
Runt ime Verification of Analog and Mixed Signal
Designs

Zhiwei Wang

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Electrical & Computer Engineering)

at

Concordia University

Montreal, Quebec, Canada

June 2009

© Zhiwei Wang, 2009

1*1
Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre rGterence
ISBN: 978-0-494-63186-7
Our file Notre reference
ISBN: 978-0-494-63186-7

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extra its substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Zhiwei Wang

Entitled: Runtime Verification of Analog and Mixed Signal Designs

and submitted in partial fulfilment of the requirements for the degree of

Master of Applied Science (Electrical &; Computer Engi-

neering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. Amir G. Aghdam

Dr. Hon Fung Li

Dr. Rabin Raut

Dr. Sofiene Tahar

Approved by

Chair of the ECE Department

2009

Dean of Engineering

ABSTRACT

Runtime Verification of Analog and Mixed Signal Designs

Zhiwei Wang

Analog and mixed signal (AMS) circuits play an important role in system on

chip designs. They pose, however, many challenges in the verification of the overall

system due to their complex behaviors and expensive consumption of simulation

resources. Besides functionality, AMS systems also suffer from stochastic processes

such as random noise which exhibits statistical properties. Among many developed

verification techniques, runtime verification has been shown to be effective by ex-

perimenting finite executions instead of going through the whole state space. In this

thesis, we propose a methodology for the verification of AMS designs using func-

tional and statistical runtime verification. Functional runtime verification is used to

check the functional behavior of the AMS design. A system of recurrence equation

(SRE) is used to model the AMS design and construct a functional property monitor.

This functional runtime verification is carried out in an online fashion. Statistical

runtime verification is used to verify the statistical properties of the AMS design.

Hypothesis test, which is a method to make statistical decisions about rejecting or

accepting some statement about the information of a sample, is used to verify the

statistical properties. We use Monte Carlo simulation for the hypothesis test and for

evaluating its performance. The proposed methodology is applied to a phase lock

loop based frequency synthesizer where several functional properties and stochastic

noise properties are verified.

i i i

ACKNOWLEDGEMENTS

It has been an amazing experience to accomplish my Master's thesis in the

Hardware Verification Group (HVG) at Concordia. It certainly would not have

happened without the support and guidance of several people to whom I owe a

great deal.

First of all, I would like to thank my supervisor, Dr. Sofiene Tahar. It is he

who offered me the opportunity to join the group. He was fully supportive, under-

standing, involved and present during all the phases of my research. I have learned

many things from him in regard to research, academia, and life in general.

Secondly, I would like to thank Dr. Mohamed Zaki. He introduced me to the

topic of this thesis and guided me in the right direction. His wisdom, elegance of

thought and extreme kindness were always very inspiring to me.

Next, let me thank all the members of HVG for their help and encouragement.

Their friendship brought me a warm environment in the lab. I especially appreciate

the collaboration with Naeem Abbasi, Rajeev Narayanan and William Denman. My

work, from the first conference paper to my Master's thesis, has benefited a lot from

their valuable advice and technical support.

Last but not least, this thesis could not have been done without the uncondi-

tional love from my parents who always give me their full support. In addition, I

would like to give many thanks to Amy for her full understanding and spirit support

during my research.

IV

To my parents, grandfather, Lindai, and the memory of my grand-

mother

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF ACRONYMS x

1 Introduction 1

1.1 Motivation 1

1.2 Runtime Verification 5

1.3 Related Work 8

1.3.1 Functional Runtime Verification 8

1.3.2 Statistical Runtime Verification 10

1.4 Proposed Methodology 11

1.5 Phase Locked Loop 12

1.6 Thesis Contributions 14

1.7 Thesis Outline 14

2 Preliminaries 16

2.1 The System of Recurrence Equations (SRE) 16

2.2 Property Specification Language: PSL 17

2.3 C-SRE Simulator 19

2.4 Basic Concepts in Probability and Random Process 21

2.4.1 Random Variables 21

2.4.2 Distribution Functions 22

2.4.3 Statistics 23

2.5 Monte Carlo Simulation 24

3 Runtime Verification Methodology 25

3.1 Overall Methodology 25

vi

3.2 SRE Modeling of AMS Design 26

3.3 Runtime Verification with Online Monitoring 27

3.3.1 Writing PSL using SREs 28

3.3.2 Online Monitoring 30

3.4 Statistical Runtime Verification 34

3.4.1 Hypothesis Testing 35

3.4.2 Monte Carlo Methods for Hypothesis Test 42

3.4.3 Hypothesis Test Performance Assessment 43

3.4.4 Hypothesis Test Summary 46

3.4.5 Statistical Runtime Verification 47

3.5 Summary 49

4 Case Study: PLL Based Frequency Synthesizer 50

4.1 SRE Modeling 50

4.2 Online Monitoring of Functional Properties 56

4.3 Offline Monitoring of Statistical Properties 61

4.3.1 Jitter Noise in Frequency Synthesizer 62

4.3.2 Jitter Metrics 63

4.3.3 Jitter in VCO 65

4.3.4 Statistical Runtime Verification 67

4.4 Discussion 73

5 Conclusion and Future Work 74

5.1 Conclusion 74

5.2 Future Work 76

Bibliography 77

vn

LIST OF FIGURES

1.1 Design Productivity Gap [49] 2

1.2 The Rate of First Silicon Success [49] 3

1.3 Runtime Verification Methodology 12

1.4 General PLL Architecture 13

2.1 C-SRE Simulator Framework 19

2.2 Timing Diagram 21

3.1 Overall Methodology 26

3.2 Online Runtime Verification 31

3.3 Online Runtime Verification 34

3.4 Rejection Region for a Lower Tail Test 40

3.5 Monte Carlo Based Statistical Runtime Verification 48

4.1 PLL Frequency Synthesizer Architecture 51

4.2 Phase and Frequency Detector 52

4.3 First Order Lowpass Filter 53

4.4 Voltage Controlled Oscillator 54

4.5 Lowpass Filter Output Voltage with Different £ 57

4.6 Locktime Property 59

4.7 Verification Results of Property 2 60

4.8 PLL Frequency Synthesizer with Jitter Sources 62

4.9 Jitter Metrics 63

4.10 VCO Model with Jitter Noise 65

4.11 Filter Output with Jitter Noise in VCO 67

4.12 Effects of Confidence Level Selection 71

viii

LIST OF TABLES

3.1 Basic Comparison of Online Method and Offline Method 34

3.2 Summary of Hypothesis Test Concepts 46

4.1 Frequency Synthesizer Parameters 58

4.2 Simulation Results 61

4.3 Statistical Runtime Verification with Different J 69

4.4 Statistical Runtime Verification with Different J and a 70

4.5 Performance of Monte Carlo Monitoring with Different Trials M . . . 72

IX

LIST OF ACRONYMS

A/D

AF

AMS

AMT

ASIC

CDF

COMP

CP

CPU

CSL

CT

CTL

D/A

DAE

DC

DE

DIV

DJ

DSP

DT

EDA

FL

FPGA

GPS

FSM

HDL

Analog to Digital Converter

Analog Filter

Analog and Mixed Signal

Analog Monitoring Tool

Application Specific Integrated Circuits

Cumulative Distribution Function

Comparator

Charge Pump

central Processing Unit

Continuous Stochastic Logic

Continuous Time

Computational Tree Logic

Digital to Analog Converter

Differential Algebraic Equations

Direct Current

Discrete Event

Divider

Deterministic Jitter

Digital Signal Processor

Discrete Time

Electronic Design Automation

Foundation Language

Field-Programmable Gate Array

Global Positioning System

Finite State Machine

Hardware Description Language

X

HOL

IP

LHA

LTL

MaC

MEDL

MITL

MSA

OBE

PDF

PFD

PLL

PMF

PSL

PVS

RF

RJ

SERE

SoC

SRE

STL

VCO

VHDL

Higher Order Logic

Intellectual Property

Linear Hybrid Automata

Linear Temporal Logic

Monitoring and Checking

Meta Event Definition Logic

Metric Interval Temporal Logic

Mixed Signal Assertions

Optional Branching Extension

Probability Density Function

Phase and Frequency Detector

Phase Locked Loop

Probability Mass Function

Property Specification Language

Prototype Verification System

Radio Frequency

Random Jitter

Sequential Extension Regular Expressions

System on Chip

System of Recurrence Equation

Signal Temporal Logic

Voltage Controlled Oscillator

Very (High Speed Integrated Circuits) Hardware

tion Language

Descrip-

xi

Chapter 1

Introduction

1.1 Motivation

With the constant growth in integrated circuit technology, the number of transistors

per chip has been doubling almost every two years according to Moore's Law [10]

and that figure passed two billion by the end of 2008 [43]. As a consequence of high

level integration, more complex functionalities can be realized in compact systems

such as smart cell phones and portable game consoles. In modern design method-

ologies, instead of putting every transistor separately on the multi-million-transistor

chip, functional components are integrated as building blocks in one chip. Because

of this, System on Chip (SoC) architecture has prevailed for the last decade. It

may contain digital, analog, mixed signal and radio frequency functional units in

one chip. Although SoC designs have been driving the semiconductor industry, as

shown in Figure 1.1, the growth of design productivity has been lagging behind the

improvement in the number of transistors per chip by as much as 37% [49]. The

rate of the first silicon success is one of the main reasons for this gap. Figure 1.2

shows that this rate dropped to 35% in 2003. As the performance of SoC continues

to improve, AMS components are considered a bottleneck in improving the overall

performance of the system and the factor for enhancement of the first silicon success

1

rate. 70% of re-spun designs contain functional bugs [9]. To overcome these obsta-

cles, 70% of the total design effort in the semiconductor industry is now spent on

verification. The failure of analog and mixed signal (AMS) components has been one

of the major causes for the high design re-spun rate [9]. The design and verification

of AMS systems became very important in recent years.

10,000,000

1,000,000

* s ^

Q.

JE

o
a>
a
in

o

to
"35
c co
^ H
u
"5>
o _ i

100,000

10,000

1,000

100

10

1

Logic Tr/Chip

58%/Yr. compound

Complexity growth

Tr./Staff-Mo.

12T%7Yr: compouhcf"

Productivity growth

93 05 81 85 89 93 97 01

Figure 1.1: Design Productivity Gap [49]

100,000,000

10,000,000

d
1,000,000 S

*^ *^

100,000 55

10,000 J5

1,000

100

10

>»

u

3

o

We live in an analog world. The SoC system of the design operates in the real

analog environment as well. The data is processed by the digital components inside

the system. The class of components which connect the analog world to digital

domain processors is called Analog and Mixed Signal (AMS). Examples of AMS

designs include analog filters, frequency synthesizer, digital to analog converters

(D/A), and analog to digital converters (A/D). They can be Intellectual Property

(IP) cores or the interface between them.

Simulation is traditionally used to check whether a design exhibits the proper

behavior as elicited by a series of tests. However, pure simulation approach is feasible

only when the expected results can be done manually and the state space is not

complete [50]. For more complex systems, especially AMS designs, pure simulation

2

North American Re-spin Statistics

Hi

o
o
Z3

C/)
c
o
o

<n
*—>

i - 100%

48%
44%

•-€£5- 35%

1 1 1

1999 2001 2003

Figure 1.2: The Rate of First Silicon Success [49]

finds itself not competent for functional verification due to the coverage issue and

long simulation time. With the evolution of hardware description languages (HDL)

extensions tailored for AMS designs, such as VHDL-AMS [46], Verilog-AMS [45] and

SystemC-AMS [44], the complex behaviors of an AMS system can be described at

different abstraction levels. Recently, many Electronic Design Automation (EDA)

companies have dedicated to the development of efficient AMS simulators. All these

efforts have allowed the AMS modeling and specification to reach a new level together

with the accuracy and efficiency. However, the development of verification of AMS

systems has been lagging behind the design due to the limitations in platforms and

different levels of the abstraction. A complete verification methodology integrating

modeling and verification is desired.

In order to solve the coverage issue, formal verification has been advanced in

recent years. Formal verification is a mathematical reasoning procedure to prove

that an implementation satisfies its specification. The implementation can be a

description of the design at any abstraction level, such as behavior level or Reg-

ister Transfer Level (RTL). The specification refers to a correct description, or a

desired property, of the system to be checked. There are three main techniques of

formal verification method [25]: theorem proving, equivalence checking, and model

checking.

In theorem proving, the relationship between specification and implementation

is defined as a theorem to be proven through a deductive procedure with a set of

axioms and inference rules. Theorem proving, a proof based method, is able to

perform various verification tasks at different abstraction levels. Although it is

a powerful verification technique, the entire proof procedure requires considerable

amount of manual effort. The two most common higher order logic provers are

HOL [18] and PVS [39].

In industry, equivalence checking is widely used to compare two models of

a system to check whether they are functionally equivalent. In digital domain,

equivalence checking exhibits its efficiency for systems of moderate size. In an AMS

system, the continuous signal representation makes the alternative real value model

difficult to find. Hence, equivalence checking is not suitable for AMS designs.

Model checking, known as a state exploration method, is used to find out

whether the model of the design satisfies a given temporal specification. The model

refers to a space which contains all the possible states of the system. A state

exploration algorithm is then applied to determine whether the model satisfies the

property. If the property does not hold, a counterexample is reported at the state

where the violation occurs. Model checking is an automatic technique. However,

when scaling up to large circuits, it suffers inevitable problems such as state explosion

which limits the computational resources in terms of memory and time. In the case

of AMS designs, the situation is even worse because the analog signal in continuous

domain can only be expressed using infinite states. Bounded model checking [8]

technique has been adapted to cope with the state explosion issue. However, the

price paid is the incomplete coverage issue due to the bounded approximation.

Runtime verification combining simulation and formal specification, which is

4

considered a semi-formal verification approach, has been adopted to complement

formal methods. By evaluating finite execution traces instead of exploring them

all, runtime verification avoids the state space explosion. The formal specification

ensures the coverage of the verification. A survey on the formal verification of AMS

designs using the above mentioned techniques can be found in [50].

The general motivation of this thesis is to present a complete methodology for

the runtime verification of ASM designs. This methodology contains a new modeling

technique, a functional runtime verification and a statistical runtime verification

method. The modeling technique unifies the expression of analog and digital signal

representation in order to simulate them in the same environment. The runtime

online verification method constructs the monitor based on the formal specification

of the system property using the same modeling technique . The statistical runtime

verification method is capable of analyzing stochastic processes occurring in AMS

designs. In following we will introduce the notions of runtime verification and its

application in AMS designs followed by discussions of related works.

1.2 Runtime Verification

In recent years, runtime verification has been developed to bridge the gap between

formal verification and traditional simulation methods. Initially serving in soft-

ware verification, runtime verification can also be applied to hardware verification

especially when formal methods and conventional simulation encounter practical

obstacles. The most distinguishing feature of runtime verification is that the veri-

fication procedure is accomplished at runtime based on the simulation traces. The

feature that no computational model is needed prior to the verification avoids the

state space explosion problem [50]. Runtime verification deals with the detection

of violation, as well as satisfaction, of the property. A monitor is used to detect

the violation. The monitoring technique can be performed in two ways, namely,

5

online and offline monitoring. Online monitoring, which is used to check a current

execution of a system when the simulation is running, is able to detect a property

violation as soon as it occurs. On the other hand, offline monitoring operates on a

set of recorded executions after the simulation is done.

Runtime verification can be grouped into functional runtime verification and

statistical runtime verification in terms of different kinds of properties to be verified.

In the following, we will introduce the functional and statistical runtime verification,

respectively.

Functional Runtime Verification

Functional runtime verification is used to determine if the design satisfies a speci-

fied functional property [34]. The functional property refers to a specification that

indicates the correct operation or how the system will function. For AMS designs,

examples of functional properties include whether an oscillator oscillates or if a phase

lock loop locks at the desired frequency.

Compared with model checking, functional runtime verification deals with fi-

nite executions instead of walking through large state space. This allows runtime

verification to be applied to the AMS system whose entire system model is available

at higher level of abstraction. In addition, the verification points are easy to be

set up according to the finite traces. In model checking, the state exploration al-

gorithm usually requires a complete generation of the state space before executing.

This prevents online monitoring applicable for model checking. Runtime verification

does not have this problem except that the requirement is needed. The advantage

of functional runtime verification over conventional simulation approach is that run-

time verification uses a formal specification for the property, which can be a trace

or several individual observation points, instead of evaluating the inputs and output

pairs in simulation. In addition, online monitoring technique allows the verification

to terminate as soon as the violation is detected. This is important especially for

6

such AMS designs requiring long time in simulation. The formal specification also

introduces more confidence in runtime verification than with simulation.

In functional runtime verification, the monitor is generated from a high level

system specification, for which a high level modeling is needed. In this thesis, a high

level modeling approach is introduced, and is then used to generate the monitor.

Because of the consistency between the modeling and monitoring techniques, the

online runtime verification of AMS design becomes feasible.

Statistical Runtime Verification

In this thesis, we propose a statistical runtime verification approach to investigate

statistical properties of AMS systems. A statistical property refers to the prop-

erty which deals with the stochastic behavior of the system and is analyzed using

statistical methods. Examples of the statistical properties are mean, variance, and

standard deviation. In AMS designs, the system suffers from different kinds of ran-

dom noise such as thermal noise and jitter noise. We propose an approach for the

verification of statistical properties using Monte Carlo simulation [33] and statistical

hypothesis testing [28]. In statistical hypothesis testing, two hypotheses are made

based on the property to be verified. The two hypotheses are exclusive to each

other. The rejection of one leads to the acceptance of the other. In order to per-

form a hypothesis test, the distribution of the parameter of interest, or statistic, is

expected to be known. Sometimes the distribution of the sample data is not known

in advance. In such case, Monte Carlo simulation is applied to estimate the statistic

model to perform the hypothesis test. Each decision made by hypothesis test has

an associated confidence level. A 100% in confidence level is usually not realistic in

random process. It is unlikely that the statistics estimated from a random sample is

exactly equal the true value of the population parameter. The confidence interval is

used to enclose the estimated value. The confidence level indicates the probability

that the estimated value presents itself in such interval. The difference between the

7

bounds of the interval and the estimated value is called error margin. The assumed

statistic model could result in some errors. The Monte Carlo method is then used to

assess the performance of the hypothesis test conducted. For many properties of a

stochastic process, it is usually acceptable to receive either a violation or satisfaction

of the property with a bounded confidence level and error margin.

In next section, we will introduce the works related to functional runtime

verification and statistical runtime verification, respectively.

1.3 Related Work

1.3.1 Functional Runtime Verification

Runtime verification originated in software verification initially. Recently, several

notable efforts have been made to verify AMS designs using runtime verification. In

one of the most prominent works [30], the authors present an offline methodology

for monitoring the simulation of continuous signals. The monitoring technique was

based on Signal Temporal Logic (STL) [30] which is an analog extension of Metric

Interval Temporal Logic (MITL) [4]. The simulation and monitoring was conducted

using Matlab/Simulink [32]. In [37], the authors synthesized the Property Specifica-

tion Language (PSL) analog extension (STL/PSL) into an Analog Monitoring Tool

(AMT). The tool is capable of both offline and incremental monitoring. In a recent

case study [22], the authors investigated the verification of a DDR2 SDRAM memory

using AMT in an offline mode. The approach mentioned synthesizes the property in

terms of lower abstraction levels such as a finite state machine (FSM). The work we

propose in this thesis applies to online monitoring, and presents a unified framework

for both modeling and verification at a higher level of abstraction.

In [17], the authors propose an online monitoring technique. They used the

linear hybrid automata (LHA) as a monitor to analyze the reachability of time

domain features. A hybrid system analysis tool named HPAVer [16] was used to

8

verify the signal amplitude and jitter properties of an oscillator circuit. In order

to avoid infinite memory required, necessary approximations were employed and

the assumption of the existence of templates to build the monitor was also done.

The computational expense of this technique is high because the work is based

on formal verification and state space analysis rather than linear temporal logic

(LTL) [14]. In general, it does not provide a generic way to obtain the monitors

from the specification. In contrast, the approach we advance is capable of modeling

and monitoring the AMS design and supports PSL as the specification language.

An FPGA implementation of assertion based monitor is presented in [36]. The

authors used PSL to generate an asynchronous monitor which is robust to process,

temperature and voltage variations and suitable for ASIC designs. Nevertheless,

the work in [36] is unable to support both analog and mixed circuits or sequential

extended regular expression (SERE) [2] in PSL.

A more recent work [21] introduces a methodology to define mixed signal

assertions (MSA) for verification by combining PSL and STL. In this work the spec-

ifications for digital and analog parts are translated into PSL and STL, respectively,

as either precondition or postcondition. An MSA is then constructed by combining

the precondition and postcondition with an implication. Assertion based verifica-

tion or formal verification could then be carried out given the formalized properties.

The authors applied the MSA to a first order delta-sigma converter and checked

several properties. The work was validated within the MLDesigner [35] tool with

an enhanced assertion monitoring library. In the research reported in this thesis,

we use one single formalism, namely SRE (System of Recurrence Equation) [3], to

express PSL properties for both analog and digital parts. Additionally, we offer a

complete methodology including a simulator and an online monitor. In [3], an offline

assertion based verification is introduced, where SREs are used to model the AMS

design. Our work is different from [3] in two aspects. First, we use online moni-

toring to achieve verification. Secondly, we present a tool, named C-SRE [1], which

9

simulates AMS designs modeled with SREs, reads PSL properties in SRE notations

and performs the online monitoring.

1.3.2 Statistical Runtime Verification

Statistical verification can be divided into three main categories: statistical theorem

proving, statistical model checking and statistical runtime verification. Although

several interesting advances have been made in statistical theorem proving, this

technique is still in its infancy. The theorem for continuous random variables and

random processes is needed to handle the analysis and verification of AMS and hy-

brid system [19]. The model checking method has been advanced first to complement

general model checking. In [47], the authors present an independent model check-

ing approach for verifying probabilistic properties of discrete event systems. The

probabilistic properties were expressed using continuous stochastic logic (CSL) [5]

formulas. These formulas were then verified through Monte Carlo simulations and

statistical hypothesis testing. The verification procedure provides two parameters,

a and (5, which represent the probability of making a wrong decision in checking

whether a formula is true or false. In a related work [48], the author presents a

probabilistic model checking method to bound the probability of error, mentioned

in [47], for the indifferent region (i.e., the region where both acceptance and rejection

decisions can not be made). A symmetric polling system was studied to demonstrate

the performance of the method. Following the statistical model checking approach

in [47, 48], the authors in [7] applied this technique to a class of AMS circuits for

the first time. The saturation property of a third order delta-sigma converter was

verified both in time and frequency domains. However, the issues of state explosion

and excessive computation time still prevail in statistical model checking.

Statistical runtime verification has also been investigated in the past. One

of the most important works is [42] where the authors introduce a methodology

10

to verify quantitative and probabilistic properties in a real-time system at run-

time. The quantitative specification was realized using Meta Event Definition Logic

(MEDL) [23] which is based on LTL. The probabilistic properties are specified using

time-bounded temporal operators and probabilistic operators. Statistical hypothe-

sis testing technique was employed to evaluate the probabilistic properties and to

make decisions about acceptance and rejection. Whenever the decision is made, a

confidence level and error margin is provided. The monitor was implemented in

a runtime verification tool termed MaC (Monitoring and Checking) [24] and per-

formed in an online fashion. In this thesis, we present a methodology for statistical

runtime verification for AMS designs.

1.4 Proposed Methodology

The general methodology for runtime verification of AMS designs is shown in Fig-

ure 1.3. The AMS design is modeled and then simulated using an AMS simulator.

The properties of the AMS design are derived from the system specification. The

satisfaction of the properties is checked based on the output of the simulator and

the parameters of the design environment at runtime.

In this thesis, we employ the System of Recurrence Equation (SRE) [3] to

model the AMS design. The simulation is done using an SRE based simulator.

The properties are categorized into two classes: functional properties and statistical

properties. A functional property describes the functional behavior of an AMS

design. A statistical property on the other hand is used to describe stochastic or

random behavior of the system. These properties are determined using statistical

methods. During the runtime verification process, two different monitors are used

for each kind of property. For functional property, an online monitor is constructed

using SRE notation. For statistical property, a statistical monitor is designed to

perform statistical runtime verification. The online monitor reports the violation or

11

AMS

Specification

Functional

Properties

AMS Design

Functional

Runtime
Verification

Z ^
Violated Verified

AMS

Specification

AMS
Simulator

Statistical

Properties

Statistical
Runtime

Verification

^ ^

Violated Verified

Figure 1.3: Runtime Verification Methodology

satisfaction and terminates the simulation as soon as it detects a violation. By doing

this, the simulation resources are saved as the simulation for AMS design is usually

very time consuming. The statistical monitor is capable of making the decision of

the property satisfaction decision with the confidence level and error margin.

1.5 Phase Locked Loop

In this thesis, we will apply the proposed methodology on a phase locked loop

(PLL) based frequency synthesizer as case study. A PLL is considered as a classical

AMS system. Its theory was first developed by H. De Bellescize in 1932 [11]. The

applications of a PLL can be found in many areas: in wireless communication, a

PLL can act as a frequency synthesizer in radio frequency (RF) receivers to provide

a desired frequency; for serial link and optical communications, it is used in data

and signal recovery circuits; in microprocessors, it works as a clock multiplier unit.

In general, PLL deals with clock or frequency for the system.

12

Frequency synthesizer is a basic building block in modern communication de-

vices such as cellular phones and GPS systems. It is capable of generating a certain

range of frequency. The PLL based frequency synthesizer shown in Figure 1.4 is the

most widely used architecture. It is composed of a comparator (COMP), a phase

and frequency detector (PFD), a charge pump (CP), an analog filter (AF), a voltage

controlled oscillator (VCO) and a frequency divider (DIV). It consists of pure analog

components (i.e., analog filter and VCO), pure digital components (i.e., PFD and

divider) and mixed signal components (i.e., comparator and charge pump).

ReLsjg f ^

PFD
V J

i i

UF >

DN

>

CP

DIV
. .

AF

COMP

VCO
VCO out

0

'

Figure 1.4: General PLL Architecture

The PLL operates on the principle of negative feedback control. The PFD

detects the frequency and phase difference between the reference signal and VCO

output. This difference produces appropriate voltage through the charge pump.

The analog filter removes any high frequency noise of the voltage signal. The fil-

tered voltage signal drives the VCO. The frequency of the VCO output signal is

proportional to its input voltage. The VCO output is fed back to the PFD block

through a frequency divider. The two comparator blocks convert sinusoid input to

a square wave output of the same frequency and phase. Comparing the frequency

and phase of the reference signal and VCO output feedback signal, PFD produces

a new difference value and affect VCO output accordingly. This process continues

until the phase and frequency of the VCO output coincide with the reference signal.

13

1.6 Thesis Contributions

In this thesis, a comprehensive runtime verification methodology for the Analog and

Mixed Signal design is presented. The contributions of the thesis can be summarized

as follows:

• We used the System of Recurrence Equations (SRE) to model the AMS design

and to express PSL properties.

• We developed a runtime functional verification methodology for AMS designs.

The proposed verification technique works in an online fashion and has the

potential to save computational resources.

• We developed a statistical runtime verification methodology for AMS designs.

The statistical properties are verified in an offline fashion, where the monitor

reports the verification result along with a confidence level and error margin.

• We applied the whole runtime verification methodology to a Phase Locked

Loop based frequency synthesizer as case study. The frequency synthesizer was

simulated in a SRE based simulator. The functional properties were checked

using online monitoring at runtime. The jitter noise properties were analyzed

using the proposed statistical runtime verification.

1.7 Thesis Outline

The rest of the thesis is organized as follows: Preliminaries on SRE, PSL, and basic

concepts on probability and statistics are described in Chapter 2. The SRE based

simulator is also introduced in this chapter. Chapter 3 presents details of the runtime

verification methodology for AMS designs including both functional and statistical

runtime verification approaches. In Chapter 4, we describe the modeling and ver-

ification of the PLL based frequency synthesizer. Several interesting properties of

14

the PLL are checked and experimental results are described . Finally, Chapter 5

concludes the thesis and suggests avenues for future work.

15

Chapter 2

Preliminaries

In this chapter, we introduce the preliminary components that the runtime verifica-

tion methodology is built on. They are SRE, PSL, SRE based simulator, and some

basic concepts in probability and statistics as well as an introduction to Monte Carlo

simulation.

2.1 The System of Recurrence Equations (SRE)

A recurrence equation or a difference equation is the discrete version of an analog

differential equation [3]. A recurrence equation defines a relation between consec-

utive elements of a sequence. The notion of recurrence equation is extended to

describe digital circuits using the normal form: generalized If-formula [3].

Definition 1 Generalized If-formula The generalized If-formula is a class of

symbolic expressions that extend recurrence equations to describe digital systems.

Let i and n be natural numbers. Let K be a numerical domain in (N, Z, Q, R or B),

a generalized If-formula is one of the following:

• A variable Xi{n) or a constant C that take value in K

16

• Any arithmetic operation o G {+, —, x,-j-} between variables Xi(n) that take

values in K

• A logical formula: any expression constructed using a set of variables Xi(n) G

IK and logical operators: not, and, or, xor, nor, . . . etc.

• A comparison formula: any expression constructed using a set of variables

Xi(n) G K and comparison operators a G {=, =£, < , < , > , >}

• An expression IF(X ,Y ,Z), where X is a logical formula or a comparison

formula and Y ,Z are any generalized If-formula. Here,IF(X ,Y ,Z) : B x

IK x IK —> K satisfies the axioms:

1. IF (True,X ,Y)=X

2. IF (False, X ,Y)=Y

The System of Recurrence Equations is defined as follows [3]:

Definition 2 The System of Recurrence Equations (SRE)

Consider a set of variables Xi(n) G IK, i G V = {1,..., k},n G Z, an SRE is a

system of the form:

Xi(n) = fiiXjin - 7)), (j,l) G ̂ , Vn G Z (2.1)

where fi(Xj(n — 7) is a generalized If-formula. The set e$ is a finite non empty

subset of 1 , . . . , k x N. The integer 7 is called the delay.

2.2 Property Specification Language: PSL

The Property Specification Language (PSL) is a language for the formal specification

of hardware [2]. It is used to describe properties that are required to hold in the

design under verification. PSL provides a means to write specifications that are

17

both easy to read and mathematically precise. It is intended to be used to define

a functional specification on one hand and as input to functional verification tools

on the other hand. Thus a PSL specification is an executable documentation of a

hardware design. PSL is also an extension of the standard temporal logics LTL and

CTL [2].

PSL consists of four layers: Boolean, temporal, verification and modeling

layer [13]. The Boolean layer provides the Boolean expression to temporal layer.

The temporal layer is the heart of PSL where complex temporal relations between

signals can be expressed. The verification layer is used to tell the verification tools

what to do with the behavior of the design inputs and to model auxiliary hardware

that is not part of the design, but is needed for verification [2]. The modeling layer

provides a means to model behavior of design inputs and to declare and give be-

havior to auxiliary signals and variables. Only the Boolean and temporal layers are

used in our methodology for AMS runtime verification.

The temporal layer enhances LTL with regular expressions [12] and is used

to describe the relationships between Boolean expressions of the Boolean layer over

time. Instead of using Boolean expressions, the basic properties are employed in our

methodology. The temporal layer is composed of the Foundation Language (FL) [13]

and the Optional Branching Extension (OBE) [13]. The FL is used to describe

properties of single traces, while OBE is used to express properties according to

multiple traces. The Foundation Language is composed of two styles: LTL (Linear

Temporal Logic) and SERE (Sequential Extended Regular Expression) [2]. In this

thesis, we concentrate on the FL properties. Definition 1 shows the syntax of an

SERE expression.

Definition 3 Syntax of Sequential Extended Regular Expressions (SEREs)

[3]

• ifb is a Boolean expression, then b is a SERE

18

• if r is a SERE, then r[*] is a SERE (finite consecutive repetitions)

• if r\ and r2 are SEREs, then the following are SEREs:

- the consecutive concatenation of two sequences, r\; r2

- one-state overlapping concatenation r\ : r2

- disjunction of sequence r\\r2

- overlapping sequences r\k,r2

- length-matching sequence r\&i!kr2

2.3 C-SRE Simulator

The proposed modeling technique and online monitoring are implemented in a tool

named C-SRE. Figure 2.1 shows the C-SRE simulator framework.

INPUTS AND

INITIAL

CONDITIONS

AMS DESIGN

DESCRIPTION

r-

SRE ; v

INPUT TRACE

\ I

C-SRE

SOLVER

/ \

SIMULATION

PARAMETERS

MONITOR -

/

OUTPUT

TRACE

1

1

i / ^

AMS DESIGN

SPECIFICATION

- i

MATLAB

Figure 2.1: C-SRE Simulator Framework

The C-SRE tool solves a system of recurrence equations describing the be-

havior of an analog and mixed signal system. There are four main inputs to the

tool. They are: (1) The AMS design behavior described using continuous-time

(CT), discrete-time (DT) and discrete-events (DE) SRE notations; (2) PSL prop-

erty monitors expressed in C language; (3) Various inputs and initial conditions to

19

the design; and (4) Simulation parameters such as minimum and maximum time

step sizes, and simulation duration etc. The tool output contains the results of exe-

cuting the monitor in an online fashion, along with various supporting signal traces

for easy visualization of the results.

The C-SRE solver is the core of the simulator. It guarantees that the CT, DT

or DE SREs are executed at an appropriate instant of time to simulate the correct

transient behavior of the circuit. The scheduling algorithm is explained below: Let

TCTI TDT and TDE be the continuous time, discrete time, and discrete event time

steps, respectively. If we assume that TCT is always the smallest time step taken

during the simulation, we can achieve both a desired time resolution and accuracy.

TJQT is uniformly spaced in time and is known in advance. The size of TCT and TDE is

determined dynamically during the simulation. In an AMS design, the continuous-

time, discrete-time and discrete-event processes may interact with each other. The

discrete-time part of the design only interacts at intervals of TDT with the other

parts. The simulation time advances by following four rules given below:

• If TCT = TDT and TCT = TDE then update the DE and DT SREs

• If TCT = TDT and TCT < TDE then update the DT SREs

• If TCT < TDT and TCT = TDE then update the DE SREs

• If TCT < TDT and TCT < TDE then update the CT SREs

where tcr = tcr + TCT, tor = <DT + TDT,tDE — ^DE + TDE and Tan-rent =

MIN(tDT, tcT, tDE)- Figure 2.2 illustrates sample time points at which continuous-

time (circle), discrete-time (triangle), and discrete-event (square) SREs have to be

executed so as to simulate the correct behavior of the system. The numbers in

the figure show the sequence of operations. The discrete time steps (triangle) are

equally spaced where as the continuous time (circle) and discrete event (square) time

steps are determined dynamically during the simulation. The simulation starts with

20

-e—e- -£-0 G-Cf- - 6 — d -

10 1,Mf iei^i!^i=:
^ r -A- 19

-O-

Figure 2.2: Timing Diagram

initialization and then proceeds guided by the scheduling algorithm. It terminates

when the current simulation time (Tcurrent) either exceeds or becomes equal to the

maximum simulation time. The algorithm described above guarantees that SREs

execute in proper sequence in order to simulate the correct behavior of the circuit.

For a detailed description of the C-SRE simulator, please refer to [1].

2.4 Basic Concepts in Probability and Random

Process

The basic definitions and concepts in probability and random process are briefly

reviewed in this section. These concepts are essential for the understanding of

statistical hypothesis testing method.

2.4.1 Random Variables

A random variable is a variable such that we do not know what specific value it

will take on. We do know, however, the possible values it can assume and the

probabilities of those values. There are two kinds of random variables: discrete

random variables and continuous random variables. A discrete random variable

can take on values from a finite or countably infinite set of numbers. Discrete

21

random variable arises in many applications involving counting. Most commonly

used discrete random variable is the bernoulli random variable which is used to

model the coin toss experiment. A continuous random variable can take on values

from an interval of real numbers such as voltage, current or noise. Normal or gaussian

random variable is the most commonly encountered contiuous random variable in

both manmade and natural phenomena.

2.4.2 Distribution Functions

Distribution Functions for Discrete Random Variables

Let X be a discrete random variable and suppose that the possible value it can

assume are Xi,X2,x^,.... Suppose that these values have probabilities given by

f(xi) = P(X = Xi) i = 1,2,3,... (2.2)

f(xi) is called the probability mass function (PMF). The cumulative distribution

function, or CDF, for a discrete random variable X is defined as given by

F(x) = P(X < x) (2.3)

where x is any real number, i.e. - c o < x < oo. The CDF for a given value a can

be obtained from the PMF by

F(a) = P(X<a) = J2 f(xi) i = 1,2,3,... (2.4)
Xi<a

Distribution Functions for Continuous Random Variables

The cumulative distribution function (CDF) for a continuous random variable X is

defined by

22

/

x

f(t)dt (2.5)
•oo

It is a positive and monotonically increasing bounded function. The probability that

a random variable X lies between the interval (a, b) is given by

P(a < X < b) = I f(t)dt (2.6)
J a

The probability density function (PDF) for a continuous random variable is given

by

and

f(x) > 0 (2.8)

/

oo

f(x)dx = 1 (2.9)

•oo

F(x) is a positive bounded function.

2.4.3 Statistics

In statistics, we are interested in observing the behavior of a large group of objects

and drawing conclusions based on our observation. The entire group is usually called

a population. It can be finite, such as the final exam score of 500 students, or infinite,

for example a study of the fairness of a particular coin, the population of all possible

sequences of tosses of the coin is infinite. In practice, instead of investigating the

entire group, which is difficult or impossible to do, we examine a small part of the

population, which is usually called a sample.

23

2.5 Monte Carlo Simulation

Monte Carlo method originated in the 1940's [33]. It refers to a method of solving

problems using random variables. It is widely used in the estimation of phenomena

involving stochastic processes. One of the most important components of Monte

Carlo simulation is the random number generator which generates random numbers

without bias. The random numbers generated by computer softwares function are

not truly random. They are generated based on a deterministic algorithm [27] and

are sometimes called pseudo random numbers. The basic idea behind the Monte

Carlo method is to sample the model of the true population of interest. This is

followed by calculating the statistics of interest. The sampling and calculation pro-

cedure is repeated for M trials. The investigation of the distribution characteristics

of the statistics is carried out based on those M experiments. When the Monte

Carlo method is applied in hypothesis testing, we sample from a distribution which

is known or assumed. The Monte Carlo hypothesis testing algorithm used for sta-

tistical runtime verification is described in detail in Chapter 3.

24

Chapter 3

Runt ime Verification Methodology

In this chapter, we present the proposed runtime verification methodology for AMS

designs. It consists of SRE modeling, functional runtime verification methodology

and statistical runtime verification.

3.1 Overall Methodology

The proposed methodology contains three stages: the modeling stage, the functional

runtime verification stage, and the statistical runtime verification stage. As shown

in Figure 3.1, in the modeling stage the AMS design is modeled using SRE nota-

tions and delivered to the C-SRE simulator. In the functional verification stage,

the functional properties derived from the AMS system specifications are verified

using online runtime verification. The statistical properties which summarize the

stochastic behavior of the AMS design is performed in statistical verification stage.

The AMS system with stochastic process is modeled using SRE and simulated in

C-SRE simulator as well. The functional runtime verification is performed using

online monitoring technique and the monitor is implemented in C programming

language incorporated with the C-SRE simulator. The statistical runtime verifica-

tion is carried out in an offline fashion as all the information from the simulation

25

trace is needed. The statistical monitor is implemented in Matlab [32] environment.

SRE Modeling

Functional

Runtime Verification!

Functional

Properties

SRE

Functional

Online

Monitor

AMS Design

SRE

C-SRE

Simulator

Statistical

Runtime Verification

Statistical

Properties

Monte Carlo

Monitor

Figure 3.1: Overall Methodology

In the following sections, we describe the SRE modeling, the online runtime

verification and the statistical verification, respectively.

3.2 SRE Modeling of AMS Design

The modeling stage is the first step of the proposed runtime verification methodol-

ogy. The AMS system is modeled using a system of recurrence equations (SRE). In

this section, we describe how AMS systems can be modeled using SRE.

SRE is used to model the system at a high level abstraction. The SRE mod-

eling procedure of AMS designs usually begins with the mathematical model of the

system. An AMS design is usually a complex mixture of pure analog, pure digital

or mixed signal components. For digital blocks, the SRE can be generated based

26

on their logic function. The logic function can be expressed as difference equations

which are already SRE (Definition 2). For analog components, we have two poten-

tial options to generate SRE. First, we can write the recurrence equation based on

time domain differential algebraic equations (DAEs) through a discretization (i.e., in

discrete form). However, most analog components are expressed using transfer func-

tion in frequency domain. The second option allows the use of the transfer function.

We use Impulse-Invariant z transformation [6], which is a frequency transformation

of discrete-time signal, to find z domain [38] approximation of the s domain trans-

fer function of an analog component. Then, we apply the inverse of z transform

to the z domain transfer function to generate time domain difference equation and

convert it into equivalent SRE model. For mixed signal components, the input and

output relation can be expressed using SRE notations. At the end of modeling we

are left with a system of recurrence equations (SREs) which accurately describe the

behavior of the system.

The SREs are then the input to the C-SRE simulator introduced. The sequence

of the SREs has to be exactly the same as that of the original system. The outputs

of each component of the AMS design can be conveniently plotted using a graphic

interface such as Matlab [32]. The detailed examples of modeling the AMS design

are illustrated in the case study of Chapter 4.

3.3 Runtime Verification with Online Monitoring

In functional runtime verification stage, the functional properties of AMS system

are verified in an online fashion. We first use PSL to formulate the property of the

AMS system. The PSL expression is then translated into SRE notation to construct

a monitor. The consistency of the monitor and the modeling allows us to achieve

online monitoring. In this section, we first describe how to convert PSL properties

into SRE notations, followed by the functional runtime verification methodology.

27

3.3.1 Writing PSL using SREs

As an assertion language, PSL contains four layers [12]: Boolean, temporal, verifi-

cation and modeling layer. The verification layer provides the communication and

interaction between the property and the verification tool. The modeling layer is

used to define the verification environment for the tool. The Boolean layer constructs

the basic expressions for the property. The temporal layer, where the temporal re-

lations between the signals are expressed, is the heart of the PSL. In this thesis,

we consider the Boolean layer and the temporal layer only. In following, we will

describe how to write PSL properties using SRE in terms of the Boolean layer and

the temporal layer, respectively.

Boolean Layer

The Boolean layer specifies expressions of the design and associated signals which

evaluate in a single cycle. The evaluation result is either true or false. In PSL the

analog description to a Boolean variable is an inequation which is built using signals

and registers of the AMS design [3]. This expression is defined as the Basic Property

[3]:

Definition 4 Basic Property

Let x be the name of an AMS signal (or register), a basic property p is a logical

formula defined as follows: p = xoy, where o e {<, <, >, >, =, ^} and y is a value,

a name of a signal (or a register) in the design or an arithmetic function built using

the design signals.

The Boolean expression can be written in SRE according to the logic it involves.

Suppose that a and b are both basic properties, the expressions a -> b and a <-> b

produce Boolean results, true or false. The expression a -> b can be expressed in

SRE as

IF{a, IF{b, t r u e , f a l s e } , t rue}

28

and the SRE expression of a <-> b is given by

IF{a, IF{b, t r u e , f a l s e } , IF{b, f a l s e , true}}

The two SREs employ the nested form of the generalized If-formula.

Temporal Layer

The Temporal Layer is used to specify temporal chains of events of Boolean expres-

sions. In AMS design, these Boolean expressions are replaced with basic properties.

The temporal layer consists of the Foundation Language (FL) and the Optional

Branching Extension (OBE). FL is a linear temporal logic which embeds a cus-

tomized version of Regular Expression, called the Sequential Extended Regular Ex-

pression (SERE). OBE is a class of the computational tree logic (CTL) [15] language.

FL and OBE cannot be mixed in PSL property. In this thesis, we focus on SERE

and FL expressions only.

For example, the PSL property shown below is in the temporal layer. It

contains SERE and Boolean expression as well as LTL style property. In order to

translate such complex PSL into SRE, we have to translate each sub-properties and

join them together based on the temporal operator.

Boolean

always{req;ack;!cancel}next[2] (enallenb)
s, "• v '

SERE LTL

v '
Temporal Layer

The SERE concatenation operator (;) constructs an SERE that is the con-

catenation of two other SEREs. The property req;ack holds tightly on a path if

and only if there is a future cycle n, such that req holds tightly on the path up to

and including the n
th cycle and ack holds tightly on the path starting at the n + 1

th

cycle. In order to write SERE expression in SRE, cycle should be the whole time

29

cycle space (i.e., for all n). The SRE notation for the property req; ack can be given

by
n

IF{JJ req(n) , IF{ack(n+l), t r ue , f a l s e } , fa lse}

FL properties describe single or multi-cycle behavior built from Boolean ex-

pressions, sequential expressions, and subordinate properties. The most basic FL

Property is a Boolean expression. An FL Property enclosed in parentheses (), as

opposite to SERE that is identified using curly braces {}. The compound FL proper-

ties can be converted into SRE notation by nesting the operands of the FL property

according to the temporal logic operator. In the example above, next[2] (ena||enb)

is an FL property. The next operator is in weak semantics which means that the

Boolean expression is not required to happen at the next second cycle on the path.

The property holds in two cases: (1) the path ends before the second cycle ; (2) the

operand (ena||enb), which is a basic FL property, holds at the next second cycle.

Suppose that the path length is denoted by N and the current cycle is denoted by

n. The SRE of this FL property can be described as

IF{n+2>N, t r u e , IF{ena(n+2)=lVenb(n+2)=l, t r ue , false}}

The SRE notation can be implemented using if-else statement in any program-

ming language such C/C++, Matlab or VHDL. The transformation from PSL to

SRE allows us to achieve the online runtime verification for AMS designs.

3.3.2 Online Monitoring

The verification flow of the online monitoring of an AMS design is shown in Fig-

ure 3.2. The AMS design is modeled using SRE based on the circuit description and

simulated using the C-SRE simulator. Design properties are formally expressed in

PSL. The PSL expression is then converted to the SRE notation. Finally, the input

30

stimulus and output traces are delivered to the monitor. The monitor evaluates

the inputs and outputs of the simulator and checks whether the behavior satisfies

the design specification. The monitoring is performed in an online fashion which

means if the property is satisfied, the monitor reports the satisfaction; otherwise,

the monitor terminates the simulation at the cycle when the violation occurs.

The input stimulus includes the input signal and environment such as control

signals. The output trace of the simulator can be either from any observation point

or from any component within the system. The AMS specifications we focus on are

written in temporal logic. The evaluation of the relation between input and output

with the design specification is carried out within the monitor.

AMS

DESIGN

V

SRE

V

C-SRE

SIMULATOR

\

OUTPU

, TRACE

INPUT

STIMULUS

INPUT

^ TRACE

K

T

\

AMS

SPECIFICATION

v

PSL

PROPERTIES

I
SRE

PROPERTY

f

MONITOR

PROPERTY VERIFIED PROPERTY VIOLATED

Figure 3.2: Online Runtime Verification

The monitor is used to check whether the current simulation behavior satisfies

a given property of correctness. With the help of Basic Property (Definition 3),

the properties of AMS design can be expressed properly in PSL. The properties are

then translated into recurrence sequence notations. In our methodology, the input

and output traces are available to the monitor at each simulation time instant.

31

Incorporated with the property checker (monitor) described above, at each time

instant of the simulation, the violation of the property is also checked. The process

is carried out as long as no violation is detected within simulation trace. Moreover,

by taking advantage of the C-SRE simulator, which records all the transient data of

all circuit blocks at runtime, the monitor is able to observe the property of individual

block. This is useful when we want to verify the functionality of single component

in a complex design. This allows us to check the interface between two components

and the complex effects of one component brought by others. These two advantages

enable us to verify large system with many blocks in a realistic environment.

There are two categories for PSL properties: safety property and liveness prop-

erty. A safety property claims that something bad will never happen. For example,

the property "after the frequency select signal Freqsel is activated, the PLL will

lock at the desired frequency within the lock time 1.5ms" is a safety property. This

property verifies that the PLL will lock within 1.5ms after the activation of Freq^sel.

If the PLL cannot lock within this period or it locks at a different frequency, the

property fails. This safety property guarantees that the PLL system functions cor-

rectly. A liveness property claims that something good will eventually happen. For

example, the property "after the frequency select signal Freq.sel is activated, the

PLL will lock sometime in the future" is a liveness property. It is expected that the

PLL will lock eventually after the activation of Freqsel.

The temporal operator in PSL can be either strong or weak. A strong temporal

operator is denoted by concatenating an exclamation point (!) to the ordinary

operator. Examples of strong temporal operator are eventually! and next!. The

operator without an exclamation point such as next is weak. Both strong and

weak operators have the terminating condition . The terminating condition is a

Boolean expression and the occurrence of it causes the property to complete. For

example, the terminating condition of the property always (a -> next [3] b) is

that signal b holds. There is no requirement about the terminating condition for

32

the weak operator, while the strong operator requires that the terminating condition

eventually happen. The PSL property using a weak temporal operator will hold as

long as nothing else has gone wrong. For example, in the case that the simulation

path ends before three cycles after signal a holds, the property a -> next [3] b will

holds because if we keep run the simulation for a few more cycles, the terminating

condition might happen. On the other hand, in the case that the simulation path

is not long enough, the property using a strong temporal operator will not hold,

even if nothing else has gone wrong. Two properties always (a -> next [3] b) and

always (a -> next! [3] b) have different results when they are applied to the same

simulation path shown in Figure 3.3. The terminating condition happens once at

cycle 4 and the simulation path ends at 10. The property using weak operator holds

because there is no requirement for the termination condition to happen again at

cycle 11. However, the property using strong operator fails to hold. The reason

is that the property requires that the terminating condition occur based on the

simulation path shown in Figure 3.3 and does not consider what will happen after the

cycle 10. The difference between weak and strong operators is important when the

simulation path is "too short". For offline monitoring, the strong operator is difficult

to achieve because we have to manually change the simulation path to make sure

that it is long enough for the occurrence of the terminating condition. On the other

hand, online monitoring is able to fully support the strong operator because the

simulation keeps running until the violation is detected or the terminating condition

of the property occurs.

Table 3.1 compares online and offline monitoring methods in terms of their

support to safety and liveness properties and strong and weak semantics. In sum-

mary, the online monitoring is not only a good complement to offline as shown in

Table 3.1, but also it can save the computational resource in terms of simulation

time compared to offline. We will see more examples of online monitoring in the

following chapter and the comparison with offline method in terms of simulation

33

0 1 2 3 4 5 6 7 8 9 10

a

b I I

Figure 3.3: Online Runtime Verification

time and memory usage.

Table 3.1: Basic Comparison of Online Method and Offline Method

Safety property

Liveness property
Strong semantics
Weak semantics

Online monitoring

Yes

Yes
Yes
Yes

Offline monitoring

Yes

Yes
No
Yes

3.4 Statistical Runtime Verification

In this section, we will present the statistical runtime verification methodology us-

ing Monte Carlo monitoring . The monitor is constructed to perform statistical

hypothesis testing using Monte Carlo simulation. We first introduce statistical hy-

pothesis test and the theory behind it. Then we describe how Monte Carlo method

is applied to the statistical hypothesis test and to the evaluation of the hypothesis

test performance. Finally we present the runtime verification methodology for the

verification of statistical properties of AMS designs.

34

3.4.1 Hypothesis Testing

Statistical Hypothesis Testing

Statistical hypothesis testing is a technique which provides a decision making pro-

cedure about logic statements based on statistical information. The conclusion is

drawn with a confidence level and an error estimate. Hypothesis testing is generally

formulated in two parts. They are null hypothesis, denoted by H0, which is what

we want to test and alternative hypothesis, denoted by Hi, which is what we want

to test against the null hypothesis. If we reject H0 based on our statistical investi-

gation, then the decision to accept Hi is made. For example, we want to determine

whether there is a difference in quality between two products A and B. The null

hypothesis might be that there is no difference between the A and B. Then the

alternative hypothesis might be that there is a difference (i.e., that one is better in

quality than the other). The steps in statistical hypothesis testing are listed below

1. Determine the null and the alternative hypotheses.

2. Take a random sample from the population of interest.

3. Calculate a statistic from the sample that provides information about the null

hypothesis.

4. If the value of the statistic is consistent with Ho, then accept H0.

5. If the value of the statistic is inconsistent with H0, then reject Ho and accept

Hi.

Error Bounds

There are two kinds of error bounds that apply when we are making a decision in

statistical hypothesis testing. They are known as Type I error and Type II error [31].

A Type I error, or false positive, occurs when we reject H0 which is actually true. A

35

Type II error, or false negative, arises when we accept H0 which is actually false, a

and (5 denote the probability of Type I error and Type II error respectively. Formally,

a — P r{ re j ec t HG\HQ i s t rue }

(3 = Pr{accept HQ\HQ i s fa lse}

Typically, a is the maximum probability of Type I error tolerated. In hypoth-

esis testing, we are looking for significant evidence that the null hypothesis HQ is

false, namely that Hi is valid. In order to avoid changing decision status unless

there exists sufficient evidence guiding us, the probability of incorrectly rejecting

H0, namely Type I error a, is expected to be controlled.

Confidence Level

As defined, the Type I error is the probability of rejecting null hypothesis H0 while it

is true. In other words, it means the likeliness that we accept alternative hypothesis

Hi when H0 is true. The confidence is drawn according to the compliment of the

Type I error a. a is also called significance level. Formally, the confidence level 8 is

give by:

5 = 1 -a (3.1)

For instance, a = 0.05 refers to the confidence level of 95% and a = 0.01 refers

to the confidence level of 99%. Before performing the hypothesis testing, the Type

I error (i.e., the confidence level) should be established. The reason is that in a

hypothesis test we are looking for the significant evidence to reject null hypothesis

HQ (i.e., H0 is false) and the probability that Ho is true needs to be controlled.

Tail Test

In order to determine whether or not the observed statistic is consistent with H0,

we should know the distribution of the statistic under the condition that Ho is true.

36

A rejection region is needed to perform the statistical hypothesis test. A rejection

region, over which we would reject Ho, is the area covered by the PDF. The critical

value is used to divide the domain of the test statistic into a rejection region and a

non-rejection region. The rejection region depends on the distribution of the statistic

under H0, Hi and the Type I error we are willing to tolerate. Generally, the rejection

region is located at the tails of the distribution of the test statistic when H0 is true.

The test can take place either in the lower tail or the upper tail which depends on

the alternative hypothesis Hi.

(a) Upper tail test: If a large value of the test statistic would provide evidence for

rejecting H0, then the rejection region is in the upper tail of the distribution

of the test statistic.

(b) Lower tail test: If a small value of the test statistic would provide evidence

for rejecting Ho, then the rejection region is in the lower tail of the distribution

of the test statistic.

Hypothesis Testing Algorithm

There are several approaches for hypothesis testing. In this thesis, we address only

the critical value approach. It is also important to note that in order to perform

the hypothesis test, the distribution of the test statistic under the null hypothesis

H0 is assumed to be known. Before we describe the critical value approach, we first

introduce an important concept, namely quantile function.

Quantile Function

Quantile function plays an important role in statistics [31]. The quantile qp of a

random variable X is defined as the smallest number q such that the cumulative

distribution function (CDF) P(X) is greater than or equal to some p, where 0 <

p < 1. This can be calculated for a continuous random variable with probability

37

density function f(x) by solving

/

Qp

f(x)dx (3.2)

•oo

for qp. The quantile function is the inverse of the cumulative distribution function

(CDF) and is given by

qp = quantile(p) — F~
l
(p) (3.3)

The p-th. quantile of a random variable X is the value qp such that

F(qp) = P(X <qp)=p (3.4)

In general, the quantile function is the inverse of cumulative distribution function

(CDF). In hypothesis test, we will see that quantile function is used to determine

the decision about rejection of a hypothesis.

Critical Value Approach

In hypothesis testing, if the observed statistic is within some region, we reject the

null hypothesis. The interval where the null hypothesis is rejected is called critical

region, or rejection region. The critical value is used to divide the domain of the test

statistic into rejection region and non-rejection region. The critical value approach

is used to check whether the observed value falls into the rejection region. The

procedure of this approach is outlined in Algorithm 1. The critical value approach

requires a and T0bs to perform, a is the significant level, or Type I error, and T0t,s

is the observed value calculated by

T0bs = —=— (3.5)
c

where x is the sample mean of the random variable, HQ is the mean value under the

null hypothesis and a = ax/'y/rl is the standard error of the sample. The algorithm

is performed in two cases: upper tail test and lower tail test. In the case of upper tail

38

test (from line 1 to line 8), we first calculate the critical value using quantile function

and the significance level 1 — a (line 2). The hypothesis test is performed from line

3 to line 7. For upper tail test, we are looking for large significant evidence to reject

the null hypothesis H0. If the observed value T0&s is greater than the critical value,

then we reject Ho; otherwise, the decision of accepting H0 is made. The procedure

of lower tail test (from line 9 to line 16) is similar except that the critical value,

i.e,. the rejection region, is different. The critical value is calculated based on the

significance level a. In this case, if T0bs is smaller than the critical value, then we

reject H0; otherwise, we accept Ho.

Algorithm 1 Hypothesis Testing- Critical Value Approach

Require: a, Tc

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

obs

while Upper Tail Test do
critical .value = quantile(l — a)

if T0bs > critical ..value then

Reject Ho

else if T0bs < critical-value then

Accept Ho

end if

end while

while Lower Tail Test do
critical .value — quantile(a)

if T0bs < criticaLvalue then

Reject Ho

else if T0bs > criticaljvalue then

Accept H0

end if
end while

The probability of wrongly rejecting H0, or Type I error, is supposed to be

controlled before we perform a hypothesis test. The critical value depends on the

significance level a, namely the Type I error. The typical values of a are 0.01,0.05,

and 0.10. The critical value is found as a quantile (under the null hypothesis Ho)

calculated using Equation 3.3. In the case of the lower tail test the significant value

39

is a, while 1 — a is chosen when we perform the upper tail test. For upper tail test,

the large significant evidence is investigated. In other words, if the observed value

Tobs is greater than the critical value we reject the null hypothesis HQ. Otherwise,

we retain HQ. For lower tail test, a small value is needed as the evidence to reject

HQ. Hence, if T0j,s is less than the critical value, calculated using a in this case, we

reject HQ. Otherwise we retain HQ.

For example, we are looking for the significant level and the rejection region

of a normal distribution based random variables with zero mean (// = 0) and unit

standard deviation (a = 1). The Type I error we are willing to tolerate is 0.05.

The rejection region (shaded area) of a lower tail test is shown in Figure 3.4. The

critical value can be calculated as -1.645 using Equation 3.3. If the observed value

(normalized value) is less than -1.645 (i.e., if it falls in the rejection region), then

H0 is rejected; while if the observed value is greater than the critical level (i.e., it

appears in the non-rejection region), we fail to reject H0. As a result, the decision

to accept Hi is reached.

Non-rejection
Region

Figure 3.4: Rejection Region for a Lower Tail Test

40

Error Margin

For random variables, it is unlikely that the observed value of the sample is exactly-

equal the true value of the population parameter such as the mean or the variance.

Hence, it is more useful to have an interval of numbers that contains the true value.

The probability of the true value appearing in the interval is the confidence level 5

we introduced previously. Let 9 represent a population parameter that we wish to

estimate. The observed value of the statistic is denoted as 9. An interval of 9 can

be expressed as

Oiow < 6 < Qup (3.6)

where 9\ow and 9up are the lower and upper bound of the interval respectively. Given

the confidence level 5, we have

P(9low <9<9up) = 5 = l - a (3.7)

which indicates that the probability that 9 present itself in the interval produced by

a random sample is S. Recall Equation 3.4, we can use quantile function to calculate

the critical value for a specific probability. We have

P(X < q(1-a/2)) = l-a/2 (3.8)

P(X < q{a/2)) = a/2 (3.9)

Subtracting Equation 3.9 from 3.8, we achieve

P(Q{a/2) <X < g(i_a/2)) = 1 - a (3.10)

where X is the normalized random variable. Because the quantile is calculated in

normalized form, we normalize 9 using the sample mean X, the population mean JJL

41

and standard error a/y/N, then we have

P{q(a/2) < —-Try < 9(l-a/2)) = 1 ~ « (3.11)

Rearranging Eequation 3.11, we obtain

P(X-
q
-^^<^<X-

q
-^) = l-a (3.12)

y/N y/N

Eventually, we obtain the confidence interval

(X-
Q
-^^,X-

q
-^) (3.13)

It is not difficult to see that q(\-a/2) = —
 Q(a/2)- We define the error margin e as

e = q(i-a/2)-7= (3-14)

which depends on the confidence level 5 and standard deviation a of the population.

The error margin is provided together with the confidence level when the

hypothesis test is done. The confidence level indicates the Type I error, which we

establish in advance, of the statistical hypothesis testing. The error margin provides

the confidence interval that contains the population parameter we want to estimate.

The larger the confidence interval which incloses the population parameter is, the

higher confidence level we can achieve.

3.4.2 Monte Carlo Methods for Hypothesis Test

In order to perform Monte Carlo monitoring, the distribution of the population is

supposed to be known in advance or is assumed. Then a model which reflects the

characteristics of the original population is made. The Monte Carlo simulation is

used to generate random sample for estimation of the distribution of the original

42

population. Hypothesis testing is then used to check whether observed value of test

statistic falls into the reject region specified by the estimated critical value.

The detailed procedure is illustrated in Algorithm 2 where T0(,s is observed

value calculated using Equation 3.5, n is the sample size, a is the population stan-

dard deviation, a — a/y/n is the standard error of the sample, and fi denotes the

population mean. The loop between line 1 and line 5 is the Monte Carlo simulation

repeated for M trials. In each trial, we randomly sample from the distribution of

population under the null hypothesis with the same sample size n (line 2 and line

3) and then calculate and record the observed value of this pseudo sample Tmc (line

4) which is given by

Tmc = ^ (3.15)

a

where s is the mean value of the pseudo random sample. It is important to note that

all the calculations till now are under the hypothesis that H0 is true. The hypothesis

testing is performed afterwards (from line 6 to line 21). The test is very similar to

the original one (Algorithm 1) except that the calculation of the critical value. In

Monte Carlo hypothesis testing, the critical value is estimated based on the model

generated by Monte Carlo simulation. Whereas the critical value in Algorithm 1

is based on the standard normal distribution. The hypothesis test is carried out

using the estimated critical value and the observed value T0(,s the same way that

Algorithm 1 does. Because for each hypothesis test the Monte Carlo simulation

generates different random model, it is expected that the estimated critical value

varies for each test.

3.4.3 Hypothesis Test Performance Assessment

When we use Monte Carlo simulation, we make assumption about the distribution

of the sample. However, when the assumption is not correct, we need to assess

the results. Monte Carlo method can also be used to evaluate the performance

43

Algorithm 2 Monte Carlo Hypothesis Testing

Require: a, T0i,s, n, a, a, \x

1

2

3

4

5

6

7

8

9:

10:

11:

12:

13:

14

15

16

17

18

19

20

21

for i = 1 to M do do

r = r andom-number-generator {n)

s = a • r + fi

Tmc(i) = (mean(s) - fi)/a

end for

while Upper Tail Test do
critical ..value = quantile(Tmc, 1 — a)

if T0fo > critical jualue then

Reject HQ

else if T06S < critical-value then

Accept HQ

end if

end while

while Lower Tail Test do

critical .value = quantile(Tmc, a)

if T0(,s < criticaLvalue then

Reject HQ

else if T06S > critical-value then

Accept HQ

end if

end while

for hypothesis test. We choose Type I error as the reference for the performance

evaluation. The reason is that it is established before the hypothesis test procedure.

While the Type II error is according to the alternative hypothesis and can not be a

reference for the performance.

Algorithm 3 indicates the procedure of the assessment in terms of the Type I

error. Like critical value approach, the performance assessment is performed in two

cases as well. We first set up a counter I (line 1). In the case of upper tail test,

the critical value associated to the standard Type I error is then calculated using

quantile function (line 2). The Monte Carlo simulation is carried out (from line 4

to line 10). In each Monte Carlo trial, we generate pseudo random sample s of size

n under the null hypothesis (line 5 and line 6) as what we do in the Algorithm 2.

The observed value of the pseudo sample Tmc is calculated using Equation 3.15 as

44

Algorithm 3 Performance Assessment of Monte Carlo Hypothesis Test

Require: n, a, a, a, a

1:

2:

3

4

5

6

7

8

9

10

11

12

13

14:

15:

16

17

18

19

20

21

22

23

24

7 = 0

while Upper Tail Test do
critical-value — quantile(l — a)

for i = 1 to M do do

r = random-number-generator (n)

s = o • r + a

Tmc(i) = (mean(s) - ii)ja

if Tmc > critical-value then

/ = / + l

end if

end for

end while

while Lower Tail Test do
critical-value = quantile(a)

for z = 1 to M do do

r = random-number-generator (n)

s = a • r + LI

Tmc{i) = (mean(s) - Li)/a

if Tmc < critical-value then

J = / + l
end if

end for

end while

& = I/M

well. Then we need to determine whether a Type I error has been committed in

hypothesis test. In other words, the null hypothesis, which should not be rejected

when H0 is true, has been rejected. If the pseudo observed value Tmc falls into

the rejection region, the counter / increases its value by one; otherwise, i" remains

its value. The procedure for lower tail test is similar except of the condition for

specifying the commitment of Type I error. Repeat this procedure for M trials.

Then the probability of making an actual Type I error when using Monte Carlo

simulation is given by

1
 M

i = i

45

The performance indicator of hypothesis testing, denoted as rj, is defined as the

deference between a specific significant level a and Type I error concluded using

algorithm 3 a and it should be a positive quantity. Then we have

77 = \a — a\ (3-17)

The performance indicator 77 does not affect the hypothesis results. It provides,

however, the level of performance of the Monte Carlo simulation to the hypothesis

testing. Smaller 77 indicates that the estimated distribution is very close to the real

one.

3.4.4 Hypothesis Test Summary

So far, we have introduced the Monte Carlo hypothesis test algorithm. Before com-

ing to statistical runtime verification methodology, we summarize the important

concepts in Table 3.2. The first column lists the names of the concept. The descrip-

tions and the mathematical equations are illustrated in the second and the third

column, respectively.

Table 3.2: Summary of Hypothesis Test Concepts

Concept

Quantile function (quantile)

Significance level (a)

Critical value (cv)

Confidence level (5)

Error margin (e)

Performance indicator (77)

Description

Inverse CDF function

Type I error
Divides rejection region
and non-rejection region
Significance level a

Confidence interval for
observed value
Performance assessment

Formula

qp=quantile(p)=F~
1
 (p)

p={reject.£/o|#ois true}
cv=quantile(a)

cv=quantile(l — a)

(5—1 — a

e = < 7 (l - a / 2) ^

77= a — a

46

3.4.5 Statistical Runtime Verification

As shown in Figure 3.5, the statistical property, such as mean or variance, we want to

verify is expressed as a null hypothesis H0. The alternative hypothesis Hi becomes

the counterexample naturally. The Monte Carlo monitoring is then carried out based

on the confidence level 5 we specify. The decision is made based on the significance

level a with respect to the confidence level 5. In Monte Carlo Monitor, the property

is verified using hypothesis test incorporated with Monte Carlo simulation. The

statistical property is verified if the decision of accepting the null hypothesis Ho is

made. The rejection of null hypothesis H0 leads to the violation of the property.

All the decisions are produced under the specific confidence level 5 along with the

error margin e. The error margin specifies a confidence interval where the estimated

statistic falls with the probability of 5.

The Monte Carlo simulation is then employed to evaluate the performance

of the hypothesis test in terms of the Type I error. The difference between the

significance level a and the actual Type I error a committed during the procedure

provides a performance indicator for the hypothesis testing.

47

Statistical

Property

> i

Null

Hypothesis

n0

>
Confidence Level 5

Monte Carlo
Monitor

Reject H0 ?

[Accep

Property is

true with

Error Margin

Reject HQ

tH0

Property is

false with
Error Margin

Figure 3.5: Monte Carlo Based Statistical Runtime Verification

48

3.5 Summary

The proposed runtime verification methodology contains the modeling stage, the

functional runtime verification stage, and the statistical runtime verification stage.

We employ SRE expressions to model the AMS system. All the SRE descriptions

are simulated using the C-SRE simulator. The functional runtime verification is

carried out in an online fashion. It allows the simulator to terminate execution at

the moment a violation or satisfaction is determined. We also proposed a statistical

runtime verification for the AMS system with stochastic process. The combination

of Monte Carlo simulation and statistical hypothesis testing enriches us to analyze

the random process without any knowledge about the distribution function of the

statistic and to evaluate the performance of the verification process. The confi-

dence level and error margin are provided along with the verification results. The

two runtime verification methods are implemented in two different monitors. The

functional online monitor is constructed by translating the PSL expression of the

properties into SRE notations. The Monte Carlo monitor is implemented using

statistical functions in the Matlab environment [32].

In the following chapter, we apply our methodology on a typical AMS system,

a PLL based frequency synthesizer, as case study. Each stage of the proposed

methodology is described in details. Several interesting functional and statistical

properties are analyzed and verified. The comparison of the online monitoring and

the offline monitoring is illustrated. In addition, we will discuss the performance of

the Monte Carlo monitoring technique.

49

Chapter 4

Case Study: PLL Based

Frequency Synthesizer

In this chapter, we will apply the runtime verification methodology proposed in

this thesis on an important AMS design, the PLL based frequency synthesizer. We

first present the SRE modeling of the system. We then describe several interesting

functional properties in PSL and illustrate the functional verification results. For

statistical verification, we present an introduction to SRE modeling of jitter property

followed by the experimental results.

4.1 SRE Modeling

The PLL based frequency synthesizer shown in Figure 4.1 is an important AMS

design for communication systems. It is used to generate a certain range of frequency.

In this case study, we use a simple frequency synthesizer, which is able to generate

a signal with the frequency as twice as that of reference signal, to demonstrate

the proposed methodology. In the frequency synthesizer, the reference signal is a

sinusoid signal with the reference frequency UIQ. The VCO output is a Cosine wave

signal with frequency TV + 1 times of UQ. N is determined by the frequency control

50

signal Freqsel. If Freqsel is set to 0, the frequency of the reference input and VCO

output will be the same.

COMP
ReLpfd

f \

PFD

,

UP
1

DN,

VCO_pfd

CP

•

DIV -

Charge_out

VCO_ouLdiv1

AF

COMP

Filter_out
VCO

VCO_o

* 0

T Freq_sel

Figure 4.1: PLL Frequency Synthesizer Architecture

In the following, we present the SRE modeling of the PLL. We first illustrate

the high level description of each block in detail. Then we will show how to model

those behaviors using SRE.

Reference Signal Comparator

The comparator extracts the positive value of the input signal and generates

binary sequence with the same frequency and phase as the input. The comparator

is a mixed signal component as the input is analog signal and the output is digital.

The SRE model of a comparator is given by

Ref_pfd(n+1) = IF{Ref_sig(n) > 0, 1, 0}

Ref_sig(n) = sin(u;onTO)

where Refsig is one of the inputs to the comparator.

Phase and Frequency Detector

The implementation of a phase and frequency detector (PFD) is shown in Figure 4.2.

It is composed of two edge-triggered, resetable D flipflops with their D inputs con-

nected to VDD (i-e- logical one). It is a pure digital block in the PLL system. Two

51

input signals Refjpfd and VCO-.pfd, which are the reference signal and feedback

VCO output signal respectively, act as the clocks for the flipflops. Each input trig-

gers at its rising edge and propagates the supply voltage from the data port D to

the output port Q. The outputs of interest, UP and DN, reflect the difference in

both frequency and phase between the two input signals. When UP and DN are

simultaneously high, the AND gate resets both flipflops. The rising edge trigger

behavior can be express in SRE as:

VDD

Ref_pfd

VCO_pfd

t-^>UP

oDN

VDD

Figure 4.2: Phase and Frequency Detector

UP(n+l) =IF{Ref_pfd(n) = 1 A Ref_pfd(n-l) = 0, 1, UP(n)}

DN(n+l) =IF{VC0_pfd(n) = 1 A VC0_pfd(n-l) = 0, 1, DN(n)}

Because reset determines the initial condition of the flipflops, we nest reset SRE

expression outside the rising edge SRE. We have:

UP(n+l) = IF{[UP(n) = 1 A DN(n) = 1] , 0, IF{Ref_pfd(n) = 1 A

Ref-pfd(n-l) = 0, 1, UP(n)}}

DN(n+l) = IF{[UP(n) = 1 A DN(n) = 1] , 0, IF{VC0_pfd(n) = l A

VCO-pfd(n-l) = 0, 1, DN(n)}}

52

Charge Pump

The charge pump is usually interposed between the PFD and analog filter to provide

voltage or current for the capacitance in the successive filter. It is a typical mixed

signal component as the input of is digital signal and the output is a continuous-time

signal. In our case, we adopt voltage as source supply. The resulting source supply

is proportional to the difference of the output signal UP and DN from PFD. The

SRE model of CP is given by

Charge_out(n) = Vc x [UP(n-l) - DN(n-l)]

The SRE of the charge pump is the difference equation of the functional behavior.

Analog Filter

The analog filter is an important analog block in PLL as well as other AMS designs.

R

+°—V\A/ r—°+
Charge_out C ZZI Filter_out

-o -

Figure 4.3: First Order Lowpass Filter

It is used to operate continuous-time signals. The analog filter is usually constructed

by combining resistances and capacitances. In our frequency synthesizer, a simple

first order lowpass filter is employed. The implementation of the analog filter is

shown in Figure 4.3. When modeling an analog filter, we are given the transfer

function in frequency domain as:

H(s) = - V (4.1)
1 + —

53

where uic = -^. uc is the cutoff frequency of the lowpass filter. After applying

Impulse-Invariant z transform [6], we obtain z domain transfer function:

H{z) = - ^ — (4.2)

where T is the sampling time. Taking the inverse z transform of Equation 4.2, we

achieve the time domain difference equation of the lowpass filter as

T _TL

Filter-.out (n) = —— x Charge.out(n) + Filter jout{n — 1) x e «c (4.3)

The corresponding SRE is expressed as:

Fi l ter_out(n) = IF{true,

(^) x Charge_out(n) + F i l te r_out (n- l) x e^~^, 0}

The SRE is the difference equation of the lowpass filter.

Voltage Controlled Oscillator

The voltage controlled oscillator (VCO) is a key component in the PLL system. In

practice, a VCO can be implemented using a ring oscillator [41] or an LC oscilla-

tor [20]. It is a pure analog circuit. However, in this thesis we do not model the

VCO at circuit level. We instead focus on a highly abstracted mathematical model

as higher abstraction approach. An ideal VCO, as shown in Figure 4.4 is a circuit

whose output frequency is a linear function of its input voltage (the output of the

lowpass filter) and the relation between the two is given by

Filter_out(i),— co{t)
Integrator

m
Modulator

VC0ou,(t)

Figure 4.4: Voltage Controlled Oscillator

54

u<mt(t) = UJ0 + KVco • Filter-out(t) (4.4)

where LUQ represents the initial radian frequency when Filter jmt{t) = 0 and Kyco

is called VCO gain (rad/s/V). The VCO generates a sinusoidal wave signal V(t) =

Asin{(j)(t)). The argument of the sinusoid 4>{t) is called the "total phase" of the

signal. The radian frequency can be defined as the derivative of the phase according

to time

-M - i J
f
 (4'5)

Equation 4.5 suggests that if the radian frequency of a signal u(t) is known as a

function of time, then the phase can be expressed as

<j)(t) = Iu(t)dt + fa (4.6)

where 4>Q is the initial phase. Recall Equation 4.4, we have the mathematical pre-

sentation of VCO

VC0out{t) = A cos([Loout{t)dt + <j)o) (4.7)

= A cos(u0t + Kvco / Filter jout{r)dr + <j>0) (4.8)
Jo

The physical meaning of an integral is that the integral of a function over a finite

region is equal to the area the function covers over the same region. An approxi-

mation to the integral can be constructed using the sum of individual rectangular

areas divided by small intervals within the same region

f f{x)dx^Y^f{ti)^i (4.9)

where a = XQ < X\ < x2 • • • < xn_\ < xn = b and the interval Aj = x* — £j_i. When

the intervals are relatively small and equal to each other, the error introduced can

be ignored. Suppose T to be the smallest time step in C-SRE simulator, the SRE

55

expression of phase term in Equation 4.8 is given by

phase (n) = T x Fil ter_out(n) + phase (n-1)

where Filter-Out{n) is the output of lowpass filter and control voltage signal for

VCO. The SRE of the VCO block together with the succeeding comparator is given

by

VCO_out_l(n)=IF{cos[u;onT + KVCo x phase(n) +0O (n)] > 0, 1, 0}

Divider

The divider block (DIV) works as a frequency divider. In order to achieve half

frequency, the rising edge of the output occurs every two periods of the input signal.

When the frequency select signal Freqsel is activated, the output of the divider

holds the frequency as half as the input signal. The SRE modeling of the entire

functionality of the divider is listed as

VC0_out_2(n+l) = IF{(VC0_out_l(n) = 1) A

(VC0_out_l(n-l) = 0) , -VC0_out_2(n), VC0_out_2(n)}

VC0_pfd(n+l) = IF{freq_sel(n) = 1, VC0_out_2(n), VC0_out_l(n)}

4.2 Online Monitoring of Functional Properties

After SRE modeling, we simulate the PLL using the C-SRE simulator. The sim-

ulation results are shown in Figure 4.5. The PLL system with different damping

factors £ [6] (0.1, 0.5 and 0.707, respectively) and same nature frequency are sim-

ulated. After the activation of Freqsel at 0.5ms, the system begins to track the

new frequency and is locked at the same frequency in each case with different lock

times. Instead of examining the actual VCO output frequency, we evaluate the lock

status by checking whether the output of the lowpass filter stays at the proper DC

level. Figure 4.5 indicates two things: (1) the SRE model and the C-SRE simulator

56

can offer accurate and reliable modeling and simulation for the AMS system; (2) the

output of the lowpass filter is quite intuitive for high level abstraction and used as a

reference for the functional verification and jitter noise analysis presented in follow-

ing sections. The verification results of three functional properties are presented in

the following as well as a comparison between online and offline monitoring tech-

niques in terms of simulation time and memory usage.

4

I 3

Q.

3 2
-t—' K 1
CO '
CO
CO
Q .

I 0
_ l

~10 0.5 1 1.5 2 2.5 3
Time (sec) x10"3

Figure 4.5: Lowpass Filter Output Voltage with Different £

P roper ty 1 Lock-time is one of the most important properties of the PLL. It deter-

mines how fast the frequency synthesizer stabilizes from one frequency to another.

This is the key factor when designing PLL circuits. According to the parameters

listed in Table 4.1, the lock time of our system is 0.001 sec. The lock time property

can be described as: after the Freqsel signal changes from 0 to 1, the output of the

lowpass filter will reach the new DC value within the lock time. This is a safety

property. The PSL style definition of the property is shown below

Property_l : always {Freq_sel==0;Freq_sel==l} I->

next! [Lock_time] (Filter_out==New_DC_Level)

57

% =0.1
£=0.5

£=0.707

Table 4.1: Frequency Synthesizer Parameters

Parameters

T(s)

RC (s)
a

Vc (V)

a>o(rad- Hz)
uvco (rad- Hz)

Kvco (rad-Hz-V-1)
New_DC_Level(V)

Value

io-
8

O.OOOl

exp(-T/RC)

5
2TT x 106

2TT x IO6

2u0/Vc

2.5

Description

Sampling time

Filter RC parameter
Charge time parameter

Voltage supply
Input signal frequency

VCO operating frequency
VCO gain

Filter output

The SERE concatenation operator (;) indicates that the two Boolean expres-

sions it connects hold consecutively [2]. (Filter_out==New_DC_Level) is the basic

property. The next! operator is strong semantics. The SRE expressions of the

property are shown below:

IF{Freq_sel(n-l)==0 A Freq_sel(n)==l, Subproperty, fa lse }

Subproperty=IF{Filter_out (n+Lock_time) ==New_DC_Level, t r ue , false}

We use the nested form for SREs. Instead of showing the SRE in one line, we extract

the inner If-formula as sub-property. The strong operator nextl requires that the

terminating condition (Subproperty) happen. The property monitor implemented

in C language is shown below

while (f req_sel[i]==l && f req . se l [i - l]==0){

f o r (i n t n=i; n!=N_max; n++){

if (f i l ter_out[n]== New_DC_Level && T_sample*(n-i)<=Lock_time){

property_lock_time = 1; / / Sat is f ied

} e lse{

property_lock_time = 0; / / Violated

}}

i++;}

58

> 3

Q.
4—»

O 2
CD

CO
CO
CC
Q .

o

-1

Violation

2 3
Time (sec)

Figure 4.6: Locktime Property

x10"'

Figure 4.6 indicates that as soon as the time reaches 1.5ms after Freqsel signal

changes from 0 to 1, the monitor reports a violation for the property. The simula-

tion then is suspended at 1.5ms. There is no need to look at the simulation trace

after 1.5ms in this case. Due to the prompt violation alert, the simulation time is ex-

pected to be saved. In addition, two more interesting properties are described below.

Proper ty 2 If the Freqsel is activated the VCO output signal should change to a

new frequency eventually. The VCO output stability can be decided by the filter

output. If the filter output signal becomes stable (fixed to a New-DC-Level), then

the VCO output will also be stable at the new frequency. This is a liveness property.

The property is expressed in PSL as:

Property_2 : always {Freq_sel==0;Freq_sel==l} |->

eventually! {Filter_out == NewJDCLevel}

The eventually! is an LTL style operator in PSL. It specifies that a property

holds at the current cycle or at some future cycle. The verification result is shown

59

in Figure 4.7. This time the monitor is sensitive to satisfaction rather than violation.

The reason for that is because this is a liveness property which implies that some-

thing good eventually happens. The detection of satisfaction is more feasible than

violation in this case. The simulation is terminated when the property is verified at

2.4ms.

> 3
"3

8 2
CD

» 1
W
CO
Q .

ID

Prnnorh .. i.Q..\/Ari f. i ed

1 2 3 4
Time (sec)

Figure 4.7: Verification Results of Property 2

x10

Proper ty 3 After reset, the Freqsel will be '0', and Filter^out will also be

'0'. If the Freqsel changes to ' 1 ' , the Filter^out will increase until New-DC-Level.

Hence, the Freqsel will be '0' until Filter^out is larger than '0'. This is a safety

property. The property is expressed in PSL as:

Property_3 : always (Fil ter_out == 0) u n t i l ! (Freq_sel ^ 0)

The u n t i l ! is like the LTL operator u n t i l in strong form which requires that the

termination condition eventually happens. In context, the property 3 requires that

signal Filter-out is expected to change. This property was successfully verified.

60

We compared our methodology to the work presented in [3] and the experi-

mental results are listed in Table 4.2. Thereafter, we notice that our proposed online

monitoring technique performs better than [3] in terms of simulation time. The rea-

son is that online monitoring stops the simulation process as soon as the property is

verified or violated. The memory usage of our methodology is slightly higher than

that of [3] due to the computational efficiency in Matlab. Both methodologies were

run on the same ULTRA SPARC-IIIi server (177 MHz CPU, 1GB memory), where

all properties described above are satisfied.

Table 4.2: Simulation Results

Property

Property 1
Property 2
Property 3

Online Monitoring

Simulation
Time(sec)

13.42

13.47
13.35

Memory
Use(MB)

36.2

38.2
38.1

Offline Monitoring

Simulation
Time (sec)

38.87
37.61
43.65

Memory
Use(MB)

32.4

32.4
32.4

Verification
Status

Violated
Verified
Verified

In this section, we presented the experimental results of the PLL functional

runtime verification. In next section, we will see how the proposed statistical runtime

verification applied to random noise in the PLL design.

4.3 Offline Monitoring of Statistical Properties

In this section, we present the statistical runtime verification applied to the jitter

noise in the PLL design. We first introduce jitter noise and its metrics. Then we

describe how to include jitter noise using SRE. Finally, we present the verification

results.

61

4.3.1 Ji t ter Noise in Frequency Synthesizer

Jitter is simply the deviation in time between a noisy signal and an ideal one. It

affects the quality of the system especially for high frequencies. For example, in

communication systems, a large jitter in a clock signal may cause wrong synchro-

nization which results in unexpected information transmission or communication

failure. As mentioned in the previous section, PLL based frequency synthesizers

generate the signal with the frequency according to that of reference signal. They

are used in communication systems as clock generator or clock recovery circuits to

provide clean clock signal. Jitter noise may come from outside or inside the PLL

system. As shown in Figure 4.8, a major outside source of jitter is the reference

clock input. The active components within the PLL are also a major source of jitter

noise. The jitter noise in different blocks exhibits differently. In this thesis, we focus

only on the jitter associated within the VCO.

Jitter noise Jitter noise

Ref_sig i|r

0 COMP
ReLpfdj

PFD
UP

m!\
CP

Charge_out
AF

Filter_out
VCO

VCO out

VCO_pfd

DIV
VCO_out_div1

COMP

Freq_sel

Figure 4.8: PLL Frequency Synthesizer with Jitter Sources

Jitter can be divided into two categories as deterministic jitter (DJ) and ran-

dom jitter (RJ). The amplitude of DJ, in terms of time, is bounded and that of RJ

is unbounded [29]. In AMS systems, the interaction between analog components

and digital ones would introduce both types of jitter. In this thesis, we focus on

random jitter which features stochastic process.

62

4.3.2 Ji t ter Metrics

As mentioned, jitter is defined as the deviation of the edge transition between jittery

signals and ideal signals. However, for clock signals, the variation in period from

one cycle to another is considered important for analysis. There are three types of

jitter metrics. They are phase jitter, period jitter, and cycle-to-cycle jitter.

Phase Jitter

The phase jitter is defined as an edge transition timing difference from the corre-

sponding ideal clock timing. Mathematically, the phase jitter Atn is formulated

by

Atn = tn-Tn (4.10)

where tn and Tn are timing values of the edge transition of nth cycle of the jittery

clock and the ideal one, shown in Figure 4.9, respectively.

Atn-1 Atn-1 Atn-1

tn'1 U-£*l tn |Jh tn+1 Ĵ l
I I I I I I

I I I I I I

Signal with Jitter

Ideal Signal

Tn-1 Tn Tn+1

Figure 4.9: Jitter Metrics

Period Jitter

Period jitter is the difference of the actual period from the ideal period. The nth

63

period is given by (tn — tn-\). Hence, period jitter is defined as

Atpn = {tn - tn-i) - T0 (4.11)

where To is the ideal clock period. For the ideal clock, each cycle has the same

period, we have

Tn+i — Tn = Tn — Tn_i = T0 (4-12)

Substituting equation 4.12 for equation 4.11 , we arrive at

Atpn = (tn — tn-i) — (Tn — Tn_i) = (tn — Tn) — (tn-i — T„_i) = Atn — At„_i (4.13)

It is worth noting that the period jitter is the difference between the phase jitter

of current cycle and that of the previous one. The relationship of period jitter and

phase jitter helps us to derive one if we have knowledge of the other.

Cycle- to-Cycle J i t ter

Cycle-to-cycle jitter is defined as the period deviation of the two consecutive periods.

According to the definition, we have

Atcn = (tn — t„_i) — (t n - l —
 tn-2) = tn + tn-2 — 2£n_i (4-14)

Remember the definition of period jitter in Equation 4.11. The difference between

two consecutive period jitter is

Ai p n — Ai p n_i = [tn — in_i — TQ) — (i n - i —
 ~kn-2 ~ To) = tn + £n_2 — 2tn_i (4.15)

64

Investigating Equation 4.14 and Equation 4.15, it is not difficult to identify the

relationship between cycle-to-cycle jitter and period jitter

L±tcn — LXtpn ^^pn—1 (4.16)

Further investigation can be carried out by substituting Equation 4.13 to Equa-

tion 4.16, we obtain

Atcn = Atpn - Atpn_x = (A*„ - Atn_x) - (Atn_i - Atn_2) (4.17)

Equation 4.17 presents the interrelationship between phase jitter, period jitter and

cycle-to-cycle jitter that cycle-to-cycle jitter is the first difference function of period

jitter and the second difference function of the phase jitter [29]. In this thesis, we

employ period jitter metric in the experiments.

4.3.3 Ji t ter in VCO

VCO oscillates with the frequency proportional to the input voltage signal coming

from the lowpass filter.

Filter_out{t) r co(t)
Integrator

JA

m
Modulator

VC00Jt)

Figure 4.10: VCO Model with Jitter Noise

As mentioned, jitter noise can be found within PLL system especially in VCO.

The jitter in VCO is mainly caused by thermal noise of the circuit. Hence, it exhibits

Gaussian random process. The model of a VCO with jitter noise is illustrated in

Figure 4.10. In fact, VCO generates the sine wave by dealing with the frequency.

Hence, the jitter, which is defined as variation in the period, has to be modeled as

65

a variation in the frequency of the VCO. Assume that, the frequency of a periodic

signal without jitter is given by

f = f (4-18)

where T is the period of the ideal signal. The jittery frequency can be represented

as

J = /
T + AT I AT 1 + AT • /

fritter = 7 7 ^ - ^ = 1 = , , im * (4 ' 1 9)

/

AT = JX (4.20)

where J is the jitter deviation and A is a zero mean unit-variance Gaussian random

process. Let (f)(t) be the phase of the integral term in Equation 4.8. We have

<f>(t) = KVco / Filter-Out(r)dT (4.21)
Jo

Suppose u(t) = 2nf(t) — KVco • Filterjout{t), we obtain

= Kvco • Filter-out®

2ir

which relates the input control voltage Filter-Out(t) and frequency f(t) by multi-

plication of VCO gain factor. By substituting Equation 4.22 into Equation 4.19, we

achieve

f.. (t) _ /w m f4231
WW ~1 + A T . f{t) - l + AT Kvco • Filter„out(t) ^ J

2n

We finally derive the formula of VCO with jitter noise by integrating the Equa-

tion 4.23 into the original VCO Equation 4.8.

f* Filter UOUUT)

VCOout(t) = Acos(.0t + Kvcoj0 jX.Kvco\AL^t(r)
dT +

 ^ ^
+
 2TT

66

Figure 4.11: Filter Output with Jitter Noise in VCO

Jitter noise is nothing but the phase noise in frequency domain. The random

jitter presented in the Equation 4.24 delivers the change in phase after the integral.

The deviation of the VCO output may cause the phase error information different

from the ideal. Hence, the system characteristic such as lock time may change.

Figure 4.11 shows the effect caused by jitter noise. The thick line labeled (1) repre-

sents the output of the lowpass filter without jitter noise. The thin line (2), whose

J = 1.1 x 10~7s shows that the lowpass filter output almost settles to a new DC level

but not stable at the level. The dotted line (3), whose J = 3 x 10~7s, exhibits that

the lowpass filter output does not settle to the desired DC value and PLL is unable

to lock within the lock time specification of the PLL. It is intuitive that larger jitter

noise is expected to cause the PLL lock failure.

4.3.4 Statistical Runtime Verification

Intuitively, we expect the violation to occur for the jitter noise shown in Figure 4.11.

However, functional verification can only indicate whether or not the system behaves

correctly. In this section, we use the Monte Carlo Monitor introduced in Section 3.4.2

67

to analyze the jitter noise. In PLL, the VCO exhibits accumulating jitter. The

accumulating jitter depends not only on the direct input but also the on output

of previous transitions. In order to provide an accurate analysis, the period jitter

metric is employed. Compared with phase jitter, period jitter refers not only to

the ideal signal but also to itself. In the VCO, the output signal varies during the

oscillation process. Hence the cycle-to-cycle jitter, which refers only to the signal

itself, is not a proper metric when measuring jitter for VCO. The period jitter is

measure using Equation 4.11 and calculated as standard deviation of the sample

periods.

We conduct a hypothesis test using Monte Carlo method in an offline fashion.

The reason we chose offline observation is that the more information we collect the

more reliable decision we will make. The property is expressed as: the period jitter

of the given system is less than a specific value. The specific value comes from the

system specification of phase noise. For example, if the phase noise is £ — —25dBc

at the offset frequency 10Hz, the corresponding period jitter to this phase noise is

calculated as 5.62ns [26]. As a result, the null hypothesis H0 and the alternative

hypothesis Hx of this property can be expressed as

HQ : Jperiod < 5.62ns; (4.25)

Hi : Jperiod > 5.62ns. (4.26)

where Jperiod is the period jitter of the VCO output. We estimate Jperiod by observing

the information along the simulation path (0.005s) as a sample. The observed period

jitter is denoted by J0t,s. Since a large value would provide the evidence for the

rejection of the null hypothesis HQ. An upper tail test scenario is considered in

this case. The experimental results for several jitter deviation factors J (given in

Equation 4.20) with the confidence level 5 = 0.95 (a = 0.05) are shown in Table 4.3.

The simulation was carried out under the significance level a = 0.05. J varies from

68

10-8s to 10~7s. The acceptance of the null hypothesis H0 indicates that the property

is satisfied and the rejection of Ho indicates that the property is violated and the

period jitter in VCO is larger than the specification. Due to the upper tail test, the

evidence of rejecting H0 is that the observed value T0(,s is greater than the critical

value based on the significance level. When J = 5 x 10~7s, the Monte Carlo monitor

announces the rejection of H0 based on the fact that T0\,s is greater than the critical

value (i.e., it falls into the rejection region). The experiment was performed with

the Monte Carlo trials M = 1000. The last column lists the error margins (e) for

the confidence interval of 95% when J varies. Each error margin forms a confidence

interval with the observed value J0&s for Jperiod- For example, when J = 5 x 10~7s,

the probability that the true value of the period jitter of the whole simulation path

presents within the interval (90.4403, 92.5857)ns is 95%. The interval falls into the

rejection region which indicates that we have the confidence level of 95% to reject

H0 in this case. The error margin e is calculated using Equation 3.17 introduced in

Section 3.4.3.

Table 4.3: Statistical Runtime Verification with Different J

J(s)

1 x 10~8

5 x 10"8

1 x 10~7

5 x 10-7

Critical Value

1.5069
1.5896
1.6597
1.5442

-* obs

-3.8455
-1.7013
0.5900
152.73

Jobs (ns)

3.4609
4.6667
5.9552
91.513

Ho

Accept

Accept
Accept
Reject

a

0.05
0.05
0.05
0.05

e (ns)

1.0710

1.0589
1.0711
1.0727

It is noted from Table 4.3 that when J increases from 1 x 10_7s to 5 x 10~7s,

the Monte Carlo monitor experiences a procedure that the decision changes from

acceptance to rejection. Table 4.4 shows the verification results influenced by the

variation of J and a. J increases by a small step from 1 x 10~7s to 1.4 x 10_7s.

The decision tends to change from acceptance to rejection. However, for certain

selection of J, if we change the significance level a, the decision can be different.

For example, in the case of J = 1.2 x 10_7s, we accept H0 when a is 0.05; while

69

we have to reject H0 when a is 0.1. Figures 4.12 (a) and (b) show the observed

value T0bs (small triangle) and the rejection region (shaded area) in the case that

J = 1.2 x 10~7s and a is 0.05 and 0.1, respectively. In Figure 4.12 (a), the observed

value is located outside the rejection region. In Figure 4.12 (b), the rejection region

is enlarged and includes the observed value T0bs. It can be explained using the

critical value approach: the fact that reducing the confidence level 5, or increasing

the significance level a, makes the critical value smaller. As a result, the rejection

region is enlarged accordingly. If the observed value happens to fall within the

enlarged rejection region, the null hypothesis is rejected. Similar situation occurs

when J = 1.3 x 10-7s except that when the confidence level increases from 95% to

99% (a from 0.05 to 0.01), the Monte Carlo monitor accepts H0 instead of rejecting

it. This situation is shown in Figures 4.12 (c) and (d). In addition, we notice that

the error margin e increases as the confidence level decreases and vice versa. The

reason is that in order to achieve higher confidence level, the interval is supposed

to be larger to allow the estimated value to be included there. In other words, the

probability that the estimated value falls into the narrower interval is smaller than

that for the wider one.

Table 4.4: Statistical Runtime Verification with Different J and a

J(s)

1 x 10"7

1.1 x 10~7

1.2 x 10~7

1.2 x 10-7

1.3 x 10"7

1.3 x 10"7

1.4 x 10"7

1.4 x 10-7

Critical Value

1.6597
1.6383
1.6571
1.1920
1.5874
2.4287
1.6803
1.3506

•Lobs

0.5900

0.9244
1.5768
1.5768
1.9480
1.9480
2.8203
2.8203

Jobs (ns)

5.9552

6.1432
6.5267
6.5267
6.8476
6.8476
7.2094
7.2094

Ho

Accept

Accept
Accept
Reject
Reject
Accept
Reject
Reject

a

0.05

0.05
0.05
0.1
0.05
0.01
0.05
0.01

e (ns)

1.0711

1.0730
1.0953
9.0523 x 10"1

1.1482
1.3280
1.1057
1.4374

The hypothesis test results can be different for different confidence levels when

the observed value is approaching the critical value. The accuracy would be affected

70

0.4r

0.35-

0.3-

0.25-

| 0.2-

0.15-

0.1 •

0.05-

0 -

(a) (b)

(d)

Figure 4.12: Effects of Confidence Level Selection

71

if the confidence level is too high or too low. On the other hand, the confidence

level influences the error margin. Higher confidence level would increase the error

margin and degrade the reliability; lower confidence level on the other hand would

increase the rejection region and cause low accuracy. The reason is that the interval

needs to be enlarged in order to include the estimated value for higher probability,

or higher confidence level. 95% of confidence level, which compromises the two

situations, is the most commonly used and suitable for most engineering and science

researches [40].

In order to evaluate the performance of the Monte Carlo monitor we chose

different numbers of trials M which apply both to Monte Carlo hypothesis testing

and performance evaluation. At the same time, we kept the factor J = 1.4 x 10~7s

and the hypothesis H0 and Hi is the same as given in Equation 4.25 and 4.26.

Table 4.5 lists the estimated significant value a, the performance indicator r) and

the simulation time for different selection of M. When M increases, the performance

indicator r\ decreases accordingly. This implies that the more trials we apply on a

Monte Carlo simulation, the more accurate estimation it will produce. However, the

tradeoff for large number of trials is the simulation time they consume. It is shown

that the simulation time is almost doubled when M increases from 100 to 5000. A

tradeoff can always be found between desired accuracy and simulation time.

Table 4.5: Performance of Monte Carlo Monitoring with Different Trials M

M

100
500
1000
5000

a

0.05

0.05
0.05
0.05

a

0.03
0.042
0.049
0.0502

V

0.02

0.008
0.001
0.0002

Simulation Time (s)

1.7316
2.0436
2.3088
4.4148

72

4.4 Discussion

In this chapter, a PLL based frequency synthesizer is modeled and several interesting

properties are verified. The SRE demonstrates its power to model pure analog, pure

digital, and even mixed signal circuits. In addition, the PSL properties are written

in SRE to perform online monitoring. The SRE model is simulated in C-SRE

simulator. The simulator allows both online and offline monitoring. According to

the comparison of the two, the online monitoring technique surpasses the offline

method in terms of simulation time. Based on the original intention of runtime

verification, the savings in computational resources is expected. Moreover, the high

level abstraction for AMS designs using SRE costs less efforts in terms of modeling

and simulation time [1]. On the other hand, in statistical runtime verification,

we applied the Monte Carlo hypothesis testing to the jitter noise property in the

VCO. The verification is performed in an offline fashion. The reason is that the

jitter noise in VCO depends not only on the input control voltage but also on the

previous output value. We need a large sample of the jitter noise to perform the

Monte Carlo monitoring. The computational expense, such as the simulation time,

is not the issue for statistical runtime verification. The confidence level and error

margin are of significant interest to us. In the end, the performance of the hypothesis

test is evaluated using Monte Carlo simulation. There is a dilemma in the proposed

statistical runtime verification. Once we intend to increase the confidence level of the

test, the accuracy and reliability has to be compromised. It is not unusually the case

when statistical methods are applied. In fact, we estimate the statistical property

of the entire population by observing a sample sequence of it. The confidence level

of 100% is impossible to reach. However, there are some techniques to provide more

reliable decision with certain confidence level such as to make sure the confidence

interval within the rejection region or non-rejection region.

73

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we presented a methodology for functional and statistical runtime

verification of AMS designs. We introduced the concepts of SRE and an SRE-based

simulator, namely C-SRE. The ability to choose the right level of abstraction makes

it possible for the verification engineer to describe important components of the

design accurately, which is a significant concern in analog design and verification.

SRE demonstrates its power in modeling pure analog, pure digital, or even the

mixed signal components at high level of abstraction. The high level abstraction

using SRE not only saves the simulation time, but also saves the time to model the

AMS design.

For functional runtime verification, the properties are expressed in PSL for-

mally. The monitor is constructed by translating the PSL into SRE notations. By

doing this, the consistency between the model of the AMS design and the property

is established. We performed the online monitoring in the C-SRE simulator. The

functional runtime verification offers a dynamic monitoring method to the behavior

of the AMS system. Compared with offline monitoring, the proposed methodology

saves the computational resources in terms of simulation time. Another benefit of

74

the proposed methodology is that the verification point can either be located at

analog signals or digital signals. This enables the monitor to verify the functional

properties both for the whole system and the individual block. In the case study,

several functional properties of a PLL based frequency synthesizer were verified

using the proposed methodology.

We also used hypothesis testing and Monte Carlo simulation for statistical

runtime verification of the AMS design. The hypothesis test makes the decision

between the null hypothesis and its exclusive alternative hypothesis. There are two

types of errors for hypothesis test: Type I error a and Type II error @. Type I error

is also called significance level. The whole procedure operates based on confidence

level S which is related to a by 8 = 1 — a. By evaluating the observed value of the

test sample and the critical value associated with the significance level, the decision

of whether or not rejecting null hypothesis is made. Each decision comes with a

confidence level along with the margin of error. The error margin indicates the

probability that the estimated value is inclosed to an interval is the confidence level.

Monte Carlo simulation is used to generate the estimate random model in the case

that we do not have the knowledge about the distribution of the population. This

makes the hypothesis robust to most stochastic processes. We present the random

jitter analysis using the proposed statistical runtime verification method. The effects

of the confidence level selection are illustrated and discussed. Higher confidence level

increases the reliability and enlarges error margin for the interval. The conclusion is

that the situation is inevitable and the choice of the confidence level has to be made

according to the system specification. In addition, the performance of the Monte

Carlo monitor is evaluated and discussed.

The main advantages of our methodology are: (1) the SRE expression is likely

to be understood both by analog and digital engineers; (2) SRE fully supports safety

and liveness property as well as strong and weak semantics ; (3) since both the AMS

design and PSL properties are described using SREs, continuous time behavior can

75

be simulated and monitored together in discrete time; (4) online monitoring saves

cost in terms of memory usage and simulation time; and (5) statistical runtime

verification is able to analyze the statistical properties of the system with a stochastic

process.

5.2 Future Work

The C-SRE simulator in this thesis performs both the simulation and online func-

tional runtime verification. However, enhancement can be made to the monitor

part, such as the automation of the SRE model generation in C language. Another

limitation of the monitor is that only one property can be verified at a time. Fu-

ture work on the monitor would be the automation of the monitor construction and

implementation of the support for multiple property verification.

We believe our first attempt to statistical runtime verification to AMS design

was successful. However, the approach would be extended to online fashion without

losing any accuracy and reliability in terms of confidence level and error margin.

The benefits of online statistical monitoring would be: (1) interactively increase the

simulation trace according to the current observed statistical information in order

to guarantee the accuracy of the results ; (2) interactively change the input in order

to improve the coverage especially for the analysis of noise.

Finally, the statistical runtime verification needs to be integrated with the ver-

ification language such as PSL. Because the statistical properties are also important

for the verification of AMS system especially for dynamic characteristics.

76

Bibliography

[1] N. Abbasi, R. Narayanan, G. Al-Sammane, M. Zaki, and S. Tahar. En-

abling AMS Simulation using Recurrence Notations, Technical Report, De-

partment of ECE, Concordia University, Montreal, Canada, May 2008.

http://hvg.ece.concordia.ca/Publications/TECH_REP/CSRE_TR08/.

[2] Accellera Property Specification Language Reference Manual (version 1.1).

http://www.eda.org/vfv/docs/PSL-vl.l-pdf.

[3] G. Al Sammane, M.H. Zaki, Z.J. Dong, and S. Tahar. Towards Assertion Based

Verification of Analog and Mixed Signal Designs Using PSL. In Proc. Forum

on Specification and Design Languages, pages 293-298, 2007.

[4] R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning. In

Proc. of the 25th Annual Symposium on Theory of Computing, pages 592-601.

ACM Press, 1993.

[5] A. Aziz, K. Sanwal, V. Singhal, and R.K. Brayton. Verifying Continuous Time

Markov Chains. In Computer Aided Verification, volume 1102 of LNCS, pages

269-276. Springer, 1996.

[6] R.E. Best. Phase-Locked Loops: Design, Simulation, and Applications.

McGraw-Hill, 2003.

[7] E. Clarke, A. Donze, and A. Legay. Statistical Model Checking of Mixed-Analog

Circuits with an Application to a Third Order A-E Modulator. In Hardware

77

http://hvg.ece.concordia.ca/Publications/TECH_REP/CSRE_TR08/
http://www.eda.org/vfv/docs/PSL-vl.l-pdf

and Software: Verification and Testing, volume 5394 of LNCS, pages 149-163.

Springer, 2009.

[8] E. Clarke, D. Kroening, J. Ouaknine, and 0. Strichman. Computational Chal-

lenges in Bounded Model Checking. International Journal on Software Tools

for Technology Transfer, 7(2):174-183, 2005.

[9] Collet International Research. Survey, 2002.

[10] Intel Corporation. Moores Law Timeline, http://download.intel.com/press-

room/kits/ events/moores_law_40th/MLTimeline.pdf, 2008.

[11] H. de Bellescise. La rception Synchrone. Onde Electrique, 11:230-240, 1932.

[12] C. Eisner. PSL for Runtime Verification: Theory and Practice. In Runtime

Verification, volume 4839 of LNCS, pages 1-8. Springer, 2007.

[13] C. Eisner and D. Fisman. A Practical Introduction To PSL. Springer, 2006.

[14] E.A. Emerson. Temporal and Modal Logic. In Handbook of Theoretical Com-

puter Science, pages 995-1072. Elsevier, 1990.

[15] E.A. Emerson and J.Y. Halpern. "Sometimes" and "Not never" Revisited: On

Branching Versus Linear Time Temporal Logic. Journal of the ACM, 33(1): 151-

178, 1986.

[16] G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems past HyTech.

International Journal on Software Tools for Technology Transfer, 10(3):263-

279, 2008.

[17] G. Frehse, B.H. Krogh, R.A. Rutenbar, and O. Maler. Time Domain Verifica-

tion of Oscillator Circuit Properties. Electronic Notes in Theoretical Computer

Science, 153(3):9-22, 2006.

78

http://download.intel.com/press-

[18] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving

Environment for Higher-Order Logic. Cambridge University Press, 1993.

[19] 0 . Hasan. Formal Probabilistic Analysis using Theorem Proving. Ph.D. Thesis,

Concordia University, 2008.

[20] E. Hegazi, J. Rael, and A. Abidi. The Designer's Guide to High-Purity Oscil-

lators. Springer, 2004.

[21] A. Jesser, S. Laemmermann, A. Pacholik, R. Weiss, J. Ruf, W. Fengler,

L. Hedrich, T. Kropf, and W. Rosenstiel. Advanced Assertion Based Design

for Mixed-Signal Verification. Transactions on Fundamentals of Electronics,

Communications and Computer Sciences. E91(12):3548-3555, 2008.

[22] K. Jones, V. Konrad, and D. Nickovic. Analog Property Checkers: A DDR2

Case Study. In Proc. Formal Verification of Analog Circuits (FAC), 2008.

[23] M. Kim. Information Extraction for Run-time Formal analysis. PhD thesis,

University of Pennsylvania, 2001.

[24] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-mac: A

run-time assurance approach for Java programs. Formal Methods in System

Design, 24(2): 129-155, 2004.

[25] T. Kropf. Introduction to Formal Hardware Verification. Springer, 2000.

[26] K. Kundert. Predicting the Phase Noise and Jitter of PLL-Based Frequency

Synthesizers. http://www.designers-guide.org/.

[27] P. L'Ecuyer. Uniform Random Number Generation. Annals of Operations

Research, 53:77C120, 1994.

[28] E.L. Lehmann. Testing Statistical Hypotheses. Springer, 2008.

79

http://www.designers-guide.org/

[29] M.P. Li. Jitter, Noise, and Signal Integrity at High-Speed. Prentic Hall, 2007.

[30] O. Maler and D. Nickovic. Monitoring Temporal Properties of Continuous

Signals. In Formal Techniques, Modelling and Analysis of Timed and Fault-

Tolerant Systems, volume 3253 of LNCS, pages 152-166. Springer, 2004.

[31] W. L. Martinez and A. R. Martinez. Computational Statistics Handbook with

MATLAB . Chapman & Hall/CRC, 2001.

[32] The MathWorks. Matlab. http://www.mathworks.com/.

[33] N. Metropolis and S. Ulam. The Monte Carlo Method. Journal of the American

Statistical Association, 39:335-341, 1949.

[34] A. Meyer. Principles of Functional Verification. Newnes, 2003.

[35] MLDesign Tech. http://www.mldesigner.com.

[36] K. Morin-Allory, L. Fesquet, B. Roustan, and D. Borrione. Asynchronous

online-monitoring of logical and temporal assertions. In Embedded Systems

Specification and Design Languages, volume 10 of LNEE, pages 243-253.

Springer, 2008.

[37] D. Nickovic and O. Maler. AMT: A Property-Based Monitoring Tool for Analog

Systems. In Formal Modeling and Analysis of Timed Systems, volume 4763 of

LNCS, pages 304-319. Springer, 2007.

[38] A.V. Oppenheim, R.W. Schafer, and J.R. Buck. Discrete-time Signal Process-

ing. Prentice Hall, 1999.

[39] PVS. http://pvs.csl.sri.com, 2008.

[40] T. Pyzdek and P. Keller. Quality Engineering Handbook. CRC, 2003.

[41] B. Razavi. Design of Analog CMOS Integrated Circuits. McGraw-Hill, 2001.

80

http://www.mathworks.com/
http://www.mldesigner.com
http://pvs.csl.sri.com

[42] U. Sammapun, I. Lee, and O. Sokolsky. RT-MaC: Runtime Monitoring and

Checking of Quantitative and Probabilistic Properties. In Proc. Real-Time

Computing Systems and Applications, pages 147-153, 2005.

[43] B. Stackhouse, S. Bhimji, C. Bostak, D. Bradley, B. Cherkauer, J. Desai,

E. Francom, M. Gowan, P. Gronowski, D. Krueger, C. Morganti, and S. Troyer.

A 65 nm 2-Billion Transistor Quad-Core Itanium Processor. IEEE Journal of

Solid-State Circuits, 44:18-31, 2009.

[44] SystemC-AMS Standard Draft 1, 2008. http://www.systemc-ams.org/.

[45] Verilog-AMS Language Reference Manual, 2004. http://www.accellera.org/.

[46] VHDL-AMS Language Reference Manual, 2004. http://www.eda.org/vhdl-

ams/.

[47] H.L.S. Younes and R.G. Simmons. Probabilistic Verification of Discrete Event

Systems Using Acceptance Sampling. In Computer Aided Verification, volume

2404 of LNCS, pages 23-39. Springer, 2002.

[48] H.L.S. Younes. Error control for probabilistic model checking. In Verification,

Model Checking, and Abstract Interpretation, volume 3855 of LNCS, pages 142-

156. Springer, 2006.

[49] J. Yuan, C. Pixley, and A. Aziz. Constraint-Based Verification. Springer, 2006.

[50] M. Zaki, S. Tahar, and G. Bois. Formal Verification of Analog and Mixed Signal

Designs: A Survey. Microelectronics Journal, 39(12):1395-1404, 2008.

81

http://www.systemc-ams.org/
http://www.accellera.org/
http://www.eda.org/vhdl-

