idea about the execution time of an algorithm 
can be obtained by simply running it on a few different 
inputs. Together with the theoretical analysis this 
simple approach gives the order of magnitude of the 
expected execution time in many cases. But no claim 
about the accuracy of the determined values can be 

made and automation requires generators for feasible 

inputs and a more sophisticated analysis, which leads 

us back to the determination of a set of running time 
constants. Two approaches to determine the constants 
Ci are described in the literature. 

4.1 Regression Methods 

The first class of methods is the numerical analysis 
of experiments. It is for example used in [6] and [S]. 

‘Counters’ at feasible positions in the program provide 

the execution numbers for individual inputs. Even for 
complex algorithms the number of necessary counters 

is limited. In [6] the authors represent code subsets 
with so called ‘bottleneck operations’. Even if not only 
the leading terms are taken into account, the number 
of necessary counters is small. For Dijkstra’s algorithm 
based on a Fibonacci heap 9 counters are sufficient. 

The result of a set of N measurements with different 
inputs is a set of N data points (t;, &(” . . .ji”‘), i = 

1 v-*-t N where ti is the measured running time and $” 

is the execution frequency of the I-th code fragment. We 

also have a functional relationship 

T= ~f’j’cj(l+Ej) 
j=l 

with unknown constants Ci and small &j’s depending 
on the context of the j-th execution. Fit methods 

determine constants (~1,. . . , cry such that the model 

function T’ = Cf(jj oj approximately passes through 

the given data points. There is no reason to believe that 

this implies that the crj’s approximate the Cj’s. In fact 

we saw negative values for aj’s in experiments (which 
used singular values decomposition [5] for the fit. 

4.1.1 Least Square Approximation 

Least square approximation is a popular fit method. 

It assumes that the deviation 

in the i-th measurement is normally distributed with 
some standard deviation c (independent of i) and that 
the errors in the measurements are independent. Under 
this assumption the probability P for a given set of N 

measurements (assuming the cryi to be correct) is given 

by 

P=fi ( 1 [ ( t.-t(f!“,...,f!y 2 
exp -- ’ ’ z 

2 )I 1 At 

i=l 
u 

Least square approximation determines the parameters 

~I,.*., a&f so as to maximize P. 

In our case the deviation Ai consists of two parts, 

namely the modeling error C fi(3)CjEj and the mea- 

surement error (the difference between the true running 
time and the measured running time). Only the mea- 
surement error is statistical, the modeling error is sys- 

tematic. 

4.1.2 Systematic Errors 

For the time measurements described in section 3, 

the dominating error is caused by the context sensitivity 
of the execution time of an instruction, since the model 

does not take features as caching and pipelining into 
account. For example, an input with high locality is 

processed significantly faster than an input with lower 

locality. This is a systematic error. 
How does this systematic error influence the fit of 

a running time function? The systematic error defines 
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a qualitative behavior that is approximated by the fit. 
Assume a model function 

m(N)=A+BlogN+CN 

and a set of measurements of m(N) for different N, 
where N is the input size and a smaller N is equiva- 

lent to a higher locality in the program. A cache causes 
a positive second derivative of m(N). The fit approxi- 

mates this positive second derivative by increasing the 

value of C and by making B negative. The relative error 

of B is bigger than 1. Additionally, the leading coeffi- 

cient is increased by an unknown factor that depends 
on the choice of the input sizes. 

Fit methods are extremely sensitive against system- 

atic errors as they appear in the running time measure- 

ments. Even if a set of experiments is chosen ‘well’, 

bounding the errors in the coefficients is impossible, 

since the conditions for the statistical analysis, correct- 
ness of the model function and a known error distribu- 

tion, are not fulfilled. 

4.2 Operation Counting 

The second class of methods basically counts all 
operators, function calls and references in a program. 

Since these instructions can be mapped to assembler 

code, the expected number of clock cycles for the 
execution is known and on this base a time constant 

can be calculated. This method gives feasible results [Z] 
but it is difficult to automate. 

One approach for automation is the modification 

of a compiler. The compiler just counts the weighted 
operators ( function calls are represented by the () 

operator) in a loop or function for subsets of code 

identified by the user. But this solution depends on 
the compiler which has to be available on all different 

hardware platforms and for the different programming 
languages. Additionally the calculation of the context 

dependent weights and the modification of a compiler is 
costly. 

Operator overloading provides a second way to 

count operators automatically. The operations of a pro- 

gram are replaced with versions, which count themselves 

depending on the context. But in this case a data struc- 

ture has to be maintained that tracks the context during 
the execution of the program. The implementation of 

t,his data structure is basically as complex as the in- 

vestigated algorithm itself. Additionally, this approach 

depends strongly on the language and requires usually 
changes in the implementation of the algorithm. In 

C++ the whole class of pointer declarations can not 
be overloaded. For example each declaration of an ar- 

ray type a[] and each access a[i] has to be replaced in 
the implementation by defining an appropriate class. 

A profiler determines directly the running times for 

code fragments. If the profiler provides the execution 
time for each line of code, the running time constants 
can be determined out of these data. But the profiler 

requires additional code in the program and code opti- 

mization is impossible or disturbs the measurement of 

the profiler. The profiler gives information about the 
relations between the running times of a program, but 

not the absolute values. 

As a result, operation counting provides feasible 

values for the constants, but the automation is costly 

and depends on the language or the compiler. 

4.3 Equivalent Code Fragments 

Since fitting data for different inputs is not sufficient 

to control the error in the time prediction, a different 

method is necessary to determine the constants Ci. The 

following properties are required: 

1. The constants Ci are determined within a constant 

factor, that depends only on the hardware. It is 
sufficient to control the error in the single coefficients, 
since the running time is a linear function in these 

coefficients. 

2. The results are compatible with modular or object 

oriented programming. If an algorithm is used as a 

subroutine, its constants can be reused. Only the new 

code has to be investigated. 

3. No changes in existing code are necessary. For 

the automatic determination of the constants only an 

additional set of functions, or methods from the object 
oriented point of view, is necessary. The concept is 
independent of the programming language in a certain 
range (C, C++, Pascal, assembler, . ..). Programming 

environments that include the execution of indirect 

tasks, like automatic garbage collection, are not allowed. 

Such tasks are separate algorithms which have to be 

analyzed separately. 

The concept of equivalent code fragments provides 

these properties. As we mentioned, even complex 

algorithms consist of a limited number of subsets of 
code (code fragments), executing each fragment with 

a certain frequency. The target is the approximation of 
the running time of the individual code fragments that 

are the constants Ci in the model function. 

Since the separation of individual constants by 

a fit is not feasible, the constants are determined 
with individually designed experiments. However, real 
problem instances and the original code are not used, 

they are represented by modified code fragments and 

special inputs for these fragments. The modified code 

fragments have to be similar in the number of operations 
and the locality to the original code fragments, they are 

equivalent. 
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As an example we present here one of the equivalent 
code fragments for the investigated implementation of 
Dijkstra’s algorithm, the interior of the loop which 

cuts nodes out of the heap during a DECREASEKEY- 

operation. MFHEAPCUT is a function with code, 
which is executed once per call. The code fragment 
is embedded in a loop performing the repetitions to 

achieve sufficiently long execution times. 

InitHeasureO ; 
for (j=O;j<r;j++) { 

r = parent; 

do I 
y = x->paxent; 
HFHeapCut(H,r); 
if (x->kay < I+>min-ptr-lkey) 

E-ABin-ptr = XI; 

) while (t%ark) ; 
1 
EndHeasure ( 1; 
blackhole(1, k( B->min-ptr->key)); 

Two problems have to be considered in the determi- 

nation of the constants. The first is the design of feasible 
equivalent code fragments for the individual constants. 
The second is the automation of measurements and their 

analysis. If a measurement is not successful this has to 
be recognized instead of providing a wrong constant if 

possible. 
Goal of the experiments is the determination of the 

running time for the execution of a code fragment of 
the implementation. From the analysis of the possible 

errors follow some rules for the design of equivalent code 
fragments. 

l The running time of the experiments depends on the 
amount of memory that is used, since this influences the 

locality of the references. An experiment should use a 

similar amount of memory as the original code. In the 

memory range, that requires no swapping, the running 

time approaches asymptotically a maximum. As a 
result a good extrapolation behavior can be expected. 
l To guarantee a sufficient accuracy of the time mea- 

surement, ‘minimum measurement time loops’ (MMTL) 
should be used wherever possible. The experiment mea- 

sures the time for a number of repetitions of the code 

fragment. This number is increased if the total time is 
smaller than some constant. All tested systems provide 

a timer with an accuracy of at least 50 ms, so a mini- 

mum time of 2000 ms guarantees a sufficient accuracy. 

l The measured code should execute at least 5 times 

more instructions than the MMTL environment. 
l The system calls ma&c and free have to be handled 
with care. They do not have a constant running time 
per call on all systems. They are separate algorithms, 
that have to be analyzed separately. The SunOS version 
of free has a worst case running time that is linear 

in the number of earlier allocated blocks. The Linux 
version does not show this effect. But on the tested 
platforms the assumption of constant execution time for 
these functions is feasible. 

l Experiments have to be designed in a way, so that an 
optimizer isn’t able to remove repetitions. A function 
blackhole can be used which accepts a pointer as an 

argument and is compiled in its own module. Calling 
this function with a data structure ‘by reference’ outside 

of the measurement loop is a helpful tool for this task. 

4.3.1 Automation 

The determination of the running time constants is 

performed automatically by two additional programs, 

the controller and the worker. They perform the 

individual experiments and calculate the execution time 

constants. We discuss some design issues for the 
controller and the worker. 

0 Cumulative memory fragmentation from one exper- 
iment to the next has to be avoided. For this pur- 

pose, the experiments are combined in one program (the 
worker), which performs one of them per call, controlled 

by command line parameters. The management of the 

experiments is done by a second process (the controller), 
which starts the worker with the Unix system call ‘sys- 
tern0 or an equivalent system function on other sys- 
tems. Due to this structure each experiment starts with 

a freshly initialized internal memory management of the 
worker. 

l To consider different cache hierarchies and timing ac- 
curacies on the target platforms, the experiments accept 

parameters to control the number of repetitions, the 

minimum execution time and the amount of elements 
(memory) for the execution. As a result the dependency 

of constants on memory usage can be investigated. 
l During the experiments, only the necessary system 

processes are allowed to run, since the elapsed time 
is measured, not the CPU time. CPU time does not 

consider minor and major page faults and time spent 
with waiting for data from hard-disk or network [9]. 
Programs which use dynamic storage allocation cause 

minor page faults even if no swapping is necessary. CPU 

time can be used as an approximation but then only 
CPU time is predicted, not elapsed time. 

l If not enough free memory is available for the algo- 
rithm, inactive code is swapped or rearranged to obtain 

sufficient connected memory. Repeated execution of the 

experiment and careful evaluation of the data insures, 

that the calculated constants are not disturbed by this 
effects. As a result, the execution of the algorithm in 
a program might take a small and constant amount of 

time longer than the predicted time, depending on the 
total amount of memory the system has to provide for 
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it.. But for bigger instances which need more than a 
few seconds this error is neglectable. The times for real 

problem instances given in figure 3 are measured execut- 
ing the algorithm once, but with sufficient free memory 

for the process. 

l Obviously the predicted running times apply only if 
there is sufficient memory to keep algorithm and data 

in main memory during execution. 

Experiments were performed on the following hard- 
ware platforms: 

1. Pentium 133 MHz, 32 MB RAM (60 ns), 8 kB in- 

ternal cache for instructions and 8 kB for data, 256 kB 
external pipeline-burst-cache, operating system Linux. 

2. Spare ELC, 16 MB RAM, operating system SunOS. 

3. Spare 5, 85 MHz, 64 MB RAM, 16 kB internal cache 

for instructions and 8 kB internal cache for data, oper- 

ating system Solaris. 

4.Sparc 4, 110 MHz, 64 MB RAM, internal cache, 16 
kB for instructions and 8 kB for data, operating system 

Solaris. 

Since only a few basic system calls are used, the 
sources, makefiles and scripts could be used on all 

platforms without change. Only a possibility for time 
measurement and the execution of processes out of 
another process are necessary, so the transfer to non- 

Unix systems is not costly. 

4.3.2 Analysis of the Measurement Results 
Each experiment provides one (single run) or a 

sequence of values (MMTL) for a constant. For the time 
measurement the function gettimeofday() is used. The 

evaluation of the measurements is non-trivial. There 
are systematic errors and outliers. Outliers, which are 
much higher than the other values, occurred in many of 

our experiments. They occur especially on multitasking 
systems, but not only on them. Even if no other 

user processes are running, some interruptions by the 

system are possible. Another typical error is observed 
in the results of MMTLs. The short total time of a 

small number of repetitions produces an error due to 

the accuracy of the time measurement. For a high 
number of repetitions the memory management causes 

an increase of the values even before the system reports 

a major page fault in the result of a getrusageo call, 
due to minor page faults. 

To eliminate outliers before calculating the average, 
a robust method is necessary for the evaluation. Fig. 1 

shows a sequence from a MMTL run, which contains 

several outliers. 
If no other processes disturb the measurements, a 

cumulation of values can be expected. This property is 
used to eliminate strongly defective values. Let M be 

a set of N measurements. We choose a constant A > 1 

b-4 

0.40 - 

0.20 - 

0.00 - 

** 
* 

**** *** 
** 

** 
******* 

2 8 16 
repetitions 

Figure 1: Sequence of values from a MMTL 

with 1, 2, 4, 8, . . . repetitions. 

(we used A = 10) and search for an interval 

[R-f, R] with #([R- %]“&I) > :N, 

i.e. a short interval containing the majority of the data 

points. All data points outside the interval [R - R/A] 

are considered outliers. 
The measurement values are sorted by their value 

and the algorithm starts with an interval I,. = [R - 
R/A, R] where R is the biggest value. Now smaller 

measurement values are chosen in decreasing order for R 

as long as I, contains less than N/2 values. If no interval 
is found the set of measurements is not accepted, 
otherwise the average of the values in the interval with 
lowest R found is returned as approximation of the 

constant. 

5 Example Algorithms 

As mentioned above we have chosen a hierarchy of algo- 
rithms to test our method.The top layer is a MWBM- 

algorithm which determines the heaviest matching in a 
weighted bipartite graph (Contrary to the assignment 

problem, the maximum matching does not have to be 

perfect). 

The MWBM-implementation uses a modified ver- 
sion of Dijkstra’s algorithm. The modification is an 
additional condition which stops execution if a feasible 

augmenting path is found. The original implementation 

of Dijkstra’s algorithm as well as the modified version 

both use the implementation of a Fibonacci heap as 

priority queue and a data structure GRAPH based on 
adjacency lists. Due to the similarity the modified ver- 

sion of Dijkstra’s algorithm is assumed to have the same 

execution time constants as the original. 

Running time predictions for these algorithms is 
complicated by the following facts: Only an amortized 
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analysis of the costs is possible and the execution 
frequency of the code fragments depends strongly on 
the choice of the edge weights and the order of the edges 

in the adjacency lists, not only on the size of the input 

graph G. 
Dijkstra’s algorithm needs O(N + M) steps of 

constant time and N INSERT, N DELETEMIN and O(M) 

DECREASEKEY operations on the priority queue for a 

graph with N nodes and M edges. Let Gb = (V,, Vb, M) 

be a bipartite graph, and V, the smaller set of nodes 

without loss of generality. Our implementation of the 
weighted bipartite matching algorithm starts Dijkstra’s 

algorithm for each node 2 E V, to determine a feasible 

augmenting path starting at 2, augments along this 

path by reversing the edges and updates the node 

potentials. N, = IV,\ calls of Dijkstra’s algorithm, N, 

augmentations along paths with a length of at most 2N, 
and N, updates of at most N, + Nb node potentials are 
performed. 

5.1 Running Time 

Although a detailed description of the implemen- 
tations and the resulting constants exceeds this paper, 

we give expressions for the different running times as 
examples for possible types of running time predictions. 

5.1.1 Fibonacci Heap 

The basic operations Insert, DeleteMin, De- 

creaseh’ey, CreateHeap and DestroyHeap can be ex- 

pressed in terms of 8 counters and 12 constants. Each 
execution time is an equation of the type (1.1). The set 
of constants is determined by 13 experiments. 

The additional operation DestroyHeap deallocates 
the elements in the heap by traversing the data structure 

recursively, which is more efficient than repeated calls 
of DeleteMin. This allows an improvement in the 

MWBM-implementation, since the modified version of 

Dijkstra’s algorithm used by the MWBM-algorithm 
does not remove all elements from the heap. 

The worst case analysis provides an upper bound 
for each counter in the execution time. Replacing the 

counters with this bounds gives a worst case approxima- 
tion of the running time. For a sequence of N Insert-, 

L DeleteMin- and M DecreaseKey-operations we have 

Theap(N, L, M) 5 cH1 + (N - L) cH2 

+NCH~+MCH~+LCH~ 

+ 1.5L log,(N) CHs 

The constants CH= in this expression are sums of 
subsets of the 13 values determined experimentally. If 
each DecreaseKey violates the heap conditions, this 
prediction is tight within a small constant factor. 

5.1.2 Dijkstra’s Algorithm 

The execution time for Dijkstra’s algorithm involves 

four additional constants. 

TDijk() = NDI CD1 + ND~ CD2 

N Dccliey 

+ ND~ CD3 + c TDec~ey(j) 

j=l 

ND3 

+ CD4 + T~estroy 0 + c TDelMin (j) 

j=l 

With upper bounds for the counters N, the worst case 

execution time is approximated by 

TDijk(N, M) 5 M CDI + Tkeap (N, N, W 

+ CD4 + N (CD2 + cD3) 

for an input graph with N nodes and M edges. 
For random connected graphs the execution 

can be approximated by 

time 

TDijk(Nt M) X CD4 -I- CHI -I- M CD1 

-i- N (KD~ + KD~ •F CHA -I- CHA) 

+ 1.5 N log,(N) CH5 

+ (N log, (1 + M/N) - N) 0.5 cH4 

since it is unlikely that the shortest paths contain a 
number of edges [ll] [12]. 

large 

The execution time for the maximum bipartite 
matching algorithm is 

TMwbm() = E[TDijk(i) + TA4Aug(i) + Trued] 
i=l 

+CMwbm 

TAug(i) = CAFE + NAug(i) C’A~~L 

TW(i) = CUpd + Nupd(i) CQ,dL 

The code of the main loop can be neglected compared 

to the function calls. In the worst case, the execution 

time is 

TMwbm(Na, Nb, M) = 

CMwbn + [NA + NB] CMlnitL + NA CMwbmL 

+Na [TDijk(Nt N, M) + TAU&%) + T+d(N)] 

5.1.3 A Code Fragment - CutLoop 

In this section the experiments for the code frag- 
ment listed in section 4.3 are described as an exam- 
ple. The code fragment corresponding to the con- 

stant Ccvthp is performed during the DECREASEKEY- 

operation. Two experiments were implemented to de- 

termine Ccut~oop to get the possibility to compare the 
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Figure 2: The dependency of Ccvt~oop on memory 

usage, with and without optimization. (. = ELC ; * 

= Spare 5 ; * = Spare 4 ; 0 = Pentium 133) . 

results of a direct loop on the original code and a mod- 

ified code fragment in a MMTL. Both experiments use 

the same special heap structure that results in N exe- 
cutions of the loop. 

The difference of the 2 experiments is the function 

call to cut a node. The first version of the experiment 
uses the original function FHEAPCUT, the second ver- 

sion uses a modified version MFHEAPCUT that per- 
forms almost the same operations, but without chang- 
ing the data structure. This means the nodes are not 
really cut. Since the first experiment changes the data 
structure, no MMTL is possible in this case. 

The amount of memory usage is 64 bytes per 

element. The cache structure of the different platforms 
is visible in the experiments (Figure 2). The direct 

experiments with 100000 elements give similar values 
to the values in figure 2 (P133 -g: 0.951 ps , -0: 0.811 

,us; Spare 5 -g: 1.9 ps , -0: 1.25 ps; Spare ELC -g: 
7.6 ,us , -0: 4.6,~~). 

5.1.4 Time Prediction 

The running time constants were automatically de- 

termined with identical code on the different hardware 

platforms. Constants for code fragments with fixed 

memory usage were calculated as the average of 10 mea- 
surements. The constants for scalabIe experiments were 

determined out the set of values given by the MMTL. 

First the smallest value is identified. This value belongs 

to an experiment with low memory usage. As a sec- 
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Figure 3: Execution times ( * = predicted 
with frequencies ; * = average case analysis; o 
= measured), compiled with ‘gee -0’. 

higher memory usage than the first identified experi- 

ment is chosen. This prevents taking errors into account 

due to the MMTL environment code which increases the 
constants for very low memory usage in some cases. 

Although with A = 10 a strong stability criteria 

was used during the elimination of strongly defective 
data points, most experiments were successful. Only a 

few values for a certain size of an experiment were not 
determined in the first run. But in this case sufficient 

values for other sizes were obtained to calculate the me- 

dian out of the values for different sizes. An experiment 
is called successful if the point elimination terminated. 

The algorithm stops without result if no intervals with 

more than 50 % of the data points are found. 

If an experiment is not successful, an automatic 3 

step strategy is possible to get a result. In many cases a 
simple repetition of the experiment is successful, if the 

ond value the biggest value out of the experiments with drop out was caused by a temporary interruption. If the 
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experiment used an MMTL, the rate of the exponential 
increase of the repetitions can be decreased. So more 
points in the range with high accuracy are obtained. As 

a last step the parameter A can be decreased. 

6 Conclusion 

As the experimental results show, the concept of equiva- 

lent code fragments provides a method for the automatic 
determination of running time constants within a small 

constant factor. Even without the investigation of the 

memory dependency of the constants good approxima- 

tions can be expected by choosing experiments with a 

memory usage in the order of magnitude of the size of 
the cache. 

Only basic system functions are used, which are 

available in most programming environments. Since the 

experiments are supposed to be similar to the original 
code fragments, their design and implementation is less 

costly than the implementation of the algorithm itself. 

The calculated coefficients are compatible with the 

concepts of modular and object oriented programming 
when the algorithm is used in a wider context. 

The comparison with operation counting shows, 

that the method of equivalent code fragments is less 

costly to automate. Additionally the context of the 
executions is considered partly due to the similarity 

between code and experiments, which is very difficult 

in the case of pure operation counting. 
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