
TR-CSE-2000-7. A version of this paper appeared in the Proceedings of the 14th European
Conference on Object-Oriented Programming, Sophia Antipolis and Cannes, France, June, 2000

Runtime support for type-safe dynamic
Java classes

Scott Malabarba Raju Pandey Jeff Gragg Earl Barr J. Fritz Barnes
Parallel and Distributed Computing Laboratory

Computer Science Department
University of California, Davis, CA 95616

���������� ���	
�� ������ ����� ����
������	����
	�
��������	���������	����
	��

(530)754-9469

Abstract

Modern software must evolve in response to changing conditions. In the most widely used
programming environments, code is static and cannot change at runtime. This poses problems
for applications, that have limited down-time. More support is needed for dynamic evolution.
In this paper we present an approach for supporting dynamic evolution of Java programs. In
this approach, Java programs can evolve by changing their components, namely classes, dur-
ing their execution. Changes in a class lead to changes in the its instances, thereby allowing
evolution of both code and state. The approach promotes compatibility with existing Java
applications, and maintains the security and type safety controls imposed by Java’s dynamic
linking mechanism. Experimental analyses of our implementation indicate that the implemen-
tation imposes a moderate performance penalty relative to the unmodified virtual machine.

This work is supported by the Defense Advanced Research Project Agency (DARPA) and Rome Laboratory,
Air Force Materiel Command, USAF, under agreement number F30602-97-1-0221. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of
the Defense Advanced Research Project Agency (DARPA), Rome Laboratory, or the U.S. Government.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
Runtime support for type-safe dynamic Java classes

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California,Computer Science Department,Parallel and
Distributed Computing Laboratory,Davis,CA,95616

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Modern software must evolve in response to changing conditions. In the most widely used programming
environments, code is static and cannot change at runtime. This poses problems for applications, that have
limited down-time. More support is needed for dynamic evolution. In this paper we present an approach
for supporting dynamic evolution of Java programs. In this approach, Java programs can evolve by
changing their components, namely classes, during their execution. Changes in a class lead to changes in
the its instances, thereby allowing evolution of both code and state. The approach promotes compatibility
with existing Java applications, and maintains the security and type safety controls imposed by Java’s
dynamic linking mechanism. Experimental analyses of our implementation indicate that the
implementation imposes a moderate performance penalty relative to the unmodified virtual machine.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

34

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

Software systems must change over time. Changing business practices, the relentless advance
of technology, and the demands of end users drive this evolution. The functionality required of
applications inevitably changes in response to these factors. Consequently, in order to remain
viable, applications must evolve to meet new requirements. Software component evolution is a
major focus of effort in software engineering [30, 41].

The vast majority of commercial software is written in a few imperative languages, such as
C++ or Java [3]. For these languages, software evolution is generally a slow, static process. Most
of us are familiar with the process of waiting for the latest version of our favorite program to come
out, stopping work to install the new version over the old one, then cleaning up the resultant mess
of incompatible document formats and lost settings. The fact that a running program cannot be
changed drives this cycle. Since any update requires stopping a program and overwriting all or
part of it, incremental updates are often impractical, and major updates problematic. For a large
class of critical applications, such as business transaction systems, telephone switching systems
and emergency response systems, the interruption poses an unacceptable loss of availability.

What is needed, then, is more support for applications that evolve during execution. Dynamic
evolution provides a number of benefits in addition to easing upgrades to critical software.

Dynamic evolution has applications in software distribution and management. Consider a dis-
tributed system in which changes in all active applications are either pulled or pushed from soft-
ware servers to the active applications. While several applications, for instance Netscape1 Naviga-
tor, Microsoft2 Internet Explorer and RealAudio3 RealPlayer, currently support such application-
specific updates, most use static updates for modifying applications.

Consider, also, runtime optimization. Often, specific properties of systems are best determined
at runtime. For example, many applications can be highly optimized if some information about
the input is known during development. However, these same optimizations result in specialized
code restricted to a smaller input domain. If code can be modified at runtime, a program can
accept a wider range of data, yet load and use methods optimized for the current data set.

In a similar manner, dynamic evolution can be very useful in any application whose behavior
is driven by a set of policies, such as security policies. For example, dynamic security policies can
be implemented using total mediation, without modifying code at runtime. This method requires
a security check at every access of every resource [39]; due to the high performance cost, it is not
widely used. Systems that employ total mediation implement dynamic policies by using general,
static code to interpret dynamic data structures – a computationally expensive process. Dynamic
evolution allows designers to move logic from interpreted data structures into directly executed
code. This provides the efficiency of code-driven security enforcement [38] without sacrificing
flexibility.

1������������	�
���	���
2���������������
�����
3������������	���������

1

In this paper, we present an approach for dynamic evolution of Java programs. While Java [3]
provides several mechanisms, such as inheritance, interfaces and dynamic linking, for program
extensibility, it does not support true dynamic evolution, in which both the code and state of a
program can evolve gracefully. In our approach, Java programs can evolve by changing their
components, namely classes, during execution. Java classes can be considered to have a life cycle
with three discrete states: unloaded, or static, loaded, and active. Figure 1 depicts this cycle. A static
class exists only in storage; it has not been loaded into the Java virtual machine. A loaded class
has been loaded and possibly linked. Finally, an active class has live instances and/or methods
running. We are concerned with changing active classes; a dynamic class can change while active.

Before designing the dynamic pro-

(Static)
Not loaded Loaded Active

Reference to C encountered

C garbage collected

Instantiation or static invocation

No active methods or live instances

Figure 1: Phases in the life cycle of a Java class, C

gramming environment, we devel-
oped a basic formal model of classes,
objects, and the relationships between
them. Then, after deciding what
types of changes we wanted to sup-
port, we defined the notion of class

change within this framework. The formalization permits rigorous and convenient analysis and
representation of the state of a system before and after a class change; we can formally show that
the change model and implementation meet our goals.

We wished to preserve the syntax and semantics of the target language. Doing so ensures com-
patibility with existing code, and provides greater ease of use as developers do not need to learn
new language constructs. This constraint requires that we preserve the type safety characteristics
of a program throughout its execution. Type safety encourages the development of safer, more
disciplined code. In a dynamic system, type safety can restrict wild, unsound changes, alleviating
the dangers inherent in changing code. Further, many of Java’s security mechanisms, for instance,
separation of user and system name spaces and protection of private data, depend on the type-safe
properties of Java programs. Therefore, we impose the restriction that all changes in a program
preserve the type safety properties of the program. Section 2.1 presents our formal model, and
defines valid class change. Using the formal model, we show that a valid class change preserves
type safety.

In order to provide a convenient, backward-compatible interface, and to support changes in
any Java class, we extended the Java class loader [32]. This new, dynamic class loader allows a
program to define a class multiple times. The dynamic class loader implements changes in a class,
and any resulting changes in its instances, in an executing program. We describe this component
in detail in Section 2.2.2.

Java is increasingly being used to support distributed programming through code mobil-
ity [46]. Although appealing in terms of system design and extensibility [7], systems that support
mobility are vulnerable to malicious mobile code. The Java programming environment provides
several security mechanisms [13, 17] for protecting hosts from malicious applets. Support for

2

dynamic evolution, however, raises additional security issues, as malicious applets may use the
dynamic class mechanism to modify the classes that enforce specific security policies of a host.
Therefore, the dynamic class loader implements a security model that ensures that Java programs
can dynamically modify only those resources to which they are authorized. We enforce this policy
using name space separation and resource access control. We discuss security in Section 2.3.

We implemented support for dynamic classes by modifying Sun’s Java virtual machine (JDK
1.2). Dynamic classes can be implemented in several ways: by changing the language, through
library-based support, or by modifying the virtual machine. As stated above, we did not wish
to change the language. Library-based support proved to be too awkward and inefficient for our
requirements. Thus, we chose to directly modify the virtual machine. Section 3 describes our
implementation in detail.

We performed several experiments to measure the performance characteristics of our imple-
mentation. The experiments show that dynamic classes add about 6-10% of overhead to Sun’s
JVM. Further, the cost of updating classes is moderate. Section 4 presents these results, as well as
further analysis with regard to alternative methods and related work.

2 Dynamic Classes

In this section, we formally describe the concept of dynamic classes. We begin by presenting
a formal model of classes, objects, and inheritance in Java. We consider the potential effects of
introducing dynamic classes into a running application. We then use our model to define type-
safe dynamic classes. We discuss how best to support dynamic classes while addressing type
safety and security issues, and describe our design. In general, we have made conservative design
choices, emphasizing compatibility with existing Java code, minimizing performance penalties,
and maintaining type safety and overall system security.

2.1 Formal Model

We begin by formalizing the notion of classes, interfaces, inheritance, composition, and depen-
dency among classes in Java. In doing so, we build upon the formal Java type model developed
in [10], which includes type widening [9, 42].

2.1.1 Classes and Objects

A type T denotes a set of objects. T is bound to a definition that describes the contents of the
objects and operations that act on them. Specifically, this definition consists of T’s interface and its
implementation.

Definition 2.1. (Type interface (�(T)). The interface of a type T, �(T), is a set of public data fields and
methods.

3

Definition 2.2. (Type implementation (�(T)). The implementation, or body, of a type T, �(T), is a set
of private data fields and a set of method bodies.

Definition 2.3. (Interface). The Java interface construct describes, but does not implement, a type.
An interface contains no data fields.

Definition 2.4. (Class). A class describes and implements a type. Thus, a class C is defined by the
tuple ��(C), �(C)�, where �(C) contains implementations for all methods declared in �(C). Java
supports abstract classes, which provide only a partial implementation.

Definition 2.5. (Implements (�I)). The relation C�I I is true if C implements the interface I: �(I)�
�(C).

Definition 2.6. (Program). A program is a set of classes.

A Java class C1 depends on another class C2 if �(C1) contains references to C2. The references may
include method invocations, field accesses and inheritance. Any change to C2 may mean that C1

must change as well [6].

Definition 2.7. (Dependency (�)). The relation C1 � C2 is true if C1 depends on C2. Transitivity
applies, denoted by

�

�. The dependency relationship applies to specific methods or fields as well.
For instance, C1�M � C2�N is true if C1�M invokes C2�N.

Definition 2.8. (Composition (�� �)). C1 � C2 denotes the union of C1 and C2, where C1 and C2

are two sets of methods and data. C1 � C2 denotes their difference; the methods and fields that
are defined in C1, but not in C2. These operators provide an abstraction for the Java inheritance
mechanism. Thus, the Java composition semantics of scoping and overloading are implicit in the
definitions of � and �.

We do not define � and � precisely because our focus in this paper is more on examining the
effects of dynamic classes.

Definition 2.9. (Inheritance(�)). The relation C � CS is true if C directly extends CS. Inheritance
affects the composition of a class. �(C) contains the implementations of all of C’s superclasses, and
�(I) contains their interfaces. Stated formally:

� T : C
�

� T : �(T) � �(C)

� T : C
�

� T : �(T) � �(C)

Transitivity applies, denoted by
�

�. Java does not permit recursive inheritance. Thus, C1
�

� C2

�� 	 (C2
�

�C1). Finally, C1�C2 �� C1�C2. Inheritance can apply to both classes and interfaces.
Let�C specify class extension, and �I specify interface extension. � can refer to either case.

4

Definition 2.10. (Defines: class (�C)). The relation Cde f �C C is true if Cde f is the class definition
bound to the name C; Cde f defines C. A �C relationship is not necessarily permanent, but it is
singular; Cde f �C C �� � Ci: Ci
� Cde f , 	 (Ci �C C). This restriction preserves Java name
semantics — a name should only be bound to one value.

Definition 2.11. (Instantiation (�)). The relation O � T is true if the object O is an instance of the

class or interface T. O � C � C
�

� D �� O � D. Likewise, O � C � C � I I �� O � I.

Definition 2.12. (Defines: object (�O)). The relation Cde f �O O is true iff Cde f � C � O � C. As
with �C,�O is not necessarily permanent, and is singular.

Note that� is the transverse of �O.

2.1.2 Type Safety Issues

Changing a class C can have a
������ ����� 	 �

 ������� ������

������ ��� ����� ���

�

������ ����� 	 �

 �������� ������

�

������ ����� � �

 ��������� �����

������ ��� ����� �

	 � � ��� 	���

 ������ 	 �� ��� ���� �������� ������

� � �

 	��� ��� �������� ����� 	

��������

�

�

Figure 2: Static type violation.

serious impact on type safety. The
interface and/or implementation
may be affected. Methods can be
added, deleted, or modified, and
data fields may be added or deleted.
Furthermore, the type itself can change.
Adding or removing superclasses
or interfaces effectively changes the
set of types that an instance of C
can be cast or assigned to, with po-
tential effects on any variables bound
to such an object. Type violations
caused by dynamic changes in class
definitions fall into two categories:
static type violations and dynamic type violations. The design and implementation of Java contain
mechanisms to prevent either from occuring in a static program. Our system must also prevent
them from occuring in a dynamic program, due to class changes.

Here we define static and dynamic type violations, and describe how both the standard JVM
and our model prevent these violations and ensure type safety. In doing so, we use the notion of
the type set of a class C, which is the set of all classes and interfaces to which an instance of C can
be cast. The type set contains C itself, all classes from which it inherits, and all interfaces that C or
one of its superclasses implements.

Definition 2.13. (Type set (� (C))). Let IC be the set of all interfaces i such that C�I i. Let CS be C’s
superclass; C� CS. Then, � (C) �C� � IC � � (CS).
From the definition of instantiation, O � C �� � T: T � � (C): O � T.

5

A static type violation is an invalid field or method reference. For example, if a method in
class C1 references the field C2�X, and C2 does not contain a field called X, the reference to X is
invalid. This type of violation can be detected statically, by examining the source program. The
Java compiler and dynamic linker detect static type violations in source code. This mechanism
cannot prevent static type violations caused by dynamic class changes. Figure 2 contains code
fragments that cause a static type violation. Initially, C’s interface has a single public method,
�����. A dependent class, D, invokes �������. However, it first modifies C, removing �������

(see Section 2.2.2). The subsequent reference to ������� is no longer valid.
A dynamic type violation oc-

������ ��������� � �

������ ��� ������

�

 ������� ������

������ ����� 	 ���������� � �

������ ��� ����� ��

�

 �������� ������

������ ����� 	 �

������ ��� ����� ��

�

������ ����� � �

������ ��� ����� �

� � � ��� 	���

 ������ 	 �� ��� ���� �������� ������

� � �

 	��� ��� �������� ����� 	

��������

�

�

Figure 3: Dynamic type violation.

curs when some event results in
a reference being bound to an ob-
ject of an incompatible type. For
example, let O be an instance of
C. C does not implement the in-
terface I. If O is bound to a vari-
able i of type I, a dynamic type
violation results. This type viola-
tion cannot be detected statically,
since it depends on O. The JVM
performs dynamic type checking
during operations such as assign-
ment and type casting. If an op-
eration might result in a dynamic
type violation, the JVM throws an
exception. This type of checking
does not always catch dynamic type
violations caused by class change,
since an assignment might have oc-
curred prior to the class change.

For instance, assume that C implements interface I. Let O be an instance of C. Some other ob-
ject has a reference to O, via i, of type I. If C changes such that it no longer implements I, i’s
reference to O becomes invalid, since O’s type has changed. In this example, i has already been
assigned a value. If O’s type changes, then any subsequent access to i might cause an error. The
only way to prevent such an error would be to type check every object reference instruction, which
the JVM currently does not do.

Figure 3 provides an example of a dynamic type violation. Initially, C implements the interface
I. Thus, � (C) �C� I�Object�. D assigns an object of type C to a variable of type I, a legal action.
Then D modifies C such that it no longer implements I; � (C) �C�Object�. The reference �������
causes an error, because the object bound to � is no longer of type �.

6

We can now define type safety formally:

Definition 2.14. (Type safety). A class C is type-safe if it contains neither static type violations, nor
dynamic type violations that cannot be detected by the JVM’s runtime type checking. A program
P is type-safe if all of its component classes are type-safe.

2.1.3 Changing Classes Safely

There are two approaches to ensuring type safety during class changes. We could place no con-
straints on how classes can change, and type check every object reference and method invocation
instruction. Or, reduce the necessity for extra runtime type checking by placing constraints on
class changes. Various definitions of a valid class change are possible, depending on which ap-
proach is used. We have defined a valid class change as one that cannot cause type violations,
either static or dynamic.

We chose this approach for two reasons. First, we wished to preserve the type semantics of the
Java language. A valid Java program, P, does not contain these type violations. Second, efficiency
– type checking all method and object references requires significant CPU time. Our model re-
quires only static checking before a class is modified. No extra runtime type checking is necessary.
This approach may appear to have the disadvantage that certain types of evolutionary systems
are potentially difficult to specify. However, our constraints relate to dependencies between the
classes defined in P. If an active class contains a method M that accesses some field x, and x has
been removed, an error will result if M executes, and takes the control path along which x lies. The
only situation in which it is safe to remove x is one in which M never executes after the change,
or the sensitive control path is never taken. In this case, it is a reasonable assumption that M will
be removed or modified as well. Thus, if classes are updated in coordination, our constrained
definition of class change does not limit potential evolutionary applications any more than does
full runtime type checking.

Formally, we define the semantics of class change to prevent static and dynamic type viola-
tions, as follows:

Notation: Let C denote the definition bound to class C before a change.

Notation: Let C denote the definition bound to class C after a change.

Notation: Let ∆C denote the changes made between C and C; ∆C (C � C) � (C � C).

Definition 2.15. (Dynamic class change (��)). The operation C ��C describes a change to C’s defi-
nition, and is valid if and only if the following two conditions hold true:

1. No class defined in P, where P is the enclosing program, depends on fields or methods being
removed from C.
� CD � P : 	 (CD

�

� (C � C))

7

2. An element of C’s type set cannot be removed if other classes depend on it.
�T : T � � (C � C) : 	(� CD : CD
� C� CD � P : CD � T).

Under these conditions, �(C) may be changed in any way. Methods and data may be added to
�(C), and removed if doing so does not cause type violations. C’s superclass may be changed, and
abstract interfaces added or removed as long as types with dependents are not removed from C’s
type set. Further, C ��C has the following effects on C subclasses and instances:

1. The change in C’s definition is reflected in all subclasses.
� CD: CD � C, CD �� CD.
By the definition of inheritance, ∆CD ∆C.

2. All instances of C change to match the new defintion.
� O: O� C, O �� O, where C�O O and C�O O. See Section 3.2 for more information about
this requirement.

Note that CD
�

� C does not mean that CD must change if C does. If CD depends on C via
method invocation, field access, or aggregation (CD contains an instance of C), then no change to
CD’s definition is implied. We discuss this, as well as other details such as method table updates,
further in Section 3.3.

The two conditions for �� preserve type safety. The first condition prevents static type viola-
tions, and the second prevents dynamic type violations. No other constraints are needed. After
any number of changes, a program is still type-safe. Formally, we state this as a theorem:

Theorem 1. Given P �

�� P, if P is type-safe, then P is type-safe.

We prove Theorem 1 using induction on the number of class changes enacted..

Base step: if no change has been made to P, then P is type-safe. True by the definition of a valid
Java program.

Inductive step: If P is type-safe, then P is type-safe. We prove this using contradiction: we have
some C ��C �� P ��P, where P is type-safe and P is not. Therefore, � some class X � P: C
��C �� X ��X � X is not type-safe. There are two cases:

Case 1: X contains a static type violation: � Y: C ��C �� Y ��Y � X �(Y� Y). Recall Con-
dition 1, which requires that �X � P : 	(� Y, X �(Y � Y)). This condition contradicts
the above.

Case 2: X contains a dynamic type violation: � CD : CD
� C : CD � T. � (X) � � (X). How-
ever, X ��X �� 	(� CD : CD
� C : CD � T) by Condition 2 of ��, and we have a
contradiction.

Therefore, if P is type-safe, then P is type-safe.

8

2.2 Support for Dynamic Classes

Dynamic classes can be implemented in several ways: (i) by changing the Java language to support
mutable classes, as done in [9], (ii) using library-based support, as done with C++ in [21], or (iii)
by modifying the virtual machine. We did not wish to modify the syntax or semantics of the
Java language. The library-based solution is inefficient and contains intractable implementation
problems. In Section 4.3, we describe in detail this solution and its shortcomings. In this section,
we describe our design, which uses a modifed virtual machine to provide runtime system support
for dynamic classes, and extends the class loader to provide an interface.

2.2.1 Background: Java Class Loader

The interface by which users manipulate dynamic classes is an extended Java class loader. Thus,
begin our discussion with some pertinent background on the Java class loading mechanism.

������ �������� ����� 	���������� �
������ 	���� ����	����� ����� ������

��������� 	���� ����	����� ����� ������

��������� 	���� ������	����� ����� ����� �!��"# �� ��� ���� ��� �����

��������� ��� ������	�����	���� ���
���

�

Figure 4: Java VM class loader

The JVM resolves references to a class during runtime using a mechanism called the class

loader [31]. A class loader is responsible for locating the definition of a class, which takes the
form of a class file, and loading it into the JVM. A class in Java is, thus, defined by both its name
and the class loader that loaded it. The JVM defines two kinds of class loaders: the system class
loader and user-defined class loaders. The system class loader is the default class loader used for
locating and loading system classes and user-defined classes. Users can override the behavior of
the default class loader by defining their own class loaders. To build a specialized class loader,
the user must extend the abstract base class ������	
�. Figure 4 depicts part of the interface of
������	
�, as well as the methods that can be overriden in user-defined subclasses.

Applications can define multiple class loaders, each maintaining its own namespace of classes.
In JDK (Java Development Kit) 1.2, the preferred method of extending ������	
� is to redefine
���	��� to load classes from a new source or take other appropriate action. For example, an
extended class loader could download a class file from a network, then call 	
���
��� to con-
vert the raw byte array into a class object which it then resolves and uses – web browsers use this
method when downloading applets. The code sample in Figure 5 shows how an application can
instantiate ��������	
�, a custom class loader, and use it to load �����. ��������	
� then
loads any classes referenced in �����.

9

������ ��� ������ �

 ��$� ��� ����� ������

%!	���������� �!	���������� � ��� %!	�����������

 ��$� ��� ����� ������

 ��� �� �� ���� ���	����� ����� ���������� &�������

&������� ��� � �&�������� �!	���������������	�����''���	����((����������������

 ��� ���) ��� ������� ������ �! ��� ���� ��� �!	����������

����������

�

Figure 5: Using a custom class loader

We now describe how the JVM invokes both system and user class loaders [25]. Assume that
class B contains a reference to class C. To link in C, the JVM takes several steps. First, it invokes
B’s class loader, LB, to load C. If LB has not already loaded C, LB.���	��� delegates the request
to its parent class loader, say LP, via LP.���	���. If LB has no parent class loader, it calls the
system class loader. Then, if LP cannot find C, LB calls its ���	��� method. If this succeeds, the
class is loaded. Otherwise, LB throws a ��� ��!���	"#�
�����.

Creation and use of new class loaders is overseen by the Java security manager [16, 17]. The
������	
� constructor makes a call to $
�����������
����
�%��
��
������	
�,which throws
a $
������"#�
����� if the local security policy does not permit creation of new class loaders. Es-
sentially, the JVM uses a hierarchy of class loaders from the system loader to various levels of
extended class loaders defined by the application. Security might be compromised if arbitrary
user code – such as a downloaded applet – could load system classes with its own untrusted class
loader. Therefore, the JVM enforces the constraint that each class loader deal only with classes in
its own namespace. System classes are loaded only by the system class loader, which is part of the
runtime system.

2.2.2 The Dynamic Class Loader

The programming interface for dynamic classes is the dynamic class loader. This class, &������������	
�,
extends the JVM class loader and, in addition, supports replacement of a class definition, and up-
date of objects and dependent classes. Any class loaded by an instance of &������������	
� is
automatically a dynamic class.

We chose this approach for several reasons. Since the class loader loads, stores, and examines
class definitions, it is a logical choice for a module that modifies class definitions. The design
extends Java’s dynamic linking mechanism, instead of replacing it. Thus, it supports existing
code, with little or no modification. Users can choose to use dynamic classes when and where
they see fit. Most importantly, our design preserves the security mechanisms inherent to the class
loader system, which include namespace separation and bytecode verification.

The dynamic class loader loads classes from disk in the same manner as the system class
loader. It complies fully with the specified semantics of a Java class loader, as described above

10

������ ����� �!�����	���������� �*����� 	���������� �
������ 	���� ������	����� ����� ������

������ ����� ��� �������	����� ����� ����� 	���� ������
���

 ������ ��������� ������� �� �������	���� ��� ������� ��� ����������

�

Figure 6: &������������	
� interface

in Section 2.2.1. However, the dynamic class loader provides additional methods that can reload
an active class and replace it with a new version. Using runtime system support, these methods
implement the semantics of class change (��) as stated in Definition 2.15.

These new methods are �
���	��� and �
����
���. Method �
���	��� is similar
to ���	��� in that it reads a designated class file from the disk, creates a class object, and
returns it. However, ���	��� does not load classes that are already defined in the system,
whereas �
���	��� succeeds whether the target class was previously defined or not. Given C,
�
����
��� defines C to be the new definition of C, and initiates instance update. These rely on
several native methods that interface with the VM’s internal data structures. We provide relevant
implementation details in Section 3. Figure 6 summarizes the interface to &������������	
�.

Users can extend the dynamic class loader by redefining �
���	��� or ���	���. Method
�
����
��� is a �����method and cannot be overridden. This ensures consistent class redefini-
tion and security, as �
����
���performs verification of C, and enforces namespace constraints.

2.3 Security

In Java 1.2, the JVM prevents static classes from
Applet2
(DCL)

Applet1
(DCL)

Resource
(DCL)

System

Figure 7: Typical namespace configuration.
&�� indicates a dynamic class loader.

performing forbidden actions by using bytecode
verification, supporting namespace partitioning, and
enforcing user-defined access control policies. The
bytecode verifier examines each class before load-
ing it into the JVM, checking for type violations
and other illegal operations. Figure 7 depicts a
typical namespace configuration in a system that
hosts mobile, untrusted applets, such as a web browser.
Applets are each run in their own namespace, de-
fined by separate class loaders. Resource classes
provided by the host are placed in another names-
pace Access between namespaces is only permitted 	�'� the tree; applets are effectively isolated
from one another. Furthermore, the user can specify access control policies for more fine-grained
protection. In Sun’s JDK 1.2 security model, the class (��
��������
� acts as a security mon-
itor [2, 16, 17]. All protected resources must call (��
��������
����
�%��, which checks the

11

������ ����� �!&������� �

 �������� ������

������ ������ ��� ����� �

 ��������� �������� ������

 ������� �������! ����$

������	��������������$���� �!&�������+�������������

 ������ �������� ��������
���

�
�
������ ����� �!&������� �

 ���$���� ������

������ ������ ��� ����� �

 ������ ��� �����������

 �$�� �������! ����$���

 ������ �������� ��������
���

�
�
������ ����� �����������������,����� �*����� ,����� �

 ��������� ������ ������

������ ��� ������� �

 ��� ������ �� �!����� ����� ������

�!�����	���������� ��� � ���	����������	�������������

 ��� � -&� ����� ������� ���$�� �� ������������ ��� ����

-&�	���������� ��� � ��� -&�	�����������''��������������((��

 ��� �� �� ���� � ���$���� ������ �� ��� �������� �����

	���� �� � ��������	�����''�!&�������((��

 ��� ��� ��� �� ������� ��������� �������� ���� ���$���� ������

�����������	�����''�!&�������((� ����

 ���$� ��������� ����� ������ �� ������ ��� ���(� ��

�!&��������������

�
�
 !���� �������! �����!. ���! ����� ����� ��������� ������ �� ��������

����� �������� ''���������((�
���������� �!&�������+����������

�

Figure 8: Using dynamic classes to bypass access control.

access against the permissions specified in the security policy. Although the security policy, and
thus permissions, can change, the set of protected resources is static.

Dynamic classes pose new security hazards. Malicious code could potentially bypass many
existing security mechanisms, by modifying either itself or the protected classes it targets. Specif-
ically, a malicious class could modify itself in order to perform forbidden actions, or modify sen-
sitive classes to either perform or allow forbidden actions. Consider, for instance, Figure 8. A
host provides a resource, ��)
����
, to which access is restricted via an access control policy.
A malicious applet,
���(���
�, contains code that replaces the protected resource with a new
version that does not invoke the access controller.
���(���
� can then gain access to which it is
not entitled.

We do not wish dynamic classes to introduce any new security risks. Therefore, we ensure

12

����� �������� ''���������((�
���������� ������������!������������!	����+����������

�

Figure 9: Grant class modification privileges only to classes in the local codebase.

that Java’s security mechanisms extend to dynamic classes, which must adhere to the constraints
imposed by this system. This requires several measures.

The dynamic class loader subjects all modified classes to bytecode verification before loading
them into the JVM, so a malicious class cannot instrument itself to include illegal bytecode oper-
ations. The dynamic class loader honors the separation between namespaces by replacing only
those classes defined within its own namespace. Returning to Figure 7, let &�� denote a dynamic
class loader. Thus, applets and resources are dynamic classes. An applet running in namespace
(���
�* cannot use its own class loader to replace a class defined in (���
�+. The scenario de-
picted in Figure 8 cannot happen.

These steps do not, however, prevent a malicious applet in (���
�* from invoking the resource
namespace dynamic class loader and modifying resource classes. Thus, dynamic class loaders
should be protected by an access control policy. Figure 9 contains a simple example of such a pol-
icy: only classes from the local codebase, or namespace, can invoke the dynamic class loader. Ap-
plets are excluded. &������������	
� contains appropriate calls to the access controller, as de-
scribed in earlier. Under this policy, applets in Figure 7 cannot modify system or resource classes,
nor can they modify themselves. A similar policy could provide full protection for ��)
����
 in
Figure 8.

In practice, it is possible to violate Java’s type model and compromise security [40]. This is due
to problems in the semantics of dynamic linking and the implementation of the virtual machine.
The issue does not bear directly upon dynamic classes, and we do not address it.

Another compelling question is that of the security behavior of the program itself – what re-
sources are accessed, interactions with security monitors other security-related components, how
control flow passes through various security domains, etc. Ideally, we could ensure that the se-
curity behavior of C is no weaker than that of C; that is, that no potential security holes are in-
troduced into the code. This problem is impossible to solve, in the general case. Conceivably,
heuristics could be used, together with assumptions about or constraints on program behavior, to
solve the problem for specific cases. Such heuristics are, however, beyond the scope of this paper.
It remains the responsibility of the programmer to maintain security behavior across changes.

2.4 Sample Applications

Below, we describe two applications that use dynamic classes. These examples demonstrate how
to use the dynamic class loader’s interface. They also show how dynamic classes can be applied
to provide new functionality in security and software distribution.

Figure 10 contains a simplified excerpt from one of our applications. We extend the Java access

13

controller, described in Section 2.3, to support dynamic security policies by instrumenting the code
of protected classes.

Our application adds dynamism by supporting the addition of protection code to a resource at
runtime. The method &������,�����!��
�����
�������� reloads the target class C and adds
the access control invocation to the beginning of each public method. Then, it redefines C to use
the new, modified class object.

������ ����� �!�����+����!/��� �*����� 0����������!�+����!/��� �
������ ��� �������	����� ����� 	� �

 1�0�������	������ ������� ����� ���������� �� ���� ��0����

 	��������	������������ ������� ����� ������ ���� �� ���� ���

 ��� ���� �*����� �� ������ ���� � �!�����	����������

 �� ����!� ���� �� ���� � �!�����,�����	����������

�!�����	���������� �!������ � ���	����������	�������������

 ������ ������ �����

	���� ���� � �!�������������	�����	��

 ���������� ���� �� ����� ������

 ����� ���� ���� �� ������	��������������$�� �� ���� ������

���+���������	����������

 ������ ���������� �� 	 �� ��� ������

�!��������������	�����	� ������

�
������ ��� ���+���������	����	������

�

Figure 10: Dynamic access control example

Figure 11 provides another example, this time part of a dynamic software distribution sys-
tem. A client application can use ���-�	��
.��
�	 to dynamically apply class version up-
dates from a remote server. Given a dynamic class loader (��), ���-�	��
.��
�	 listens for
the update signal from the server. The signal contains the name of the class to update (����
).
���-�	��
.��
�	 then downloads the new class object using a URL class loader. Finally, it
replaces ����
 in 	��’s namespace with the new version.

The class update server constantly polls for new class files on its disk. Whenever it detects
a new version, it sends the name of the updated class to all of its clients. It must also support
requests from URL class loaders on the clients. This code does not directly use dynamic classes,
so we omit it.

3 Implementation

&������������	
� requires virtual machine support for reloading a class definition, finding
and updating dependent classes, and finding and updating instances of modified classes. We
have modified the Solaris version of Sun’s JVM (JDK 1.2). Much of our discussion here pertains

14

������ ����� 	����-�����2����� �*����� 2����� �
�!�����	���������� ����

-&�	���������� ����

	����-�����2�������!�����	���������� ���� �
��� � ����

��� � ��� -&�	�����������''��������������������������������((� �����

�
��� ����� �

�������� ��$�� � � ��� �������� ��$���''3444((��

�!��"# ������ � ��� �!��"456#�

 ����� ������

	���� ���0�

����������� �
���������������� ���������������

 ������ �� ���$�� ��� ������ ������

����� � ��� ��������������

 ��� ���� �� ����� �� ������

���0 � ��������	������������

 ��� -&� ����� ������ �� ���� ���� ������ ����

�����������	����������� ���0��

 ������� ��� ������ �� ������� ���������

�
�

�

Figure 11: Dynamic class update client.

specifically to that VM. Our implementation includes a shared library containing functions that
support class replacement and instance update. We have also made minor changes in some data
structures and functions internal to the JVM to support the library functions. In the remainder of
this paper, we refer to this modified, dynamic classes-enabled virtual machine as DVM.

Adding support for dynamic classes requires understanding and manipulating the JVM’s in-
ternal data structures and functions in several areas. The JVM uses several optimization tech-
niques to increase performance, and we take this into account in our design. In this section, we
first provide necessary background on the JVM, then discuss our implementation.

3.1 Background: Java Virtual Machine

Here we describe the general architecture of the JVM. We focus only on those aspects of the archi-
tecture that are relevant to to support for dynamic classes. Specifically, we describe JVM’s runtime
memory organization, the structure and function of class definition objects, and optimizations
within the bytecode interpreter.

3.1.1 Execution of Java Programs

Java programs are composed of classes, each of which is stored in a separate class file. A class
file contains the types and definitions of fields and methods defined in the class. All references to
classes, fields, or methods are symbolic and contain enough information to allow the JVM to link
classes in a type safe manner.

15

The JVM executes a Java program by loading the class associated with the program and inter-
preting the static method ������ of that class. A user executes a Java program, say /
���0���	, by
executing a command of the form 1��� /
���0���	. The operating system creates a process and
starts execution of the 1��� program, which invokes 1��� ������ in the main library ���1���.
1��� ������ performs many tasks: it parses command line arguments, initializes the virtual ma-
chine data structures and initializes the main thread. Finally, it loads the class named on the
command line and calls that class’ static ������ method.

Java method code consists of what

Heapbase opmin opmax Heaptop

Mapped Memory
Committed Memory

hpmin hpmax

...

������� �	
����

Figure 12: Organization of the Java heap within JVM

is commonly called bytecode. Byte-
code consists of single-byte opcodes
followed by varying numbers of operands.
The bytecode instruction set of the
JVM is designed specifically to pro-
vide support for high-level opera-
tions such as method invocation, field
accesses, exceptions, and monitors.

The core of the Java interpreter,
"#
���
2�����, is a loop with a large switch statement that executes bytecode instructions. Exe-
cution is entirely within "#
���
2�����, except when interpreting the above mentioned high level
instructions. These may require other components of the JVM, such as the class loader.

The JVM also includes the ability to invoke non-Java methods. These native methods are
implemented as C or C++ functions. Many of the methods in the core Java class libraries are
implemented as native methods. They are used whenever it is necessary to do perform functions
not supported by Java bytecode instructions, such as I/O.

3.1.2 Java Heap Organization

All Java objects are allocated within a data structure known as the Java heap. In many JVM im-
plementations, including JDK 1.2, the heap is divided into a handle pool and an object pool. Java
objects are never addressed directly, only through their handles. The use of handles facilitates
garbage collection. When an object is moved, only the pointer in its corresponding handle needs
to be updated; the handles never move. Figure 12 shows how a basic contiguous heap is imple-
mented.

This model is very useful when handling object update for dynamic classes, as described in
Section 3.2. The DVM can allocate new space for an object when updating it, without changing
the handle used to reference the object.

16

3.1.3 Class Objects

A class object, an instance of ���, is created for each loaded class. This object contains the
entire class definition, including field types, method signatures and bytecode, and inheritance
information. Class objects are special in that they are allocated on the Java heap, but some fields
contain pointers into the interpreter’s C++ heap. Thus, the code segment for an executing program
is distributed among several Java class objects. All names – or classes, methods, fields, etc. – used
by the class are stored in the constant pool. In the bytecode, indices into this constant pool are
used as symbolic references. Our implementation uses the semantic information contained in
class objects to assess dependency relationships and other data, as described in Section 3.3.

3.1.4 JVM Optimizations

The JVM performs several optimizations that can obfuscate internal data structures and cause
problems during class changes. These optimizations include the use of method tables, inlining,
quick instructions, and direct referencing. Below, we describe the problems that the optimizations
raise during dynamic class implementation and how we resolve them.

Each class data structure contains method and field tables used by virtual method calls and
other instructions. These tables contain the names of all methods or fields defined within a class
C and its superclasses; each entry has a pointer to the method body or field visible in C’s scope.
When changing C, the DVM rebuilds the method tables in C and all of its subclasses.

When a class is first loaded, its constant pool contains symbolic references, and its bytecode
contains indices into the constant pool for all method and data access instructions. The first time
the JVM encounters any such instruction, it checks if the constant pool entry has been resolved,
and resolves the entry if needed. Then, the JVM changes the instruction to a special quick instruc-
tion that does not perform the check. Any subsequent execution of that instruction is relatively
fast. Certain quick instructions contain offsets into objects or method tables that may change when
a class is modified. To make class updating cleaner, the DVM only uses quick instructions that do
not contain any offsets or direct references. This avoids the need to update bytecode, but incurs a
slight performance penalty.

JDK 1.2 includes a Just-in-Time (JIT) compiler [24]. JIT compilers provide a significant speed
boost to a Java VM by generating native machine code from Java bytecode on the fly. This op-
timization has an impact on dynamic classes – if a method is modified, previously generated
machine code becomes invalid. Therefore, if the JIT compiler is enabled, the DVM must ensure
that any modified methods are recompiled. We have not yet implemented this step. At present,
the JIT compiler is disabled within the DVM.

The JVM also performs inlining, where some method invocation instructions are replaced by
the actual bytecode of the method called. This technique also affects dynamic classes, as inlined
code may be invalidated by a class change. We have, therefore, disabled method inlining for all
classes loaded by a dynamic class loader. System classes and non-dynamic classes are inlined as

17

usual. We plan to re-enable inlining for dynamic classes by forcing a recompile of any methods
that contain inlined code for methods that have changed.

3.2 Updating Instances

There are several alternatives for handling existing instances when a class changes: none, some,
or all of them can change to match the new definition. We discuss the options, and justify our de-
cision to enforce global update. Then, we address the implementation details involved in finding,
locking, and updating the objects.

3.2.1 Instance Update Models

Possible models for instance update in-

a)

b)

c)

d)

tupdate

Time

Figure 13: Object update models: (a) version barrier,
(b) global update, (c) passive partitioning, and (d)
active partitioning.

clude a version barrier, passive partition-
ing, global update, and active partitioning.
We describe and compare these models here.4

First, the DVM could use a barrier on
object versions. With this solution, C ��C

cannot occur until all objects defined by
C have expired, as shown in Figure 13(a).
Note that, in this case, tupdate is delayed un-
til all old objects have expired. This solu-
tion lacks the flexibility we desired. Effec-
tively, active classes cannot change.

Another possibility is passive partition-
ing, where objects created before C ��C are
unchanged, and any created afterwards re-
flect the new type. Figure 13(c) depicts this

model. In this case, as with the previous, multiple definitions of a class can be active simultane-
ously. This breaks the Java name-binding semantics, and introduces ambiguity that we wished to
avoid.

Active partitioning allows the user to actively select which objects to update and which to leave
at the previous version, thus partitioning the objects into type spaces. Such a model effectively
implements fully dynamic typing, as one could redefine classes at the granularity of individual
objects, giving each object its own dynamic type descriptor. Figure 13(d) illustrates this model. As
discussed in Section 2, we chose not to make such a drastic change in Java’s type system.

Therefore, our model uses the fourth method: global update of all objects defined by C, shown
in Figure 13(b). We defined �� (see Definition 2.15) such that the DVM must locate and update all
instances of C and its subclasses to reflect the new definition, C.

4Our definitions of version barrier, passive partitioning, and global update, as well as Figure 13(a,b,c), are based
on [21].

18

3.2.2 Implementing Incremental Global Update

Once the DVM has determined that a modified class’s instances must be updated, the problem
remains of actually locating and processing them. This problem is similar to that of garbage col-
lection. In both cases, there are three major steps: find relevant objects on the heap, lock them,
and process them. Therefore, we looked at work in garbage collection [47] when designing our
solution.

Garbage collection algorithms generally fall into one of three categories: basic, incremental,
and generational [47]. Basic algorithms use techniques such as reference counting or mark and
sweep to identify and process objects in a single transaction. This transaction is atomic in that
all other threads must block while garbage is collected, and has the undesirable effect of tem-
porarily halting program execution. Incremental algorithms interleave garbage collection with
program execution, alleviating the pause effect. Generational algorithms exploit temporal locality
in memory usage to optimize garbage collection. We required a more efficient method than a ba-
sic algorithm, and generational algorithms rely on assumptions about program behavior that may
not apply to instance update. Therefore, we chose an incremental mark-and-sweep approach to
updating. In this method, there are two phases: the mark phase, during which objects are identi-
fied, and the sweep phase, in which they are actually updated. The mark phase is atomic, and the
sweep phase proceeds incrementally.

In the mark phase, the DVM finds the objects by scanning the handle pool, looking for in-
stances of C. When it finds one, the DVM sets a bit in the object header to indicate that the object
needs to be updated. Finally, the DVM modifies the class object pointer present in the corre-
sponding handle structure to point to the new definition, C. The mark phase eliminates the need
to check all object references, thus increasing overall efficiency – the DVM only traps references
when updates are pending.

In the sweep phase, the DVM incrementally updates marked objects. To maintain the heap in
a consistent state, the DVM traps all accesses of marked objects. If any objects need to be updated,
the DVM checks the update bit of the target object when interpreting an object reference instruc-
tion. It may seem that this sweep technique implements version partitioning (Figure 13(c),(d)), in
that old and new versions may actually be present on the heap at the same time. However, the
implementation guarantees that any old object will be update before it is referenced. The state of an
inactive object does not matter. An advantage of this technique is that the DVM does not update
objects destined for garbage collection. The disadvantage is a slight performance cost.

The DVM takes several steps to update an object O. Since other threads may be active, it first
locks O to prevent race conditions. Then, processing may continue. The DVM allocates a new
object O, where C �O O, and copies O’s data to O. It initializes any new fields within O to zero
(����), then switches the handles of O and O. Any references to O now point to O, and O is
reclaimed by the garbage collector. Finally, the DVM unlocks O, and the method that triggered
the update may continue.

Figure 14 illustrates this process, depicting the structure of the heap before and after a class is

19

X

Y

ClassdefHandle Address

C2

C3

C1

int X int X

int Y

ClassdefHandle Address

C2

C3

C1

X

X

X

X

Y

X

Y

X

X

Xint X
C CC

Figure 14: Heap structure before and after replacement

replaced and its instances updated. Initially, the objects C1, C2, and C3 are defined by C, and their
data reflects C’s fields. When the DVM replaces C with C, C becomes inactive. The DVM updates
C’s instances as they are accessed. After they are all updated, the objects are defined by C, and
have new data fields, which are initialized to zero.

We considered allowing the user to specify a transform function for C, which could assign
meaningful values to new data fields, and translate any old data fields that have been given a new
type. The DVM would invoke this transform function on each object immediately after updating
it, and before returning control to the accessing thread. We rejected this option for the current
implementation because it violates the atomicity of object update, and also due to the semantic
issues raised by a method that should be able to access both old and new version of the class
definition.

3.3 Updating Dependent Classes

When redefining C, the DVM changes the state of all dependent classes to enable C’s new defini-
tion. This process requires several steps. First, the DVM identifies all dependents and categorizes
them by their relation to C – subclass, method usage, etc. It re-resolves all dependent classes, and
updates additional information within subclasses.

The DVM identifies dependent classes by scanning the constant pools of all loaded classes
for C. Then, it updates each one according to its relation to C. Figure 15 depicts this process at
an abstract level. When a class is first loaded, its constant pool contains symbolic references to
other class objects and their methods and fields. When the JVM resolves the class, it replaces these
references with actual pointers to the referenced object. When the DVM redefines C, any pointers
to C become invalid, and the DVM replaces all resolved references with the original symbolic
references. It then resolves the class and replaces the references with pointers into C. To support
restoration of symbolic references, we added an additional field to the class object structure that
contains the original constant pool.

C’s subclasses require additional processing. If any data or methods are added to C, the DVM
updates the method and field tables of all subclasses. It rebuilds these tables when it re-resolves

20

Bytecode

C.foo();

C

C.foo

Class C Class D
Constant Pool

Bytecode

C.foo();

C

C.foo

Class C Class D
Constant Pool

C.foo();

Bytecode

C.foo();

C

C.foo

Class C Class D
Constant Pool

C.foo();

C.foo();

Bytecode

C.foo();

C

C.foo

Class C Class D
Constant Pool

C.foo();

C.foo();

C replaced by C; symbolic references restored

Class D unresolved; contains symbolic references. Symbolic references resolved to pointers into C

Symbolic references resolved to pointers into C.

C

C

C

C

C

C

Figure 15: Class objects before and after update.

a class. Classes that contain instances of C as data require no further action. Since Java objects
contain references in their component fields and not entire objects, classes are not affected by a
change in the class definition of one of their components.

3.4 Pitfalls in Dynamic Classes

The introduction of arbitrary new code into a running Java application has many potentially nega-
tive consequences. Type safety may be affected, race conditions may result, etc. Here we consider
implementation-level problems and our solutions.

3.4.1 Type Safety

Recall from Section 2 that the operation C ��C is allowed if it does not cause static or dynamic
type violations. Therefore, before making any change, the DVM verifies these conditions. This
maintains program correctness and type-dependent security mechanisms.

The DVM checks for static type violations by examining C, C, and any dependents. Assume
that C has a field X, and the switch to C removes X. There are two possible cases for invalid
references – within C, and in other classes. Since we enforce the constraint that C must be a valid
class definition, the first case is impossible. Before enacting the change, the DVM resolves C and
runs through the bytecode verifier. Therefore, whether C is a compiled class or was generated
on the fly, it cannot contain any references to X. However, we may have another class CD that is
dependent on C and references X. In Section 3.3, we described how to identify dependent classes

21

quickly by scanning their constant pools. We extend this technique to locate references to deleted
fields or methods such as X – the name C�X must be present in C D’s constant pool. If any such
references are found, the DVM invokes a user-supplied handler, passing it a list of classes that
depend on C. This handler may then throw an exception, update dependent classes if possible,
etc. This step ensures that all classes defined, and thus the program itself, are valid after the
change.

Likewise, the DVM checks the second condition by comparing C and C, and recursively exam-

ining C’s superclasses. If C
�

� CS and C does not, the DVM searches for any classes that depend on

CS. If any are found, the DVM throws an exception. Similar steps are taken if C
�

�IT and C does
not. It is a straightforward matter to extract this information from the class object data structures.

3.4.2 Race Conditions in Multithreaded Applications

Multithreaded applications raise the issue of race conditions on the definitions and instances of
dynamic classes. During redefinition, the data in C and C are in an inconsistent, transitory state. If
an active thread references C during this time, runtime system errors will likely result. The DVM
prevents this event by blocking all threads prior to performing the replacement.

Ideally, the DVM could identify all threads that depend on C, and block only those threads.
Unfortunately, this requires a lengthy recursive search of all loaded classes for every frame on
every thread stack. This operation is actually much more costly than the class replacement, which
is fairly brief. Thus, the DVM blocks all threads except for that performing the change, and allows
the threads to continue after the change is complete.

The internal workings of the JVM contain a number of monitors: the heap lock, class loading
and linking locks, thread queue lock, etc. We added a new lock, the class replace lock. Any
object reference or method invocation bytecode instruction could potentially be involved in a race
condition if one of its operands was being modified. Therefore, we instrumented each of these
instructions to wait on the class replace lock before continuing. Before modifying a class, the
DVM allows all threads to continue until it is unsafe to do so – that is, until they hit an object
reference or method invocation instruction. If the DVM did not allow threads to continue in this
manner, and blocked them at an arbitrary point by locking the scheduler, race conditions could
result if a thread were blocked while in the middle of executing an instruction. The extra checks
involved in this instrumentation result in a slight performance penalty.

3.4.3 Native Methods

The JVM allows users to run native methods, and the potential for race conditions during a class
change exists here as well. Since native methods do not use a Java stack, and their code cannot
be easily examined for dependencies, it is very difficult to determine if it is safe to make a change
while a native method is active. Further, native code does not consist of discrete bytecode instruc-
tion sections. It is difficult to determine when it is safe to block a native method without causing

22

race conditions as described above.
One solution is to simply disallow class changes while native methods are active. Unfortu-

nately, many native methods are involved in I/O and include polling loops; they are perpetually
active. Therefore, the DVM does not block native threads, nor does it wait for them to finish or
reach any particular state before continuing with a class change. There is a danger that a native
thread could access some internal data structure while the DVM is modifying a class. However,
since the JVM cannot control the execution of native methods, there is always the danger that one
will corrupt the runtime state in some manner. We assume that all native methods are trusted to
behave properly.

Race conditions during object update are easier to handle. Native methods should “pin” Java
objects before accessing them, a form of locking. Before changing a class, the DVM scans the heap
and ensures that no instances of that class are pinned.

3.4.4 Changing Active Methods

An interesting problem involves changing a method that is currently running. Given a method
C�M, we must first determine if C�M has changed. Whenever the dynamic class loader loads a
class, it calculates and stores a hash value for each method. The DVM can then determine if M has
changed by comparing the old and new hash values.

This cannot be done by a simple string compare of C’s and C’s versions of M, since the constant
pools indices used as arguments in the bytecode may change, even if the method code does not.
Any deeper examination of the bytecode becomes costly. So, whenever the dynamic class loader
loads a class, it calculates and stores a hash value for each method. This hash value includes all
bytecode instructions, and the full names of all classes, methods, and fields referenced, rather than
the symbolic references. Then, the DVM can determine if M has changed by comparing the old
and new hash values. There is a slight possibility of collision, where two different methods give
the same hash value, thus causing a false negative. Therefore, in the event of a match, the DVM
also checks other information such as bytecode length and stack size.

Once it has determined that M has changed, the DVM must include C�M in its search of the
active thread stacks. Given that M is at an arbitrary point in execution, that Java bytecode con-
tains no semantic information about control flow, and that no particular relationship between M
and M is required, it is impossible, in the general case, to determine where and how to continue
execution in M. For instance, if M and M solve the same problem using different algorithms, there
may not be a point in M corresponding to the current location in M. Or, M may use local data
that is not present in M, and that must be initialized. This problem is similar to that posed by se-
curity behavior across class changes, as discussed in Section 2.3. Again, heuristics might be used
to solve specific cases, but such heuristics are beyond the scope of this paper. Therefore, active
methods cannot be changed. If the user attempts to change an active method, the DVM throws an
exception, aborting the offending thread. The user may handle this exception in another manner,
by continuing the thread but aborting the replacement, terminating and re-invoking the method,

23

etc.

4 Discussion

In this section, we assess the effectiveness of our approach. First, we discuss library-based support
as an alternative to runtime system support. We describe a possible solution, and justify our
decision to modify the JVM. We then analyze the performance of the DVM, as compared to the
standard JVM. Finally, we survey other work related to dynamic evolution, comparing our design
and implementation to the others.

4.1 Library-based Support for Dynamic Classes

In this section, we briefly describe how dynamic classes can be supported using a library-based
approach.

We can support a dynamic class by defining a proxy class that presents the interface of a class
and wraps its implementation, in a manner similar the wrapper-based approaches described in
Section 4.3. For each dynamic class C, we create a proxy class, Cproxy, and an implementation class,
Cimp. In order to wrap method calls, Cproxy contains the interface methods and an array of associ-
ated method objects that include the method bodies. For each method defined in C, C proxy contains
a wrapper method (W) and a reference to the associated method body (M). W explicitly invokes
M, which points to the corresponding method body in Cimp. When C’s implementation Cimp is
switched, M is updated to point to the corresponding method object in the new C imp. Cproxy also
contains a reference to an object of type Cimp, whereby instances of Cproxy become pseudo-objects
of Cimp. Cproxy must keep a static list of all objects of the type created, and update this list in the
constructor. When Cimp is switched, Cproxy traverses the list of pseudo-objects, switching object
references to refer to an object of the new type.

This approach achieves the primary goal of runtime class redefinition. However, it has several
drawbacks:

� Dynamic class specification: Although a proxy class may wrap a malleable implementation,
the interface of the proxy itself is static. Therefore, the interfaces of dynamic classes cannot
change. Subject to these restrictions, use of dynamic classes becomes awkward.

� Semantic properties: The usage of proxies means that some semantic information contained
in the original class is lost. For example, Cproxy and Cimp do not reproduce the inheritance
tree associated with C. Hence, proxies may interfere with runtime system capabilities that
rely on this semantic information; these include reflection, serialization and casting.

� Efficiency: In the solution we considered, every method call on a dynamic class is instru-
mented into two method calls: one call to the proxy method, and another to invoke the

24

associated implementation method body. To support pseudo-objects, each class must essen-
tially manage its own instances, imposing an additional layer of object management. The
number of classes loaded into the system increases. Essentially, the proxy approach requires
that a pseudo-virtual machine run on top of the standard JVM.

� Multithreading: Race conditions can result if one thread modifies a class that another thread
is using. The problem recurs with object update. Java’s native synchronization methods do
not readily support any solution to this synchronization problem.

Modifying the virtual machine itself provides much more flexibility and efficiency. All data
structures internal to the VM are available for direct inspection and manipulation, using fast native
code. However, this approach has the disadvantage that dynamic classes require use of a specific
VM, in this case our modified version of Sun’s JDK 1.2.

Although library-based dynamic classes are an interesting topic of research, the inherent tech-
nical difficulties and performance issues led us to conclude that the method is simply not practical
for the class of applications we target. Modifying the virtual machine proved to be a viable and
more effective technique. This approach does, of course, suffer from the limitation that the DVM
must be used to run any program that uses dynamic classes. A library-based solution could work
with any JVM implementation.

4.2 Performance Analysis

We are concerned with two performance factors: baseline performance of the modified VM, and
the cost of replacing a class and updating its instances. We have performed a series of experiments
to determine precisely where penalties are incurred and their degree, and to suggest optimizations
and improvements. These results pertain to an unoptimized DVM; work on optimization is pro-
ceeding apace.

4.2.1 Overhead of adding dynamic classes to JVM

It is straightforward to test the baseline performance of the DVM, simply by running a series of
benchmark programs on both the DVM and unmodified JVM. We ran the SpecJVM ’98 benchmark
suite [44], with a problem size of 100, on a 266 MHz Intel Pentium II running SunOS 5.6. Figure 16
summarizes the results.5 The performance penalty varied between applications from around five
percent to nearly ten, with the average around six percent.

We ran another experiment to determine the penalty caused by each of our modifications. For
this experiment, we used a simpler set of benchmark programs [18], run with different versions of
the DVM. Each successive DVM version activates an additional instrumentation of the unmodified
JVM. Instrumentations include the elimination of quick instructions (see Section 3.1.4), checking
if an update is needed in object reference instructions (see Section 3.2), and the class replace lock

5These results are not SPEC compliant, and are intended for internal comparison only.

25

Benchmark program JVM DVM JVM/DVM DVM w/ replace no replace/replace
jess 1420.888 1562.581 90.9% 1738.559 90%
db 2675.772 2932.931 91.2% 3257.733 90%
javac 1692.285 1840.9 91.9% 2181.056 84%
mpegaudio 6383.705 6743.099 94.7% 6853.353 98%
mtrt 1709.399 1883.119 90.8% 2163.25 87%
jack 2083.441 2306.306 90.3% 2559.645 90%
Total 15966.552 17269.977 92.5% 18753.596 92%

Figure 16: SpecJVM benchmark results. All time in seconds.

check for object reference and method invocation instructions (see Section 3.4.2). Figure 17 sum-
marizes the performance cost distribution. The costly modifications are the elimination of quick
instructions and the class replace lock; each incurs an approximately 5% penalty. The penalty
caused by the object update check is very small. Current efforts focus on reducing these penalties
by implementing a more efficient locking mechanism, and possibly re-enabling quick instructions
for non-dynamic classes.

These data inform the wide range
VM version time JVM/DVM penalty

JVM 54.6 – –

DVM 55.8 97.8% 2.2%

No quick instructions 58.8 92.9% 4.9%

Update object check 58.9 92.7% 0.2%

Class replace lock check 62.4 87.5% 5.2%

Figure 17: Performance cost distribution.

in performance cost reported in Fig-
ure 16. Applications that have a higher
proportion of object reference and
method invocation bytecode instruc-
tions, as compared to other instruc-
tion types, suffer more from both
the loss of quick instructions and
the class replace lock check.

4.2.2 Cost of modifying classes

The acquisition of meaningful data about the cost of replacing a class and updating instances
is more complex. Many variables are involved, including the behavior of the application (ob-
ject allocation and usage, etc.) and the state of the runtime system (number of classes loaded,
thread state, etc.). Thus, different applications will generate widely varying data. We have ex-
perimentally modelled this cost by running the Spec benchmarks, as above, alongside a thread
that periodically replaced a randomly selected user class. We did not modify any Spec classes;
any such class is replaced with itself, causing no instance update. We included a “dummy” class
that, when changed, has a different implementation. Our extra thread allocates and periodically
accesses many instances of this class. The number of objects used in this set of experiments was
10000, and the interval between class changes was 5 seconds – we consider this to be a fairly heavy
replace/update load. We show the results in Figure 16. The overall performance penalty ranged
from ten to sixteen percent, with average at eight percent.

26

4.3 Related Work

We survey related work in dynamic evolution in the context of programming models. We loosely
classify techniques according to the semantics of changing code, and the programming interface.
Other work in dynamic classes is the most pertinent, so we begin there. We then examine other
approaches.

4.3.1 Dynamic Classes

Under dynamic classes, the definition of a type may be changed at runtime. However, the defining
type of an individual object may not, as is the case with dynamic typing. Any change is applied di-
rectly to the type definition rather than its instances. Therefore, objects in memory must somehow
be partitioned between different versions of the class, as described in Section 3.2.1.

C++-style templates, at first glance, seem to provide some dynamic capability – a template
class or function can change based on what template parameter is provided. However, this is
static. Effectively, templates generate new classes during compilation, but cannot generate or
modify classes at runtime. The Java interface construct suffers from similar limitations, as dis-
cussed under dynamic linking. The Java interface construct is not sufficient either; one may load
and use a new implementation class for an existing interface, but any existing instances of the
original implementation are not affected.

Hjalmtysson and Gray [21] implement dynamic classes in C++. The system uses a wrapper,
or proxy class, method that essentially implements Java/Objective C style interfaces in C++, and
further extends the mechanism to allow linking of a new implementation class at runtime, and the
presence of multiple active versions. This does not require runtime system support or language
extensions, and could be applied to Java as well – the authors chose not to do so for performance
reasons. This is similar to the approach presented in Section 4.1, and is subject to the same disad-
vantages.

Shadows [14] is a system for projecting objects between type spaces, and has been imple-
mented in C++. Shadows also uses a form of proxy class, called a shadow map. This map is used to
map nodes from the original data structure or type into an extended structure, or shadow. Shadows
uses runtime type checking to maintain type safety. As with dynamic C++ classes, Shadows does
not require compiler or runtime support, but can only be used with specifically coded programs
and incurs overhead that might be prohibitive in a Java environment.

Delegation [33] provides a mechanism by which Kniesel [29] implements dynamic classes.
Delegation permits object- rather than class-based inheritance. A class can contains delegates, which
are objects invoked to perform certain functions. By changing the delegates bound to a function,
one can easily change that function’s implementation.

27

4.3.2 Dynamic Linking

Within most imperative languages such as C++ or Java, name binding and resolution occurs dur-
ing several stages of program development and execution: compilation, static and dynamic link-
ing, and execution. With static linking, names are bound while building the program, and the
binding cannot be changed without relinking. Dynamic linking [22, 27, 12] allows names to be
bound when the program begins execution. Once done, this binding cannot be changed without
restarting the program. The common point among all traditional stages of binding is that any
type or method name can only be bound once across all phases. Further, dynamic linking contains
no notion of state or correctness. Even if it were possible to re-link a dynamic library, there is no
semantic framework dictating how and when it may be done.

Java’s native dynamic capabilities are based on dynamic linking using the class loader [31].
The classes used by a program are not loaded and resolved until they are needed. Therefore,
different versions of a class may be used in different runs of the program. However, although
classes may be loaded dynamically after startup, a class cannot be reloaded after objects have
been instantiated.

4.3.3 Loadtime Transformation

Several projects exist that support modification or generation of classes at loadtime (before or dur-
ing class loading). This technique can be used to optimize or reconfigure applications by generat-
ing and loading specialized classes. However, the method is subject to the limitations of dynamic
linking. New classes can be generated and loaded, but classes and objects previously present in
the JVM are not affected. Classes can change in the static or loaded state, but not while active.
Linguistic reflection [28], Binary Component Adaptation [26] and JOIE [8] implement loadtime
transformation.

4.3.4 Dynamic Architectural Frameworks

Architectural frameworks such as Corba [1], COM [5] and C2 [45] provide a mechanism by which
a program can be described in terms of high-level components such as modules and connectors.
In general these frameworks are static – once defined, a program is static and its design cannot be
changed at runtime. Dynamic frameworks allow the user to change the high-level architectural
specification of a program at runtime.

Archstudio [37] provides graphical and command-line tools used to modify a C2-Java program
specification at runtime. An attempt to change the specification invokes an Architecture Evolu-
tion Manager, which checks the request for validity, and modifies the program’s implementation
accordingly.

The Argus language [34], which provides a client/server model for distributed computing,
supports dynamic update of servers, or guardians [4]. Similarly, Conic [35] provides a module-
based environment using message passing. Modules communicate via ports, and may be dynam-

28

ically updated by switching all links from the present version of a module to a new one. However,
the ports between modules are static, thus connections cannot be created or broken dynamically.

The disadvantage of dynamic architectures is that they require that target programs be written
using a specific framework or language. Also, changes are generally restricted to a fairly high
level. If changes are specified in terms of large components, then making incremental changes to
those components becomes awkward.

4.3.5 Dynamic Typing

CLOS [43] and Smalltalk [15] support dynamic typing, in which the type descriptor of an object
may be changed freely at runtime. Method code may be modified, data fields and methods may
be added or removed, etc. For example, the Information Bus [36] distributed systems architecture
uses a CLOS-derived language to implement dynamic classes. Fabry [11] implements a dynamic
type system using capabilities. Widening [42] provides a mechanism for constrained dynamic type
changes, in which objects may be temporarily “widened” to a subtype of their defining class. [9]
implement a mechanism similar to widening, for imperative languages, and present a formal type
system with proof of soundness.

Dynamic typing, in its unconstrained form, supports the greatest flexibility. However, static
type checking of any kind becomes infeasible, so the runtime system must support complete run-
time type checking, with all associated overhead.

4.3.6 Higher Order Functions

Functional languages such as Lisp [43] implement higher order functions. A function in Lisp is sim-
ply a list, and may be manipulated just as any other data structure. Thus, function transformation
is a major part of programming in Lisp. Its semantics are rigorously and clearly defined using
lambda calculus. First order functions are generally restricted to functional languages, and it is
difficult to implement them in a runtime system that does not support direct interpretation, e.g.
C++ or Java. Further, the model is limited to changing code, not data types. Function pointers,
supported in C++, provide a rough form of first order functions, but lack the flexibility of Lisp.
Some operating systems allow programs to write their own code segment, another approximation
of first order functions. For the obvious security-related reasons this approach is not commonly
used.

4.3.7 Parallel Versions

One approach to replacing one version of a program (P) with a new version (P) is to beginning
running both versions in parallel, transferring P’s state to P at an appropriate time. Both software
and hardware-based solutions exist. Gupta and Jalote [19] use processes as update vectors, and
SCP [41] uses redundant CPUs.

29

While efficient, redundant hardware is obviously expensive, and only practical in certain sit-
uations such as the telecommunications environment towards which SCP is targeted. Parallel
processes are an efficient technique. However, transfer of state, which may include open files,
displays, and elements not affected directly by the change, can be awkward.

5 Conclusion

We have described the design and implementation of dynamic classes in Java, using runtime sup-
port. Our solution is novel in the combination of type safety preservation, nearly unrestricted
changes, support for any Java class, and efficiency. These features balance efficiency, convenience,
safety, and power of expression.

We have developed a dynamic security infrastructure using dynamic classes [20], as well a
mechanism that enhances the dynamism of JDK 1.2’s native security model, as described in Sec-
tion 2.4. We are also working on a dynamic architectural framework based on Java Beans [23],
and a code distribution mechanism similar to that outlined in Section 2.4. These applications,
in conjunction with our performance analysis, show that dynamic Java classes are a useful lan-
guage extension that supports an exciting class of software. Further optimization of the DVM is
an ongoing process.

Currently, our primary focus for future work is the extension of the dynamic classes model to
distributed systems. The introduction of distributed applications running across multiple hosts,
with objects migrating between them, has many implications. For example, due to latency and
packet dropping over the network, our current synchronization model does not scale well to mul-
tiple hosts. It is difficult to avoid race conditions while maintaining efficiency. One solution is to
simply accept race conditions and work around them. This approach implicitly creates a multiple-
version model of classes, which merits further contemplation.

6 Software

The DVM is available for Solaris and Linux. For details, see ��������	���������	����
	��.

7 Acknowledgements

We would like to express our appreciation toward Brant Hashii, David Peterson, and Michael
Haungs for their support and assistance. We also thank the anonymous reviewers for their excel-
lent comments and suggestions.

30

References

[1] The Common Object Request Broker: Architecture and Specification, Revision 2.0. Object
Management Group, July 1996. http://www.omg.org/corba/corbiiop.htm.

[2] J. P. Anderson. Computer security technology planning study. Technical Report ESD-TR-73-
51, Vol. II, Electronic Systems Division, Air Force Systems Command, Hanscom AFB, Bed-
ford, MA 01731, October 1972. [NTIS AD-758 206].

[3] K. Arnold and J. Gosling. The Java Programming Language. Addison Wesley, 1996.

[4] T. Bloom. Dynamic Module Replacement in a Distributed Programming System. PhD thesis, MIT,
1983.

[5] K. Brockschmidt. Inside OLE 2. Microsoft Press, 1994.

[6] Eduardo Casais. Managing class evolution in object-oriented systems. In Object-Oriented
Software Composition. Prentice Hall, 1991.

[7] D. Chess, C. Harrison, and A. Kershenbaum. Mobile agents: Are they a good idea? In
Jan Vitek and Christian Tschudin, editors, Mobile Object Systems. Towards the Programmable
Internet. Second International Workshop, MOS ’96, number 1222 in Lecture Notes in Com-
puter Science, pages 25–47, Linz, Austria, July 1997. Springer-Verlag. Also available at
http://www.research.ibm.com/massdist/mobag.ps.

[8] Geoff A. Cohen, Jeffrey S. Chase, and David L. Kaminsky. Automatic program transformation
with JOIE. In Proceedings of the USENIX Annual Technical Symposium, 1998.

[9] Sophia Drossopoulou, Mariangiola Dezani-Ciancaglini, Ferruccio Damiani, and Paola Gian-
nini. Objects dynamically changing class. August 1999.

[10] Sophia Drossopoulou, Tanya Valkevych, and Susan Eisenbach. Java type soundness revisited.
October 1999.

[11] R. S. Fabry. How to design a system in which modules can be changed on the fly. In 2nd
International Conference on Software Engineering, 1976.

[12] Michael Franz. Dynamic linking of software components. IEEE Computer, 18(9162):74–81,
March 1997.

[13] J.S. Fritzinger and M. Mueller. Java Security. JavaSoft White Paper, 1996.
http://www.javasoft.com/security/whitepaper.ps.

[14] Jonathan J. Gibbons and Michael J. Day. Shadows: A type-safe framework for dynamically
extensible objects. TR TR-94-31, Sun Microsystems, 2550 Garcia Avenue, Mountain View, CA
94043, 1994. Available from www.sunlabs.com.

[15] Adele Goldberg and David Robson. Smalltalk 80: the Language and its Implementation. Addison
Wesley, Menlo Park, CA, 1983.

[16] L. Gong. Java security: Present and near furture. IEEE Micro, 17(3):14–19, May-June 1997.

31

[17] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going beyond the sandbox: An
overview of the new security architecture in the Java Development Kit 1.2. In Proceedings of
the USENIX Symposium on Internet Technologies and Systems, Monterey, California, December
1997.

[18] William Griswold and Paul Phillips. Bill and Paul’s Excellent UCSD Bench-
marks for Java (version 1.1). UCSD Software Evolution Group. http://www-
cse.ucsd.edu/users/wgg/JavaProf/javaprof.html.

[19] Deepak Gupta and Pankaj Jalote. On-line software version change using state transfer be-
tween processes. Software – Practice and Experience, 23(9), September 1993.

[20] B. Hashii, S. Malabarba, R. Pandey, and M. Bishop. Supporting reconfigurable security poli-
cies for mobile Java programs. In Proceedings of WWW9, May 2000.

[21] Gisli Hjalmtysson and Robert Gray. Dynamic C++ classes: A lightweight mechanism to
update code in a running program. In Proceedings of the USENIX Annual Technical Conference,
New Orleans, Louisiana, June 1998. USENIX.

[22] W. W. Ho and R. A. Olsson. An approach to genuine dynamic linking. SOFTWARE–Practice
and Experience, 21(4):375–390, April 1991.

[23] JavaSoft. Component-based software with JavaBeans and ActiveX. White paper.

[24] JavaSoft. The Java Native Code API.

[25] JavaSoft. JDK 1.2 Documentation.

[26] R. Keller and R. Hölzle. Binary component adaptation. In ECOOP’98 Proceed-
ings, Lecture Notes in Computer Science. Springer Verlag, 1998. Also available at
http://www.cs.ucsb.edu/oocsb/papers/TRCS97-20.html.

[27] James Kempf and Peter B. Kessler. Cross-address space dynamic linking. TR TR-92-2,
Sun Microsystems, 2550 Garcia Avenue, Mountain View, CA 94043, 1992. Available from
www.sunlabs.com.

[28] Graham Kirby, Ron Morrison, and David Stemple. Linguistic reflection in Java. Software-
Practice and Experience, 28(10), 1998.

[29] Gunter Kniesel. Type-safe delegation for run-time component adaptation. In European Con-
ference on Object-Oriented Programming. Springer, 1999.

[30] Robert Laddaga and James Veitch. Dynamic object technology. Communications of the ACM,
40(5):36–38, March 1997.

[31] S. Liang and G. Brach. Dynamic class loading in the java virtual machine. In C. Chambers,
editor, Object-Oriented Programming Systems, Languages and Applications Conference, in Special
Issue of SIGPLAN Notices, number 10, Vancouver, October 1998. ACM.

[32] S. Liang and G. Bracha. Dynamic class loading in the Java Virtual Machine. Draft. JavaSoft,
Sun Microsystems, April 1998.

32

[33] Henry Lieberman. Using prototypical objects to implement shared behavior in object ori-
ented systems. In OOPSLA, 1986.

[34] B. Liskov. Distributed programming in Argus. Communications of the ACM, March 1988.

[35] J. Magee, J. Kramer, and M. Sloman. Constructing distrubuted systems in Conic. IEEE Trans-
actions on Software Engineering, June 1989.

[36] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The Information Bus – an architec-
ture for extensible distributed systems. ACM Operating Systems Review, 27(5):58–68, Decem-
ber 1993.

[37] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based runtime soft-
ware evolution. In Proceedings of the International Conference on Software Engineering, 1998.

[38] R. Pandey and B. Hashii. Providing fine-grained access control for Java programs. In 13th
Conference on Object-Oriented Programming. ECOOP’99, Lecture Notes in Computer Science.
Springer-Verlag, June 1999.

[39] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Pro-
ceedings of the IEEE, 63(9):1278–1308, September 1975.

[40] Vijay Saraswat. Java is not type-safe. Technical report, AT&T Research, 1997.
http://www.research.att.com/ vj/bug.html.

[41] Mark Segal and Ophir Frieder. On-the-fly program modification: Systems for dynamic up-
dating. IEEE Software, March 1993.

[42] Manuel Serrano. Wide classes. In European Conference on Object-Oriented Programming.
Springer, 1999.

[43] Stephen Slade. Object-Oriented Common Lisp. Prentice Hall, Upper Saddle River, NJ 07458,
1998. Chapter 13.

[44] Standard Performance Evaluation Corporation. SPECjvm98 Documentation, 1.01 edition, Au-
gust 1998. http://www.spec.org/osg/jvm98/.

[45] R. Taylor, N. Medvidovic, K. Anderson, E. Whitehead, J. Robbins, K. Nies, P. Oreizy, and
D. Dubrow. A component- and message-based architectural style for GUI software. IEE
Transactions on Software Engineering, June 1996.

[46] T. Thorn. Programming languages for mobile code. ACM Computing Surveys, 29(3):213–239,
September 1997.

[47] Paul R. Wilson. Uniprocessor garbage collection techniques. In Proceedings of the Memory
Management International Workshop. Springer-Verlag, 1992.

33

