
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2013, Article ID 905057, 32 pages
http://dx.doi.org/10.1155/2013/905057

Research Article

Runtime Scheduling, Allocation, and Execution of Real-Time
Hardware Tasks onto Xilinx FPGAs Subject to Fault Occurrence

Xabier Iturbe,1,2 Khaled Benkrid,2 Chuan Hong,2 Ali Ebrahim,2

Tughrul Arslan,2 and Imanol Martinez1

1 Embedded System-on-Chip Group, IKERLAN-IK4 Research Alliance, 20500 Mondragón, Spain
2 System Level Integration Group, The University of Edinburgh, Edinburgh EH9 3JL, UK

Correspondence should be addressed to Xabier Iturbe; xiturbe@ikerlan.es

Received 3 May 2012; Revised 2 October 2012; Accepted 3 October 2012

Academic Editor: René Cumplido

Copyright © 2013 Xabier Iturbe et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper describes a novel way to exploit the computation capabilities delivered by modern Field-Programmable Gate Arrays
(FPGAs), not only towards a higher performance, but also towards an improved reliability. Computation-specific pieces of circuitry
are dynamically scheduled and allocated to different resources on the chip based on a set of novel algorithms which are described
in detail in this article.These algorithms consider most of the technological constraints existing in modern partially reconfigurable
FPGAs as well as spontaneously occurring faults and emerging permanent damage in the silicon substrate of the chip. In addition,
the algorithms target other important aspects such as communications and synchronization among the different computations that
are carried out, either concurrently or at different times. The effectiveness of the proposed algorithms is tested by means of a wide
range of synthetic simulations, and, notably, a proof-of-concept implementation of them using real FPGA hardware is outlined.

1. Introduction

Dynamic Partial Reconfiguration (DPR) permits to adjust
some logic resources on FPGA chips at runtime, whilst the
rest are still performing active computations. During the last
few years, DPR has become a hot research topic with the
objective of building more reliable, efficient, and powerful
electronic systems. Indeed, DPR is the enabling technology
for a new computing paradigmwhich combines computation
in time and space [1–3]. In Reconfigurable Computing (RC),
a battery of computation-specific circuits (“hardware tasks”)
is swapped in and out of the FPGA on demand to hold
a continuous stream of input operands, computation, and
output results. Multitasking, adaptation, and specialization
are key properties in RC, as multiple swappable tasks can run
concurrently at different positions on chip, each with custom
data paths for efficient execution of specific computations.

Besides task switching, DPR makes it possible to deal
with the increasing fault rate currently observed in advanced
electronic devices [4] in a more reliable way than ASICs
do. While the latter, traditionally, simply tolerates the fault

effect by using redundancy, FPGAs permit to route around
damaged resources on-the-fly, keeping the system fault-free
at all times [5].

However, DPR penetration in the commercial market is
still testimonial, mainly due to the lack of suitable high-level

design tools to exploit this technology. Indeed, currently, spe-
cial skills are required to successfully develop a dynamically
reconfigurable application.

In light of the above, we aim at bridging the gap between
high-level application and low level DPR technology by
developing Operating System-(OS-) like support for high-
level software-centric application developers. Our solution
is named as R3TOS, which stands for Reliable Reconfig-
urable Real-Time Operating System. R3TOS defines a flex-
ible infrastructure for coordinately and reliably executing
RC applications under real-time constraints using partially
reconfigurable Xilinx FPGAs [6].

In this article we first describe a novel way to harness
the internal reconfiguration mechanism of modern FPGAs
to perform intertask communications and synchronization

2 International Journal of Reconfigurable Computing

regardless of the physical location of tasks on chip. Specif-
ically for this scenario, we propose a novel EDF-based
scheduling algorithm, two novel task allocation heuristics
(EAC and EVC), and a novel task allocation strategy (called
Snake). A preliminary description of EACandEVCallocation
heuristics has been presented in [7], while the Snake task
allocation strategy has been firstly proposed in [8]. This
article provides an extended explanation of these approaches
as well as new experimental results in order to gain a
better understanding of them. Furthermore, the article briefly
describes how our algorithms have been implemented in a
real Xilinx Virtex-4 FPGA.

The remainder of this article is organized as follows. After
stating the reconfigurable scenario defined by DPR-enabled
Xilinx FPGAs in Section 2, Section 3 explains the related
state-of-the-art. Then, an overview on the R3TOS approach
is provided in Section 4, followed by a description of the
used scheduling and allocation heuristics and algorithms in
Sections 5 and 6, respectively. In Section 7, the obtained
simulation results are outlined, while Section 8 outlines a
real implementation of these algorithms using real FPGA
hardware. Finally, conclusion remarks are summarized in
Section 9.

2. Xilinx FPGAs-Defining
Reconfigurable Scenario

An FPGA can bemodelled as an architecture with two layers:
the functional layer, which contains the physical resources
used to perform computation, and the configuration layer,
which controls the configuration of the functional layer.

Although the work described in this paper is focussed
on Xilinx Virtex-4FPGAs, we plan to target modern Virtex-6
and Virtex-7 FPGAs in the future, whose architecture is not
fundamentally different fromVirtex-4, for the purpose of our
study.

The functional layer of Virtex-4 devices includes a regular
array of Configurable Logic Blocks (CLBs), Input-Output
Blocks (IOBs), clock resources, and some special resources
such as BRAM memories and DSP48s. CLBs, organized in
a regular array, are the most abundant resources and provide
logic, arithmetic, data storage, and data shifting functions.On
the other hand, IOBs, DSP48s, and BRAMs can be seen as
the heterogeneous resources embedded in the middle of the
homogeneous CLB array, being organized in columns which
span thewhole height of the device. Newer devices accentuate
the trend for including more columns of heterogeneous
resources. All FPGA resources are one-to-one connected by
means of a vast amount of programmable wires, allowing for
an incredible capability of data movement among registers
and memory elements.

The configuration layer consists in a memory, which
stores the bitstream defining the functionality implemented
by the physical resources in the functional layer as well
as their interconnections. The configuration memory is
organized in configuration frames of 1312 bits each, and
the frame addressing scheme includes information related
to the position of the physical resources they configure.

Specifically, each frame configures a resource column span-
ning the whole height of a fabric clock region within the
chip. For Virtex-4 devices, each clock region is 16 CLBs,
4 BRAMs, 8DSP48s, or 32 IOBs high. The CLB, DSP48, and
IOB frames include configuration information related to
both the resources themselves and the associated routing
wires to these resources. BRAMs however include separate
configuration frames for the memory content data and the
associated wires; that is, while 64 frames are necessary for
configuring the 72Kb memory content data of 4 BRAMs,
only 20 frames are used for configuring their associated
routing resources. Each BRAM content frame stores 256 bits
of information and 32 bits of parity of each of the 4 memories
mapped to that frame.

The use of SRAM technology in the configuration mem-
ory of Xilinx FPGAs permits to download new configuration
data at runtime, which is the key for DPR. Modern Xilinx
FPGAs ease the access to this memory by including an
Internal Configuration Access Port (ICAP), which makes up
the interface between both layers of the FPGA. However, the
existence of a single ICAP makes the reconfiguration process
sequential, although the circuitry previously configured on
the FPGA works simultaneously. Virtex-4 ICAP is 32-bit
width and is able to operate up to 100MHz, allowing a
theoretical bandwidth of 400MB/s.

In summary, an FPGA can be seen as a two-layered
device, with the capability of performing on-demand compu-
tation, true multitasking, and huge internal bandwidth in its
functional layer, yet sequential and limited communication
bandwidth with its underlying configuration layer.Therefore,
the efficacy of RC depends on the capability for masking
sequential transfers to the FPGA-based “computation cache”
with the advanced parallel computation of its functional layer.

3. Related Work

In [9], the authors propose two preemptive scheduling
algorithms for periodic tasks: EDF Next Fit (EDF-NF) and
Merge-Server Distributed Load (MSDL). In EDF-NF, the task
with the closest deadline that fits in the FPGA is scheduled
first, while, in MSDL, tasks are successively merged into
servers, which are then scheduled sequentially using EDF.

In [10], the authors propose two nonpreemptive schedul-
ing algorithms for sporadic hardware tasks: horizon and
stuffing.These algorithms keep track of future releases of area
when the executing tasks finish, and, upon a new task arrival,
they simulate the future state of the FPGA to check whether
there will be sufficient adjacent free area to allocate the task
before its deadline expires. If not, the task is rejected. In [11],
the authors propose a remedy to solve a limitation detected in
stuffing; namely, it always allocates tasks on the leftmost edge
of the free area, achieving better results. In classified stuffing,
the tasks with a high ratio between area and execution time
are placed starting from the leftmost edge of the free area,
while the tasks with a low ratio are allocated on the opposite
way. Even better results are reported when applying stuffing
over a time window [12]. Based on this, the same authors
propose the Compact Reservation (CR) algorithm which is

International Journal of Reconfigurable Computing 3

aimed at reducing the complexity of window-based stuffing
[13]. A similar approach is presented in [14], where the
authors propose a nonpreemptive algorithm, called one level
look ahead, which delays the allocation of hardware taskswith
the objective of reducing the fragmentation on the device.

All of the algorithms presented above neglect the recon-
figuration port exclusiveness and latency of current FPGAs;
that is, they assume that reconfiguration does not take time,
and, therefore, they are not suitable to be implemented using
real hardware. The next generation of scheduling algorithms
does consider this restriction.

In [15], the authors propose to schedule access to the
reconfiguration port of the FPGA based on the alloca-
tion deadlines of the tasks. They port traditional real-time
scheduling algorithms for monoprocessors to reconfigurable
hardware, that is, preemptive EDF and DM.

In [16], the authors propose to schedule the reconfigura-
tion port access with the objective of optimizing the FPGA
utilization, but they do not consider any real-time constraints
for the tasks. An interesting idea proposed in this work is
the possibility of reusing the already configured tasks on the
device, even when they implement only a part of the total
functionality required: computation can start in these tasks,
while the task that implements the complete functionality is
being configured, and once the latter is ready, the partially
processed data can be transferred to it. In [17], the same
authors propose the so-called 3D Total Contiguous Surface
(3DTCS) heuristic that is intended to avoid task placements
that will be an obstacle for other incoming tasks in the
future. 3DCTS computes the total contiguous surface of the
computation volume defined by a given task, that is, the
occupied area in time, with the computation volumes of other
executing tasks and with the device’s boundaries. Therefore,
higher 3DTCS value will result in more compaction in space
and time.

A third generation of more advanced scheduling algo-
rithms, which are aware of task dependencies and data com-
munications, is currently being developed. A example can be
found in [18], where the authors specifically consider data
communications between the hardware tasks and external
devices. In [19], the scheduling decisions are made using
static priorities that are assigned based on the amount of
communicating tasks. Finally, in [20], a reconfiguration-
aware heuristic scheduler is proposed, which is aimed at
exploiting configuration prefetching, task reuse, and anti-
fragmentation techniques.

Most of the research efforts carried out up to date in the

task allocation field assume a 2-dimensional area model and
consider the tasks to be relocatable rectangles that can be
placed anywhere on the FPGA device.

The pioneering work described in [21] proposes to Keep
track of All the Maximal Empty Rectangles (KAMER) or
only of the Non-overlapping Empty Rectangles (KNER) in
the device. Note that tasks can be allocated on these empty
rectangles without overlapping other tasks already allocated.
When allocating a new task in an empty rectangle, some area-
fitting heuristics (e.g., Best-Fit, First-Fit) are used to decide
whether the rectangle has to be split vertically or horizontally.

In [22], the authors propose to use a hashmatrix in which
every entry consists of a pointer to a list of the MERs of the
corresponding size. Again, area fitting heuristics are used to
select in which MER to allocate a task. In light of achieving a
better performance, they propose to update the hash matrix
while the task is allocated.

In [23], the authors propose to keep track of the occupied
area instead of the free area, arguing that the amount of
empty rectangles grows much faster than the number of
occupied rectangles. Besides, they explain how to simplify
the allocation problem by shrinking the area of the chip and
simultaneously blowing up the placed tasks by half the width
and half the height of the task to be allocated. In this work, the
Nearest Possible Position (NPP) algorithm is also presented,
which is aimed at minimising the routing cost between the
tasks that communicate with each other. The latter routing
cost is computed based on the Euclidean distance.

In [24], the authors aimed at constructing staircases with
the empty area and, finally, use these structures for finding the
MERs. Likewise, in [14], the authors propose the Scan Line
Algorithm (SLA) for finding MERs.

In [25] a binary tree is proposed, in which each node
represents an occupied location of the device and each leaf
represents an MER. This means that, when looking for a
suitable location to allocate a task, only leaves have to be
explored.Moreover, the authors introduce the RoutingAware
Linear Placer (RALP) algorithm, which is aimed at allocating
the tasks that communicate together on the empty rectangles
with the shortest Manhattan distance to minimize routing
costs. In [26], the authors propose to use the boundaries of
already placed tasks as routing channels.

A completely different approach is described in [27, 28].
In these works the authors propose to manage the empty area
perimeter instead of MERs. In [28], a Vertex List Set (VLS)
is used to keep the contour information of each free area
fragment in the FPGA. In this context, the authors propose
the 2-Dimensional Adjacency (2DA) heuristic, whose objec-
tive is to allocate the tasks in the positions with the higher
contact perimeter with other running tasks or with the FPGA
boundaries. The authors state that these positions are the
vertices of already running tasks, which are indeed included
in the VLS.

This idea is further developed in [29], where the 3Dimen-
sional Adjacency (3DA) heuristic is proposed. The objective
of 3DA is to allocate the tasks in the positions with the
highest contact surfaces which are formed when prolonging
in time the aforementioned contact perimeter; that is, the
execution time of the running tasks is also considered. As
a result of including the time domain in the analysis, 3DA
outperformed 2DA. In fact, 3DA is currently one of the
most effective heuristics for efficiently allocating hardware
tasks onto reconfigurable devices, being used or serving as
inspiration for other approaches in the field (e.g., 3DCTS
[17]).

In [30], the authors propose a heuristic to evaluate the
fragmentation on the device based on the amount of existing
free area fragments and their shape. This heuristic is used
to select the best allocation for incoming tasks in order to
minimize the overall fragmentation on the device.

4 International Journal of Reconfigurable Computing

In [31], the Multi-Objective Hardware Placement
(MOHP) algorithm is presented, which combines some of
the previously proposed ideas. In order to allocate the tasks
with close deadlines and no communication requirements
the First-Fit heuristic is used; that is, tasks are allocated
in the first-found location where they fit. Tasks with slack
deadlines and no communication requirements are allocated
according to [28, 29], and tasks that need to communicate
with other tasks are allocated according to [23].

Finally, a number of authors propose to compact the
allocated tasks on the FPGA from time to time in a similar
way that the hard drive of a computer is defragmented
[32–36]. However, defragmentation techniques incur high
reconfiguration overhead provoked by extra task relocations.

We note that most of the approaches described herein
use a very abstract device model, which, indeed, can be
considered incomplete as it does not account for some
physical constraints of FPGAs, for example, granularity of
reconfiguration. References [37, 38] are some of the only
works which consider these issues. In the former work, the
authors propose the Least-Interference Fit (LIF) heuristic
with the criteria of interfering running tasks as least as
possible when allocating new incoming tasks. However, they
exclusively address column-based reconfigurable FPGAs, for
example, Virtex-II. In the latter work the authors target mod-
ern tile-based reconfigurable devices, for example, Virtex-4.

4. The R3TOS Approach

In R3TOS, hardware tasks are scheduled in order to meet
their computation deadlines and allocated to nondamaged
FPGA resources. In short, R3TOS selects at every kernel-tick
𝑡KT the most suitable ready task to be executed according to
both time and area criteria. In addition, R3TOS envisages a
computing framework whereby both hardware and software
tasks coexist in a seamless manner, allowing the user to
access the advanced computation capabilities of the modern
reconfigurable hardware from a software “look and feel”
environment.The software tasks are executed on amainCPU,
which can be either built-in on the chip (i.e., hard-core) or
implemented using standard FPGA resources (i.e., soft-core).

In R3TOS, the control logic to drive the hardware tasks is
attached to their own circuitry, making them self-contained
and closed structures which are fully relocatable within the
FPGA. This is a completely different approach when com-
pared to related state-of-the-art, where the hardware tasks
are executed in predefined reconfigurable slots coupled with
fixed control logic and connected to a static communication
infrastructure to exchange data among them. Therefore, in
R3TOS, the FPGA area is kept free of nonnecessary obstacles
at all times, for example, static routes, resulting in higher
flexibility to allocate the tasks around the damaged resources
(improved fault tolerance) and to increase the computation
density by compacting the tasks in the chip (improved
efficiency). Furthermore, the complexity of the allocation
algorithms is simplified as they do not need to be aware of
any underlying implementation-related irregularities in the
reconfigurable area. Note that a traditional reconfigurable

systemmust preserve the static routes, resulting in additional
difficulties which penalize the performance. In addition,
since R3TOS relocates the circuitry along the entire device,
the switching activity naturally tends to be distributed among
all the resources in the chip; that is, it is not concentrated in
some specific regions. This makes the device age uniformly,
delaying the occurrence of damage [39]. Note that this does
not happen in traditional systems where some resources
are prone to fail earlier due to intensive use, for example,
the resources used to implement the static communication
infrastructure.

The Task Control Logic (TCL) includes an Input Data
Buffer (IDB), an Output Data Buffer (ODB), and a Hardware
Semaphore (HWS) to enable/disable computation [40]. TCLs
provide a means to virtually lock physical data and control
inputs/outputs of the hardware tasks to logical positions in
the configuration memory of the FPGA. Since the TCLs
are accessible through the configuration interface whichever
memory positions they aremapped to, the allocatability of the
tasks is not constrained by the position of the communication
interfaces decided at design time anymore. Furthermore, this
scheme improves the multitasking capabilities as the number
of tasks that can be concurrently executed on FPGA is not
limited by the amount of communication interfaces defined
at design time.

In R3TOS, the RC application is modelled as a Directed
Acyclic Graph (DAG) where vertices represent tasks, and
edges represent intertask communication channels. Vertices
produce and consume data from edges, which in turn buffer
the data in a FIFO (first-in, first-out) fashion. Note that
buffering capability is mandatory as the tasks can be executed
at different slots of time. Besides this, synchronization is
mandatory in order to coordinate data producers and con-
sumers when accessing the communication channels.

We distinguish between two types of tasks based on their

communication requirements.High-Bandwidth Communica-
tion (HBC) tasks refer to tasks which process a relatively
significant amount of data within a relatively short amount
of time. On the other hand, Low-Bandwidth Communication
(LBC) tasks refer to tasks which process a relatively reduced
amount of data within a relatively long amount of time.

The TCLs provide support for communications, synchro-
nization, and data buffering. Namely, the TCL delivers the
data to be processed from its internal IDB to the associated
task and stores the subsequent results computed by the latter
in the ODB. Hence, the data buffers of the TCL are function-
ally equivalent to the FIFO queues commonly inserted in-
between data-processing pipeline stages or to the local caches
used in traditional processors. A glue logic adapts data from
the way it is stored in the buffers to the needs of the tasks and
vice versa (e.g., data rate, word length). It is important to note
that each hardware task has dedicated access to its data buffer
without interfering with the rest of the tasks running on
the device, that is, without constraining multitasking. While
the data buffers of HBC tasks are implemented using high-
density storage resources (e.g., BRAMs), the buffers of LBC
tasks are implemented using low-density storage resources
(e.g., distributed memory: LUT-RAMs).

International Journal of Reconfigurable Computing 5

In this context, data is transmitted from a producer task𝑃
to a consumer task𝐶 by copying the content of P’s ODB toC’s
IDB. If possible, the ODB of the producer task𝑃 is configured
to be the IDB of the consumer task 𝐶 so that there is no
need to relocate any data; that is, data is in the position the
consumer task expects to be. Otherwise, R3TOS harnesses
the ICAP to establish on-demand “virtual” channels among
the hardware tasks through the configuration layer (see
Figure 1).

Additionally, in order to speed up the relocation of high
amounts of data in HBC tasks, R3TOS can use physical
routes to connect BRAMs when there are no obstacles
between them, that is, other tasks. The physical routes and
the logic to drive the BRAMs, while data is relocated, are
grouped together to form Data Relocation Tasks (DRTs).
These are always configured before the computing tasks to
which they give support with the objective of parallelizing
both the subsequent data relocation, which occurs through
the functional layer of the FPGA and the computing task
allocation, which occurs through the configuration layer.
The physical routes offer higher bandwidth than ICAP-based
“virtual” channels, not only because the data is read and
written at once, but also because the usable clock frequency
can be made higher than that of the ICAP.

Therefore, as shown in Figure 1, in R3TOS the tasks
perform computation in the functional layer of the FPGA,
and intertask communications are carried out, or at least ini-
tiated, through the configuration layer. The synchronization
needed to coordinate access to data buffers from both layers
is provided by the HWS included in the TCL. The HWS
acts as the internal reset signal for the task; that is, the task
starts computing only when the HWS is enabled, and once it
completes the computation, the task itself disables its HWS.
Therefore, theHWS is active onlywhile the task is performing
active computation, and, hence, it is also used to implement
the exclusive access to FPGA resources.

R3TOS targets an event-triggered data-dependant com-
putationmodelwhere data exchanges among tasks are carried
out only prior to task execution, with the computation
thereafter performed atomically. The tasks are triggered
when all their input operands are ready to be processed.
This functioning enables temporal isolation among hardware
tasks execution, avoiding most of communication-related
problems in RC, such as deadlocks or race conditions. As a
result, the system is predictable enough to approach real-time
performance.

In order to achieve higher reliability levels, R3TOS can
execute redundant instances of the same (critical) hardware
tasks in parallel at distinct positions within the FPGA (i.e.,
spatial redundancy).The resources assigned to a task instance
that has computed an erroneous result are kept in quarantine
while an exhaustive diagnostic test is carried out on them.The
objective of this test is to detect damaged resources, if any.

4.1. Real-Time Hardware Task Model in R3TOS. In the area
domain, a task 𝜃𝑖 is considered to occupy an arbitrarily sized
rectangular region on the FPGA,which is defined by its width
and height, ℎ𝑥,𝑖 and ℎ𝑦,𝑖, respectively. The type and amount

of resources used by a task depend on the computation it
performs; for example, a signal processing task will need to
use a large amount of DSP48s.The internal architecture of the
task, which depends on the location where it was originally
synthesized in the FPGA, is described as the succession of the
resources it uses column by column, from the leftmost to the
rightmost column.

In the time domain, a task 𝜃𝑖 requires five different phases
to complete a computation (see Figure 2).

(1) During the set up phase, the task is configured in
the FPGA. Previously existing tasks in overlapping
positions are deallocated, if any, and a suitable clock
signal is routed to the task. This phase requires 𝑡𝐴,𝑖
units of time to be completed.

(2) During the input data delivery phase, the IDB of
the task is filled with actual data to be processed.
In a general way, the time required to do so, 𝑡𝐷,𝑖,
is proportional to the amount of data to be loaded.
When all input data are copied into the IDB, theHWS
of the task is enabled.

(3) During the execution phase, the input data is trans-
formed into results by the task’s circuitry. The com-
bination of temporally isolated tasks and hardware-
based deterministic computation leads to predictable
timing behaviour. Indeed, a task uninterruptedly
completes its computation 𝑡𝐸,𝑖 units of time after it
started, regardless of system workload. However, 𝑡𝐸,𝑖
is not always fixed and known, for example, iterative
calculations with variable number of iterations. In
order to deal with these situations the tasks auto-
matically signal their HWS to acknowledge when the
results are ready in their ODB.

(4) The synchronization phase refers to the polling on the
tasks’ HWS to detect a computation completion and
spans 𝑡𝑆,𝑖 units of time. While 𝑡𝑆,𝑖 is fixed and known
for tasks with known 𝑡𝐸,𝑖, that is, equal to the time
needed to access the HWS once, the synchronization
overhead for tasks with unknown 𝑡𝐸,𝑖 varies depend-
ing on the amount of HWS accesses carried out until
the tasks eventually complete their computations.

(5) During the output result retrieval phase, which spans
𝑡𝑅,𝑖 units of time, the results computed by the tasks are
finally read from the ODB. Note that this phase may
be delayed until the results are required by another
task.

R3TOS keeps track of the state of the tasks at runtime,
by grouping them into different task queues: ready, executing
and allocated. Note that there is no need for a Setting-up queue
as only one task can be at this state at a time.

When two hardware tasks communicate each other, data
must be read from the producer’s ODB prior to being copied
to the consumer’s IDB.That is, the output data retrieval phase
of the producer task 𝜃𝑗 is immediately followed by the input
data delivery phase of the consumer task 𝜃𝑖. Furthermore, the
latter two phases are to be preceded by the set up phase of
the data consumer task. When merging these three phases

6 International Journal of Reconfigurable Computing

C
on

fig
ur

at
io

n
la

ye
r

HW task j main CPU

Main CPU HW task i

HW

task i

IDB

IDB

IDB
SW tasks

HW
task j

ODB

ODB

ODB

Main

CPU

Fu
nc

tio
na

l l
ay

er

HW
 task i

HW
 task j

Figure 1: Hardware-software intertask communications using ICAP-based “virtual” channels.

R3TOS kernal

Scheduling
and allocating

Configure HW task

Initialize input data

Enable HWS

Wait on HWS

Retrieve output results

More data
to process?

Yes No Release
resources

HW task

Wait

Active
computation

Signal HWS

Configuration
phase

Wait

Input data
delivery phase

Execution

phase

phase

Synchronization

Output results
retrieval phase

IC
A

P
 o

cc
u

p
ie

d

t

t S
,i

t R
,i

t E
,i

t D
,i

t A
,i

t S
p

,i
r i

IC
A

P
 o

cc
u

p
ie

d

Figure 2: Execution phases of a hardware task in R3TOS.

with the synchronization phase of the data producer task 𝜃𝑗,
a single ICAP access period is formed for each task 𝜃𝑖 which
spans 𝑡ICAP,𝑖 = 𝑡𝐴,𝑖 + 𝑡𝑆,𝑗 + 𝑡𝑅,𝑗 + 𝑡𝐷,𝑖 consecutive units of time
(see Figure 3). During this time, the task is effectively set up in
the FPGA. The fact of grouping together the task phases that
need to access the ICAP is beneficial to schedule this limited
resource in amore predictable way. However, note that 𝑡ICAP,𝑖
can vary depending onwhich task precedes 𝜃𝑖, and, therefore,
it must be dynamically computed with each task release.

As previously introduced, R3TOS uses several ways to
reduce 𝑡ICAP,𝑖 towards a higher performance. First, the direct
access from a data consumer task to producer task’s ODB
results in 𝑡𝐷,𝑖 and 𝑡𝑅,𝑗 circumvention. Second, the use of
DRTs to quickly relocate data between data buffers results
in reduced 𝑡𝐷,𝑖 and 𝑡𝑅,𝑗. Finally, the reuse of previously
configured tasks results in 𝑡𝐴,𝑖 circumvention. In addition, 𝑡𝐸,𝑖
can also be reduced by feeding the task with the highest clock

rate. Furthermore, the configuration memory of the FPGA is
used as a cache for both tasks and data. In fact, hardware tasks
are deallocated from the FPGA only when their resources
are required by other coming tasks, and the partial results
computed by them are retrieved only when they are required
by a software task.

The real-time constraint of R3TOS involves the existence
of a relative execution deadline for each task, 𝐷𝑖, which
is defined by the application programmer and represents
the maximum acceptable delay for that task to finish its
execution.The absolute execution deadline for each new task
instance, 𝑑𝑖, is computed by adding the task release time, 𝑟𝑖,
to its relative execution deadline, 𝑑𝑖 = 𝐷𝑖 + 𝑟𝑖. Even more
important are the relative and absolute set up deadlines, 𝐷∗𝑖
and 𝑑∗𝑖 , which represent the maximum acceptable delay for a
task to start the computation in order to meet its execution
deadline. A task is considered to be ready to start computing,

International Journal of Reconfigurable Computing 7

DAG: SW(task k)
θj

θj

θi

HW

SW

Di

tE,i + tS,i + 2tR,i

tS,i + 2tR,i

t

t

t

di

tE,j

tE,j
tICAP,j

ICAP occupied

ICAP occupied

ICAP occupied

tA, j

tA,j

tS, j tR, j tD, j tE, j

d∗j
ri d j

Read data from
CPU’s ODB

CPU’s IDB

tICAP,COMP

Copy data to

tS,i 2 · tR,i

tR,k tD, j

𝜃COMP 𝑡SP,comm

𝑡ICAP,COMP

𝑟COMP

𝑟comm

𝑑∗COMP
𝑑COMP

𝜃comm

𝑑comm = 𝑑∗comm

Figure 3: Consecutive execution of hardware tasks in R3TOS.

when it is completely configured in the device and the data
to be processed is already loaded in its IDB. To achieve the
predictability required by real-time behaviour, it is always
considered the worst case that any of the aforementioned
performance enhancements cannot be exploited.

As can be seen in Figure 3, the set up deadlines are
different for hardware tasks which communicate with other
hardware tasks and for those which deliver data to software
tasks. This is because the data retrieval phase is included in
themodel of the data consumer hardware tasks, but it is not in
the model of data consumer software tasks. Indeed, the data
retrieval operation of a data consumer software task must be
invoked from the data producer hardware task itself, which
could interfere with the real-time behaviour.

The absolute set up deadline of a “standard task” which
communicates with other hardware tasks, or which receives
data from a software task, is equal to 𝑑∗𝑖 = 𝑑𝑖 − 𝑡𝐸,𝑖. This is
the case of 𝜃𝑗 in the aforementioned Figure 3. On the other
hand, hardware tasks that deliver data to the main CPU,
for example, 𝜃𝑖 in the figure, are modelled as two separate
standard tasks in order to harmonize their management.

(i) An exclusively computing task 𝜃COMP with ℎ𝑥,COMP =
ℎ𝑥,𝑖, ℎ𝑦,COMP = ℎ𝑦,𝑖, 𝑟COMP = 𝑟𝑖, 𝑡𝐸,COMP = 𝑡𝐸,𝑖, and
𝑡ICAP,COMP = 𝑡𝐴,𝑖 + 𝑡𝑅,𝑗 + 𝑡𝑆,𝑗 + 𝑡𝐷,𝑖, where 𝜃𝑗 is the data
producer of 𝜃𝑖, 𝑑COMP = 𝑑𝑖 − 𝑡𝑆,𝑖 −2 ⋅ 𝑡𝑅,𝑖 and 𝑑∗COMP =
𝑑∗𝑖 − 𝑡𝐸,𝑖 − 𝑡𝑆,𝑖 − 2 ⋅ 𝑡𝑅,𝑖. Note that the multiplication by
two of 𝑡𝑅,𝑖 accounts for the dual operation of reading
data from task’s ODB and copying it to CPU’s IDB.

(ii) An exclusively communicating task 𝜃comm with
ℎ𝑥,comm = ℎ𝑦,comm = 0, 𝑡ICAP,comm = 𝑡𝑆,𝑖 + 2 ⋅ 𝑡𝑅,𝑖,
𝑡𝐸,comm = 0, 𝑟comm = 𝑡SP,COMP + 𝑡ICAP,COMP + 𝑡𝐸,𝑖, and
𝑑comm = 𝑑∗comm = 𝑑𝑖.

To achieve the predictability required by real-time
behaviour, it is always considered the worst case execution

time 𝑡𝐸,𝑖 for the tasks. As a result, the HWS must be accessed
only once, and, thus, 𝑡𝑆,𝑖 = 𝑡𝑆 for all 𝜃𝑖, where 𝑡𝑆 is equal to
the time needed to read back a single frame from the FPGA
device. Note that in this situation HWSs are checked only to
confirm the correct ending of tasks’ execution.With the same
objective of achieving the highest predictability, the worst
case 𝑡𝐷,𝑖 and 𝑡𝑅,𝑖 are considered as well, that is, the largest
amount of data to exchange.

Without any loss of generality, it is assumed that there
is no a priori knowledge of task release times, which,
indeed,may depend on previous computations, that is, event-
triggered data-dependant computing. Therefore, tasks are
considered sporadic and aperiodic.

5. Real-Time Scheduling Algorithms

A nonpreemptive EDF algorithm suited to be used in the
reconfigurable scenario we target in R3TOS is shown in
Algorithm 1. This includes the capability to discard the tasks
with greater area than available in the device early (see
line 3), which is an easy but effective way to account for
external fragmentation in the scheduler. This is the basis
for the scheduling algorithm presented herein, the Finishing
Aware EDF (FAEDF), which includes the capability to “look
ahead” to find future releases of adjacent pieces of area, when
executing tasks finish. This capability is designed to replace
task preemption in the cases when preemption would be
beneficial.

5.1. Finishing Aware Earliest Deadline First (FAEDF). When
using FAEDF, a ready task 𝜃𝑖 which cannot be allocated on
the FPGA at a given scheduling point 𝑡SP is only discarded
if there are not any sufficiently large tasks finishing before
its deadline expires. If any, the allocation of 𝜃𝑖 is delayed
until the executing task(s) finishes and there are enough free

8 International Journal of Reconfigurable Computing

input: (a) List of 𝑅 ready tasks, sorted by increasing 𝑑∗𝑖 − 𝑡ICAP,𝑖, and (b)MER, given by the
allocator

output: Scheduled Task
1 𝑖 ← First Task in Ready Queue sorted based on Time;
2 while 𝑖 ≤ 𝑅 do

3 if MER ≥ ℎ𝑥,𝑖 ⋅ ℎ𝑦,𝑖 then
4 if Allocate (i) /= 0 then

5 return 𝑖;
6 end if

7 end if

8 𝑖 ← Next Task in Ready Queue;
9 end while

10 return 0;

Algorithm 1: Schedule EDF ().

resources in the device. The time left until then is used to
schedule other ready tasks which can be completely set up
before the deadline of 𝜃𝑖 expires. Note that despite these tasks
that are also selected based on EDF, the scheduling policy
is altered as tasks with farther deadlines can be scheduled
before otherswith closer deadlines, butwhich donotmeet the
aforementioned set up time requirement. In case there are no
ready tasks which meet the set up time requirement, FAEDF
does not schedule any task; that is, it produces a “blank
schedule,” assuming the expected finish of the executing tasks
is close enough.

The fact of wasting ICAP time when scheduling blank
times may seem contradictory. However, this occurs only
when the real-time constraints of the ready tasks are loose,
that is, when ∑∀𝑘∈Ready Queue(𝑡ICAP,𝑘/𝑑∗𝑘 − 𝑡) is low, with

𝑡 referring to the actual time in the system. Otherwise,
it is assumed that the fact of altering the EDF policy to
give a “second chance” to a specific ready task to meet its
deadline may lead to miss more deadlines, and, thus, it is
discarded. That is, FAEDF proceeds as standard EDF when
the real-time constraints of the ready tasks are tight, that is,
when ∑∀𝑘∈Ready Queue(𝑡ICAP,𝑘/𝑑∗𝑘 − 𝑡) is high. Furthermore,

note that during the scheduled blank times other R3TOS
services which need to access the ICAP could be executed;
for example, the configuration state of the HWuK could be
checked in the configuration memory. Finally, not occupying
the ICAP when the real-time constraints are loose allows to
rapidly allocate any incoming task with very tight deadline.

The task set shown in Table 1 is used to illustrate
the improvement brought about by FAEDF’s “look ahead”
capability with regard to nonpreemptive EDF. As shown
in Figure 4(a), scheduling 𝜃3 at 𝑡SP,𝐵 delays the subsequent
allocation of 𝜃2 too long, and, as a result, the latter misses
its deadline. Note that 𝜃2 cannot be allocated at 𝑡SP,𝐵 because
there is no enough adjacent area in the FPGA. On the other
hand, as shown in Figure 4(b), at 𝑡SP,𝐵, FAEDF finds out
that 𝜃2 can be allocated later using the resources that will be
released by 𝜃1.The time until then is used to allocate 𝜃4. After
having allocated 𝜃4, a blank schedule is produced because
𝜃3 cannot be completely set up in the remaining time until
𝑑∗2 − 𝑡ICAP,2. Note that if 𝑑∗3 , which is met just in time in

Table 1: Task-set used in Figure 4.

ℎ𝑥,𝑖 ℎ𝑦,𝑖 𝑡ICAP,𝑖 𝑡𝐸,𝑖 𝐷∗𝑖
𝜃1 4 4 6 ⋅ 𝑡KT 3 ⋅ 𝑡KT 11 ⋅ 𝑡KT
𝜃2 4 2 4 ⋅ 𝑡KT 9 ⋅ 𝑡KT 13 ⋅ 𝑡KT
𝜃3 2 3 4 ⋅ 𝑡KT 8 ⋅ 𝑡KT 17 ⋅ 𝑡KT
𝜃4 2 2 2 ⋅ 𝑡KT 9 ⋅ 𝑡KT 19 ⋅ 𝑡KT

Figure 4(b), had been tighter, FAEDF would have functioned
as standard EDF; that is, it would have scheduled 𝜃3 at 𝑡SP,𝐵,
assuming that it is impossible to meet at the same time both
𝑑∗2 and 𝑑∗3 .

Algorithm 2 shows FAEDF’s pseudocode. Lines 2 to 8 are
exactly the same EDF algorithm presented in Algorithm 1,
and lines 9 to 34 are the “looking ahead” extension to it. This
extension is enabled only when the real-time constraints are
slacker than a predefined threshold (see line 9).The executing
queue is searched at lines 12 to 17 to find an executing task 𝜃𝑗
which would release sufficiently a large amount of resources
when it finishes allocating the ready task 𝜃𝑖 (ℎ𝑥,𝑗 ≥ ℎ𝑥,𝑖 and
ℎ𝑦,𝑗 ≥ ℎ𝑦,𝑖). If any, the ready queue is then scanned at lines
20 to 31 to find a ready task 𝜃𝑚 which can be completely
allocated before the deadline of 𝜃𝑖 expires (𝑡KT + 𝑡ICAP,𝑚 ≤
𝑑∗𝑖 −𝑡ICAP,𝑖).The scheduler produces a blank schedulingwhen
it is possible to allocate 𝜃𝑖 using the resources to be released
by an executing task 𝜃𝑗, but there are no 𝜃𝑚 ready tasks that
can be completely set up before 𝑑∗𝑖 (line 31). Finally, with
the objective of speeding up the execution of the scheduling
algorithm, an array (tried) is used to keep track of the ready

tasks that have been unsuccessfully tried to be placed (lines
4, 22, and 26).

The worst case complexity of FAEDF algorithm is 𝑂(𝑅 ⋅
(𝑅 + 𝐸)) when the “look ahead” is enabled and 𝑂(𝑅)
if it is not enabled. In any case, as previously explained,
FAEDF includes several ways to effectively reduce the time
overheads, for example, discard the ready tasks which are
larger than the largest free rectangle on FPGA early or use
the aforementioned tried array.

Finally, we note that our FAEDF algorithm does not con-
sider the overheads introduced when making the scheduling

International Journal of Reconfigurable Computing 9

θ1

θ1

θ2

θ2

θ3
θ3

θ3

θ4

r1
r2
r3

r4

tSP,B

tE,1

tE,3

d∗2

d∗1

d∗4

d∗3
tE,4

tE,2

tICAP

tICAP,3

tICAP,2

tICAP,4

t
t

SP,A

tSP,D

tSP,C

(a) Nonpreemptive EDF: 𝜃2 misses its deadline

θ1

θ1

θ2

θ2

θ3

θ4 θ4

θ4

r1
r2
r3

r4

tSP,B

t

t

E,1

tE,3

d∗2
d∗1

d∗4

d∗3
tE,4

tE,2

tICAP

tICAP,3

tICAP,2

tSP,A

tSP,D

tSP,C

tICAP, 4

B
la

n
k

 s
ch

ed
u

li
n

g

(b) FAEDF: Feasible scheduling

Figure 4: EDF and FAEDF scheduling.

and allocation decisions. These should be considered in a
real-world application; for example, a guard increase of the
ICAP access period of the tasks should be allowed.

6. Allocation Algorithms

As presented in Section 3, several research efforts can be
found in the technical literature to improve the computa-
tion density when allocating hardware tasks onto an FPGA
device. These approaches mainly include bin packing-based
algorithms (e.g., [21, 22]) and adjacency-based heuristics
(e.g., [17, 28, 29]). However, bin-packing algorithms do
not consider the effect that placing a task into the “bin
box” involves in allocating future tasks, and adjacency-based
heuristics have a vision of only one resource row/column
beyond the boundaries of already placed tasks. To tackle
these limitations, the novel Empty Area/Volume Compaction
heuristics (EAC and EVC) and, as a natural improvement to
them, the Snake task allocation strategy are proposed in this
article.

Before outlining these, it is important to note that all of
the allocation algorithms presented in this section, including

the ones we are proposing, manage the FPGA at a very high-
level of abstraction. This is only possible because the FPGA
area is kept void of static routes and other implementation-
related obstacles at all times, as R3TOS is able to do. Indeed,
the FPGA is modelled as a grid, named as FPGA state,
where each position represents an FPGA resource or a set of
resources. Due to the existing reconfiguration granularity in
currentXilinx partially reconfigurable FPGAs (see Section 2),
all of the resources included within the same column of
a clock region are mapped to the same position in the
grid; that is, the vertical granularity must be a minimum
number of clock regions. On the other hand, the horizontal
granularity can be arbitrarily chosen based on the required
efficiency in the use of system resources and admissible
computational burden. The finest granularity and the best
achievable exploitation of FPGA resources, that is, the exact
number of resources required by the tasks, can be assigned to
them, but with the highest computational burden.

6.1. Empty Area/Volume Heuristics Compaction (EAC/EVC).
EAC andEVCheuristics are aimed at preserving theMaximal
Empty Rectangle (MER) intact for future use as long as

10 International Journal of Reconfigurable Computing

input: (a) List of R ready tasks, sorted by increasing 𝑑∗𝑖 − 𝑡ICAP,𝑖
(b) List of E executing tasks, sorted by increasing 𝑡SP,𝑖 + 𝑡ICAP,𝑖 + 𝑡𝐸,𝑖
(c) MER, given by the allocator

(d) Real-time deadline tightness, ∑∀𝑘∈Ready Queue

𝑡ICAP,𝑘
𝑑∗𝑘 − 𝑡

(e) current time 𝑡KT
output: Scheduled Task

1 Reset tried array (set all positions equal to false);
2 𝑖 ← First Task in Ready Queue;
3 while 𝑖 ≤ 𝑅 do

4 if MER ≥ ℎ𝑥,𝑖 ⋅ ℎ𝑦,𝑖 and 𝑡𝑟𝑖𝑒𝑑[𝑖] = false then

5 if Allocate(i) /= Ø then

6 return 𝑖;
7 end if

8 end if

9 if ∑∀𝑘∈Ready Queue

𝑡ICAP,𝑘
𝑑∗𝑘 − 𝑡

<Threshold then

10 𝑗 ← First Task in Executing Queue;
11 𝐹 ← false;
12 while 𝑗 ≤ 𝐸 and 𝑡SP,𝑗 + 𝑡ICAP,𝑗 + 𝑡𝐸,𝑗 ≤ 𝑑∗𝑖 − 𝑡ICAP,𝑖 and !𝐹 do

13 if ℎ𝑥,𝑗 ≥ ℎ𝑥,𝑖 and ℎ𝑦,𝑗 ≥ ℎ𝑦,𝑖 then
14 𝐹 ← true;
15 end if

16 𝑗 ← Next Task in Executing Queue;
17 end while

18 if 𝐹 then

19 𝑚 ← Next Task in Ready Queue after 𝑖;
20 while 𝑚 ≤ 𝑅 do

21 if 𝑡KT + 𝑡ICAP,𝑚 ≤ 𝑑∗𝑖 − 𝑡ICAP,𝑖 then
22 if MER ≥ ℎ𝑥,𝑚 ⋅ ℎ𝑦,𝑚 and tried[𝑚] = false then

23 if Allocate(𝑚) /= Ø then

24 return 𝑚;
25 else

26 tried[𝑚]← true;
27 end if

28 end if

29 end if

30 𝑚 ← Next Task in Ready Queue;
31 end while

32 return Ø;
33 end if

34 end if

35 𝑖 ← Next Task in Ready Queue;
36 end while

37 return Ø;

Algorithm 2: Schedule FAEDF().

possible, trying to place small tasks in the smallest pieces of
empty area where they fit, including the areas between the
damaged resources. As a result, these heuristics are suitable
to be used in R3TOS. In fact, in the presence of faults it is not
true that the best position to place a task is always in a vertex
of a previously allocated task, as adjacency-based heuristics
assume (e.g., 2DA or 3DA).

Another benefit of EAC and EVCheuristics is their ability
to manage the FPGA device as a single resource instead
of splitting it into nonrealistic independent pieces of area,
as bin packing-based algorithms do (e.g., KAMER). Indeed,
these heuristics thoroughly analyze the state of the whole

reconfigurable area of the FPGA, giving rise to an Empty
Area Descriptor (EAD), which is later consulted when a new
task comes. By using the precomputed information included
in the EAD, nonfeasible allocations can be early discarded
and the quality of the feasible allocations can be determined
very quickly. As a result, more placement candidates can be
evaluated in less time, and, eventually, better results can be
achieved.

The main difference between EAC and EVC is that the
latter also analyzes the time domain to prevent future frag-
mentation in the device and to achieve higher computation
densities.

International Journal of Reconfigurable Computing 11

Algorithms 3 to 7 show the most important pseudocode
fragments to compute the EAC and EVC heuristics, and
Algorithm 8 shows the pseudocode to make the allocation
decisions based on these heuristics. Moreover, the example
depicted in Figure 7 is used to illustrate the computation of
these heuristics. All intermediate calculations related to this
example are depicted in Figure 8.

6.1.1. EAC/EVC: 1D Analysis. The area of the FPGA is firstly
analyzed in the horizontal direction, from right to left and
from left to right (see Algorithm 3). Every time the resources
associated to the cell in the next column of the FPGA state
grid are available to be used, a counter (named as lenght
in Algorithm 3) is incremented (line 5), and in case the
resources are not available, the counter is reset (lines 8 and 9).
It is assumed that a resource is not available when it is already
assigned to another executing task or when it is damaged,
but it is considered available when assigned to a task that
remains allocated but not performing active computation.
Likewise, active data traces (i.e., those which are still required
by other consumer tasks) are also represented bymeans of not
available (BRAM) cells in the FPGA state grid. Hence, the
set of the counter values at each grid position makes up the
Right/Left Adjacency Matrices (RAM and LAM) and represents
the amount of adjacent free resources in each direction (right
or left).

6.1.2. EAC/EVC: 2D Analysis. In a second phase, the 2D
analysis is carried out (see Algorithm 4).The objective of this
analysis is to find the greatest empty rectangle that can be
formed at each position in up-right, up-left, down-right, and
down-left directions and results in the four newmatrices: Up-
Right Adjacency Matrix (URAM), Up-Left Adjacency Matrix
(ULAM), Down-Right Adjacency Matrix (ULAM), and Down-
Left Adjacency Matrix (DLAM). These rectangles are depicted
in Figure 5. The 2D analysis is based on the geometrical
meaning of the RAM/LAM matrices. Indeed, the product of
the RAM/LAM value stored in each position (named as width
in Algorithm 4) multiplied by the number of consecutive
neighbor locations, in up or down directions, with the same
or greater value is equal to the area of the widest empty
rectangle that can be formed at that position.Analogously, the
area of the highest empty rectangle that can be formed at each
position is equal to the product of the number of consecutive
neighbor locations, in up or down directions, with a nonzero
RAM/LAM value multiplied by the lowest among these values.
In a general way, the area of all empty rectangles that can
be formed at each position can be iteratively computed as
the product of the successive decrements of the RAM/LAM
value stored in that position (until 0) multiplied by the the
number of consecutive neighbor locations, in up or down
directions, with the same or greater RAM/LAM value. Note
that this multiplication is computed by the repeated addition
of the actual width value in line 9 of Algorithm 4. In this
algorithm the value of width is decremented in line 15, and
the 𝑘 index is used to go through up or down directions. The
area of the greatest empty rectangle at each position and in

each direction is finally written in the URAM, ULAM, DRAM, and
DLAMmatrices (lines 12, 13, and 19).

For instance, in Figure 8, the value of URAM (5, 9)
corresponds to the area of 4 × 7 (widest) empty rectangle
which can be formed in up-right direction. Note that this is
the only rectangle that can be formed at that position. On the
other hand, the value of URAM (5, 2) is equal to the area of
3 × 4 (highest) empty rectangle which can be formed in that
direction. Note that at that position the widest rectangle that
can be formed is 1×7. Finally, the value of URAM (7, 6) is equal
to the area of either 5 × 3 (neither widest nor highest) empty
rectangle or 3 × 5 (widest) empty rectangle. At that position
the highest empty rectangle that can be formed is 7 × 2.

6.1.3. EAC: Area Adjacency Analysis. As shown in
Algorithm 5, the third and last phase of EAC heuristic
computation consists in adding the aforementioned four
matrices URAM, ULAM, DRAM, and DLAM to give rise to the 2D
Adjacency Matrix (2DAM). Conceptually, the values stored
in each position of 2DAM represent in what measure that
position contributes to form adjacent pieces of empty area.

6.1.4. EVC: Time and Area Adjacency Analysis. As previously
mentioned, EVC extends the area analysis to include the time
domain. Although it is inspired by the 3DA heuristic, some
changes are introduced with the objective of reducing the
computational burden when making the allocation decisions
(see Algorithm 6). In order to create a task-independent set
of data which could be used at runtime for any coming task,
a time window 𝑇𝑊 equal to the greatest execution time in
the task set is chosen (𝑇𝑊 = max{𝑡𝐸,𝑖}). For instance, in the
example shown in Figure 7, 𝑇𝑊 = max{5, 8, 6} = 8.

For each position, the temporal adjacencywithin the time
window with device’s boundaries (lines 11, 20, 29, and 38),
with other executing tasks (lines 8, 17, 26, and 37), and with
damaged resources in the four directions (lines 6, 15, 24, and
33) is computed. As a result the Temporal Adjacency Matrix
(TAM) is obtained. The value stored in each position of the
TAM represents in what measure that position contributes
to increasing the computation density. More specifically, a
high temporal adjacency valuemeans that the adjacent FPGA
resources will remain occupied for a long time, while a low
temporal adjacency value means that the adjacent resources
will be released soon. For instance, in Figure 8, the top-left
position has a temporal adjacency with device’s boundaries
equal to 8+0+0+8 = 16, the same as for position (10, 2), but
for the latter the adjacency is with a damaged resource and an
executing task.

The temporal adjacency information (TAM) is then com-
bined with the area adjacency information (2DAM) to create
the 3D Adjacency Matrix (3DAM), as shown in Algorithm 7.
The operation used to combine both time and area domains
is the division (see line 3). Therefore, when the 2DAM value is
high (i.e., that location is part of a great adjacent free area) and
the TAM value is low (i.e., that location does not contribute to
keeping the tasks compacted), the resulting 3DAM value is very
high (i.e., disadvantageous); on the contrary, when the 2DAM
value is low and theTAM value is high, the resulting3DAM value

12 International Journal of Reconfigurable Computing

input: FPGA state (i.e. for each FPGA position Available or Not Available)
output: RAM and LAM

1 for

𝑖 = 0 ⋅ ⋅ ⋅ 𝐻𝑥 − 1 /∗ when computing RAM or ∗/
𝑖 = 𝐻𝑥 − 1 ⋅ ⋅ ⋅ 0 /∗ when computing LAM ∗/
do

2 lenght← 1;
3 for 𝑗 = 0 ⋅ ⋅ ⋅ 𝐻𝑦 − 1 do

4 if FPGA state[𝑖][𝑗] is Available then
5 lenght← lenght + 1;
6 RAM[i][j]← lenght; /∗ when computing RAM or ∗/
6 LAM[i][j]← lenght; /∗ when computing LAM ∗/
7 else

8 lenght← 1;
9 RAM[i][j]← 0; /∗ when computing RAM or ∗/
9 LAM[i][j]← 0; /∗ when computing LAM ∗/
10 end if

11 end for

12 end for

Algorithm 3: EAC heuristic: Compute RAM() and Compute LAM().

is very low (i.e., advantageous). For the rest of the cases, the
resulting 3DAM value is medium.

6.1.5. The Empty Area Descriptor (EAD). As the tasks are
placed relatively to their upper-left vertex, DRAM and RAM
matrices are especially useful to describe the state of the
FPGA reconfigurable area, being the central elements in the
EAD. Each value stored in the DRAM matrix indicates the
biggest empty rectangle available in the down-right direction.
Therefore, a task can be placed in a given position only if its
area is less than or equal to the actual DRAM value stored at that
position. To account for shape aspects, the RAMmatrix is used.
A task can be placed in a given position only if its width is less
than or equal to the actual RAM value stored at that position.
In order to accelerate the search of feasible allocations for the
tasks, the highest value in each column of the DRAM (named as
column MER) is also saved in the EAD. column MERs permit
to discard all the positions of a column without having to
individually analyze each of these positions. The last element
in the EAD is theMER, which is equal to themaximum value
in the DRAM. As previously introduced, this value is given to
the scheduler to discard unfeasible to place tasks early. The
hierarchical structure of the EAD is shown in Figure 6.

6.1.6. EAC/EVC-Based Allocation Decision Making. At run-
time, when a new task comes, the set of feasible allocations
for it are evaluated based on the precomputed values stored in
the 2DAM, when using the EACheuristic, or in the 3DAM, when
using the EVC heuristic. As shown in Algorithm 8, an EAC
and an EVC score is assigned to each feasible allocation (𝑥, 𝑦)
of a task 𝜃𝑖. Note that unfeasible allocations are discarded
early based on the EAD (see lines 3 and 5). The EAC and
EVC scores are computed as the sum of the 2DAM or 3DAM
values corresponding to the resources to be assigned to 𝜃𝑖
in the allocation being evaluated (line 9). The placement

quality is inversely proportional to the EAC and EVC scores.
Conceptually, a low score means that the adjacent empty area
in the device is not significantly fragmented when allocating
the task in that position. In the case of EVC, a low score
also ensures a good compactness of the tasks. Therefore,
the final placement decision consists in selecting the feasible
allocation with the lowest EAC or EVC score (lines 12, 13, and
14). Note that this way of functioning allows for dealing with
different task shapes, that is, nonrectangular tasks.

The benefit of EAC and EVC when coping with perma-
nent damage is illustrated in Figure 7. According to both 2DA
and 3DA heuristics and considering the adjacency with the
damage as well, 𝜃𝑖 would have been allocated at the bottom-
left vertex of the FPGA (candidate B) with a 2DA score equal
to 14 and a 3DA score equal to 74. The 2DA score for the
candidate A is only 10, and the 3DA score for this candidate is
only 56. On the other hand, the lowest EAC and EVC scores
are obtained for candidate A; that is, EAC = 947 and EVC =
614. The scores for candidate B are EAC = 65 ⋅ 20 = 1300
and EVC = 623. Therefore, according to both EAC and EVC
heuristics 𝜃𝑖 is placed at candidate allocation A. Hence, as
shown in Figure 7, both 2DA and 3DA heuristics lead to a
reduction of the MER from 48 (when placing the task at
position A using either EAC or EVC) to 30, making it more
difficult to allocate greater area tasks coming in the future.

Furthermore, by using the precomputed 2DAM and 3DAM
matrices, the evaluation of each placement candidate for
a task 𝜃𝑖 can be done very quickly, involving only ℎ𝑥,𝑖 ⋅
ℎ𝑦,𝑖 additions. Note that the required time for making the
allocation decisions of large and small tasks tends to balance:
while there are more feasible candidate allocations for a small
task rather than for a large task, the quality of each candidate
is evaluated faster for small tasks as the number of additions
to be done is lower.

On the other hand, the EAD updating is a time-
consuming process which is performed in parallel with the

International Journal of Reconfigurable Computing 13

input: RAM (for URAM and DRAM computation) and
LAM (for ULAM and DLAM computation)

output: URAM, ULAM, DRAM and DLAM

1 for 𝑖 = 0 ⋅ ⋅ ⋅ 𝐻𝑥 − 1 do

2 for 𝑗 = 0 ⋅ ⋅ ⋅ 𝐻𝑦 − 1 do

3 width←RAM[x][y]; /∗ when computing URAM/DRAM or ∗/
3 width←LAM[x][y]; /∗ when computing ULAM/DLAM ∗/
4 areamax ← width;
5 𝑘 ← 𝑗;
6 while width > 0 do

7 area← 0;
8 while 𝑘 < 𝐻𝑦 and 𝑘 ≥ 0 and

RAM[i][k] ≥ width /∗ when computing URAM/DRAM or ∗/
LAM[i][k] ≥ width /∗ when computing ULAM/DLAM ∗/

do

9 area← area + width;
10 𝑘 ← 𝑘 + 1; /∗ when computing URAM/ULAM or ∗/
10 𝑘 ← 𝑘 − 1; /∗ when computing DRAM/DLAM ∗/
11 end while

12 if area > areamax then

13 areamax ← area;
14 end if

15 width← width − 1;
16 end while

17 end for

18 end for

19 URAM[x][y]← areamax; /∗ when computing URAM or ∗/
19 ULAM[x][y]← areamax; /∗ when computing ULAM or ∗/
19 DRAM[x][y]← areamax; /∗ when computing DRAM or ∗/
19 DLAM[x][y]← areamax; /∗ when computing DLAM ∗/

Algorithm 4: EAC heuristic: Compute URAM(), Compute ULAM(), Compute DRAM() and Compute DLAM().

Allocation under evaluation

Down-left

(96)

Down-right
(48)

Up-left

(40)

Up-right
(56)

Figure 5: Greatest empty rectangles in up-right, up-left, down-right, and down-left directions.

setting-up of the last allocated task in order to improve system
performance. Indeed, as the scheduling algorithm is not
preemptive, the next scheduling point 𝑡SP will not be before
the task is completely set up in the device. The 2DAM and
3DAM matrices are thus updated with the area state expected
by then: the resources assigned to the task being set up are
marked as not available, and the resources assigned to the
executing tasks which are expected to finish by then are
marked as available.

Overall, the worst case complexity of EAD updating is

𝑂(3⋅𝐻𝑥 ⋅𝐻𝑦+4⋅𝐻𝑥 ⋅∑
𝑖=𝐻𝑦
𝑖=1 𝑖), whereas the runtime allocation

decision making has a worst case complexity of 𝑂(ℎ𝑥,𝑖 ⋅ ℎ𝑦,𝑖 ⋅
(𝐻𝑥 − ℎ𝑥,𝑖 + 1) ⋅ (𝐻𝑦 − ℎ𝑦,𝑖 + 1)). Unlike most of allocation
algorithms, whose complexity depends on the number of
allocated tasks, the complexity of EAC and EVC heuristics
depends on the size of the FPGA. The benefit comes from
the fact that not feasible candidates can be discarded early

14 International Journal of Reconfigurable Computing

input: URAM, ULAM, DRAM and DLAM

output: 2DAM
1 for 𝑖 = 0 ⋅ ⋅ ⋅ 𝐻𝑥 − 1 do

2 for 𝑗 = 0 ⋅ ⋅ ⋅ 𝐻𝑦 − 1 do

3 2DAM←ULAM[i][j] + URAM[i][j] + DLAM[i][j] + DRAM[i][j];
4 end for

5 end for

Algorithm 5: EAC heuristic: Compute 2DAM().

by consulting the EAD, significantly reducing the effective
amount of time needed to make the allocation decisions.

With the amount of time available to update the EAD
limited by the shortest ICAP access period of the tasks, that
is, min{𝑡ICAP, 𝑖}, an effective way to speed up this process
is to increase the used granularity at the expenses of losing
efficiency in the management of FPGA resources. Note that
efficiency is of outmost importance when using small FPGAs,
where EAD updating time is not so critical, but it is less
important when using large FPGAs which involve longer
updating times. Based on this and also arguing that the type
of computation necessary to update the EAD is suitable to
be accelerated by hardware (e.g., Algorithms 3 to 7 have
regular data dependencies, and, as shown in Figure 8, the
URAM, ULAM, DRAM, and DLAM matrices can be concurrently
computed), we posit that the amount of time needed to
complete the updating can be kept within reasonable bounds,
enabling the use of the proposed heuristics in future FPGA
devices, with presumably faster reconfiguration speed and
more logic resources. A hardware implementation of an EAD
updater is described in Section 7.

6.2. Snake Task Allocation Strategy. While EAC and EVC
reduce at maximum the negative effect provoked by external
fragmentation, they donot directly consider some key aspects
in RC, such as intertask communications (i.e., hardware tasks
are assumed to be independent), usable clock frequency, and
FPGA resource heterogeneity.Hence, the allocation decisions
may result in low performance due to intensive use of ICAP
to exchange data among tasks or due to the fact that tasks are
not executed at their highest clock rate. To tackle these issues
the Snake allocation strategy is proposed.

Besides promoting the reuse of previously configured
circuitry, Snake also tries to reuse intermediate partial results
between different computation stages when dealing with
noncritical HBC tasks. Note that when a task is noncritical
a single instance of it is executed on the FPGA and there is
no need to check the correctness of its results by accessing
them through the ICAP. On the other hand, EAC and EVC
heuristics continue to be useful for allocating redundant
critical tasks and noncritical LBC tasks. That is, noncritical
HBC tasks (which need long time to exchange data through
the ICAP) are allocated with the objective of reducing the
ICAP occupation, at the expense of increasing external
fragmentation on the device, and LBC tasks (which need

short time to exchange data through the ICAP) are efficiently
allocated on the resulting FPGA, area fragments.

With the objective of speeding up the computation,
Snake tries to execute each task at its highest allowed clock
frequency, especially LBC tasks. However, this must be
carefully treated to avoid allocation problems due to the
fact that each FPGA clock region can allocate a maximum
of two tasks running at different clock frequencies; that is,
there are only two regional clock nets to distribute the clock
signals in a clock region. In order to deal with this limitation
Snake promotes the allocation of tasks with similar clock rates
together in the same or adjacent rows, while it tries to allocate
the tasks with radically different clock frequencies in separate
rows. This permits to make up large regions with the same
clock domain where future (large) tasks could be allocated.

Summing up, while reusing circuitry and partial results
speeds up the set up phase of the tasks (better use of ICAP:
time), an optimal management of clocking resources accel-
erates their execution phase (better use of FPGA resources:
area). However, usually it is impossible to simultaneously take
advantage of both improvements. When the execution time
of a task is significantly longer than its set up time (i.e., LBC
tasks), it is preferable to feed the task with the highest clock
rate although this results in longer ICAP occupation. On the
other hand, when the set up time of a task is in the same
range of its execution time (i.e., HBC tasks), circuitry and/or
data reuse is promoted. Indeed, note that HBC tasks usually
complete their computation within a relatively short amount
of time, and hence the occupation of the clocking resources
is not a major problem.

In order to increase the allocatability of the tasks that
include more scarce BRAM-based data buffers (typically
HBC tasks), several versions of the same task are provided.
As shown in Figure 9, each of the task versions uses different
IDB and ODB locations and defines a different direction
of the computation; that is, data flow from the IDB to the
ODB. By using the appropriate task version at each time,
the task can leave its results in the easiest accessible BRAM
memories to be accessed by the subsequent data consumer
tasks. In Figure 9, thewhite arrows represent the computation
direction, which is vertical for task versions from 𝑎 to 𝑑 and

horizontal for versions from 𝑒 to 𝑖. Aiming at best exploiting
the FPGA resources, the tasks must always span a minimum
number of clock regions in height, and, given the granularity
of FPGA’s configuration memory, the size of the IDB and

International Journal of Reconfigurable Computing 15

input: FPGA state and the state of the tasks
output: TAM

1 for 𝑖 = 0 ⋅ ⋅ ⋅ 𝐻𝑥 − 1 do

2 for 𝑗 = 0 ⋅ ⋅ ⋅ 𝐻𝑦 − 1 do

3 TAM[i][j]← 1;
// Bottom

4 if 𝑗 − 1 ≥ 0 then

5 if FPGA state[i][𝑗 − 1] is Damaged then

6 TAM[i][j]←TAM[i][j] + 𝑇𝑊;
7 else if Task @ (𝑖, 𝑗 − 1) is Executing then

8 TAM[i][j]←TAM[i][j] + Remaining 𝑡𝑒 of Task @ (𝑖, 𝑗 − 1);
9 end if

10 else

11 TAM[i][j]←TAM[i][j]+𝑇𝑊;
12 end if

// Left
13 if 𝑖 − 1 ≥ 0 then

14 if FPGA state[𝑖 − 1][𝑗] is Damaged then

15 TAM[i][j]←TAM[i][j] + 𝑇𝑊;
16 else if Task @ (𝑖 − 1, 𝑗) is Executing then

17 TAM[i][j]←TAM[i][j] + Remaining 𝑡𝑒 of Task @ (𝑖 − 1, 𝑗);
18 end if

19 else

20 TAM[i][j]←TAM[i][j] + 𝑇𝑊;
21 end if

// Top
22 if 𝑗 + 1 < 𝐻𝑦 then
23 if FPGA state[𝑖][𝑗 + 1] is Damaged then

24 TAM[i][j]←TAM[i][j] + 𝑇𝑊;
25 else if Task @ (i, j + 1) is Executing then

26 TAM[i][j]←TAM[i][j] + Remaining 𝑡𝑒 of Task @ (𝑖, 𝑗 + 1);
27 end if

28 else

29 TAM[i][j]←TAM[i][j] + 𝑇𝑊;
30 end if

// Right
31 if 𝑖 + 1 < 𝐻𝑥 then
32 if FPGA state[𝑖 + 1][𝑗] is Damaged then

33 TAM[i][j]←TAM[i][j] + 𝑇𝑊;
34 else if Task @ (𝑖 + 1, 𝑗) is Executing then

35 TAM[i][j]←TAM[i][j] + Remaining 𝑡𝑒 of Task @ (𝑖 + 1, 𝑗);
36 end if

37 else

38 TAM[i][j]←TAM[i][j] + 𝑇𝑊;
39 end if

40 end for

41 end for

Algorithm 6: EVC heuristic: Compute TAM().

ODB should be an integer multiple of 4 BRAMs (72Kb).
However, for efficiency reasons, note that both IDB and
ODB could be mapped to the same BRAM column, that
is, each buffer using 2 BRAMs. In the horizontal direction
the criterion changes. Tasks with horizontal computation
direction must lie between two columns of BRAMs, and the
width of tasks with vertical computation direction is chosen
with the only constraint of fitting the necessary amount of
resources. This means that a pair a-c, a-d, b-c, or b-d task
versions can flexibly exploit the FPGA resources between two

BRAM columns. We acknowledge a memory requirement
increase to store the bitstreams associated to each version
of the tasks. However, the memory overhead is admissible
considering the benefit this method allows.

Figure 10 shows the allocation decision-making diagram
of Snake. When a task 𝜃𝑖 is scheduled, Snake checks whether
it is critical or noncritical andHBC or LBC. If 𝜃𝑖 is noncritical
and HBC, Snake checks whether it is preferable to reuse
circuitry (i.e., circumvent 𝑡𝐴,𝑖) or reuse partial results (i.e.,
circumvent 𝑡𝑅,𝑗 and 𝑡𝐷,𝑖, where 𝜃𝑗 is the data producer task

16 International Journal of Reconfigurable Computing

input: URAM, ULAM, DRAM, DLAM and TAM

output: 3DAM
1 for 𝑖 = 0 ⋅ ⋅ ⋅ 𝐻𝑥 − 1 do

2 for 𝑗 = 0 ⋅ ⋅ ⋅ 𝐻𝑦 − 1 do

3 3DAM←2DAM[i][j]/TAM[i][j];
4 end for

5 end for

Algorithm 7: EVC heuristic: Compute 3DAM().

input: 2DAM (when using EAC), 3DAM (when using EVC) and 𝜃𝑖
output: Allocation (x,y)

1 EACmin ← 4 ⋅ 𝐻𝑥 ⋅ 𝐻𝑦; /∗ when using EAC or ∗/
1 EVCmin ← 4 ⋅ 𝑇𝑊 ⋅ 𝐻𝑥 ⋅ 𝐻𝑦; /∗ when using EVC ∗/
2 for 𝑖 = 0 ⋅ ⋅ ⋅ 𝐻𝑥 − 1 do

3 if column MER[𝑖] ≥ ℎ𝑥,𝑖 ⋅ ℎ𝑦,𝑖 then
4 for 𝑗 = 0 ⋅ ⋅ ⋅ 𝐻𝑦 − 1 do

5 if DRAM[𝑖][𝑗] ≥ ℎ𝑥,𝑖 ⋅ ℎ𝑦,𝑖 and RAM[𝑖][𝑗] ≥ ℎ𝑥,𝑖 then
6 EAC← 0; /∗ when using EAC or ∗/
6 EVC← 0; /∗ when using EVC ∗/
7 for 𝑚 = 𝑖 ⋅ ⋅ ⋅ 𝑖 + ℎ𝑥,𝑖 − 1 do

8 for 𝑛 = 𝑗 ⋅ ⋅ ⋅ 𝑗 + ℎ𝑦,𝑖 − 1 do

9 EAC← EAC + 2DAM[m][n]; /∗ when using EAC or ∗/
9 EVC← EVC + 3DAM[m][n]; /∗ when using EVC ∗/
10 end for

11 end for

12 if EAC < EACmin /∗ when using EAC or ∗/
EVC < EVCmin /∗ when using EVC ∗/

then

13 𝑥 ← 𝑖;
14 𝑦 ← 𝑗;
15 end if

16 end if

17 end for

18 end if

19 end for

20 if

EACmin /= 4 ⋅ 𝐻𝑥 ⋅ 𝐻𝑦 /∗ when using EAC or ∗/
EVCmin /= 4 ⋅ 𝑇𝑊 ⋅ 𝐻𝑥 ⋅ 𝐻𝑦 /∗ when using EVC ∗/
then

21 return (𝑥, 𝑦);
22 else

23 return Ø;

24 end if

Algorithm 8: Allocation selection based on the EAC and EVC heuristics: Allocate EAC() and Allocate EVC().

of 𝜃𝑖). Note that while circuitry can be reused only if the
task remains still configured on the FPGA, partial results can
always be potentially reused as the data traces of HBC tasks
are stored in BRAMs. Reusing an already configured task is
immediate, and no allocation decisions must be made; that
is, the task is simply executed on the same position where
it was last time. However, when reusing the partial results,
some allocation decisions are to be made. The best case is
when 𝜃𝑖 can directly access its input data from 𝜃𝑗’s ODB

(i.e., 𝜃𝑗’s ODB is used as 𝜃𝑖’s IDB), but this requires there are
sufficiently large amount of contiguous resources to allocate
𝜃𝑖 next to 𝜃𝑗’s ODB. Preferably, consumer tasks are allocated
opposite to producer tasks, to keep the latter allocated on
the FPGA, promoting future circuitry reuse. However, if
strictly necessary producer tasks are deallocated and their
resources assigned to consumer tasks. If there are several
versions of 𝜃𝑖 which fit in the free area next to 𝜃𝑗’s ODB,
EAC/EVCheuristics are used to select the one thatminimizes

International Journal of Reconfigurable Computing 17

Used by

Used by

scheduler

allocator

Feasibility Quality Feasibility Quality Feasibility Quality Feasibility Quality

Column MER Column MER Column MER Column MER

MER

x = 0 x = 1 x = 2 · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·· · ·· · ·

2/3DAM (2, 0)
2/3DAM

2/3DAM

2/3DAM

2/3DAM

2/3DAM

2/3DAM (2, 1)

2/3DAM (2, 2)

2/3DAM (2, 3)

2/3DAM (1, 0)2/3DAM (0, 0)

2/3DAM (1, 1)2/3DAM (0, 1)

2/3DAM (1, 2)2/3DAM (0, 2)

2/3DAM (1, 3)2/3DAM (0, 3)

2/3DAM (0, Hy−1) 2/3DAM (2, Hy−1)2/3DAM (1, Hy−1)
DRAM (0, Hy−1)

RAM (0, 0)

DRAM (0, 0)

RAM (1, 0)

DRAM (1, 0)

RAM (0, 2)

DRAM (0, 2)

RAM (1, 2)

DRAM (1, 2)

RAM (0, 1)

DRAM (0, 1)

RAM (1, 1)

DRAM (1, 1)

RAM (0, 3)

DRAM (0, 3)

RAM (2, 0)

DRAM (2, 0)

RAM (2, 2)

DRAM (2, 2)

RAM (2, 1)

DRAM (2, 1)

RAM (2, 3)

DRAM (2, 3)

RAM (1, 3)

DRAM (1, 3)

RAM (0, Hy−1)

DRAM (1, Hy−1)

RAM (1, Hy−1)

DRAM (2, Hy−1)

RAM (2, Hy−1)

(Hx−1, 0)

(Hx−1, 1)

(Hx−1, 2)

(Hx−1, 3)

RAM (Hx−1, 0)

DRAM (Hx−1, 0)

RAM (Hx−1, 1)

DRAM (Hx−1, 1)

RAM (Hx−1, 2)

DRAM (Hx−1, 2)

RAM (Hx−1, 3)

DRAM (Hx−1, 3)

RAM (Hx−1 ,Hy−1)

DRAM (Hx−1 ,Hy−1)(Hx−1 ,Hy−1)

x = Hx−1

Figure 6: EAD structure.

the fragmentation on the device. On the other hand, if there is
no sufficiently large free area to allocate any implementation
version of 𝜃𝑖 next to 𝜃𝑗’s ODB, the feasibility of using a Data
Relocation Task (DRT) is evaluated. By using a DRT the
set of data can be rapidly moved (through the functional
layer) from its current location to a new position where it is
accessible by the consumer task. If no DRT can be used, the
allocation decisions are made using the EAC/EVC heuristics,
and the data is delivered to the consumer task through the
configuration layer. Summing up, for noncritical HBC tasks,
Snake starts evaluating the feasible allocations near the data
producer task and continues evaluating the FPGA allocations
which are reachable by means of DRTs, and finally it switches
to analyze the whole FPGA locations seeking for the lowest
EAC/EVC score, that is, minimal fragmentation.

As shown in Figure 11, the linking together of the hard-
ware tasks by means of the memory elements where the data
traces are temporarily stored leads to computation chains on
the FPGA. Indeed, this gives Snake its name. The task chains
are initiated in themain CPU’s ODBs (Heads), and the results
computed by the last task in the chain are copied through
the configuration layer of the FPGA to the main CPU’s IDBs
(Tails), where they are accessible by the software program. As
shown in Figure 11(b), Snake is an efficacious way to deal with
the heterogenous resource columns embedded in modern

FPGAs as well as to circumvent the damaged resources in the
chip.

7. Simulation Results

This section presents the obtained results when simulating
our scheduling and allocation algorithms. The simulation
experiments cover a wide range of task parameters and dif-
ferent damage situations in the chip. Finally, an estimation of
the performance improvement brought about by Snake using
a realistic heterogeneous FPGA device model is provided.

7.1. Simulation Set up . Adiscrete-time simulation framework
was built to evaluate the performance of the proposed
scheduling and allocating algorithms. The framework ran
under Windows XP OS on an Intel Core Duo CPU @ 3GHz.

The framework simulated a Virtex-4 XC4VLX160 device
with up to 12 clock regions, 3 BRAM columns, 1 DSP48
column, and a sandbox of 28CLB columns width. Based on
the layout of this FPGA, shown in Figure 12(a), the vertical
granularity was set to be a clock region, that is,𝐻𝑦 = 12, while
the horizontal granularity was set to be either 4 CLB columns
or a single heterogeneous resource column, that is,𝐻𝑥 = 15.

18 International Journal of Reconfigurable Computing

Reference

Hardware task

A

B

Executing task

Executing task
(x

xt

, y

y

)
hy, i = 4

hx, i = 5

(tE,i = te,i = 8)

(tE,i = te,i = 4)tE,i = 6

θi

R

(a) FPGA area state (𝑡𝑒,𝑖 is the remaining execution time of task i)

𝜃�(A)

MER (A)

(b) Candidate A (MERA = 48)

MER (B)

𝜃� (B)

(c) Candidate B (MERB = 30)

Figure 7: Allocating 𝜃𝑖 at candidate positions A and B.

1 2
22

2

2
2
2
2

2
2
2

1
1
1
0
0 0 0 0 0 0

0
4

4
4
4

4
4

4
4
4
4

0 0 0
000

00

5 6

6
6

6

6
6

6
6
6

5
5

5

5
5
5
5

5
5

0
0

0

3
3
3
3

3
3
3
3

3
7 8 9

1

1

2

2

22

2
2

4
4

4

4

4
4

4
4

0

0
1 2
2

3

3
4

4

4

4
4

4 4
4 4

4 4

4
4

4
4

4

1

1

1

1

1

2
2 2

2
2

3
3

3 3

3
3
4

4 4

4

4

5

5
5

6
6

6

6

7
7

7

7 7

7 7 7 7 8 8

8 8 8

8 8 8

20
40

13 13 13 13 13

12
12
80 81 8185

30

65 65 65 65 65
6565656565

75
75

61

61

48 48
59
5959

58

49
25

5

7579
73 23

14

59
62 63

64424139

77
77

73

57
57

69
6971

2
2

22

2
2

2
2

2

2 3

3

3

3

3

3

35

5

5

5

6

6
6
6
6

6
6

6

6
6

5
5

5 5 5 5 5
5
5

55555

17

17 17

17 17

17

17

13

13

5
5
5

5
5
5
A

A A

B

A

B

B

5
5

4
4
4

4

4

4
4

4

4
4

3
3
3
3
3
3

3 3
3

3
3

2
2
2
2
2
2

2

2
22

2

1

1
1 1

1
1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1

1
1 1

11
1 1

1

1
1 1

1

1
1
11

11
1 1

1 1
11 1

1 1
1 1

1 1
1

1

1

1
1 1

1 1
1

1

1 1
1

1
1
1
1
1
1
1

1

1
1 1

6
7

7
7
7
7

7
7

7

7

7

77

7
7

7

8

8

8

8

8

8
8
8
8

8

8
8

810

10
10
10
10

10
10

10

10

10
10

10
10

10

10

12
1215

15

15

12
12

12

12
12

12
12

12

1222
33

25

15

15

5
1218

20

20
20

20

24

15
18

18

18

18

18

324044

12

12

6

6
6

6
6

6

6

6
6

6

6
6

5

5

5

5

9

9

9

4

8

8

8

8

812 12

12 16

12
12

12

12

6

6
6

6
6

6
6

6

3

3
2

21

0 0 0 0 0
0000

0 0 0
0 0

0
0 0

0 0
0 0

0

0

0
0 0

0 0
0 0

0 0
0 0

0

0
0 0

0 0
0

0

0
0 0

0

0
0

0
00 0

0

0

000000
0

0
0

0
0

0

0
0 0

00000

00
0 000

0

0
00

00
00

00
00

9 9

9

9

9

9

9
9
9

9
9

9 9
9

9

9 9
9

9 9 9
9

9
9 9

9
9
9
9
9

999999999
9
9

9

9

9

9

9

9 9

12

12

11

11

11

11
11
11

11

11

20

20 20
20

20
910

10

18

18

18

16

16

16

16

16

1620

1614

14

24
24

24

24

24 24

16

6

8

8

8

8

8

8 8
8

8

22
21

2030
30

3030

30

30

30

30

30
14

14

14

1618

36

36

36 324044

12

24

36

48

48

36

36
36 33 25

24

24

21

21

21

27

27

27

28

28

28

28

32

32

404448

15

9

12
12
12
12

12

0

000
0 0 0

33

52

35 26
18

58

5959
80 8181

73
73

73

71
71

33

30 30
34 50 50

484848

59
59

59
53

51
51

49
49

57

79

57
57

6262 63
61

61

85

64404241
4139 0

0

0

00000
35
37

26 26 29
20 20 20

20

39
3937

35

0

77 75
75
75

75
77
77

65
69
69
69 69

69
69
7565

65 65
65 65
65 65

65 65
65 65

65 65
65 65

65 65
65 65
65 65
65 65

00000

00
0 3

20

20

20

20

10

10
10 11

11
77

7
18

18

18

18 24
10 15

44 48
36
24
12

22
98

27
32

2115
28

33

14
14

14

16

16

27
24

24
24

30

30

30

3025

21
36

36

32 12
28

40

0

00

000

0
000000

0 0 0 0 0 0

0
0

05

55

5

5

6

6
6

6
6

6

6
66

6

3

3

3

3

7

7

8

8

8

88

8

9

9

10

10

10 11

10
15

10

10

12 15
20 20

20
16

16

20

16

16

15

15

1212

12
12

12 18
18

18
14

14 21

21 24
24

24 24 2422
27 30 33 36
3628 32 40 44 48

12

12

12
12

14
99

9 10 11

11
11
11
11 12

12
12
12

12
10

10
10
10
10

9

9
9
9
9

8
8

8
8
8
8

7
7

7
7
7
7

3
3

0

1
1
1
1

1
1

1

1

RAMLAM

MER

ULAM DLAM DRAM

Column-MERs

3-DAM (rounded to integer)2DAM

URAM

TAM

P
h

as
e

1
:

1
D

 a
d

ja
ce

n
cy

an
d

 t
em

p
o

ra
l

ad
ja

ce
n

cy

P
h

as
e

2
:

2
D

 a
d

ja
ce

n
cy

P
h

as
e

3
:

ar
ea

/v
o

lu
m

e
ad

ja
ce

n
cy

 m
at

ri
x

co
m

p
u

ta
ti

o
n

Area analysis (EAC) Time analysis (EAC)

Figure 8: EAC and EVC heuristics computation.

Due to the lack of a common benchmark for RC systems,
we resorted to creating our own synthetic hardware tasks.
Different task sets, each containing up to 60 hardware
tasks, were randomly generated. The execution deadlines,
execution times, and sizes of the tasks were appropriately
chosen, starting from random values, in order to simulate

different 𝑈ICAP and 𝑈COMP situations. For simplicity, the
allocation time of the tasks was considered to be equal to
their size 𝑡𝐴,𝑖 = ℎ𝑥,𝑖 ⋅ ℎ𝑦,𝑖. We also considered that successive
instances of the tasks were released with the shortest allowed
time between them.

International Journal of Reconfigurable Computing 19

O
D

B
ID

B

C
o

m
p

u
ta

ti
o

n

(a)

O
D

B
ID

B

C
o

m
p

u
ta

ti
o

n

(b)

O
D

B
ID

B

C
o

m
p

u
ta

ti
o

n

(c)

O
D

B
ID

B

C
o

m
p

u
ta

ti
o

n

(d)

O
D

B

O
D

B
ID

B

ID
B

Computation

Computation

(e)

O
D

B

ID
B Computation

(f)

O
D

B

ID
B

Computation

(g)

O
D

B

ID
B

Computation

(h)

O
D

B

ID
BComputation

(i)

Figure 9: Different implementation versions for the hardware tasks.

Data reuse Producer’s ODB

Snake’s
allocation
evaluation
order

DRT

Whole FPGA

tA,i

tA,i

tA,i

Is (tA,i > tR, j + tD,i)?

Scheduler

New scheduled task θi

Critical

LBC
HBC or LBC?

HBC

LBC

HBC
Critical Less fragmentation (EAC/EVC heuristics)

Shortest ICAP occupation (partial results reuse)

Shortest FPGA resources occupation (execute at highest clock frequency)
Critical

Non-critical

Non-critical

Noncritical

Criticality?

Is θi allocated?

Is θi allocated?

Is θi allocated?

Yes Yes

Yes

Yes

Yes

Re-use
partial results

Reuse circuitry

Evaluate
sharing the ODB

Yes

Feasible?

Yes

Yes No

EAC/EVC used to select

No performance

enhancement/

minimal

fragmentation

Use

the most appropriate locationDeliver highest
clock frequency

reduction

Reuse circuitry

circumvention

circumvention

circumvention

EAC/EVC heurisitics

Feasible?

EAC/EVC used to select
the most appropriate DRT Use DRT

Evaluate
using DRTs

Is θi allocated?

Is θi allocated?

Re-use circuitry

BRAM-based

 buffers?

Yes

and tD,i reduction

R,i and tDt ,i circumvention

tE ,i

No

No

No

No

No

No

No

No

R,it

Figure 10: Snake task allocation strategy.

Due to the lack of a common benchmark for RC systems,
we resorted to creating our own synthetic hardware tasks.
Different task sets, each containing up to 60 hardware
tasks, were randomly generated. We considered that succes-
sive instances of the tasks were released with the shortest
allowed time between them. Note that with this worst case
assumption, aperiodic tasks can be considered periodic. The
execution deadlines, execution times, and sizes of the tasks
were appropriately chosen, starting from random values, in

order to simulate different real-time constraints and FPGA
resource requirements.These are represented with𝑈ICAP and
𝑈COMP parameters, where 𝑈ICAP = ∑∀𝜃𝑖(𝑡ICAP,𝑖/𝐷

∗
𝑖) and

𝑈COMP = (1/𝐻𝑥 ⋅ 𝐻𝑦) ⋅ ∑∀𝜃𝑖((𝑡ICAP,𝑖 + 𝑡𝐸,𝑖) ⋅ ℎ𝑥,𝑖 ⋅ ℎ𝑦,𝑖/𝐷𝑖).
For simplicity, the allocation time of the tasks was considered
to be equal to their size 𝑡𝐴,𝑖 = ℎ𝑥,𝑖 ⋅ ℎ𝑦,𝑖.

Up to 10,000 experiments were performed for each
𝑈ICAP and 𝑈COMP situations, and the obtained results were
averaged. All tasks were set ready at time 0 (i.e., critical

20 International Journal of Reconfigurable Computing

Data

Data Results

Results

Results

θ1

θ2 θ3

θ5

θ5 θ6 θ7 θ8

(a) Reconfigurable application’s DAG

θ1

θ2

θ3

θ4

θ5

θ6

θ8

θ7

DRTDRT

Tail
(results)

TailHead

ICAP (configuration layer)

ICAP (configuration layer)

ICAP (configuration layer)

Head

(data)

(data)
Main
CPU

(results)

BRAMs
[stripped means reused]

DRT

DRT

(b) Allocation graph and general functioning scheme

ResultsResultsResults SW

IC
A

P

IC
A

P

IC
A

P

Data Data

DRT

DRT

DRT

Hardware-based computing

DRT

DRT

Software-based computing (main CPU)

tA,1 tA,2 tA,3tA,4tA,5 tA,6

tE,1 tE,2 tE,3

tE,4

tE,5 tE,6 tE,8

tR,4

tE,7

tR,3 ttR,8tA,7 tA,8

(c) Time diagram

Figure 11: Reusing partial results with Snake.

instant), and each experiment was considered to be finished
when every task in the task set had either met or missed its
execution deadline at least once.

In a first instance, we did not consider intertask depen-
dencies, intertask communication overheads, or resource
heterogeneity, and we focussed exclusively on the sandbox of
the simulated FPGA. Furthermore, all tasks were considered
to run at the same clock frequency. We note that this is
the most commonly simulated scenario in related work.
Since our scheduling and allocation algorithms are soft real-
time, nonpreemptive and designed for 2D area model, they

were only compared with equivalent nonpreemptive EDF
scheduling, working with 2DA/3DA allocation heuristics.
Indeed, EDF is one of the most consolidated soft real-
time scheduling algorithms, and adjacency-based heuristics
show the best allocation results in the current state-of-the-
art, being used or serving as inspiration, in some of the
latest research efforts in the field (see Section 3). In order
to complete the characterisation of our EAC/EVC heuristics,
up to 25 CLBs within the sandbox were marked as damaged
(approximately 0.5% of the total CLBs in the sandbox). For
fair comparison, we provided 2DA and 3DA heuristics with a

International Journal of Reconfigurable Computing 21

S
an

d
b

o
x

CLK region 1

CLK region 2

CLK region 3

CLK region 4

CLK region 5

CLK region 6

CLK region 7

CLK region 8

CLK region 9

CLK region 10

CLK region 11

CLK region 12

2
8

 C
L

B
 c

o
lu

m
n

s

4
 C

L
B

 c
o

lu
m

n
s

4
 C

L
B

 c
o

lu
m

n
s

4
 C

L
B

 c
o

lu
m

n
s

4
 C

L
B

 c
o

lu
m

n
s

IO
B

 c
o

lu
m

n
B

R
A

M
 c

o
lu

m
n

B
R

A
M

 c
o

lu
m

n

B
R

A
M

 c
o

lu
m

n
D

SP
4

8
 c

o
lu

m
n

(a) FPGA layout

CLB CLB CLB CLB CLB CLBCLB CLB CLB CLBCLBBRAM BRAM BRAMDSP48

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) FPGA descriptor

Figure 12: Left half part of the simulated XC4VLX160 part.

mechanism for dealing with faults namely, the damaged CLB
positions were added as additional vertexes in the Virtex List
Set (VLS).

Four metrics were used to evaluate the performance of
our algorithms.

(1) Missed Deadlines (MD) is the percentage of missed
execution deadlines.

(2) Scheduling Feasibility (SF) refers to the percentage
of feasible schedules produced, that is, percentage of
schedules that do not miss any deadline.

(3) Exploited Computation Volume (ECV) refers to the
use of the 3D computing space delivered by the FPGA
(i.e., area time) to execute hardware tasks which meet
their deadlines. Note that the set up phase of the tasks
is not considered.

(4) Algorithm’s Execution Time (AET) refers to the
amount of time needed for making the scheduling
and allocation decisions per executed task, as well as
the time needed for updating the EAD.

In a second instance, all of the previously neglected RC-
related issues were included in the simulation to evaluate our
realistic Snake task allocation strategy. Hence, this simulation
considered the whole FPGA device, that is, sandbox and het-
erogeneous resource columns. Intertask dependencies were

randomly generated, with a maximum of 3 dependencies
per task, and the amount of time needed to exchange data
among tasks was also considered, that is, 𝑡𝐷,𝑖 and 𝑡𝑅,𝑖. The
data delivery/retrieval time was uniformly distributed in
(90% ⋅ ⋅ ⋅ 110%) of the execution time for HBC tasks and in
(30% ⋅ ⋅ ⋅ 50%) for LBC tasks. HBC tasks and LBC tasks were
randomly generated with a similar proportion of BRAM to
CLB columns in the device, that is, 15 to 1. It was assumed that
four implementation versions were available for each task,
with vertical and horizontal computation direction, and for
each computation direction with the IDB and ODB located
in reverse positions. The data buffers of HBC tasks were
considered to be implemented using 4 BRAMs. When DRTs
could be used, it was assumed an acceleration factor of 1.5x
in intertask communications. Furthermore, clocking aspects
were envisaged: the execution time of the tasks depended on
the used clock frequency, and the amount of tasks running at
different clock frequencies in a row was limited to two. The
highest clock frequency at which each task could run was
randomly selected, ranging from 1x (i.e., base clock rate) to
5x.

7.2. No Damage in the Device. Figure 13 shows the collected
results in three representative situations with no damaged in
the simulated FPGA device: (a) when the FPGA resources are

22 International Journal of Reconfigurable Computing

EAT(U)

MD

SF

ECV
EAT(A)

EAT(S)

0.1

0

0.2

0.3

0.4
0.5

0.6

0.7
0.8

0.9

1

(a) 𝑈ICAP = 0.9 and 𝑈COMP = 0.9

EAT(U)

MD

SF

ECVEAT(A)

EAT(S)

0.1
0

0.2

0.3
0.4

0.5

0.6

0.7
0.8

0.9

1

(b) 𝑈ICAP = 0.75 and 𝑈COMP = 0.9

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

EAT(U)

MD

SF

ECVEAT(A)

EAT(S)

0.1
0

0.2

0.3
0.4
0.5

0.6
0.7
0.8

0.9

1

(c) 𝑈ICAP = 0.9 and 𝑈COMP = 0.75

Figure 13: Performance with no damage in the FPGA device. EAT(U) refers to the EAD updating time, EAT(A) refers to the time needed
for making the allocation decisions, and EAT(S) is the time needed for making the scheduling decisions.

highly utilized (𝑈COMP = 0.9) and the real-time constraints
are tight (𝑈ICAP = 0.9), (b) when the FPGA resources are
highly utilized and the real-time constraints are moderate
(𝑈ICAP = 0.75), and (c) when the FPGAutilization ismedium
(𝑈COMP = 0.75) and the real-time constraints are tight. Note
that the results shown in this figure are normalized to the
highest value.

As expected, the results are better when either time
aspects were considered when making the allocation deci-
sions or when area aspects were considered when making
the scheduling decisions; that is, EVC outperforms EAC, and
FAEDF outperforms EDF. The improvement is more notice-
able when the extra dimension was considered only once;
that is, the benefit of including time aspects when making
the allocation decisions is greater with EDF, which does not
account for area aspects, than with FAEDF, which already
considers area aspects. Specifically, in all of the simulated

situations FAEDF-EVC shows the best results, that is, less
amount ofmissed deadlines, higher rate of feasible schedules,
and better exploitation of computation volume, while EDF-
2DA shows the worst results. Moreover, the experiments
conducted confirm that FAEDF-EAC produces slightly better
results than EDF-3DA.

Including area aspects whenmaking scheduling decisions
FAEDF results in approximately double execution time,
while EAC and EVC heuristics result in time overheads for
updating the EAD. While the penalty for using FAEDF is
admissible; that is, the scheduling decisions can always be
made in less than 8 microseconds, the average time needed
for updating the EAD is about 100 microseconds. Although
this timemight seem excessive, it is important to note that the
conducted simulation does not account for the acceleration
brought about by custom hardware implementation and
parallelism in the area matrices computation. In contrast

International Journal of Reconfigurable Computing 23

EDF-2DA

0

1

2

3

4

M
D

EDF-3DA
FAEDF-EAC

FAEDF-EVC

Numbers of damaged resources

0 5 10 15 20 25

(a) Missed deadlines (%)

0

50

60

70

80

90

100

SF

5 10 15 20 25

EDF-2DA

EDF-3DA

FAEDF-EAC

FAEDF-EVC

Numbers of damaged resources

(b) Feasible schedules (%)

0

36

38

40

42

E
C

V

5 10 15 20 25

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

Numbers of damaged resources

(c) Exploited computation volume (%)

A
E

T
 (

al
lo

ca
ti

o
n

)

Numbers of damaged resources

0

0

5 10

10

15 20

20

30

40

50

25

EDF-2DA

EDF-3DA

FAEDF-EAC

FAEDF-EVC

(d) Allocation execution time (𝜇𝑠)

0 5

0.5

1

1.5

2

2.5

10 15 20 25

EDF

FAEDF

A
E

T
 (

sc
h

ed
u

li
n

g)

Numbers of damaged resources

(e) Scheduling execution time (%)
EVC

EAC

 A

E
T

(u
p

d
at

in
g

E
A

D
)

0 5

180

130

80

30

10 15 20 25

Numbers of damaged resources

(f) Updating EAD time (𝜇𝑠)

Figure 14: Low utilization of the FPGA and loose real-time constraints: 𝑈ICAP = 0.5 and 𝑈COMP = 0.5.

with the long time required to update the EAD, we note the
remarkable achievable acceleration for making the allocation
decisions when using our allocation heuristics. Indeed, the
average time elapsed for making the allocation decisions is
around 35 microseconds when using 2DA/3DA heuristics,
and it is less than 10 microseconds when using our EAC/EVC
heuristics (around 25% speed-up).

Summing up, when using FAEDF-EAC/EVC, the
scheduling and allocation decisions can be made online
in less than 20 microseconds (this time is approximately
doubled when using EDF-2DA/3DA), but there is an
overhead due to EAD updating process, which is in the
range of 100 microseconds in our simulation framework.
Therefore, the efficacy of our algorithms highly depends on
the success in speeding up the EAD updating process. Note
that some overhead is still admissible as the EAD updating
can be parallelized with the task set up phase.

7.3. Damage in theDevice. Figures 14 to 17 show themeasured
performance for various FPGA utilization situations and
different real-time constraints in the presence of permanent

damage on the FPGA device. As can be seen in the figures,
most of the performance metrics (e.g., MD, SF, and EVC)
show an exponential variation with the number of simulated
faults in the FPGA.

The most important conclusion obtained from these
results is the capability of EAC/EVC heuristics to deal
with permanent damage in the FPGA. For instance, unlike
2DA/3DA, EAC/EVC heuristics are able to produce feasible
schedules (i.e., no missed deadlines) for all of the simulated
fault situations when the FPGA utilization is low (𝑈COMP =
0.5, see Figures 14 and 16). Although it is not possible
to produce feasible schedules in the rest of the cases, the
differences between the results obtained by both heuristics
are still appreciable. Namely, when using EAC/EVC, between
5% and 20%, fewer deadlines are missed, and a similar
improvement is measured in the exploitation of FPGA’s
computation volume. The difference is greater when the
FPGA is highly utilized, that is, 20% improvement when
𝑈COMP = 0.9 (see Figure 17), while 5% improvement when
𝑈COMP = 0.75 (see Figure 15). In addition, it is interesting
to check that EAC/EVC heuristics show better results with

24 International Journal of Reconfigurable Computing

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

0
0

1

2

3

4

5
M

D

5 10 15 20 25

Numbers of damaged resources

(a) Missed deadlines (%)

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

0
40

60

80

100

SF

5 10 15 20 25

Numbers of damaged resources

(b) Feasible schedules (%)

0

44

46

48

50

E
C

V

5 10 15 20 25

Numbers of damaged resources

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

(c) Exploited computation volume (%)

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

0

0

20

40

60

5 10 15 20 25

A
E

T
 (

al
lo

ca
ti

o
n

)

Numbers of damaged resources

(d) Allocation execution time (𝜇𝑠)

FAEDF

EDF

0
0

1

2

3

5 10 15 20 25

A
E

T
 (

sc
h

ed
u

li
n

g)

Numbers of damaged resources

(e) Scheduling execution time (%)

EAV

EVC

1 2

30

80

130

180

3 4 5 6

 A

E
T

(u
p

d
at

in
g

E
A

D
)

Numbers of damaged resources

(f) Updating EAD time (𝜇𝑠)

Figure 15: Medium utilization of the FPGA and moderate real-time requirements: 𝑈ICAP = 0.75 and 𝑈COMP = 0.75.

regard to 2DA/3DA as the FPGA gets more damage for
most of the range of simulated faults. Finally, note that the
performance of ECV and EAC is similar, with the former
producing slightly better results.

Unlike MD, SF, and EVC, the execution time of the
allocation algorithms, AET, shows a nearly linear increase
with the number of simulated faults when using EAC/EVC
heuristics. Indeed, the time needed to update the EAD in the
worst situation is measured around 160microseconds. Again,
although the amount of time needed to make the scheduling
decisions is always greater when using FAEDF than when
using EDF, it is admissible (i.e., less than 3 microseconds).
On the other hand, the time needed to allocate the tasks
when using 2DA/3DAheuristics increases exponentially with
the number of damaged resources in the chip, reaching up
to 250 microseconds when the FPGA is highly utilized and
significantly damaged (see Figure 17). Notably, this is even
longer than the time needed to update the EAD in that
situation. Hence, it cannot be claimed the online allocation
capability for the 2DA/3DA heuristics when dealing with
partially damaged FPGAs. Under the same conditions, note

that the time needed to make the allocation decisions when
using EAC/EVC heuristics is only 24 microseconds, which
is an admissible overhead to target online task allocation.
This important improvement is the result of the capability to
discard unfeasible to allocate tasks early by both the scheduler
(based on the MER size) and by the allocator (based on the
column MERs in the EAD). Finally, as expected, the execution
time of ECV is slightly longer than that of EAC.

7.4. Snake. Figure 18 shows the results obtained when sim-
ulating the Snake approach on the realistic RC scenario
described in Section 7.1. The results are normalised to the
highest value, and in all of the cases FAEDF scheduling
algorithm was used. We note that the fact of simulating
most of the RC issues results in lower performance when
using FAEDF-EAC and FAEDF-EVC than shown in previous
simulations. For instance, the ECV was significantly smaller
as a significant part of the sandbox could not be used to
allocate HBC tasks due to fact that BRAMs are located in one
edge. The sandbox is thus mainly used to allocate LBC tasks,

International Journal of Reconfigurable Computing 25

0

0.5

1

1.5

2

2.5

3

M
D

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

0 5 10 15 20 25

Numbers of damaged resources

(a) Missed deadlines (%)

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

0
80

85

90

95

100

SF

5 10 15 20 25

Numbers of damaged resources

(b) Feasible schedules (%)

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

0
40

41

42

43

44

E
C

V

5 10 15 20 25

Numbers of damaged resources

(c) Exploited computation volume (%)

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

0
0

10

15

20

25

A
E

T
 (

al
lo

ca
ti

o
n

)
5

5

10 15 20 25

Numbers of damaged resources

(d) Allocation execution time (𝜇𝑠)

EDF

FAEDF

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

A
E

T
 (

sc
h

ed
u

li
n

g)

Numbers of damaged resources

(e) Scheduling execution time (%)

0
30

80

130

180

5 10 15 20 25

A
E

T
 (

u
p

d
at

in
g

E
A

D
)

EVC

EAC

Numbers of damaged resources

(f) Updating EAD time (𝜇𝑠)

Figure 16: Low utilization of the FPGA and tight real-time requirements: 𝑈ICAP = 0.9 and 𝑈COMP = 0.5.

which represent a small fraction of the total amount of tasks
generated.

Based on the obtained results, we conclude that Snake
improves the performance shown when exclusively using
EAC/EVC heuristics. This is reasonable as it is, indeed,
especially conceived to extend these heuristics to deal with
the simulated RC particularities and issues in this experiment
(e.g., intertask dependencies and communications).

An important aspect to note is that the average time
spent when making the allocation decisions in Snake is
considerably reduced, as there is no need to evaluate all of the
feasible allocations on the FPGA. When the tasks are reused
no allocation, decisions must be made, and when the partial
results are reused, only one allocation must be evaluated (for
each version of the task). Moreover, using DRTs involves
evaluating only a few more allocations, namely, those where
DRTs are able to move input data from the data producer’s
ODB. In our simulations a maximum of 26 target allocations

are considered when using DRTs: up to 4 clock regions above
and below theODBwhere the data is held, in the same BRAM
column as well as in the neighbor right and left columns.

8. Implementation Details

A proof-of-concept R3TOS implementation has been devel-
oped on a Xilinx XC4VLX160 FPGA. As shown in Figure 19,
the system comprises threemain components: (1) a scheduler,
(2) an allocator, and (3) a configuration manager to translate
the high-level operations dictated by the scheduler and
allocator into reconfiguration commands for the FPGA.

Each component is separately implemented to enable
parallelism in the execution of the R3TOS processes. The
parallel cooperation of simple components does not only
result in low runtime overhead but also result in acceptable
area overhead; that is, themain core of all R3TOS components
is a tiny Xilinx PicoBlaze, which requires only 96 FPGA

26 International Journal of Reconfigurable Computing

Numbers of damaged resources

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

0 5 10 15 20 25

0

10

20

30

40
M

D

(a) Missed deadlines (%)

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

0

0

5 10 15 20 25

20

40

60

80

100

SF

Numbers of damaged resources

(b) Feasible schedules (%)

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

0
30

40

50

60

70

80

E
C

V

5 10 15 20 25

Numbers of damaged resources

(c) Exploited computation volume (%)

EDF-2DA

EDF-3DA
FAEDF-EAC

FAEDF-EVC

0
0

50

100

150

200

250

5 10 15 20 25

A
E

T
 (

al
lo

ca
ti

o
n

)

Numbers of damaged resources

(d) Allocation execution time (𝜇𝑠)

EDF

FAEDF

0
0

1

2

3

5 10 15 20 25

A
E

T
 (

sc
h

ed
u

li
n

g)

Numbers of damaged resources

(e) Scheduling execution time (%)
EVC

EAC

0
30

80

130

180

5 10 15 20 25

 A

E
T

(u
p

d
at

in
g

E
A

D
)

Numbers of damaged resources

(f) Updating EAD time (𝜇𝑠)

Figure 17: High utilization of the FPGA and loose real-time requirements: 𝑈ICAP = 0.5 and 𝑈COMP = 0.9.

slices. Note that this architecture promotes upgradability, for
example, the allocator and scheduler can be updated to run
more efficient algorithms which might be designed in the
future without having to modify the rest of components, and
scalability, for example, multiple instances of the allocator
can be used to speed up the allocation process in very large
FPGAs. The cooperation among the R3TOS components
is mastered by the scheduler, with the allocator and the
configuration manager acting as slaves.

The internal architecture of the R3TOS components is
structured around the PicoBlaze core. The PicoBlaze exe-
cutes an optimized assembly program which is based on
interruptions to reduce the response time, relying on an
interrupt controller to handle the interruptions. Further-
more, each PicoBlaze uses a dedicated data BRAM to store
the information associated with the corresponding R3TOS
process(es) it executes. Hence, the scheduler manages the
task queues in the task BRAM, the allocator keeps track of
the available resources on an FPGA BRAM (state BRAM),
where all of the area matrices presented in Section 6 are

held in separate segments, and the configuration manager
executes predefined sequences of configuration commands
from a bitstream BRAM.

The configuration manager interacts with the
configuration-related built-in logic included in the FPGA.
Notably, it is equipped with specific hardware to drive the
ICAP at the highest allowed clock frequency, achieving up to
390MB/s reconfiguration throughput.

Specific for the scheduler is a timer to generate the kernel
ticks 𝑡KT. Additionally, the kernel timer supervises the correct
functioning of the scheduler; that is, it acts as watchdog timer.
The scheduler’s PicoBlaze must generate at least one alive
pulse within a maximum number of kernel ticks. Indeed, it is
crucial for the reliability of the system to monitor the state of
the scheduler as it is the master.

Specific for the allocator are three coprocessors, which
are explained in the subsequent sections: (1) an Architecture
Checker (AC) to speed up the search of feasible allocations
where the FPGA layout is compatible with the internal
architecture of the tasks, (2) an Empty Area Descriptor

International Journal of Reconfigurable Computing 27

EAT(U)

MD

SF

ECVEAT(A)

EAT(S)

0.1
0

0.2

0.3
0.4
0.5

0.6
0.7
0.8

0.9

1

(a) 𝑈ICAP = 0.9 and 𝑈COMP = 0.9

EAT(U)

MD

SF

ECV

EAT(S)

0.1
0

0.2

0.3
0.4
0.5

0.6
0.7
0.8

0.9

1

EAT(A)

(b) 𝑈ICAP = 0.75 and 𝑈COMP = 0.9

EAC
EVC

SF

EAT(S)

0.1
0

0.2

0.3
0.4
0.5

0.6
0.7
0.8

0.9

1

MD

EAT(U)

EAT(A) ECV

Snake + EAC

Snake + EVC

(c) 𝑈ICAP = 0.9 and 𝑈COMP = 0.75

Figure 18: Performance on a realistic RC simulation scenario when using the Snake approach. EAT(U) refers to the EAD updating time,
EAT(A) refers to the time needed for making the allocation decisions, and EAT(S) is the time needed for making the scheduling decisions.

Updater (EADU) to accelerate the intermediate compu-
tations required by the allocation algorithm, and (3) an
Allocation Quality Evaluator (AQE) to accelerate the making
of the allocation decisions. We resort to using the EAC
heuristic as we believe it is simpler to implement than EVC
and still produces good quality results.

Empty Area Descriptor Updater (EADU). As previously intro-
duced, the amount of time available to update the EAD
without degrading the performance is limited by the duration
of the set up phase of the tasks; that is, EAD is to be updated
in parallel with task setting-up through the ICAP. In order
to speed up the EAD updating, R3TOS includes a specific
logic (EAD updater) that is coupled to the two ports of the
FPGA State BRAM. This logic is very easy to control with
only two interface signals: input start updating and output
endupdating. Both signals are driven by allocator’s PicoBlaze,
which also controls access to the FPGA State BRAM. Indeed,

the latter BRAM is shared between the PicoBlaze, EADU,
AQE, and configuration manager, which provides the list
of detected damaged resources in the chip upon request by
the allocator’s Picoblaze. Prior to toggling the EADU, the
FPGA state is renewed by the allocator’s PicoBlaze.

TheEADUproceeds in four phases as shown in Figure 20.
In the first phase, the RAM and LAM matrices are computed
using the information included in the FPGA state memory
segment. These matrices are computed in parallel using the
double port of the BRAM. As the only difference when
computing the RAM and LAMmatrices is that the FPGA state
is scanned in opposite directions, that is, right to left or
left to right, the amount of time needed to compute both
matrices is the same. Afterwards, the four area matrices
ULAM, DLAM, URAM, and DRAM are computed in pairs using
the two ports of the BRAM and the information included
in the RAM and LAM memory segments. Namely, while the
ULAM matrix is computed through the port A, the URAM

28 International Journal of Reconfigurable Computing

Capture

End

Bitstream
BRAM

External memory

Task ID

Program

BRAM

Configuration
manager
Bicoblaze
(slave)

Interrupt

controller

Syndrome

Frame ECC

External
memory

controller ICAP
driver

Busy

ICAP

Damaged resources

Start
Empty area descriptor

updater

Program
BRAM

Program
BRAM

Interrupt
controller Interrupt

controller

Scheduler

PicoBlaze
(master)Division

hardware

Busy

 Task

BRAM
(queues)

Main CPU

Tick Alive

Architecture
checker

FPGA
state

BRAM

BRAM access

Allocation
quality

evaluator

M
at

ch

Sh
if

t

R
st

B
es

t

E
n

d

A
ll

o
/t

as
k

 I
n

fo
.

S
ta

rt

(Watch-dog)
kernel timer tKT

P
ar

am
et

er
s

Allocator
PicoBlaze

(slave)

Figure 19: Overview of R3TOS implementation.

matrix is computed through the port B, and, then, DLAM and
DRAM matrices are simultaneously computed through each
BRAM port. Note that when computing the DRAMmatrix, the
column MERs are also updated. In the fourth and last phase,
the 2DAMmatrix is updated using the areamatrices computed
during the previous three phases. Notably, this computation
is speeded up by 2, as the values of two area matrices can be
simultaneously accessed through the two ports of the FPGA
State BRAM.

The EADU consumes 284 slices in the FPGA, and, in the
situation described in Section 7, that is, 𝐻𝑥 = 15 and 𝐻𝑦 =
12, it allows for up to 34x speed improvement with regard to
the solely PicoBlaze-based software implementation reported
in [41].

Architecture Checker (AC). Figure 21 shows the structure of
the AC, whose main objective is to rapidly check whether it is
feasible to allocate a task on a given FPGA location in terms
of types of resources, saving much computational cost to
the allocator’s PicoBlaze. The latter controls the AC block by
means of two signals: shift and match. Note that this block
ismainly used to find feasible allocations when systematically
evaluating all of the candidate positions. On the other hand,
when using Snake, the compatibility of FPGA’s layout and
task’s internal architecture is checked by the PicoBlaze as the
number of allocations to evaluate is reduced.

The central part of the AC module is a shift register (ad)
of depth equal to 𝐻𝑥, that is, amount of columns in the
FPGA. Another register (AD) is used to store the architecture
descriptor of the FPGA device itself. Each cell in these
registers accounts thus for a resource column, being the type
of resource coded using 2 bits: “00” forCLBs, “01” forDSP48s,
“10” for BRAMs, and “11” for other resources (e.g., PowerPC

and IOBs). The architecture descriptor of the task to check 𝜃𝑖
is loaded in the ad register and shifted cell by cell to cover
all of the possible allocations for it, that is, until the task
descriptor reaches the deepest 𝐻𝑥 cell in the shift register.
To check whether the type of resources required by the task
matches with the FPGA resources actually available in each
position, both ad and AD cells are XORed, where “0” means
that the type of all of the resources is the same. The cells are
individually enabled to take part in the XOR operation in
order to exclude the resources which are not actually used by
the task in each checked position. To do this a shift register
(EN) with the same depth of ad and AD is used.This register is
initially loaded with all zeros, except for the cells occupied by
the task descriptor, which are loaded with “1”; that is, EN(𝑖) =
“1” for all ≤ ℎ𝑥,𝑖, and EN(𝑖) = “0” for all 𝑖 > ℎ𝑥,𝑖. The sequence
of “1”s is shifted in the EN register when the task descriptor
is shifted in the ad register to reflect which columns are to
be used by the task in the checked position at any time.
Therefore, the PicoBlaze is only responsible for controlling
the shift in the registers and checking the feasibility of the
placement. The latter is given by the match signal, where
match = “1” means that allocation is feasible.

The AC requires about half of the slices required by
a PicoBlaze, namely, 46 slices. The upper bound speed
improvement brought about by this module when checking
the allocatability of a task 𝜃𝑖 compared to a solely PicoBlaze-
based software implementation can be roughly estimated to
be around 2 ⋅ ℎ𝑥,𝑖x. Indeed, without using the AC, 6 PicoBlaze
instructions are needed to check the resource compatibility
in each FPGA column: 2 instructions for accessing the
FPGAdescriptor, another 2 instructions for accessing the task
descriptor, 1 instruction to compare both values, and another
instruction to update the next column to be checked. On the

International Journal of Reconfigurable Computing 29

Column MER

Start

RAM

ULAM

DLAM

BRAM port BBRAM port A

LAM

URAM

DRAM

2DAM

End

Phase 1

Phase 2

Phase 3

Phase 4

Figure 20: EAD updating process.

other hand, when using the AC, only 3 PicoBlaze instructions
are required to perform this check: 2 instructions to enable
and disable the shift signal and another instruction to
input the match value. Assuming the worst case where all
resource columns are compatible, the achieved 2x speed-up
factor brought about by the AC when checking the resource
compatibility of one column is extended to the ℎ𝑥,𝑖 columns
the task spans.

Allocation Quality Evaluator (AQE). When toggled by the
allocator’s PicoBlaze, the AQE takes over access to the FPGA
State BRAM to quickly compute the quality of candidate
allocations. This is done by adding the EAC scores stored
in the 2DAM segment that correspond to the FPGA positions
to be assigned to the task in each evaluated allocation. The
latter computation is automatically performed by the AQE
based on the allocation and task information passed by the
PicoBlaze, that is, ℎ𝑥,𝑖, ℎ𝑦,𝑖, 𝑋allo , and 𝑌allo . Besides, the
AQE keeps track of the quality of the checked allocations,
indicating to the PicoBlaze which is the one that produces the
least fragmentation on the FPGA bymeans of the best signal
(i.e., the lowest sum of EAC scores). It is important to note
that the AQE does not check the feasibility of the allocations.
This is done by the allocator’s PicoBlaze by consulting the
EAD and using the AC.

The interface of the AQE consists of 4 control signals
(rst, start, end, and best) as well as an 8-bit input to
receive the allocation and task parameters.

The AQE consumes 33 slices in the FPGA and allows for
a significant speed improvement when making the allocation
decisions with regard to the solely PicoBlaze-based software
implementation reported in [41]. The achievable acceleration
increases with the size of the task to allocate until it reaches a
high bound of about 9x.This behaviour is due to two reasons.
First, when dealing with big tasks, the communication over-
head between PicoBlaze andAQE is smaller because there are
fewer candidate allocations to check. Second, evaluating the
allocation quality of a big task requires more computations
(i.e., additions) to be done, which are indeed accelerated by
the AQE.

Table 2: Measured performance figures.

Min. Max.

Scheduling

Scheduling algorithm execution <1 𝜇s 100𝜇s
Queues and task state updating <1 𝜇s 300𝜇s

Allocation

Allocation algorithm execution <1 𝜇s 100𝜇s
Empty Area Descriptor updating 10 𝜇s 200𝜇s

Inter-task communications

Transfer LUT data buffer (ICAP) 3.7 𝜇s 3.7 𝜇s
Transfer BRAM data buffer (ICAP) 60.18 𝜇s 60.18𝜇s
Transfer BRAM data buffer (DRTS):
configuration layer

36.18 𝜇s 39.9 𝜇s

Transfer BRAM data buffer (DRTS):
functional layer

81.92𝜇s 81.92 𝜇s

Switching brams between neighbor tasks 10.03𝜇s 10.03 𝜇s
Inter-task synchronization

Polling of a HWS 1.6𝜇s 1.6 𝜇s
Activation of a HWS 3.7 𝜇s 3.7 𝜇s

8.1. Performance Evaluation. Table 2 shows the most signifi-
cant performance figures measured in the developed proof-
of-concept R3TOS implementation when it runs with a
100 MHz clock. Notably, the amount of time needed by
the scheduler and allocator to update the task queues and
EAD is slightly shorter (i.e. hundreds of microseconds) of
that needed to set-up a typical hardware task using the
ICAP (usually several hundreds of microseconds or few
milliseconds [42]), making it possible to reduce the time
overheads introduced by R3TOS as these three processes
can be concurrently carried out in most of the cases. The
obtained results are promising in light of enabling the use
of our solution with newer reconfigurable technology with
presumably faster reconfiguration capabilities and larger
sizes.

30 International Journal of Reconfigurable Computing

EN0 EN1 EN2 EN3

ad0 ad1 ad2 ad3

AD0 AD1 AD2 AD3

hx,i ENHx−1

adHx−1

ADHx−1

B
R

A
M

D
SP

4
8

B
R

A
M

D
SP

4
8

B
R

A
M

D
SP

4
8

B
R

A
M

D
SP

4
8

Shift

Match

FPGA architecture descriptor

P
ar

am
 s

ch
e2

A
ll

o
(f

ro
m

 t
h

e
sc

h
ed

u
le

r) Task architecture descriptor

· · ·

Figure 21: Simplified structure of the Architecture Checker (AC).

We acknowledge the existence of a time overhead which
is introduced by R3TOS when making the scheduling and
allocation decisions. Since these decisions aremostlymade by
software routines in the allocator and scheduler PicoBlazes,
the overhead can reach up to tens of microseconds per each
task allocation attempt. Note that although the allocator
PicoBlaze relies on the AQE to accelerate the allocation
process, it is still responsible for exploring the EAD to find
feasible allocation candidates to be evaluated, thus limiting
the achievable acceleration. As for the allocator, it would be
convenient to use a hardware accelerator in the scheduler
when dealing with a large number of tasks in order to keep
the task management overheads within reasonable bounds.

Table 2 also shows the achievable acceleration when
exchanging data among tasks using DRTs or directly access-
ing the data the data in producer task’s ODB. While the
time needed to transfer the content of a BRAM-based data

buffer using the ICAP is about 60 microseconds, the access
to the BRAM can be switched from the producer to the
consumer task in only 10.03 microseconds (around 6x speed-
up). In addition, 36.18 microseconds are needed to configure
a DRT (around 1.6x speed-up), which then requires 81.92
microseconds to complete the data transfer through the
functional layer. Note that the latter time does not constrain
the performance as it can be parallelized with the task set-up
phase.

9. Conclusions

In this article a novel scheduling algorithm and two novel
allocation heuristics have been presented in the scope of our
R3TOS project. First, the Finishing Aware EDF (FAEDF)
scheduling algorithm improves nonpreemptive EDF by
delaying the execution of tasks which cannot be allocated in

International Journal of Reconfigurable Computing 31

the first instance until enough adjacent free area is released
on the FPGA. Second, the Empty Area/Volume Compaction
(EAC/EVC) heuristics outperform related work in the field,
especially when the FPGA is partially damaged. Finally, the
Snake task allocation strategy has been introduced.This novel
approach promotes the concatenation of tasks, as the input
edge of one task can be placed next to the output edge of
the previously executed task in the pipeline in such a way
that memory elements where data to be exchanged is kept are
switched between both tasks. The proposed algorithms and
strategies are proven to be efficacious by means of synthetic
simulations, and their runtime execution overheadmeasured
in a real hardware implementation is proven to be admissible.
The latter hardware implementation, which also includes
specific circuitry to drive the ICAP at its highest rate, has a
relatively small footprint: 2,003 slices and 6 BRAMs (around
5% of the logic resources and 2% of the storage resources of
an XC4VLX160 FPGA). Future work targets the evaluation of
these approaches in a real-world application.

References

[1] G. J. Brebner, “A virtual hardware operating system for the
Xilinx XC6200,” in Proceedings of the InternationalWorkshop on
Field-Programmable Logic, Smart Applications, New Paradigms
and Compilers, pp. 327–336, 1996.

[2] K. Compton and S. Hauck, “Reconfigurable computing: a
survey of systems and software,” ACM Computing Surveys, vol.
34, no. 2, pp. 171–210, 2002.

[3] S. Hauck and A. DeHon, Reconfigurable Computing:TheTheory
and Practice of FPGA-Based Computation, Morgan Kaufmann,
San Francisco, Calif, USA, 1st edition, 2007.

[4] C. Constantinescu, “Trends and challenges in VLSI circuit
reliability,” IEEE Micro, vol. 23, no. 4, pp. 14–19, 2003.

[5] D. P.Montminy, R.O. Baldwin, P.D.Williams, andB. E.Mullins,
“Using relocatable bitstreams for fault tolerance,” in Proceedings
of the 2nd NASA/ESA Conference on Adaptive Hardware and
Systems (AHS ’07), pp. 701–708, August 2007.

[6] X. Iturbe, K. Benkrid, T.Arslan, I.Martinez,M.Azkarate, andA.
Morales-Reyes, “Evolutionary dynamic allocation of relocatable
modules onto partially damaged Xilinx FPGAs,” in Proceedings
of the International Conference on Engineering of Reconfigurable
Systems and Algorithms, pp. 211–217, 2010.

[7] X. Iturbe, K. Benkrid, T. Arslan, C. Hong, and I. Martinez,
“Empty resource compaction algorithms for real-time hardware
tasks placement on partially reconfigurable FPGAs subject to
fault occurrence,” in Proceedings of the International Conference
on ReConFigurable Computing and FPGAs, 2011.

[8] X. Iturbe, K. Benkrid, A. Ebrahim, C. Hong, T. Arslan, and I.
Martinez, “Snake: an ecient strategy for the reuse of circuitry
and partial computation results in high-performance recong-
urable computing,” in Proceedings of the International Confer-
ence on ReConFigurable Computing and FPGAs (ReConFig ’11),
2011.

[9] K. Danne and M. Platzner, “Periodic real-time scheduling for
FPGA computers,” in 3rd International Workshop on Intelligent
Solutions in Embedded Systems (WISES ’05), pp. 117–127, May
2005.

[10] . Steiger, H. Walder, and M. Platzner, “Heuristics for online
scheduling real-time tasks to partially reconfigurable devices,”

in Proceedings of the International Conference on Field-
Programmable Logic and Applications, pp. 575–584, 2003.

[11] Y.-H. Chen and P.-A. Hsiung, “Hardware task scheduling and
placement in operating systems for dynamically reconfigurable
SoC,” in Proceedings of the International Conference on Embed-
ded and Ubiquitous Computing, pp. 489–498, 2005.

[12] X. G. Zhou, Y. Wang, X. Z. Huang, and C. L. Peng, “On-
line scheduling of real-time tasks for reconfigurable computing
system,” in Proceedings of the IEEE International Conference on
Field Programmable Technology (FPT ’06), pp. 57–64, December
2006.

[13] X. Zhou, Y. Wang, X. Huang, and C. Peng, “Fast on-line task
placement and scheduling on reconfigurable devices,” in Pro-
ceedings of the International Conference on Field Programmable
Logic and Applications (FPL ’07), pp. 132–138, August 2007.

[14] J. Cui, Z. Gu, W. Liu, and Q. Deng, “An efficient algorithm
for online soft real-time task placement on reconfigurable
hardware devices,” in Proceedings of the 10th IEEE International
Symposium on Object and Component-Oriented Real-Time Dis-
tributed Computing (ISORC ’07), pp. 321–328, May 2007.

[15] F. Dittmann and S. Frank, “Hard real-time reconfiguration port
scheduling,” in Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition, pp. 123–128, April 2007.

[16] Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev, “Online
task scheduling for the FPGA-based partially reconfigurable
systems,” in Proceedings of the InternationalWorkshop on Recon-
figurable Computing: Architectures, Tools and Applications, pp.
216–230, 2009.

[17] T. Marconi, Y. Lu, K. Bertels, and G. Gaydadjiev, “3D com-
paction: a novel blocking-aware algorithm for online hardware
task scheduling and placement on 2D partially reconfigurable
devices,” in Proceedings of the International Symposium on
Appied Reconfigurable Computing, pp. 194–206, 2010.

[18] Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev, “A communi-
cation aware online task scheduling algorithm for FPGA-based
partially reconfigurable systems,” in Proceedings of the 18th
IEEE International Symposium on Field-Programmable Custom
Computing Machines (FCCM ’10), pp. 65–68, May 2010.

[19] D. Ghringer, M. Hübner, E. Nguepi Zeutebouo, and J. Becker,
“Operating system for runtime reconfigurable multiprocessor
systems,” International Journal of Reconfigurable Computing,
vol. 2011, Article ID 121353, 16 pages, 2011.

[20] F. Redaelli, M. D. Santambrogio, and S. O. Memik, “An ILP
formulation for the task graph scheduling problem tailored to
bi-dimensional reconfigurable architectures,” in Proceedings of
the International Conference on Reconfigurable Computing and
FPGAs (ReConFig ’08), pp. 97–102, mex, December 2008.

[21] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template
placement for reconfigurable computing systems,” IEEE Design
and Test of Computers, vol. 17, no. 1, pp. 68–83, 2000.

[22] H. Walder, C. Steiger, and M. Platzner, “Fast online task
placement on FPGAs: free space partitioning and 2D-hashing,”
in Proceedings of the International Parallel and Distributed
Processing Symposium, 2003.

[23] A. Ahmadinia, C. Bobda, M. Bednara, and J. Teich, “A new
approach for on-line placement on reconfigurable devices,” in
Proceedings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS ’04), pp. 1825–1831, April 2004.

[24] M. Handa and R. Vemuri, “An efficient algorithm for finding
empty space for online FPGA placement,” in Proceedings of the
41st Design Automation Conference, pp. 960–965, June 2004.

32 International Journal of Reconfigurable Computing

[25] M. Morandi, M. Novati, M. D. Santambrogio, and D. Sciuto,
“Core allocation and relocation management for a self dynam-
ically reconfigurable architecture,” in Proceedings of the IEEE
Computer Society Annual Symposium on VLSI: Trends in VLSI
Technology and Design (ISVLSI ’08), pp. 286–291, April 2008.

[26] M. Tomono, M. Nakanishi, S. Yamashita, K. Nakajima, and
K. Watanabe, “A new approach to online FPGA placement,”
in Proceedings of the 40th Annual Conference on Information
Sciences and Systems (CISS ’06), pp. 145–150, March 2006.

[27] A. Ahmadinia, C. Bobda, S. P. Fekete, J. Teich, and J. C.
van der Veen, “Optimal free-space management and routing-
conscious dynamic placement for reconfigurable devices,” IEEE
Transactions on Computers, vol. 56, no. 5, pp. 673–680, 2007.

[28] J. Tabero, J. Septien, H. Mecha, and D. Mozos, “A low
fragmentation heuristic for task placement in 2D RTR HW
management,” in Proceedings of the International Conference on
Field-Programmable Logic and Applications, pp. 241–250, 2004.

[29] J. Tabero, J. Septién, H. Mecha, and D. Mozos, “Task placement
heuristic based on 3D-adjacency and look-ahead in reconfig-
urable systems,” in Proceedings of the Asia and South Pacific
Design Automation Conference (ASP-DAC ’06), pp. 396–401,
January 2006.

[30] J. Tabero, J. Septién, H. Mecha, and D. Mozos, “Allocation
heuristics and defragmentation measures for reconfigurable
systems management,” Integration, the VLSI Journal, vol. 41, no.
2, pp. 281–296, 2008.

[31] C.-H. Lu, H.-W. Liao, and P.-A. Hsiung, “Multi-objective place-
ment of reconfigurable hardware tasks in real-time system,” in
Proceedings of the International Conference on Computational
Science and Engineering, pp. 921–925, 2009.

[32] Z. Li and S. Hauck, “Configuration prefetching techniques
for partial reconfigurable coprocessor with relocation and
defragmentation,” in Proceedings of the 10th ACM International
Symposium on Field-Programmable Gate Arrays (FPGA ’02), pp.
187–195, February 2002.

[33] A. Ejnioui and R. F. DeMara, “Area reclamation strategies and
metrics for SRAM-based reconfigurable devices,” in Proceedings
of the 5th International Conference on Engineering of Recon-
figurable Systems and Algorithms (ERSA’05), pp. 196–202, June
2005.

[34] J. C. Van Der Veen, S. P. Fekete, M.Majer et al., “Defragmenting
the module layout of a partially reconfigurable device,” in
Proceedings of the 5th International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA ’05), pp. 92–101,
June 2005.

[35] H. Kalte and M. Porrmann, “Context saving and restoring
for multitasking in reconfigurable systems,” in Proceedings of
the International Conference on Field Programmable Logic and
Applications (FPL ’05), pp. 223–228, August 2005.

[36] A. A. El Farag, H. M. El-Boghdadi, and S. I. Shaheen,
“Improving utilization of reconfigurable resources using two-
dimensional compaction,” Journal of Supercomputing, vol. 42,
no. 2, pp. 235–250, 2007.

[37] A. Ahmadinia, C. Bobda, M. Bednara, and J. Teich, “A new
approach for on-line placement on reconfigurable devices,” in
Proceedings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS ’04), pp. 1825–1831, April 2004.

[38] A. Montone, F. Redaelli, M. D. Santambrogio, and S. O. Memik,
“A reconfiguration-aware floorplacer for FPGAs,” inProceedings
of the International Conference on Reconfigurable Computing
and FPGAs (ReConFig ’08), pp. 109–114, December 2008.

[39] S. Srinivasan, P. Mangalagiri, Y. Xie, N. Vijaykrishnan, and K.
Sarpatwari, “FLAW: FPGA lifetime awareness,” inProceedings of
the Annual Design Automation Conference, pp. 630–635, 2006.

[40] X. Iturbe, K. Benkrid, T. Arslan, C. Hong, and I. Mar-
tinez, “Enabling FPGAs for future deep space exploration
missions: improving fault-tolerance and computation density
with R3TOS,” in Proceedings of the NASA/ESA Conference on
Adaptive Hardware and Systems, 2011.

[41] C.Hong, K. Benkrid, X. Iturbe, A. Ebrahim, andT. Arslan, “Effi-
cient on-chip task scheduler and allocator for reconfigurable
operating systems,” Embedded Systems Letters, vol. 3, no. 3, pp.
85–88, 2011.

[42] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time partial
reconfiguration speed investigation and architectural design
space exploration,” in Proceedings of the 19th International
Conference on Field Programmable Logic and Applications (FPL
’09), pp. 498–502, September 2009.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

