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Abstract. SLAs are contractually binding agreements between service
providers and consumers, mandating concrete numerical target values
which the service needs to achieve. For service providers, it is essential to
prevent SLA violations as much as possible to enhance customer satisfac-
tion and avoid penalty payments. Therefore, it is desirable for providers
to predict possible violations before they happen, while it is still possible
to set counteractive measures. We propose an approach for predicting
SLA violations at runtime, which uses measured and estimated facts (in-
stance data of the composition or QoS of used services) as input for a
prediction model. The prediction model is based on machine learning
regression techniques, and trained using historical process instances. We
present the basics of our approach, and briefly validate our ideas based
on an illustrative example.

1 Introduction

In service-oriented computing [1], finer-grained basic functionality provided us-
ing Web services can be composed to more coarse-grained services. This model
is often used by Software-as-as-Service providers to implement value-added ap-
plications, which are built upon existing internal and external Web services.
Very important for providers and consumers of such services are Service Level
Agreements (SLAs), which are legally binding agreements governing the qual-
ity that the composite service is expected to provide (Quality of Service, QoS).
SLAs contain Service Level Objectives (SLOs), which are concrete numerical
target values (e.g., “maximum response time is 45 seconds”). For the provider
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it is essential to not violate these SLOs, since typically violations are coupled
with penalty payments. Additionally, violations can negatively impact service
consumer satisfaction. Therefore, it is vitally important for the service provider
to be aware of SLA violations, in order to react to them accordingly.

Typically, SLA monitoring is done ex post, i.e., violated SLOs can only be
identified after the violation happened. While this approach is useful in that it
alerts the provider to potential quality problems, it clearly cannot directly help
preventing them. In that regard an ex ante approach is preferable, which al-
lows to predict possible SLA violations before they have actually occurred. The
main contribution of this paper is the introduction of a general approach to pre-
diction of SLA violations for composite services, taking into account both QoS
and process instance data, and using estimates to approximate not yet available
data. Additionally, we present a prototype implementation of the system and an
evaluation based on an order processing example. The ideas presented here are
most applicable for long-running processes, where human intervention into prob-
lematic instances is possible. Our system introduces the notions of checkpoints
(points in the execution of the composition where prediction can be done), facts
(data which is already known in a checkpoint, such as the response times of
already used services) and estimates (data which is not yet available, but can
be estimated). Facts and estimates can refer to both typical QoS data (e.g., re-
sponse times, availability, system load) and process instance data (e.g., customer
identifiers, ordered products). Our implementation uses regression classifiers, a
technique from the area of machine learning, to predict concrete SLO values.

2 Illustrative Example

To illustrate the ideas presented in this paper we will use a simple purchase order
scenario (see Figure 2 below). In this example there are a number of roles to
consider (reseller, customer, banking service, shipping service, and two external
suppliers). Whenever the reseller service receives an order from the customer, it
first checks if all ordered items are available in the internal stock. If this is not
the case, it checks if the missing item(s) can be ordered from Supplier 1, and, if
this is not the case, from Supplier 2. If both cannot deliver the order has to be
cancelled, otherwise the missing items are ordered from the respective supplier.
When all ordered items are available she will (in parallel) proceed to charge the
customer using the banking service and initialize shipment of the ordered goods
(using the Shipping Service). Please refer to [2] for more details on this case.

In this case study, the reseller has an SLA with its customers, with an SLO
specifying that the end-to-end response time of the composition cannot be more
than a certain threshold of time units. For every time the SLO is violated the
customer is contractually entitled a discount for the order. Note that even though
our explanations in this paper will be based on just one single SLO, our approach
can be generalized to multiple SLOs. Additionally, even though we present our
approach based on a numerical SLO, our ideas can be also applied to estimation
of nominal objectives.
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3 Predicting SLA Violations

In this section we present the core ideas of our approach towards prediction
of SLA violations. Generally, the approach is based on the idea of predicting
concrete SLO values based on whatever information is already available at a
concrete point in the execution of a composite service. We distinguish three
different types of information. (1) Facts represent data which is already known
at prediction time. Typical examples of facts are the QoS of already used services,
such as the response time of a service which has already been invoked in this
execution, or instance data which has either been passed as input or which
has been generated earlier in the process execution. (2) Unknowns are the
opposites of facts, in that they represent data which is entirely unknown at
prediction time. Oftentimes, instance data which has not yet been produced
falls into this category. If important factors are unknown at prediction time the
prediction quality will be very bad, e.g., in our illustrative example a prediction
cannot be accurate before it is known whether the order can be delivered from
the reseller’s internal stock. (3) Estimates are a kind of middle ground between
facts and unknowns, in that they represent data which is not yet available, but
can be estimated. This is often the case for QoS data, since techniques such as
QoS monitoring [3] can be used to get an idea of e.g., the response time of a
service before it is actually invoked. Estimating instance data is more difficult,
and generally domain-specific.

The overall architecture of our system is depicted in Figure 1. The most
important concept used is that the user defines checkpoints in the service com-
position, which indicate points in the execution where a prediction should be
carried out. The exact point in the execution model which triggers the check-
point is called the hook. Every checkpoint is associated with one checkpoint
predictor. Essentially, the predictor uses a function taking as input all facts
which are already available in the checkpoint, and, if applicable, a number of es-
timates of not yet known facts, and produces a numerical estimation of the SLO
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value(s). This function is generated using machine learning techniques. We refer
to this function as the prediction model of a checkpoint predictor. Facts are
retrieved from a facts database, which is filled using a number of QoS mon-
itors (which provide QoS data) and a Complex Event Processing (CEP)
engine (which extracts and correlates the instance data, as emitted by the pro-
cess engine). A detailed discussion of our event-based approach to monitoring is
out of scope of this paper, but can be reviewed in related work [2, 4]. Estima-
tors are a generic framework for components which deliver estimates. Finally,
the prediction result is transferred to a graphical user interface (prediction
GUI), which visualizes the predicted value(s) for the checkpoint. A predictor
manager component is responsible for the lifecycle management of predictors,
i.e., for initializing, destroying and retraining them. Additionally, predictions are
stored in a prediction database to be available for future analysis.

3.1 Checkpoint Definition

At design-time, the main issue is the definition of checkpoints in the composi-
tion model. For every checkpoint, the following input needs to be provided: (1)
The hook, which defines the concrete point in the execution that triggers the
prediction, (2) a list of available facts, (3) a list of estimates, and the estimator
component as well as the parameters used to retrieve or calculate them, (4) the
retraining strategy, which governs at which times a rebuilding of the prediction
model should happen, and (5) as a last optional step, a parameterization of the
machine learning technique used to build the prediction model. After all these
inputs are defined the checkpoint is deployed using the predictor manager, and
an initial model is built. For this a set of historical executions of the composite
service need to be available, for which all facts (including those associated with
estimates) have been monitored. If no or too little historical data is available the
checkpoint is suspended by the predictor manager until enough training data
has been collected. The amount of data necessary is case-specific, since it vastly
depends on the complexity of the composition. We generally use the Training
Data Correlation as a metric for evaluating the quality of a freshly trained model
(see below for a definition), however, a detailed discussion of this is out of scope
of this paper. After the initial model is built the continuous optimization of
the predictor is governed by the predictor manager, according to the retraining
strategy. Finally, the checkpoint can be terminated by the user via the prediction
GUI. We will now discuss these concepts in more depth.

Hooks. Hooks can be inserted either before or after any WS-BPEL activity (for
instance, an Invoke activity). Generally, there is a tradeoff to take into account
here, since early predictions are usually more helpful (in that they rather allow
for corrections if violations are predicted), but also less accurate since less facts
are available and more estimates are necessary. Figure 2 depicts the (simplified)
example from Section 2, and shows two possible checkpoints. In C1 the only facts
available are the ones given as input to the composition (such as a customer identi-
fier, or the ordered products). Some other facts (mainly QoS metrics) can already
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Fig. 2. Illustrative Example With Possible Checkpoints

be estimated, however, other important information, such as whether the order
can be served directly from stock, is simply unavailable in C1, not even as an es-
timate. Therefore, the prediction cannot be very accurate. In checkpoint C3, on
the other hand, most of the processes important raw data is already available as
facts, allowing for good predictions. However, compared to C1, the possibilities
to react to problems are limited, since only the payment and shipping steps are
left to adapt (e.g., a user may still decide to use express shipping instead of the
regular one if a SLA violation is predicted in C3). Finding good checkpoints at
which the prediction is reasonably accurate and still timely enough to react to
problems demands for some domain knowledge about influential factors of com-
position performance. Dependency analysis as discussed in [4] can help providing
this crucial information. Dependency analysis is the process of using historical
business process instance data to find out about the main factors which dictate
the performance of a process. When defining checkpoints, a user can assume that
the majority of important factors of influence need to be available as either facts
or at least as good estimates in order to achieve accurate predictions.

Facts and Estimates: Facts represent all important information which can al-
ready be measured in this checkpoint. This includes both QoS and instance data.
Note that the relationship between facts and the final SLO values does not need
to be known (e.g., a user can include instance data such as user identifiers or
ordered items, even if she is not sure if this has any relevance for the SLO).
However, dependency analysis can again be used to identify the most impor-
tant facts for a checkpoint. Additionally, the user can also define estimates. In
the example above, in C1 the response time of the warehouse service is not yet
known, however, it can e.g., be estimated using a QoS monitor. Since estimat-
ing instance data is inherently domain-specific, our system is extensible in that
more specific estimators (which are implemented as simple Java classes) can be
integrated seamlessly. Estimates are linked to facts, in the sense that they have
to represent an estimation of a fact which will be monitorable at a later point.

Retraining Strategy: Generally, the prediction model needs to be rebuilt when-
ever enough new information is available to significantly improve the model. The
retraining strategy is used to define when the system should check whether re-
building the prediction model is necessary. We currently support the following
retraining strategies: (1) periodic retraining (retraining is done in fixed intervals),
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(2) instance-based retraining (retraining is done whenever a certain amount of
new instances have been monitored), (3) on demand retraining (retraining only
on explicit user demand), (4) on error retraining (retraining when the mean pre-
diction error ē exceeds a given threshold), and (5) custom retraining (retraining
based on user-defined conditions).

Prediction Model Parameterization: A user can also define the machine learn-
ing technique that should be used to build the prediction model. This is done
by specifying an algorithm and the respective parameterization for the WEKA
toolkit1, an open source machine learning toolkit which we internally use in our
prototype implementation. In this way the prediction quality can be tuned by
a machine learning savvy user, however, we also provide a default configuration
which can be used out of the box.

3.2 Run-Time Prediction

At runtime, the prediction process is triggered by lifecycle events from the WS-
BPEL engine. These are events emitted by some engines, which contain lifecycle
information about the service composition. Our approach is based on these events,
therefore, a WS-BPEL engine which is capable of emitting these events is a prelim-
inary of our approach.When checkpoints are deployedwe use the hook information
to register respective event listeners. For instance, for a checkpoint with the hook
“After invoke CheckStock” we generate a listener for ActivityExecEndEvents
which consider the invoke activity “CheckStock”. We show the sequence of actions
which is triggered as soon as such an event is received in Figure 3.

After being triggered by a lifecycle event the checkpoint predictor first extracts
some necessary correlation information from the event received. This includes
the process instance ID as assigned by the composition engine, the instance
start time (i.e., the time when the instance was created) and the timestamp of
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the event. This information is necessary to be able to retrieve the correct facts
from the facts database, which is done for every fact in the next step (e.g., in
order to find the correct fact “CustomerNumber” for the current execution the
process instance ID needs to be known). When all facts have been gathered,
the predictor also collects the still missing estimates. For this, for every estimate
the predictor instantiates the respective estimator component (if no instance
of this estimator was available before), and invokes it (passing all necessary
parameters as specified in the checkpoint definition). The gathered facts and
estimates are then converted into the format expected by the prediction model
(in the case of our prototype, this is the WEKA Attribute-Relation File For-
mat ARFF2), and, if necessary, some data cleaning is done. Afterwards, the
actual prediction is carried out by passing the gathered input to the predic-
tion model producing a numerical estimation of the SLO value. This predic-
tion is then passed to the prediction GUI (for visualization) and the prediction
manager.

Note that the “intelligence” that actually implements the prediction of the
SLO values is encapsulated in the prediction model. Since we (usually) want
to predict numerical SLO values the prediction model needs to be a regression
model. We consider the regression model to be a black-box function which takes
a list of numeric and nominal values as input, and produces a numeric output.
Generally, our approach is agnostic of how this is actually implemented. In our
work we use multilayer perceptrons (a powerful variant of neural networks) to
implement the regression model. Multilayer perceptrons are trained iteratively
using a back-propagation technique (maximization of the correlation between the
actual outcome of training instances and the outcome that the network would
predict on those instances), and can (approximately) represent any relationship
between input data and outcome.

3.3 Evaluation of Predictors

Another important task of the prediction manager is quality management of pre-
dictors, i.e., continually supervising how predictions compare to the actual SLO
values once the instance is finished. Generally, we use three different quality met-
rics to measure the quality of predictions in checkpoints. The first metric, Train-
ing Data Correlation (corr = cov(P,M)

σpσm
), is a standard machine learning approach

to evaluating regression models. We use it mainly to evaluate freshly generated
models, when no actual predictions have yet been carried out. This metric is
defined as the statistical correlation between all training instance outcomes and
the predictions that the model would deliver for these training instances. The
definition given is the standard statistical definition of the correlation coefficient
between a set of predicted values P and a set of measured values M . However,
note that this metric is inherently overconfident in our case, since during train-
ing all estimates are replaced for the facts that they estimate (i.e., the training
is done as if all estimates were perfect). Therefore, we generally measure the

2 http://www.cs.waikato.ac.nz/~ml/weka/arff.html

http://www.cs.waikato.ac.nz/~ml/weka/arff.html
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prediction error later on, when actual estimates are being used. However, a low
training data correlation is an indication that important facts are still unknown
in the checkpoint, i.e., that the checkpoint may be too early. The actual quality
of the prediction is measured using the Mean Prediction Error ē =

∑n
i=0|mi−pi|

n ,
which is the average difference between predicted and monitored values. n is
the total number of predictions, pi is a predicted value, and mi is the measured
value to prediction pi. Finally, we use the Prediction Error Standard Deviation

(σ =
√∑ n

i=0(ei−ē)2)

n ) to describe the variability of the prediction error (i.e., high
σ essentially means that the actual error for an instance can be much lower or
higher than ē). ei is the actual prediction error for a process instance (mi − pi).
These metrics are mainly used to give the user an estimation of how trustworthy
a given prediction is. Additionally, the on error retraining strategy triggers on
ē exceeding a certain threshold.

4 Experimentation

In order to provide a first validation of the ideas presented we have implemented
the illustrative example as discussed in Section 2, and ran some experiments using
our prototype tool. All experiments have been conducted on a single test machine
with 3.0 GHz and 32 GByte RAM, running under Windows Server 2007 SP1.

For reasons of brevity we focus on prediction accuracy in this paper. To mea-
sure accuracy, we have implemented five checkpoints in the illustrative example
(see top of Figure 4): C1 is located directly after the order is received, C2 after
the internal warehouse is checked, C3 after eventual orders from external sup-
pliers have been carried out, C4 during the payment and shipment process, and
finally C5 when the execution is already finished. In each of those checkpoints
we have trained a prediction model using 1000 historical process instances, and

Fig. 4. Prediction Error in Checkpoints
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have specified all available data as facts. For not yet available QoS metrics we
have used the average of all previous invocations as estimate. Missing instance
data has been treated as unknown. We have used each of those checkpoints to
predict the outcome of 100 random executions, and calculated ē. As expected, ē
is decreasing with the amount of factual data available. In C1, the prediction is
mostly useless, since no real data except the user input is available. However, in
C2 the prediction is already rather good. This is mostly due to the fact that in
C2 the information whether the order can be delivered directly from stock is al-
ready available. In C3, C4 and C5 the prediction is continually improving, since
more actual QoS facts are available, and less estimates are necessary. Speaking
in absolute values, ē in e.g., C3 is 1328 ms. Since the average SLO value in
our illustrative example was about 16000 ms, the error represents only about
8% of the actual SLO value, which seems satisfactory. We have also carried out
experiments to determine the time necessary to build prediction models and to
do predictions at runtime. These results are not discussed here because of space
restrictions.

5 Related Work

The work presented in this paper is complementary to the more established
concept of SLA management. SLA management incorporates the definition and
monitoring of SLAs, as well as the matching of consumer and provider tem-
plates [5, 6]. In our work we add another facet to the more general area of SLA
management, namely the prediction of SLA violations before they have actually
occurred. Inherently, this prediction demands for some insight into the internal
factors impacting composite service performance. In [7], the MoDe4SLA ap-
proach has been introduced to model dependencies of composite services on the
used base services, and to analyze the impact that these dependencies have. Sim-
ilarly, the work we have presented in [2] allows for an analysis of the impact that
certain factors have on the performance of service compositions. SLA prediction
as discussed in this paper has first been discussed in [8], which is based on some
early work of HP Laboratories on SLA monitoring for Web services [9]. In [8], the
authors introduced some concepts which are also present in our solution, such as
the basic idea of using prediction models based on machine learning techniques,
or the trade-off between early prediction and prediction accuracy. However, the
authors do not discuss important issues such as the integration of instance and
QoS data, or strategies for updating prediction models. Additionally, this work
does not take estimates into account, and relatively little technical information
about their implementation is publicly available. A second related approach to
QoS prediction has been presented recently in [10]. In this paper the focus is
on KPI prediction using analysis of event data. Generally, this work exhibits
similar limitations as the work described in [8], however, the authors discuss the
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influence of seasonal cycles on KPIs. This facet has not been examined in our
work, even though seasons can arguably be integrated easily in our approach as
additional facts.

6 Conclusions

In this paper we have presented an approach to runtime prediction of SLA
violations. Central to our approach are checkpoints, which define concrete points
in the execution of a composite service at which prediction has to be carried out,
facts, which define the input of the prediction, and estimates, which represent
predictions about data which is not yet available in the checkpoint. We use
techniques from the area of machine learning to construct regression models from
recorded historical data to implement predictions in checkpoints. Retraining
strategies govern at which times these regression models should be refreshed.
Our Java-based implementation uses the WEKA Machine Learning framework
to build regression models. Using an illustrative example we have shown that
our approach is able to predict SLO values accurately.
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