
Form Methods Syst Des (2014) 44:203–239

DOI 10.1007/s10703-013-0199-z

Runtime verification of embedded real-time systems

Thomas Reinbacher ⋅Matthias Függer ⋅ Jörg Brauer

Published online: 7 November 2013

© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract We present a runtime verification framework that allows on-line monitoring of

past-time Metric Temporal Logic (ptMTL) specifications in a discrete time setting. We de-

sign observer algorithms for the time-bounded modalities of ptMTL, which take advantage

of the highly parallel nature of hardware designs. The algorithms can be translated into effi-

cient hardware blocks, which are designed for reconfigurability, thus, facilitate applications

of the framework in both a prototyping and a post-deployment phase of embedded real-time

systems. We provide formal correctness proofs for all presented observer algorithms and

analyze their time and space complexity. For example, for the most general operator consid-

ered, the time-bounded Since operator, we obtain a time complexity that is doubly logarith-

mic both in the point in time the operator is executed and the operator’s time bounds. This

result is promising with respect to a self-contained, non-interfering monitoring approach

that evaluates real-time specifications in parallel to the system-under-test. We implement

our framework on a Field Programmable Gate Array platform and use extensive simulation

and logic synthesis runs to assess the benefits of the approach in terms of resource usage

and operating frequency.

Keywords Runtime verification · Embedded real-time systems · Past-time logics · Online

monitoring

T. Reinbacher · M. Függer (B)

Embedded Computing Systems Group, Vienna University of Technology, Treitlstrasse 3, 1040 Vienna,

Austria

e-mail: fuegger@ecs.tuwien.ac.at

T. Reinbacher

e-mail: reinbacher@ecs.tuwien.ac.at

J. Brauer

Embedded Software Laboratory, RWTH Aachen University and Verified Systems International GmbH,

Am Fallturm 1, 28359 Bremen, Germany

e-mail: brauer@verified.de

mailto:fuegger@ecs.tuwien.ac.at
mailto:reinbacher@ecs.tuwien.ac.at
mailto:brauer@verified.de


204 Form Methods Syst Des (2014) 44:203–239

1 Introduction

Rigorous verification strategies are especially vital for the domain of safety-critical embed-

ded real-time systems [48] where systems often do not only need to comply with a set of

functional requirements but also—equally important—with tight timing constraints. Correct

behavior of these systems is defined by the sequence of data they produce—either internally

or at their physical outputs—complemented with their temporal behavior. The key idea be-

hind formal verification techniques such as model checking [6, 22] is to exhaustively check

all executions of a structure that is related to an implementation and its environment against

given requirements, the latter of which are often formalized in terms of a temporal logic.

Exhaustive analysis of programs, however, often suffers from practical infeasibility (due to

state space explosion [21]) and/or theoretical impossibility (due to undecidability results).

In runtime verification [9], observers are synthesized to automatically evaluate the cur-

rent execution of a system-under-test (SUT), typically from a formal specification in a logic

that is suitable to cover certain forms of real-world specifications. The on-the-fly nature of

runtime verification can be coupled with costly overhead [10, 56, 71]. Some mitigated over-

head by reducing instrumentation points [34]; others ported the system and/or the observers

to a more powerful architecture, such as database systems [8]. These artifacts of runtime

verification are not compatible with embedded real-time systems running on ultra-portable

hardware with power and performance limitations [65].

To evaluate specifications, runtime verification depends on observations of the state of

the SUT. These observations are referred to as events and are input to the observer. However,

the SUT’s state typically is not directly observable.

An approach classically taken in runtime verification to obtain observations is to in-

strument the code base, a technique that has proven feasible for a number of high-level

implementation languages such as C, C++, and Java [9, 39, 40, 64] as well as for hard-

ware description languages such as VHDL and Verilog [4, 77]. Instrumentation can be done

manually, or automatically by scanning programs for assignments and function calls at the

level of the implementation language and then inserting hook-up functions that emit rele-

vant events to an observer. However, for the domain of (safety-critical) embedded real-time

systems, existing approaches, despite the considerable progress in the past, are not directly

applicable; mainly due to the following limitations:

– Source code instrumentation of high-level languages can only capture events that are

accessible from within the instrumented software system. Embedded systems [59] often

include both hardware and mechanical parts; events from those might go unnoticed for an

instrumenting runtime verification approach.

– The timing behavior of the SUT is altered by instrumentation [23, 34]. The additional

runtime overhead may drastically impact the correctness of a heavy-loaded real-time ap-

plication with tight deadlines. The same applies to memory consumption of resource con-

strained systems. The relevance of this argument is supported by the fact that restricted

architectures are often used in critical environments[12, 33, 66], such as in nuclear power

plants [28] and spacecrafts [30, Chap. 3].

– Instrumentation may make re-certification of the system onerous (e.g., systems certified

for civil aviation after DO-178B [73]).

– In its present shape, runtime verification often analyzes the correctness of high-level code.

However, to show that a high-level specification is correctly reproduced by the target

system, it is further necessary to show the correctness of the translation of the high-level

code into executable code, i.e., the compiler. Despite recent breakthroughs [52, 53], only



Form Methods Syst Des (2014) 44:203–239 205

Fig. 1 Sample applications of an

instance of the proposed

framework, i.e., the Runtime

Verification Unit (RVU). Top left:

RVU embedded into a

network-on-chip, monitoring data

exchanged among network

nodes; Top right: RVU connected

to the data interface of a

microcontroller IP-core,

monitoring microcontroller

behavior (software); Bottom left:

RVU connected to digital

interconnects among chips on a

printed circuit board (PCB),

monitoring data exchanged

through digital I/Os; Bottom

right: RVU running on an FPGA

attached to a debug interface of a

digital signal processor,

monitoring changes of accessible

registers and diagnosis indicators

few verified compilers are used in practice and flaws introduced by compilers [31, 55, 81]

may remain undetected by existing approaches.

– Instrumentation at binary code level may circumvent the process of establishing correct-

ness of the compiler. However, binary instrumentation is incomplete as long as a sound

reconstruction of the control flow graph is not obtained from the binary. Despite being

an active area of research [7, 35, 46, 67], generating sound yet precise results remains a

challenge.

There exist, however, systems and applications [80], where the relevant events can be

observed without the need to infuse additional functions into the high-level code. Consider,

for example, an implementation of a network protocol, where the task is to check the cor-

rectness of data flow between two network nodes. It appears natural to place an additional

(passive) node in the network that collects events sent over the network, rather than instru-

menting the high-level code of the network nodes. The strength of an approach like this is

that collecting of events is non-intrusive, at least, as long as the additional node is passive

and does not actively participate in the communication. It is important to observe that in-

formation exchange among systems is often performed by standardized interfaces. This is

especially the case for embedded real-time systems, at various levels of detail [59, Chap. 3].

For certain systems, wiretapping is the only option left to gain information of the state of the

system, for example, if the design includes proprietary hardware or software components.

In the light of the discussion above, we proceed by defining requirements of a runtime

verification framework targeting embedded real-time systems. We aim at a framework that

is transparent to a hardware implementation, so as to be attached to or embedded into var-

ious SUTs. Examples of applications are outlined in Fig. 1. We summarize these special

requirements as:

Stand-alone The runtime verification framework should not only be deployed during the

testing phase of the product but also after the product is shipped. Therefore, it should



206 Form Methods Syst Des (2014) 44:203–239

operate in a self-contained way and not depend on a powerful host computer that executes

the observer.

Non-intrusive The resulting observers should be efficient enough to not alter the timing

requirements of the SUT. From an algorithmic viewpoint, observers with an a-priory known

execution time are of utmost importance so as to statically determine upper bounds of the

execution time of the observer. From an implementation point of view, we need to provide

measures to passively observe events from the SUT.

Timed To support correctness claims that involve timed properties, the framework should

support expressive logics to formalize not only functional but also real-time requirements.

Reconfigurable For the testing phase, the framework should be reconfigurable without re-

quiring to re-synthesize the whole hardware design, which may take dozens of minutes to

complete, for example when targeting an Field Programmable Gate Array (FPGA) plat-

form.

2 Contributions and roadmap

Our work can be seen as a response to overcome the above limitations that hinder the broad

application of runtime verification to embedded real-time systems. This article provides

the following contributions toward a stand alone, non-intrusive, timed, and reconfigurable

hardware runtime verification approach:

(a) We present on-line observer algorithms that allow one to verify whether a past-time

metric temporal logic (ptMTL) formula holds at (discrete) times n ∈N0. The algorithms

make use of basic operations only and are stated in a way that allows for a direct im-

plementation in hardware, that can run without a host computer. By that our observers

fulfill the timed and stand alone requirements.

(b) We formally prove the observers’ correctness and derive bounds on their time complex-

ity in terms of gate delays and their space complexity in terms of required memory bits.

With n being the time an observer algorithm is executed and J a non-empty interval we

obtain, for the most general of the presented observer algorithms, the ptMTL Since op-

erator ϕ1 SJ ϕ2, a time complexity of O(log2 log2 max(J ∪ {n})), only. The observer’s

space complexity is dominated by the size of a list it needs to maintain. We show that the

list’s space complexity is at most 2⌈log2(n)⌉ ⋅ (2 max(J ) −min(J ) + 2)/(2 + len(J )),
where len(J ) =max(J ) −min(J ). Both complexity results, as well as the fact that our

algorithms refrain from loops and recursions and build on simple operations only, en-

able applications of our runtime verification framework on resource limited platforms

that require predictable timing and memory consumption.

(c) We explain how to derive non-instrumenting efficient realizations of the proposed

observer algorithms in hardware. The resulting hardware profits from the simplic-

ity and low complexity of our highly-parallel observer algorithms. In contrast to

instrumentation-based runtime verification techniques for software systems our ob-

servers are well suited to supervise hardware components. By that, in combination

with (b), our observers fulfill the non-intrusive requirement. Although our algorithms

are tailored for a hardware implementation, the observers can simply be adopted to run

in software too. Reconfigurability of our observers is achieved by, instead of hardwiring

the observers inputs and outputs according to their parse tree, letting a programmable,

specifically tailored microprocessor control a pool of observers.



Form Methods Syst Des (2014) 44:203–239 207

(d) To evaluate the effectiveness of our approach, we report on a throughout study of sim-

ulation traces and synthesis results of a full-fledged hardware implementation of the

presented observer algorithms and discuss the scalability of our approach.

With regard to the contributions above, (a) and (b) are an extension of our work we

presented at the International Conference on Runtime Verification [71], including detailed

correctness proofs for our algorithms and (c) and (d) are unique contributions of this ar-

ticle. Contribution (c) builds on our previous work [69], where we presented a micropro-

cessor designed to evaluate ptLTL specifications in a software-oriented fashion. Using this

approach to check ptMTL specifications, however, requires a costly (cf. Sect. 3.3) rewriting

to an equivalent ptLTL specifications. Instead, we show how to map the building blocks of

our ptMTL observer algorithms into efficient hardware units. This enables our microproces-

sor to natively evaluate ptMTL specifications in real-time. Both (c) and (d) help us to put the

presented real-time observer algorithms into industrial practice.

The contributions of this article are presented as follows. First, Sect. 3 is a primer on

temporal logics, which sets the scene for the monitoring algorithms stated in Sect. 4. Sec-

tion 5 details the key structures of the hardware design and Sect. 6 reports on experimental

evidence. We continue with a survey of related work in Sect. 7 and conclude in Sect. 8.

3 Logics for runtime verification

We briefly summarize the temporal logics past-time linear temporal logic (ptLTL) and past-

time metric temporal logic (ptMTL) which are used to specify properties in our framework.

Both allow one to specify safety, past-time properties over executions. For further details,

we refer the reader to more elaborate sources such as [2, 13, 32, 42, 51, 57].

3.1 Past-time linear temporal logic

A popular logic in runtime verification is the past-time fragment of LTL (ptLTL), mainly due

to: (i) observer generation for ptLTL is straightforward [39, Sect. 5], and (ii) ptLTL can easily

express typical specifications [54]. Even though past-time operators do not yield the expres-

sive power of full LTL [32, Sect. 2.6], past-time operators often express desired properties

from specifications [50, 54]. With ● in {∧,∨,→} and σ in the set Σ of atomic propositions,

a formula ϕ is defined as:

ϕ ∶∶= true ∣ false ∣ σ ∣ ¬ϕ ∣ ϕ ● ϕ ∣ ⊙ ϕ ∣ ⟐ ϕ ∣ ⊡ ϕ ∣ ϕ Ss ϕ ∣ ϕ Sw ϕ

Hereby, ⊙ϕ is the past-time analogue of next and referred to as previously ϕ. Likewise,

⟐ϕ is referred to as eventually in the past ϕ and ⊡ϕ as always in the past ϕ. The duals

of the until and the weak-until operators are Ss and Sw , i.e., strong since and weak since,

respectively. Similar as in LTL [41, Theorem 1], ptLTL can be reduced to the propositional

operators plus two past-time operators [58], e.g., to ⊙ and Ss . The satisfaction relation of

a ptLTL specification can be defined as follows: Let e = (st)t≥0 be an execution where st is

a state of the system. Denote by en, for n ∈ N0, the execution prefix (st)0≤t≤n. For a ptLTL

formula ϕ, time n ∈N0 and execution e, we define ϕ holds at time n of execution e, denoted



208 Form Methods Syst Des (2014) 44:203–239

en ⊧ ϕ, inductively as follows:

en ⊧ true,

en /⊧ false,

en ⊧ σ, where σ ∈Σ iff σ holds on sn,

en ⊧ ¬ϕ iff en /⊧ ϕ,

en ⊧ ϕ1 ∧ ϕ2 iff en ⊧ ϕ1 and en ⊧ ϕ2,

en ⊧ ϕ1 ∨ ϕ2 iff en ⊧ ϕ1 or en ⊧ ϕ2,

en ⊧ ϕ1→ ϕ2 iff en ⊧ ϕ1 implies en ⊧ ϕ2,

en ⊧⊙ϕ iff en−1 ⊧ ϕ if n > 0 , and e0 ⊧ ϕ otherwise,

en ⊧ ϕ1 Ss ϕ2 iff ∃j(0 ≤ j ≤ n) ∶ (ej ⊧ ϕ2 ∧ ∀k(j < k ≤ n) ∶ ek ⊧ ϕ1).

The above syntax can be augmented with a set of additional operators [42, 51] to provide

a succinct representation of common properties that appear in practice:

ϕ ∶∶= ↑ ϕ ∣ ↓ ϕ ∣ [ϕ,ϕ)s ∣ [ϕ,ϕ)w

↑ ϕ and ↓ ϕ are trigger conditions where ↑ ϕ stands for start ϕ (i.e., ϕ was false in the

previous state and is true in the current state, equivalent to ϕ ∧ ¬ ⊙ ϕ), ↓ ϕ for end ϕ (ϕ

was true in the previous state and is false in the current state, equivalent to ¬ϕ ∧⊙ϕ). The

interval operators are strong interval [ϕ1,ϕ2)s (ϕ2 was never true since the last time ϕ1

was true, including the state when ϕ1 was true, equivalent to ¬ϕ2 ∧ ((⊙¬ϕ2) Ss ϕ1)) and

weak interval (equivalent to ⊡¬ϕ2 ∨ [ϕ1,ϕ2)s ) In the following we will only refer to the

strong since and shortly write S instead of Ss . Checking whether a ptLTL formula holds at

time n ∈N0 in some execution e = (st)t≥0 can be determined by evaluating only the current

state sn and the results from the predecessor state sn−1 [42]. For example, evaluating the

invariant ϕ = ⊡ σ on execution e = (st)t≥0 can be done by:

en ⊧ ⊡σ ⇔⋀n
t=0(σ holds on st)

⇔ (en−1 ⊧⊡ σ) ∧ (σ holds on sn)

3.2 Past-time metric temporal logic

MTL [2] extends LTL by replacing the qualitative temporal operators of LTL by quantitative

operators that respect time bounds. Since we are interested in on-chip observer algorithms,

progress of time is provided by the (possibly divided) chip’s clock signal, resulting in a

discrete time base N0.1 Time bounds of quantitative operators are given in form of intervals:

For t in N0 and t ′ in N0∪{∞}, we write [t, t ′) for the set {i ∈N0 ∣ t ≤ i < t ′} and, if t ′ in N0,

[t, t ′] for the set {i ∈ N0 ∣ t ≤ i ≤ t ′}. Similar to ptLTL, a restriction of MTL to its past time

fragment (ptMTL) is of interest. Formally, a ptMTL formula ϕ is defined by:

ϕ ∶∶= true ∣ false ∣ σ ∣ ¬ϕ ∣ ϕ ● ϕ ∣ ϕ SJ ϕ

where σ ∈Σ , ● ∈ {∧,∨,→}, and J = [t, t ′] for some t, t ′ ∈N0. The semantics of true, false,

σ , ¬ϕ, and ϕ ●ϕ are as before. Recall that in ptLTL ϕ1 S ϕ2 expresses ϕ2 was true in the past

and since then ϕ1 was true. By way of contrast, satisfaction of en ⊧ ϕ1 SJ ϕ2 in ptMTL, does

not only depend on the observation that ϕ1 S ϕ2 holds in the current state, but also on (i) the

1In our framework, we thus assume time points to be from N0.



Form Methods Syst Des (2014) 44:203–239 209

time n of the current state and (ii) the times i ∈N0 since when ϕ1S ϕ2 was observed to be

true: for at least one such i, ei ⊧ ϕ2, and n− i ∈ J have to hold. Formally, we define:

en ⊧ ϕ1 SJ ϕ2 iff ∃i(0 ≤ i ≤ n) ∶ (n− i ∈ J ∧ ei ⊧ ϕ2 ∧ ∀j(i < j ≤ n) ∶ ej ⊧ ϕ1)

Example Many real-time properties, such as

“If the system leaves the idle mode, it has received an according signal in the past 50

clock-cycles.”

can be expressed in ptMTL. The above property, e.g., can be formalized by:

(↓ (in idle mode))→ (true S[0,50] (received message))

Not surprisingly, determining satisfaction of an MTL (or ptMTL) formula is computationally

more expensive than checking satisfaction of an LTL (or ptLTL) formula [78, Theorem 3.4].

3.3 Rewriting past-time metric temporal logic to past-time linear temporal logic

In a discrete time setting, there is an equivalent ptLTL formula for every ptMTL formula [57],

directly leading to an observer algorithm for ϕ1S[a,b]ϕ2. With ⊙iϕ being ⊙ applied i times

to ϕ, a straightforward generic translation is given by the equivalence:

en ⊧ ϕ1 S[a,b] ϕ2 ⇔ ∃i(a ≤ i ≤ b) ∶ ((⊙iϕ2) ∧ (⊙i−1ϕ1) ∧ (⊙i−2ϕ1) ∧ ⋅ ⋅ ⋅ ∧ ϕ1)
⇔ ⋁b

i=a ((⊙iϕ2) ∧⋀i−1
j=0(⊙

jϕ1))

In a hardware implementation, one can make use of shift-registers to store the relevant

part of the execution path with regard to the truth values of ϕ1 and ϕ2. We will proceed by a

sample implementation making use of the equivalence above.

Example Consider the ptMTL formula ϕ1 S[3,9] ϕ2. Rewriting the formula into a hardware

implementation, requires two shift registers of length 9 and 8, respectively. With the equiv-

alences from above, en ⊧ ϕ1 S[3,9] ϕ2 can be rewritten into ⋁9
i=3((⊙

iϕ2) ∧ ⋀i−1
j=0(⊙

jϕ1)),
which can be realized by the optimized, hand-crafted circuit shown in Fig. 2. Observe that

we do not need to store ⊙0ϕ1 and ⊙0ϕ2 explicitly, as they are immediately available. The

circuit accounts for 15 two-input AND gates and six two-input OR gates. In a generalized

setting, the proposed circuit requires the following resources:

– Shift registers (memory): 2× b − 1

– Two-input AND gates: 2× b − a

– Two-input OR gates: b − a

With parameters a = 5 and b = 1500, the circuit will occupy 3×b−2×a = 3×1500−2×5 =
4490 two-input gates, and 2 × b − 1 = 2 × 1500 − 1 = 2999 flip-flops to implement the shift

registers, resulting in a huge circuit.

It is important to observe that the chain of AND gates starting at ⊙0ϕ1 introduces a gate

propagation delay [44, Chap. 9] Δ on the signal that is proportional to b and delays the

output of the verdict en ⊧ ϕ1 S[a,b] ϕ2. With a propagation delay δAND of a single AND gate

of and an AND chain of length b−1, the total propagation delay equals to Δ = (b−1)×δAND.

The chain becomes the critical path of the circuit and lowers the achievable operational

frequency of the observer design. This effect can be alleviated by introducing a pipeline,

however, not without the cost of additional memory and control logic.



210 Form Methods Syst Des (2014) 44:203–239

Fig. 2 Hardware realization of a rewriting from ϕ1 S[3,9] ϕ2 to ⋁b
i=a((⊙

iψ) ∧ ⋀i−1
j=0
(⊙j ϕ)). The

parameters a and b are set according to the interval in ϕ1 S[3,9] ϕ2, i.e., a = 3 and b = 9, yielding

⋁9
i=3
((⊙iψ) ∧⋀i−1

j=0
(⊙j ϕ))

This supports that rewriting ptMTL to ptLTL, albeit theoretically possible, is costly and

thus infeasible in practice with an application in mind where the satisfaction relation is

checked on-the-fly, i.e., in parallel to the SUT. Rewriting, however, may prove feasible when

the observer is executed on a powerful host computer with a capable term rewriting engine

at hand, as studied in [72].

4 Observer design for real-time properties

In the following, we discuss the formal design of on-line observer algorithms for specifica-

tions in ptMTL in a discrete time model. The design is inspired by the observers described

in [11] and extends work on observers for ptLTL [42] which have been built in hardware [63,

68]. We first give a high-level definition of the algorithms and turn to a hardware implemen-

tation in Sect. 5.

4.1 Decomposing a specification

In the following let e = (st)t≥0 be an execution and ϕ a ptMTL formula. Further, let J = [t, t ′],
with t, t ′ ∈N0, be a non-empty interval. An observer is an algorithm that, given input ϕ and



Form Methods Syst Des (2014) 44:203–239 211

Fig. 3 Validity of en ⊧ ϕ1 and en ⊧ ϕ2 for prefix of execution e

execution e, at each time n ∈N0, returns true if en ⊧ ϕ, and false otherwise. We define the

return value of our observer algorithm with input ϕ at time n by structural induction on

ptMTL formula ϕ:

(i) ϕ = true returns true.

(ii) ϕ = false returns false.

(iii) ϕ = σ , where σ ∈Σ returns true if σ holds on sn, and false otherwise.

(iv) ϕ = ϕ1 ● ϕ2 is true if en ⊧ ϕ1 ● en ⊧ ϕ2, where ● ∈ {∧,∨,→}, and false otherwise.

(v) If ϕ is a ptLTL formula, we apply the algorithms proposed in [41, 42].

(vi) For ϕ = ϕ1 SJ ϕ2, we collect all times where ϕ2 was true in the past and since then ϕ1

remained true and store them in a list. At time n we check if there exists a time τ in the

list such that n− τ ∈ J . If such a τ exists we return true, and false otherwise.

Algorithms for cases (i)–(iv) are straightforward. For case (v), we use the algorithm of

Havelund and Roşu [41, 42], for which a translation into hardware building blocks (speci-

fied in terms of VHDL) is known [68]. Finding an efficient algorithm to detect satisfaction of

en ⊧ ϕ1 SJ ϕ2 requires more sophisticated reasoning, and is the topic of the next sections. We

start with efficient observer algorithms for the time-bounded variants of the ptLTL modalities

⊡ϕ and ⟐ϕ and later extend them to an efficient observer algorithm for ϕ1 SJ ϕ2.

Running example In the following, we frequently refer to the execution given in Fig. 3,

which describes satisfaction of the two formulas ϕ1 and ϕ2 over times n ∈ [0,24]. We say

transition (resp. ) of ϕ occurs at time n iff en ⊧ ↑ ϕ in case n > 0 and e0 ⊧ ϕ otherwise

(resp. en ⊧ ↓ ϕ in case n > 0 and e0 ⊧ ¬ϕ otherwise). In the running example, transition

of ϕ1 occurs at time 6.

4.2 The invariant and exists previously operators

We first discuss specializations of the common operators ⟐J (exists within interval J ) and

⊡J (invariant within interval J ). In accordance with [6] we define both operators in terms of

the Since operator by:

⟐J ϕ ≡ true SJ ϕ ⊡J ϕ ≡ ¬⟐J ¬ϕ (1)

From a practical point of view, two instances of the exists within interval and the invari-

ant within interval operators, namely invariant previously (⧈τ ) and exists previously (�τ ),

where τ ∈ N0, are valuable. They have the intended meaning at least once in the past τ

time units (�τ ) respectively invariant for the past τ time units (⧈τ ), and are defined by

�τ ≡⟐[0,τ] respectively ⧈τ ≡ ⊡[0,τ].

For example, (↑ σ1)→ (⧈10 σ2) expresses that whenever σ1 becomes true, σ2 holds at all

10 previous time units. For both�τ and ⧈τ we present simplifications that yield space- and

time-efficient observers.



212 Form Methods Syst Des (2014) 44:203–239

Algorithm 1 Observer for ⧈τϕ. Initially, m⧈τ ϕ =∞.

1: At each time n ∈N0:

2: if transition of ϕ occurs at time n then

3: m⧈τ ϕ ← n

4: end if

5: if transition of ϕ occurs at time n then

6: m⧈τ ϕ ←∞
7: end if

8: return valid
⧈(m⧈τ ϕ, τ,n)

Invariant previously (⧈τ ϕ) is transformed into ¬(true S[0,τ] ¬ϕ) by (1). An observer for

⧈τ ϕ requires a single register m⧈τ ϕ with domain N0 ∪ {∞}. Initially m⧈τ ϕ =∞. Note that

an actual implementation of this observer algorithm clearly must restrict itself to a bounded

domain {0,1, . . . ,N} ∪ {∞}, where N is chosen sufficiently large to cover the expected

mission time of the system being analyzed. We will discuss implementation considerations

of our observers in Sect. 5 and meanwhile assume unbounded domain registers.

For the observer in Algorithm 1, we define predicate valid
⧈(m,τ,n) as:

valid
⧈(m,τ,n) ≡ (max(n− τ,0) ≥m)

Intuitively, the predicate valid
⧈(m,τ,n) holds, and thus the algorithm returns true at time n,

iff the latest transition of ϕ occurred before n − τ and no transition of ϕ occurred

since then until time n.

Theorem 1 For all n ∈N0, the observer stated in Algorithm 1 implements en ⊧⧈τ ϕ.

Proof We first observe the equivalences

e
n ⊧⧈τ ϕ

⇔e
n ⊧ ¬(true S[0,τ] ¬ϕ)

⇔∀i(0 ≤ i ≤ n) ∶ (n− i ∈ [0, τ ]→ e
i ⊧ ϕ)

⇔∀i(0 ≤ i ≤ n) ∶ (i ∈ n− [0, τ ]→ e
i ⊧ ϕ)

⇔∀i ∶ i ∈ [0,n] ∩ [n− τ,n]→ e
i ⊧ ϕ

⇔∀i ∶ i ∈ [max(0,n− τ),n]→ e
i ⊧ ϕ. (2)

Note that interval [max(0,n− τ),n] is never empty. Thus equation (2) holds iff a tran-

sition of ϕ occurred at a time at most max(0,n − τ) and no transition of ϕ occurred

since then until time n. The theorem follows. ◻

Running example Consider ψ ≡ (↑ ϕ1) → (⧈2 ϕ2) on the execution in Fig. 3. Initially,

m⧈2ϕ2
= ∞. At time 0, ϕ2 holds and thus m⧈2ϕ2

= 0. The predicate valid
⧈(m⧈2ϕ2

,2,0)
holds, the algorithm returns true and we have that e0 ⊧ ⧈2 ϕ2. For similar arguments, at

time 1, e1 ⊧ ⧈2 ϕ2. At time 2, a transition of ϕ2 occurs and we have m⧈2ϕ2
= ∞.

Since predicate valid
⧈(m⧈2ϕ2

,2,2) does not hold, we have that e2 /⊧ ⧈2 ϕ2. For similar ar-

guments, at time 3, e3 /⊧ ⧈2 ϕ2. Since a transition of ϕ2 occurs at time 4, m⧈2ϕ2
= 4.



Form Methods Syst Des (2014) 44:203–239 213

Again, valid
⧈(m⧈2ϕ2

,2,4) does not hold, thus, e4 /⊧ ⧈2 ϕ2. The same is true for time 5, thus,

e5 /⊧ ⧈2 ϕ2. At time 6, ↑ ϕ1 becomes true and since valid
⧈(m⧈2ϕ2

,2,6) is true, we deduce

e6 ⊧ ψ . For times n′ prior to 6, (i.e., 0 ≤ n′ < 6), the left-hand side of the implication of ψ

does not hold. We immediately have that en′ ⊧ψ .

Exists previously (�τ ϕ) From the equivalence �τ ϕ ≡ ¬ ⧈τ ¬ϕ, we can immediately de-

rive an observer for �τ ϕ from the observer for ⧈τ ϕ. The resulting algorithm can straight-

forwardly be implemented by checking for a (resp. ) transition of ϕ instead of a

(resp. ) transition of ¬ϕ in line 2 (resp. line 5) and negating the output in line 8.

4.3 The invariant and exists within interval operators

We now present observers for the more general operators invariant within interval J (⊡J )

and exists within interval J (⟐J ). Instead of a register (such as m⧈τ ϕ in case of the ob-

server for ⧈τ ϕ), both observers require a list of time point pairs. Clearly, an efficient imple-

mentation of this list is vital for an efficient observer. In the following, we present several

techniques so as to keep the list succinct, whilst preserving validity of the observer. For a

list l, we denote by ∣l∣ its length, and by l[k], where k ∈N, its kth element. We assume that

elements are always appended to the tail of a list.

Invariant within interval (⊡J ϕ) is transformed into ¬(true SJ ¬ϕ) by (1). An observer

for ⊡J ϕ requires a list l⊡J ϕ of elements from (N0 ∪ {∞})2. For a pair of time points

T ∈ (N0 ∪ {∞})2, we shortly write T .τs for its first component and T .τe for its second

component. Initially, l⊡J ϕ is empty. For the observer in Algorithm 2, we define predicate

valid
⊡(T ,n,J ), with T ∈ (N0 ∪ {∞})2, by:

valid
⊡(T ,n,J ) ≡ (T .τs ≤max(0,n−max(J ))) ∧ (T .τe ≥ n−min(J )),

and predicate feasible(T ,n,J ) as:

feasible(T ,n,J ) ≡ (T .τe − T .τs ≥ len(J )) ∨ (T .τs = 0 ∧ T .τe ≥ n−min(J )).

Intuitively, Algorithm 2 keeps track of all maximal intervals where ϕ holds whose length

is large enough to potentially lead to the satisfaction of ⊡J ϕ. Whether this is the case is

determined by the fact whether a tuple representation of an interval satisfies the feasible

predicate. For large n, this means that an interval has to have length at least len(J ).
We will deduce the correctness of the observer stated in Algorithm 2 from the correctness

of a generalized algorithm, presented in Sect. 4.4, obtaining:

Theorem 2 For all n ∈N0, the observer stated in Algorithm 2 implements en ⊧⊡J ϕ.

Running example Consider ψ ≡ (↑ ϕ1) → (⊡[3,4]ϕ2) and execution e of Fig. 3. At time 0,

the element (0,∞) is inserted into l⊡[3,4]ϕ2
. The transition of ϕ2 at time 2 then leads to

l⊡[3,4]ϕ2
= ((0,1)), since feasible((0,1),2, [3,4]) holds. At time 4, another pair is added,

resulting in l⊡[3,4]ϕ2
= ((0,1),(4,∞)). Since at time 6:

valid
⊡(l⊡[3,4]ϕ2

[1],6, [3,4]) ⇔ (0 ≤ 6− 4) ∧ (1 ≥ 6− 3) ⇔ false

valid
⊡(l⊡[3,4]ϕ2

[2],6, [3,4]) ⇔ (4 ≤ 6− 4) ∧ (∞≥ 6− 3) ⇔ false

we obtain e6 /⊧ψ .



214 Form Methods Syst Des (2014) 44:203–239

Algorithm 2 Observer for ⊡J ϕ. Initially, l⊡J ϕ = ().
1: At each time n ∈N0:

2: if transition of ϕ occurs at time n then

3: add (n,∞) to l⊡J ϕ

4: end if

5: if transition of ϕ occurs at time n and l⊡J ϕ is non-empty then

6: remove tail element (τs,∞) from l⊡J ϕ

7: if feasible((τs,n− 1),n,J ) then

8: add (τs,n− 1) to l⊡J ϕ

9: end if

10: end if

11: return ⋁
∣l⊡J ϕ ∣

k=1
valid

⊡(l⊡J ϕ[k],n,J ) in case n ≥min(J ) and true otherwise

Exists within interval (⟐J ϕ) From the equivalence⟐J ϕ ≡ ¬⊡J ¬ϕ, we can easily derive

an observer for ⟐J ϕ from the observer for ⊡J ϕ. As before, we obtain the observer by

swapping and transitions and negating the output.

4.4 The since within interval operator

An observer for ϕ1 SJ ϕ2 is obtained from a ⟐J observer and additional logic to reset the

observer’s list. Let lS be an initially empty list. The ϕ1 SJ ϕ2 observer is stated in Algo-

rithm 3. In case ϕ1 holds at time n, the observer executes the same code as a⟐J ϕ2 observer.

In case ϕ1 does not hold at time n, the list lϕ1SJ ϕ2
is reset to contain only a single entry

whose content depends on the validity of ϕ2. Intuitively, for the maximum suffix where ϕ1

holds Algorithm 3 keeps track of all maximal intervals where ϕ2 holds whose length is large

enough to potentially lead to the satisfaction of ϕ1 SJ ϕ2.

Theorem 3 For all n ∈N0, the observer in Algorithm 3 implements en ⊧ ϕ1 SJ ϕ2.

For the proof we introduce additional notation. For list l denote with l ⋅T , the list resulting

from adding element T to the tail of list l. Further denote with ln, where n ∈ N0, the state

of Algorithm 3’s list lS in line 19 executed at time n. By l
n

we denote the set [0,n] ∖
⋃1≤k≤∣l∣[l[k].τs, l[k].τe + 1). For example, if l10 = ((0,3),(5,8)), then l

10
= {4,9,10}. We

first show that the following proposition holds:

Proposition 1 Consider Algorithm 3 without the feasibility check in line 8, i.e., replace this

line with “if true then”. For the modified algorithm the following is correct: For all n ∈N0

and i ≤ n, i ∈ l
n

holds iff both ei ⊧ ϕ2 and for all k, i < k ≤ n, ek ⊧ ϕ1.

Proof The proof is by induction on n ∈N0.

Begin (n = 0): Consider the four cases for ϕ1 and ϕ2:

Case (i): Assume en ⊧ ϕ1 and en /⊧ ϕ2. Then ln = ((0,∞)) and thus l
n
=∅. Since en /⊧ ϕ2,

the induction basis follows in this case.

Case (ii): Assume en ⊧ ϕ1 and en ⊧ ϕ2. Then ln = () and thus l
n
= {0}. Since en ⊧ ϕ2, the

induction basis follows in this case.



Form Methods Syst Des (2014) 44:203–239 215

Algorithm 3 Observer for ϕ1 SJ ϕ2. Initially, lϕ1SJ ϕ2
= ().

1: At each time n ∈N0:

2: if ϕ1 holds at time n then

3: if transition of ϕ2 occurs at time n then

4: add (n,∞) to lϕ1SJ ϕ2

5: end if

6: if transition of ϕ2 occurs at time n and lϕ1SJ ϕ2
is non-empty then

7: remove tail element (τs,∞) from lϕ1SJ ϕ2

8: if feasible((τs,n− 1),n,J ) then

9: add (τs,n− 1) to lϕ1SJ ϕ2

10: end if

11: end if

12: else

13: if ϕ2 holds at time n then

14: set lS = ((0,n− 1)) in case n ≠ 0 and lS = () otherwise

15: else

16: set lS = ((0,∞))
17: end if

18: end if

19: return ¬(⋁
∣lϕ1SJ ϕ2

∣

k=1
valid

⊡(lϕ1SJ ϕ2
[k],n,J )) in case n ≥min(J ) and false otherwise

Case (iii): Assume en /⊧ ϕ1 and en /⊧ ϕ2. The arguments are analogous to the arguments

of case (i).

Case (iv): Assume en /⊧ ϕ1 and en ⊧ ϕ2. The arguments are analogous to the arguments

of case (ii).

Step (n− 1→ n): Assume that the statement holds for n − 1 ≥ 0. We will show that it holds

for n, too. Thereby we consider the same cases (i) to (iv) as in the induction basis.

Case (i): We distinguish two cases for ϕ2: a transition of ϕ2 (i.a) did, or (i.b) did not

occur at time n.

In case of (i.a), ln = ln−1 ⋅ (n,∞). Thus l
n
= l

n−1
. Since en ⊧ ϕ1 but en /⊧ ϕ2, the induction

step follows in this case.

In case of (i.b), ln = ln−1. By the algorithm, the last element in ln must be of the form

(n′,∞) with n′ < n. Thus l
n
= l

n−1
. Again, the induction step follows in this case.

Case (ii): We distinguish two cases for ϕ2: a transition of ϕ2 (ii.a) did, or (ii.b) did

not occur at time n.

Now consider case (ii.a): If ln−1 = (), ln = ln−1 holds, and thus l
n
= l

n−1
∪{n}. Otherwise,

the last element in ln−1, say (n′,∞), with n′ ≤ n, is replaced with (n′,n) in ln. Again,

l
n
= l

n−1
∪ {n}. In both cases, the induction step follows, as en ⊧ ϕ1 and en ⊧ ϕ2.

In case of (ii.b), ln = ln−1. By the algorithm, the last element in ln, if it exists, must be of

the form (n′,n′′) with n′ ≤ n′′ < n. Thus l
n
= l

n−1
∪ {n}. Again, the induction step follows

in this case.

Case (iii): By the algorithm, ln = ((0,∞)). Thus l
n
=∅. Since en /⊧ ϕ2, the induction step

follows in this case.



216 Form Methods Syst Des (2014) 44:203–239

Case (iv): By the algorithm, and since n > 0, ln = ((0,n − 1)). Thus l
n
= {n}. Since

en ⊧ ϕ1, the induction step follows in this case. ◻

We are now in the position to prove Theorem 3.

Proof of Theorem 3 Consider the modified Algorithm 3 without feasibility check. By anal-

ogous arguments as in the proof of Theorem 1, we obtain

e
n ⊧ ϕ1 SJ ϕ2

⇔∀i ∶ i ∈ [0,n] ∩ [n−max(J ),n−min(J )] ∧ (ei ⊧ ϕ2) ∧∀k(i < k ≤ n) ∶ ek ⊧ ϕ1

⇔∀i ∶ i ∈ [max(0,n−max(J )),n−min(J )] ∧ (ei ⊧ ϕ2) ∧∀k(i < k ≤ n) ∶ ek ⊧ ϕ1.

We distinguish two cases for n, namely (i) n <min(J ), and (ii) n ≥min(J ).
(i) In case n <min(J ), interval [max(0,n −max(J )),n −min(J )] is empty, and en ⊧

ϕ1 SJ ϕ2 is trivially false. Since the algorithm returns false in this case, the theorem follows

for Algorithm 3 without the feasibility check for case (i).

(ii) In case n ≥min(J ), interval I = [max(0,n −max(J )),n −min(J )] is non-empty.

Thus en ⊧ ϕ1 SJ ϕ2 holds iff there exists an i ∈ I for which ei ⊧ ϕ2 and for all k, i < k ≤ n,

ek ⊧ ϕ1. From Proposition 1 we know that this is the case iff there exists an i ∈ I with

i ∈ l
n
. The latter is the case iff there exists no tuple (τs, τe) in ln with valid

⊡((τs, τe),n,J ).
Since, for n ≥min(J ), the algorithm returns true iff this is the case, the theorem follows for

Algorithm 3 without the feasibility check for case (ii).

It remains to show that the theorem holds for Algorithm 3 with original line 8. If we can

show that from ¬feasible((τs, τe),n,J ) follows ¬valid
⊡((τs, τe),n′,J ), for all times n′ ≥ n,

we may safely remove tuple (τs, τe) from the algorithm’s list without changing the algo-

rithm’s return value.

Assume that valid
⊡((τs, τe),n′, J ) holds, with n′ ≥ n. We distinguish two cases for n′:

(a) n′ <max(J ) and (b) n′ ≥max(J ):
(a) In case n′ <max(J ), it follows from valid

⊡((τs, τe),n′,J ) that T .τs = 0 and T .τe ≥
n′ −min(J ) ≥ n−min(J ). Thus feasible((τs, τe),n,J ) holds.

(b) Otherwise n′ ≥max(J ), and it follows from valid
⊡((τs, τe),n′,J ) that T .τs ≤ n′ −

max(J ) and T .τe ≥ n′ −min(J ). Thus T .τe − T .τs ≤ len(J ) and thereby feasible((τs, τe),
n,J ).

The theorem follows. ◻

With the two definitions in (1), an observer algorithm implementing en ⊧ ⊡J ϕ can be

deduced from Algorithm 3 by negating its input, its output, and replacing the if condition

in line 2 by true. Since the obtained algorithm is equivalent to Algorithm 2, Theorem 2

immediately follows.

4.5 Garbage collection

Thus far, we did not consider housekeeping of either list so as to control the growth of the

lists. It is important to appreciate that each timed operator has a bounded time-horizon on

which it depends. This horizon can be exploited to eliminate pairs T from Algorithm 2 or

Algorithm 3’s lists that can neither validate nor invalidate the specification. Our garbage



Form Methods Syst Des (2014) 44:203–239 217

collector works as follows: at any time n ∈ N0, we remove a tuple T from the list if the

proposition

garbage(T ,n,J ) ≡ T .τe < n−min(J )

holds. The main purpose of the garbage collector is to reduce the algorithms’ space and time

complexity: We will show that, by removing tuples, garbage collection considerably reduces

the algorithms’ space complexity. Further, observe that direct implementations of line 11 of

Algorithm 2 and line 19 of Algorithm 3 require searches through a list. We will show that,

with our garbage collector running in parallel to the observer algorithms, these lines reduce

to checking the list’s first element only. Thus we may replace the list in both algorithms by

a simple queue, where elements are added only to its tail and read and removed only at its

head.

In the following, we show the correctness of our garbage collection strategy for any of

the proposed algorithms: We first show that if a tuple T is allowed to be removed by the

garbage collector at time n, it cannot satisfy valid
⊡ at that time or at any later time. It is thus

safe to remove it from the list.

Lemma 1 If garbage(T ,n,J ), then ¬valid
⊡(T ,n′, J ) for all n ≥ n′.

Proof Assume that garbage(T ,n,J ) holds. Then T .τe < n −min(J ) ≤ n′ −min(J ). Since

T .τe ≥ n′ −min(J ) is necessary for valid
⊡(T ,n′,J ) to hold, the lemma follows. ◻

We next show that always a prefix of a list is removed. This allows the garbage collector

to evaluate garbage iteratively, starting from the head of the list.

For that purpose we introduce additional notation. We write “. . . ” for a potentially empty

sequence of tuples. For example, (. . . , T ,T ′, . . .) denotes a list of length at least two, where

T and T ′ are any two successive elements in this list.

Lemma 2 Let l = (. . . , T ,T ′, . . .) be the list of any of the proposed observer algorithms at

time n ∈N0. If garbage(T ′,n,J ), then garbage(T ,n,J ).

Proof Assume that garbage(T ′,n,J ) holds. Then T ′.τe < n −min(J ). By observing that

all of the proposed algorithms ensure that T .τe ≤ T ′.τe for successive list elements T and

T ′, we obtain T .τe < n−min(J ), i.e., garbage(T ,n,J ) holds. The lemma follows. ◻

We next prove an upper bound on the length of Algorithm 2 or Algorithm 3’s lists. We

start by showing that there is a minimum distance between successive elements in the algo-

rithms’ lists.

Lemma 3 Let l = (. . . , T ,T ′, . . .) be the list of any of the proposed observer algorithms at

time n ∈N0. Then T .τe + 2 ≤ T ′.τs .

Proof Consider Algorithm 2. By the algorithm, tuple T must have been added by line 8.

For line 8 to add T = (T .τs,n − 1), transition of ϕ must have occurred at time n. Thus

the next tuple added to the list at a time n′ > n must have been of the form (n′,∞). Since,

by the algorithm, then T ′.τs ≥ n′ must hold, we further obtain T ′.τs ≥ (n− 1)+ 2 = T .τe + 2.

The lemma follows for Algorithm 2.

For Algorithm 3 the lemma follows by analogous arguments. ◻



218 Form Methods Syst Des (2014) 44:203–239

Further the first element in the list that was not removed by the garbage collector cannot

be of arbitrary age:

Lemma 4 Consider a time-bounded formula ⊡J ϕ,⟐J ϕ, or ϕ1 SJ ϕ2. Let l = (T , . . .) be the

list of the proposed respective observer algorithm at time n ∈ N0, after garbage collection

has run at time n. Then T .τe ≥ n−min(J ).

Proof It must hold that garbage(T ,n,J ) is false, since otherwise T would have been re-

moved by the garbage collector. Thus T .τe ≥ n−min(J ). ◻

Lemma 5 Let l be the list of any of the proposed observer algorithms at time n ∈N0, after

garbage collection has run at time n, and assume that l is non-empty. Let T k = ℓ[k], for

1 ≤ k ≤ ∣ℓ∣. Then T k.τe ≥ n−min(J ) + (k − 1)(2+ len(J )).

Proof The proof is by induction on the number k ≥ 1 of the element in the list.

Begin (k = 1): Immediately follows from Lemma 4.

Step (k − 1→ k): Assume that the statement holds for k − 1 ≥ 1. We will show that it holds

for k, too. By Lemma 3,

T
k
.τs ≥ T

k−1
.τe + 2.

Because k > 1, it must hold that T k.τs ≠ 0. Thus, by the algorithms, either feasible(T k,n′, J )
must have held at time n′ ≤ n, when T k was added to the list, or T k = (n′,∞). In both cases,

T
k
.τe ≥ T

k
.τs + len(J ).

It follows that,

T
k
.τe ≥ T

k−1
.τe + 2+ len(J ). (3)

Combining (3) and the induction hypothesis

T
k−1

.τe ≥ n−min(J ) + (k − 2)(2+ len(J ))

thus yields,

T
k
.τe ≥ n−min(J ) + (k − 1)(2+ len(J )).

The lemma follows. ◻

We may now derive an upper bound on the number of list elements for all our observer

algorithms:

Theorem 4 Consider a time-bounded formula ⊡J ϕ, ⟐J ϕ, or ϕ1 SJ ϕ2. Let l be the list of

the proposed respective observer algorithm at time n ∈N0, after garbage collection has run

at time n. Then l is of length at most

2 max(J ) −min(J ) + 2

2+ len(J )
.



Form Methods Syst Des (2014) 44:203–239 219

Proof In case l is empty the lemma follows trivially. Assume l = (T 1, . . . , T k) is non-empty.

We distinguish two cases for T k :

(i) In case T k.τe ≠∞, we obtain from Lemma 5,

T
k
.τe ≥ n−min(J ) + (k − 1)(2+ len(J )). (4)

Further, by the algorithms, a finite T k.τe implies that

T
k
.τe ≤ n− 1. (5)

Combination of (4) and (5) yields

n− 1 ≥ n−min(J ) + (k − 1)(2+ len(J )) ⇔

k ≤
max(J ) + 1

2+ len(J )
≤

2 max(J ) −min(J ) + 2

2+ len(J )
.

The theorem follows for this case.

(ii) Otherwise, i.e., in case T k.τe =∞, by the algorithms,

T
k
.τs ≤ n (6)

must hold. We obtain from Lemma 5,

T
k−1

.τe ≥ n−min(J ) + (k − 2)(2+ len(J )),

and by Lemma 3,

T
k
.τs ≥ n−min(J ) + 2+ (k − 2)(2+ len(J )). (7)

Combination of (6) and (7) yields

n ≥ n−min(J ) + 2+ (k − 2)(2+ len(J )) ⇔

k ≤
2 max(J ) −min(J ) + 2

2+ len(J )
.

The theorem also follows for this case. ◻

4.6 Discussion of space and time complexity

We first give a bound on space complexity in terms of single-bit registers that are required

by a hardware implementation of our observer algorithms. Clearly, the space complexity

for an observer of ptMTL formula ϕ is the sum of the space complexity of its observers

for all subformulas of ϕ, and its time complexity scales with the depth of the parse tree

of ϕ. It is thus sufficient to state bounds for ⊡J ϕ, ⟐J ϕ, and ϕ1 SJ ϕ2. In all these cases the

respective observer algorithm’s space complexity is dominated by the space complexity of

the algorithm’s list. Clearly the bit complexity of the τs or τe component of a tuple added

by one of the proposed algorithms to its list before time n ∈ N0 is bounded by ⌈log2(n)⌉.
We thus obtain from Theorem 4 that for any of the time-bounded formulas ⊡J ϕ, ⟐J ϕ, or



220 Form Methods Syst Des (2014) 44:203–239

Fig. 4 Visualization of the space

complexity bound

(2 ⋅max(J) −min(J) + 2)/
(2+ len(J)) for

0 ≤min(J) ≤max(J) ≤ 100 with

50 samples per axis

ϕ1 SJ ϕ2, our proposed observer algorithms, if executed at time n ∈N0, have to maintain a

list of space complexity at most:

2⌈log2(n)⌉ ⋅
2 max(J ) −min(J ) + 2

2+ len(J )
. (8)

Figure 4 visualizes this bound, revealing that memory consumption is moderate for almost

all cases, except for configurations where min(J ) =max(J ), where space complexity grows

linear in max(J ). Note that log2(n) is small for realistic experimental setups. For example,

allowing to store 52 bit per tuple component is sufficient to check executions that are sam-

pled with a 1 MHz clock during a period of over 140 years.

An alternative to storing absolute times in the observer’s list, is to adapt the observer

algorithms in a way such that only relative times are stored. While this potentially reduces

the bound of Eq. (8) by substituting log2(n) with log2(max(J )), it requires updating of the

list elements (as these then contain relative times) at every time n ∈ N0. Since this would

require more complex hardware mechanism and result in a slower on-line algorithm, we

decided not to follow this path in our hardware implementation.

We next show that garbage collection allows one to reduce time complexity of the pro-

posed observers. The time-determining part of Algorithms 2 and 3 is the evaluation of the

predicate valid
⊡ for all list elements in line 11 and line 19 respectively. However, garbage

collection makes it possible to only evaluate the predicate for the first element in the list,

thus greatly improving time complexity of the proposed algorithms:

Lemma 6 Let l = (T , . . . ,T ′, . . .) be the list of any of the observer algorithms at time n ∈
N0, after garbage collection has run at time n. Then ¬valid

⊡(T ′,n,J ).

Proof Assume by means of contradiction that valid
⊡(T ′,n,J ) holds. Then T ′.τs ≤

max(0,n −max(J )) ≤max(0,n −min(J )). For both Algorithms 2 and 3 we observe that

T .τe < T ′.τs has to hold. Thus T .τe <max(0,n−min(J )). Since neither Algorithms 2 nor 3

add tuples with a negative τs or τe component, we obtain that T .τe < n−min(J ) has to hold

and by that garbage(T ,n,J ) holds. A contradiction to the fact that garbage collection has

been run at time n: it would have removed tuple T in that case. The lemma follows. ◻



Form Methods Syst Des (2014) 44:203–239 221

Since further there exist circuits that perform an addition of two integers of bit com-

plexity w ∈ N within time O(log2(w)) [47], and since evaluating the valid
⊡(T ,n,J ) and

garbage(T ,n,J ) predicates at time n ∈N0 requires addition of integers of bit complexity at

most max(log2(n), log2(J )), we arrive at an asymptotic time complexity of

O(log2 log2 max(J ∪ {n})),

for any of the observers ⊡J ϕ, ⟐J ϕ, and ϕ1 SJ ϕ2 executed at time n.

5 Mapping the framework into hardware structures

In what follows, we elaborate design considerations to map the proposed runtime verifica-

tion framework into hardware. Figure 5 shows the main modules of a hardware instance of

the framework, i.e., the runtime verification unit (RVU). The design of the RVU is generic

and can be attached to various SUTs, as shown in Fig. 1. We start with a discussion of how

our RVU connects to existing systems and how we map registers and lists into primitive

hardware structures. We then show how we derive the current time from a Real-Time Clock

(RTC) and how we evaluate atomic propositions, before we show how to adapt an exist-

ing low-footprint, programmable ptLTL verification microprocessor to also evaluate ptMTL

specifications using the observer algorithms described in Sect. 4.

5.1 Interfacing the system under test

Our runtime verification unit (see Fig. 5) connects to various systems through wiretapping

of the SUT’s communication interfaces, as outlined in Fig. 1. The attachment to these com-

munication interfaces is application specific. In its current shape, we implemented bus in-

terfaces for systems operating with: RS-232 (serial port), CAN (vehicle bus), Wishbone

(System-on-Chip interconnect), I2C (multimaster serial bus), and JTAG (boundary scan)

variants.

5.2 Registers and lists of pairs of time points

Registers are implemented by, for example, linking multiple flip-flops. The width of such

a register equals to the width of the (upper bounded) time points issued by the RTC plus

two additional bits. These additional bits enable indication of overflows when performing

arithmetics on time points and indication of the special value ∞. For lists of pairs of time

points, we turn to block RAMs, which we organize as ring buffers. Each ring buffer is

managed by a unit that controls its read pointer (RP) and its write pointer (WP).

Fig. 5 The runtime verification unit (RVU) and its architecture



222 Form Methods Syst Des (2014) 44:203–239

5.3 Real-time clock

The progression of time is measured by a digital clock, i.e., the real-time-clock (RTC),

which contains a counter and an oscillation mechanism that periodically increments the

counter [48, Chap. 3]. For an on-chip RVU solution, the oscillation mechanism can also

be bounded to the global system clock of the SUT. Note that the design also allows for

an instantiation of a fully external clock which is decoupled from the SUT, such as a GPS

receiver. Time points are internally stored in registers of width w = ⌈log2(N)⌉ + 2, where N

is the maximum time (in terms of ticks of the RTC) expected to occur during a run of the

SUT. The two additional bits enable indication of overflows when performing arithmetical

operations on time points and indication of∞.

Note that our proposed algorithms (cf. Sect. 4) make use of absolute time points, i.e., we

store time points for both and transitions of an event e. In contrary, we could also

use a mixed representation of absolute and relative time points, i.e., store the absolute time

points of the transition of event e and then count the duration of e (the number of clock

ticks until the transition occurs). While the latter would help to improve the average-case

memory requirements in a software-oriented implementation, the former is superior in terms

of a hardware implementation: In a hardware design, memory needs to be statically assigned

at design time; thus registers have to be of width w rendering the benefits of relative time

points. Further storing relative time points would require an additional counter of width w

for all atomic propositions and subformulas that use time points.

5.4 Evaluation of atomic propositions

Ideally, with respect to expressiveness of the supported specifications, atomic propositions

include arbitrary equalities, inequalities, and disequalities over variables in the state of the

SUT. To arrive at a responsive framework, however, an observer needs to guarantee that it

finishes evaluation of atomic propositions within a tight time bound. It is therefore necessary

to establish a balance between (hardware) complexity of the resulting observer and expres-

siveness. To achieve this balance, we restrict the class of atomic propositions supported by

our framework in a way inspired by the so-called logahedron abstract domain [45], fre-

quently used in the field of abstract interpretation [24].

Specifically, the class of supported atomic propositions consist of conjunctions of linear

constraints, where each constraint ranges over two variables. In addition, each variable can

be negated and multiplied by a power of two. In our implementation, we support atomic

propositions that are restricted linear constraints ranging over values transferred through an

interface of the SUT. Specifically, atomic propositions are of the form (±2n ⋅v1±2m ⋅v2)⋈c,

where v1 and v2 are application specific symbols, c,n,m ∈ Z and ⋈ ∈ {=,≠,≤,≥,>,<}. For

example, when the RVU is connected to a microcontroller data bus (cf. Fig. 1), v1 (and

v2) can be interpreted as the value stored in a memory location, which in turn, maps to a

program variable.

In [68, Sect. 3] we showed how to build circuits (see Fig. 6) that evaluate such linear

constraints, with a minimum time penalty. We will use the term AtChecker to refer to such

a circuit. It comprises an operands register to fetch new data from the SUT interface, two

shifter units to implement multiplication and division by a power of two, an arithmetic unit

(i.e., an adder) and a comparator stage. For every atomic proposition of the ptMTL formula,

one such unit is instantiated. To evaluate the hardware requirements of AtChecker units, we

synthesized the respective circuits with the industrial logic synthesis tool ALTERA QUAR-

TUS II for an Altera Cyclone IV EP4CE115 FPGA device. A single AtChecker unit con-

sumes 290 logic elements (0.25 % of the available logic elements) and can run with a clock

frequency of up to fmax = 128 MHz.



Form Methods Syst Des (2014) 44:203–239 223

Fig. 6 An AtChecker unit to evaluate an atomic proposition σi in hardware

Fig. 7 Hardware runtime observers for ptMTL specifications; abbreviations: garbage collector (GC), block

ram (BR), ring buffer (RB), read pointer (rp), and write pointer (wp)

Example Consider the ptMTL formula ϕ = (↑ (2 ⋅ v1 + v2 ≤ 68))→ (⊡[5,10](4 ⋅ v3 = 20∨ v4 =
40)). Assume that the runtime verification framework is instantiated as shown in the

top-right part of Fig. 1, i.e., it monitors a microcontroller core. The atomic propositions

{σ1,σ2,σ3} of ϕ are: σ1 ≡ (2 ⋅ v1 + v2 ≤ 68), σ2 ≡ (4 ⋅ v3 = 20), and σ3 ≡ (v4 = 40). The

symbols v1, . . . , v4 relate to memory locations stored in the microcontroller RAM. Together

with debug information from the compiler they can be linked to high-level language sym-

bols, e.g., C code variables. Evaluating {σ1,σ2,σ2} requires three AtChecker blocks. For

example, to evaluate σ1, an AtChecker is configured to load new data from the SUT inter-

face as soon as new values for either v1 or v2 are transferred. Its shifter is programmed to

shift v1 one position to the left and the arithmetic unit so as to calculate the sum of 2 ⋅ v1 and

v2. The comparator then compares this result with the constant 68 and finally outputs the

truth value of σ1 at the current time point n.

5.5 Runtime observers

Figure 7 shows the hardware architecture to evaluate ptMTL operators. A pool of statically

synthesized hardware observers is interconnected by a control logic to resemble the parse

tree of the specification ϕ. For each operator we use Theorem 4 to statically assign sufficient

memory to it.

Evaluating the observer algorithms’ predicates Subtraction and relational operators as re-

quired by the predicates feasible, garbage, and valid can be built around adders. Observe

that, when Add(⟨a⟩, ⟨b⟩,c) is a ripple carry adder for arbitrary length unsigned vectors ⟨a⟩
and ⟨b⟩ and c the carry in, then a subtraction of ⟨a⟩ − ⟨b⟩ is equivalent to Add(⟨a⟩, ⟨b⟩,1).
Relational operators can be built around adders in a similar way [49, Chap. 6]. For exam-

ple (left part of Fig. 7), valid
⊡((τe, τs),n,J ) is implemented using five w-bit adders: one

for q ∶= n − min(J ), one for r ∶= T .τe ≥ q , one to calculate p ∶= n − max(J ) and two to

calculate t ∶= T .τs ≤ max(p,0). Finally, the unit outputs the verdict t ∧ r , where t and r



224 Form Methods Syst Des (2014) 44:203–239

are calculated in parallel. To evaluate valid
⧈(m,τ,n) the unit uses three w-bit adders, one

to determine q ∶= n − τ , one for p ∶= q > 0, and a third to either calculate r ∶= q ≥m⧈τ ϕ or

r ∶= 0 ≥m⧈τ ϕ , depending on the truth value of p. Finally, the validity checker outputs the

verdict r to the ptLTL evaluation unit. Note that, for the actual implementation, we do not ex-

plicitly calculate q ∶= n−min(J ) through an adder. Instead, the design is configured with an

absolute time point that signalizes the end of the startup phase, which equals to max(J )+1.

A dedicated signal is cleared at reset and asserted once n =max(J ) + 1, therefore, replac-

ing an adder by a more resource friendly comparator circuit in the implementation for the

valid
⊡((τe, τs),n,J ) predicate.

Lists and garbage collection For a list l⊡J ϕ we turn to block RAMs (abundant on

contemporary FPGAs) which are organized as ring buffers (right in Fig. 7). Each ring

buffer has a read (rp) and a write pointer (wp). To insert a time point pair that satisfies

feasible((τs,n − 1),n,J )), wp is incremented to point to the next free element in the ring

buffer. The GC then adjusts rp to indicate the latest element with regard to n and J that is

recent enough. In a fresh cycle (indicated by a changed time point n), the GC loads (τs, τe)
using rp, which is incremented iff garbage((τs, τe),n,J ) holds.

Control logic and modularity The control logic as shown in Fig. 7 allows one to easily

reconnect hardware observers according to the specification’s parse tree, which entails that

the specification can be modified (within resource limitations) without re-synthesizing the

whole design, which could take tens of minutes for FPGA designs.

5.6 A microcomputer to evaluate ptMTL and ptLTL specifications

In the following, we discuss a low footprint, reconfigurable microcomputer design that

uses AtChecker blocks and the hardware observer blocks to evaluate arbitrary ptLTL and

ptMTL formulas. The microcomputer, called μSpy, is configured with a binary program

that controls and configures the building blocks depending on the formula to be evaluated.

This configuration-based design of the μSpy proves elegant in a dynamic setting, such as

product testing in early development phases, where the specification is subject to frequent

changes [70]. Modifying the specification then only requires to download a new program to

the μSpy. The hardware design of the μSpy is shown in Fig. 8 and builds on our previous

work [68, 70] where we showed how to evaluate ptLTL formulas on such an architecture. An

additional component (ptMTL observers) implements the control logic needed to instantiate

ptMTL hardware observers to cover the time-bounded operators of the specification.

Workflow A (GUI-based) observer-generation application on a host computer compiles

a ptMTL specification ϕ into a triple ⟨Π,Ca,Cm⟩, where Ca is a configuration for the

AtChecker, Cm is a configuration for the pool of time bounded MTL operators and Π is

a native program for the μSpy.

The synthesis of a configuration for the μSpy, denoted by ⟨Π,Ca,Cm⟩, from ϕ requires

the following steps:

(1) We use the ANTLR parser generator [61] to parse ϕ. This step yields an abstract syntax

tree (AST) that represents the specification.

(2) After some pre-processing of the AST, we determine the m subformulas ϕ1, . . . ,ϕm of

ϕ by using a post-order traversal.

(3) For each subformula ϕi , 1 ≤ i ≤m:



Form Methods Syst Des (2014) 44:203–239 225

Fig. 8 The μSpy architecture. AtChecker units as in Fig. 6 and ptMTL observers as in Fig. 7

– If ϕi is an atomic proposition, instantiate an AtChecker block and add its configuration

to Ca .

– If ϕi is a ptLTL formula, we use the approach shown in [68, 70] to generate a native

instruction for the μSpy and add the instruction to Π .

– If ϕi is a ptMTL formula, we instantiate the corresponding observer hardware block,

generate the hardware block’s configuration and a native instruction for the μSpy. We

add the configuration to Cm and the instruction to Π .

After running steps (1–3) of the synthesis procedure, the resulting configuration

⟨Π,Ca,Cm⟩ is then transferred from the host computer to the hardware platform where

the μSpy is instantiated on, e.g., from the host computer through an Universal Serial Bus

(USB) to an FPGA. We note that the host computer is only required to generate such a

configuration for the current specification, but is not required during monitoring.

Instruction set architecture The μSpy is a pipelined microcomputer organized as a clas-

sical Harvard architecture. Its Instruction Set Architecture (ISA) supports 22 opcodes to

handle ptLTL and ptMTL operators, where each instruction word is 40 bits long. It contains

the opcode, addresses of two operands, an interval address, and a further address to select

a private memory space for ptMTL operators. The first two bits from the operands address

denote the source of the operands data which can be a memory location, i.e., the location in

the data memory where the result of the respective subformula is held, an atomic proposition

or an immediate value, which can be true or false. The additional fields Interval Address and

List Address are necessary for the ptMTL operators only. A single instruction word for the

μSpy is 40 bit long and is structured as follows:

OpCode Addr. Operand 1 Addr. Operand 2 Interval Addr. List Addr.

5 bit 2+8 bit 2+8 bit 8 bit 7 bit

Architectural features The μSpy manages two memories p[0, . . . ,m − 1] and q[0, . . . ,

m− 1], one containing the evaluations of all m subformulas of ϕ (generated in a post-order

traversal of the parse tree of ϕ; in step (1) of the synthesis procedure) in the current and

in the previous execution cycle (i.e., time points n and n − 1). This allows for space and

time efficient evaluation of formulas whose parse tree is a directed acyclic graph, and not



226 Form Methods Syst Des (2014) 44:203–239

Table 1 μSpy clock-cycles for

Boolean, ptLTL, and ptMTL

operators

Logic Operator μSpy clock cycles

Boolean ¬ϕ 1

ϕ0 ● ϕ1,● ∈ {∧,∨} 1

ptLTL ⊙ϕ 1

ϕ1 S ϕ2 1

ptMTL ⧈τ ϕ ∣ �τ ϕ 2

⊡J ϕ ∣ ⟐J ϕ 4

ϕ1 SJ ϕ2 4

necessarily a tree. For example, to evaluate the formula ϕ ≡ (↑ σ1) ≡ σ1 ∧ ¬ ⊙ σ1, one is

not required to evaluate both σ1 and ⊙σ1 independently, and thus σ1 twice. Rather, we will

have two registers of length 1, i.e., p[0] holds the result of σ1 from the previous round and

q[0] from the current round. The μSpy then fetches both p[0] and q[0] and executes the

instruction that represents the operator ↑, which maps to the Boolean operation (q[0] ⊕
p[0]) ∧ q[0], namely, σ1 did toggle its truth value (q[0] ⊕ p[0] holds) and σ1 is true in

the current state (q[0] holds). Each instruction is processed through a four-stage pipeline

(fetch, load, calc, and write back). All stages except the calc stage require one clock cycle

per instruction, the execution time of the calc stage depends on the operator and requires

from one to four clock cycles.

Execution time per operator Due to the pipelined design of the μSpy any ptLTL operator

is executed within a single clock cycle in the pipeline stage. The additional overhead for list

management and garbage collection required for the ptMTL operators require an additional

one to three clock cycles. Due to a data forwarding strategy from the execution to the load

stage in the pipeline, no further pipeline stalls are necessary and the pipeline is guaranteed

to be optimally filled. Table 1 summarizes the execution times for various Boolean, ptLTL,

and ptMTL operators.

Example Consider the ptMTL property ϕ ≡ (↑ (2 ⋅v1 +v2 ≤ 68))→ (⊡[5,10](4 ⋅v3 = 20∨v4 =
40)). As in the example of Sect. 5.4, the atomic propositions {σ1,σ2,σ3} of ϕ are evaluated

by three AtChecker units. The subformulas ↑ (2 ⋅v1 +v2 ≤ 68) and (4 ⋅v3 = 20 ∨ v4 = 40) are

checked by the μSpy. For example, the value of σ1 and the result of σ1 from time n − 1 is

used by the calc stage, which decides if ↑ σ1 holds at the current time. The process is similar

to determine the truth value of σ2 ∨ σ3, the result of which is used as input to calculate

⊡[5,10] (σ2 ∨ σ3). The observer block is configured through the interval memory so as to

represent J = [5,10]. The output of the ⊡[5,10] (σ2 ∨ σ3) calculation is then the input to the

final ptLTL computation, i.e., ϕ ≡ (↑ σ1)→ (⊡[5,10](σ2 ∨ σ3)).

6 Evaluation

To demonstrate the feasibility of our approach, we implemented the presented algorithms for

ptMTL monitoring by means of the μSpy on an FPGA platform. In the current implementa-

tion, subformulas are evaluated sequentially as they appear in the specification’s parse tree.

Since the observer blocks are executed in sequence, their logic elements can be reused and it



Form Methods Syst Des (2014) 44:203–239 227

suffices to equip the μSpy with only one ⧈τϕ, one ⊡J ϕ, and one ϕ1SJ ϕ2 hardware observer

block and assign memory according to the number of subformulas.2 The implementation

is a synchronous register-transfer-level VHDL design, which we both simulated in MEN-

TOR GRAPHICS MODELSIM and synthesized for various FPGAs using the industrial logic

synthesis tool ALTERA QUARTUS II.3

6.1 Simulation results

We conducted several simulation runs of the VHDL implementation of the μSpy unit when

monitoring different ptMTL formulas with randomly generated inputs, representing the exe-

cution traces of an SUT. The simulation runs cover several combinations of the ptLTL opera-

tors ↑, ⊙, and ϕ1 Ss ϕ2 as well as the time-bounded ptMTL operators ⧈τϕ,⟐J ϕ, and ϕ1 SJ ϕ2.

The truth values of the involved atomic propositions {σ0,σ1,σ2} were generated by plac-

ing 1000 truth value transitions with uniformly distributed interarrival times on the discrete

timeline. In all simulated executions, our implementation behaved as specified. To increase

confidence in the implementation, we used an automatic test suite, which checks the gener-

ated executions not only with the μSpy, but also with (i) a software implementation of our

observer algorithms and (ii) a naive offline monitoring algorithms following the semantics

definition of ptLTL and ptMTL. We run this setup with a set of sample specifications and com-

pared the output of the three implementations and iteratively fixed remaining bugs. We used

traditional line coverage metrics to assess the test progress. A rigorous, formal correctness

analysis of the μSpy implementation, however, is still an open issue.

In what follows, we discuss two representative simulation runs involving the ⧈τ and

the SJ operator. To make the simulation traces accessible, Table 2 summarizes all relevant

hardware signals and their intended meaning. We further use the following annotation for

the internal state of the μSpy: m(x) denotes the location in the observer’s data memory at

address x, a(x) denotes the x th atomic proposition and i(x) specifies the interval stored at

address x in the observer’s interval memory.

(a) Invariant previously ⧈τ ϕ We setup the framework so as to evaluate the ptMTL formula:

ϕ1 ≡ (↑ σ0)→ (⧈5σ1)

The property is then translated by the host application into the following binary program for

the μSpy:

01011 0000000000 0000000000 00000000 0000000 // rising edge at a(0)

10001 0000000001 0000000000 00000001 0000000 // [[]] a(1), i(1), mem 0

00110 1000000000 1000000001 00000000 0000000 // m(0) -> m(1)

11111 1000000010 0000000000 00000000 0000000 // output result m(2)

and into the following data for the interval memory:

0000000000000000 0000000000000110 // startup phase duration: 6

0000000000000000 0000000000000101 // [0, 5]

2In our experiments, we opted for a resource efficient design of the μSpy. A configuration of the μSpy

with multiple ptMTL hardware observers immediately makes an evaluation of several subformulas in parallel

possible, however, increase resource requirements.

3Tools can be downloaded from http://www.mentor.com and http://www.altera.com.

http://www.mentor.com
http://www.altera.com


228 Form Methods Syst Des (2014) 44:203–239

Table 2 Simulation signals and their meaning; AH = Active High (issued when high); AL = Active Low

(issued when low), and RTC = Real Time Clock

Signal Name Unit Meaning

s_clk RVU system clock of the RV framework

s_reset_n asynchronous reset of the RV framework (AL)

s_sut_clk system clock of the SUT

s_rtc_timestamp RTC ctr. value of the real-time clock (i.e., time point n)

s_atomic(0) SUT truth value of atomic proposition # 0, σ0 (AH)

s_atomic(1) truth value of atomic proposition # 1, σ1 (AH)

s_atomic(2) truth value of atomic proposition # 2, σ2 (AH)

s_atomic(3) truth value of atomic proposition # 3, σ3 (AH)

s_violated RVU monitoring output en ⊧ ϕ (AH)

command μSpy instruction (op-code) for the μSpy

state state of the fetch stage state machine

state state of the load stage state machine

state state of the calc stage state machine

state state of the write back stage state machine

interval_min min(J) (in RTC ticks)

interval_max max(J) (in RTC ticks)

sel List select the list specified by buffer_nr (AH)

add_start add start ( ) time point to the list (AH)

add_end add end ( ) time point to the list (AH)

set_tail clear list and add new entry (AH)

reset_tail clear list and add entry with time point 0 (AH)

drop_tail remove tail element from the list (AH)

delete remove head element from the list (AH)

buffer_nr id of the currently used list (AH)

The binary program consists of three subformulas and a dedicated end instruction. The

interval memory holds two entries, the first denotes the duration of the start-up phase in

RTC clock cycles and the second entry holds τ = 5 for the ⧈5 operator. The startup phase

signal is then used to implement the check whether n − τ ≥ 0 in the valid
⧈(m,τ,n) predi-

cate.

The simulation screenshot in Fig. 9a shows a section of the simulated VHDL entities. At

time point n = 606, we see a transition of s_atomic(0) which makes the premise of the

implication true. As s_atomic(1) does not hold for all times within the interval [601,606],
e606 /⊧ ⧈5σ1 and the implementation correctly asserts the violated signal. According to Algo-

rithm 1, the next transition of s_atomic(1) at time n = 617 is stored in the m⧈ memory

of the ⧈ operator. At the next transition of s_atomic(0) at time n = 624 the premise of

the implication holds and valid
⧈ is evaluated as follows: 624 − 5 ≥ 617, yielding true, thus,

e624 ⊧ ϕ1.



Form Methods Syst Des (2014) 44:203–239 229

Fig. 9 Simulation traces for ϕ1 and ϕ2 extracted from MODELSIM



230 Form Methods Syst Des (2014) 44:203–239

(b) Since within interval ϕ1 SJ ϕ2 We setup the framework so as to evaluate the ptMTL

formula:

ϕ2 ≡ (↑ σ0)→ (σ1 S[5,10] σ2)

The property is then translated by the host application into the following binary program for

the μSpy:

01011 0000000000 0000000000 00000000 0000000

// rising edge at a(0)

10011 0000000001 0000000010 00000001 0000000

// a(1) S a(2), i(1), mem 0

00110 1000000000 1000000001 00000000 0000000

// m(0) -> m(1)

11111 1000000010 0000000000 00000000 0000000

// output result m(2)

and into the following data for the interval memory:

0000000000000000 0000000000001011

// startup phase duration: 11

0000000000000101 0000000000001010 // [5, 10]

The instruction memory contains three instructions corresponding to the three operators

in the formula. Figure 9b shows a snippet of the corresponding simulation trace. At time

n = 69 a transition of s_atomic(2) is detected and according to Algorithm 3, n−1 = 68 is

added to the list lS of the S observer which is triggered by the add_end signal. At time n = 74

the predicate garbage evaluates to true (since (68 < 74 −min(5,10)) holds) and triggers

the deletion of the element in the list. The signal delete is asserted. The transition of

s_atomic(2) at time n = 82 triggers the adding of the interval-start time point to lS (see

Algorithm 3 line 4). Consequently (82,∞) is the new head element of lS . Starting from

time n = 84 on s_atomic(1) and s_atomic(2) are false, which, according to Algorithm 3,

sets the list to (0,∞). This is done through the reset_tail signal. At time n = 92 we see a

transition of s_atomic(0) which yields e92 ⊧ (↑ σ0). The valid
⊡ predicate evaluates as

follows: (0 ≤ 92 −max(5,10)) ∧ (∞ ≥ 92 −min(5,10)), yielding true. Finally, we obtain

e92 /⊧ ϕ2 and the violated signal is asserted.

6.2 Performance study

Recall, that our hardware implementation uses one hardware module for ⧈τ ϕ and �τ ϕ

observers, one for the ⊡J ϕ and ⟐J ϕ observers, and one for ϕ1SJ ϕ2 observers. The latter

two modules both require lists of the same size, therefore, scale identically with respect

to operating frequency, logic elements, and required memory size. We thus treated them

equally within the performance study.

A hardware instantiation of the μSpy with the standard configuration of

– Time point width in bits 32

– Number of supported ⧈τ ϕ ∣ �τ ϕ subformulas 64

– Number of supported ⊡J ϕ ∣ ⟐J ϕ ∣ ϕ1SJ ϕ2 subformulas 64

– Number of list entries for each ⊡J ϕ ∣ ⟐J ϕ ∣ ϕ1SJ ϕ2 subformula 256

– Program memory size 256× 40 bit

requires a total of 1297 logic elements and 1.075.392 memory bits (132 kByte) and allows

for a maximum operating frequency fmax of 106 MHz (for the slow timing model at 85 ○C)

on an Altera Cyclone IV EP4CE115 FPGA. The operating frequency can easily be increased



Form Methods Syst Des (2014) 44:203–239 231

Fig. 10 Maximum operating frequency fmax , number of logic elements (LE), and required memory bits

versus time point width, assuming a fixed number of 64 subformulas of type ⧈τ ϕ ∣ �τ ϕ and 1 of type

⊡J ϕ ∣ ⟐J ϕ ∣ ϕ1SJ ϕ2

Fig. 11 Maximum operating frequency fmax , number of logic elements (LE), and required memory bits

versus time point width, assuming a fixed number of 1 subformula of type ⧈τ ϕ ∣ �τ ϕ and 64 of type

⊡J ϕ ∣ ⟐J ϕ ∣ ϕ1SJ ϕ2

by moving to a more powerful FPGA architecture. For example, when synthesizing the

design for an Altera Stratix V FPGA, we obtain a maximum operating frequency fmax of

230 MHz.

Scalability We synthesized the μSpy with different parameters to assess its scalability

with regard to the width of the time points as well as the maximum number of ptMTL sub-

formulas supported by the μSpy. We ran the synthesis with default settings so as to not

obscure measurements by tool-specific optimizations. For example, when running synthe-

sis optimized for speed, we naturally obtained results with higher operating frequencies but

also with a higher number of logic elements. The influence of the time point width on the

synthesized designs is shown in Figs. 10 and 11. Both figures show the scalability of the

operating frequency, number of logic elements and required memory bits with respect to

time point width. To asses scalability of each of the observer modules we built one variant

supporting 64 (respectively 1) subformula(s) of type ⧈τ ϕ ∣ �τ ϕ and 1 (respectively 64)

subformula(s) of type ⊡J ϕ ∣ ⟐J ϕ ∣ ϕ1SJ ϕ2. For both design variants, operating frequency

and required number of logic elements scale linearly with comparable slope. For example,

doubling the time point width from 24 to 48 bit increases the number of logic elements by

about 60 %, whereas we observe only a 13 % decrease in the achievable maximum operating

frequency. However, the design is still considerably small. Even with a time point width of

48 bit, it requires only 1.4 % of the available logic elements on our (low-end) target FPGA.

For the number of required memory bits we observe a significant difference for both vari-

ants: Since the hardware module for evaluating ⊡J ϕ ∣ ⟐J ϕ ∣ ϕ1SJ ϕ2 operators is equipped



232 Form Methods Syst Des (2014) 44:203–239

Fig. 12 Maximum operating frequency fmax , number of logic elements (LE), and required memory bits

versus number of subformulas of type ⧈τ ϕ ∣ �τ ϕ, assuming a fixed number of 1 subformula of type

⊡J ϕ ∣ ⟐J ϕ ∣ ϕ1SJ ϕ2 and time point width 32

Fig. 13 Maximum operating frequency fmax , number of logic elements LE, and required memory bits

versus number of subformulas of type ⊡J ϕ ∣ ⟐J ϕ ∣ ϕ1SJ ϕ2 , assuming a fixed number of 1 subformula of

type ⧈τ ϕ ∣ �τ ϕ and time point width 32

with a memory to store a list of time points for each of the supported ⊡J ϕ ∣ ⟐J ϕ ∣ ϕ1SJ ϕ2

subformulas, the required memory bits increase significantly faster in the variant supporting

64 such subformulas than in the version supporting only a single such subformula.

Figures 12 and 13 show the influence of the number of supported subformulas of type

⧈τ ϕ ∣ �τ ϕ and of type ⊡J ϕ ∣ ⟐J ϕ ∣ ϕ1SJ ϕ2. For that purpose, we built variants supporting

a varying number of subformulas of type ⧈τ ϕ ∣ �τ ϕ and only one subformula of type

⊡J ϕ ∣ ⟐J ϕ ∣ ϕ1SJ ϕ2, and vice versa. One immediately sees that the number of supported

subformulas of both types is not a limiting factor with respect to operating frequency and

number of logic elements, as both stay almost constant. This is mainly due to the design

choice we made for the μSpy, where we implemented the predicates, checks, and control

logic required to evaluate either ⧈τ ϕ ∣ �τ ϕ, ⊡J ϕ ∣ ⟐J ϕ, or ϕ1SJ ϕ2 subformulas only

once and reuse this hardware blocks every time the μSpy executes an opcode for a time-

bounded subformula. To put this results in perspective, trimming the design of the μSpy to

evaluating ptLTL specifications only accounts for 294 logic cells (23 % of the original design)

and an fmax of 122 MHz (114 % of the original design). The situation is different for the

required memory. It increases significantly with the number of supported subformulas: For

each additional supported subformula, a sufficiently large memory block has to be added to

the design. Clearly this leads to larger increases for subformulas that require to store lists of

time points (cf. Fig. 13) than those that require to store only a single time point (cf. Fig. 12).



Form Methods Syst Des (2014) 44:203–239 233

7 Related work

This section surveys related work by focusing on frameworks and tools, theoretical results

on observer algorithms, and approaches that perform runtime verification either in or of

hardware designs.

Frameworks and tools Watterson and Heffernan [80] review established and emerging

approaches for monitoring (software) executions of embedded systems; calling for future

work on runtime verification approaches that utilize existing chip interfaces to provide the

observations as events to an external monitoring system. Pike et al. [64] worked on runtime

verification for real-time systems by defining observers in a data-flow language, which are

compiled into programs with constant runtime and memory. If the original system is peri-

odically schedulable with some safety margin, the monitored system can be shown to be

schedulable, too. This approach targets software only, whereas we monitor a combination of

embedded software and hardware components. Hardware observers that simply probe one

or more internal signals have been known in literature for a few decades. An early instance

thereof is the non-interference monitoring and replay mechanism by Tsai et al. [79]. Their

monitoring system is based on the MC6800 processor that records the execution history

of the target system. A dedicated replay controller then replays stored executions, which

supports test engineers in low-level debugging. Although we share a similar idea of prob-

ing internal signals, our framework detects specification violations on-the-fly, rather than

replaying traces from some execution history.

The Dynamic Implementation Verification Architecture (DIVA) exploits runtime veri-

fication at intra-processor level [5]. Whenever a DIVA-based microprocessor executes an

instruction, the operands and the results are sent to a checker which verifies correctness

of the computation; the checker also supports fixing an erroneous operation. Chenard [19]

presents a system-level approach to debugging based on in-silicon hardware checkers. The

work of Brörkens and Möller [18] is akin to ours in the sense that they also do not rely

on code instrumentation to generate event sequences. Their framework, however, targets

Java and connects to the bytecode using the Java Debug Interface (JDI) so as to generate

sequences of events.

BusMOP [62] generates observers for ptLTL on FPGAs, which are connected to the Pe-

ripheral Component Interconnect (PCI). The commercial Temporal Rover system [29] im-

plements observers for MTL formulas, but the implementation and algorithms used are not

published.

Observer algorithms We restrict our survey to ptMTL observer algorithms for past time

logics in the discrete-time setting.

Thati and Roşu [78] presented an on-line observer for MTL formulas ψ . Their idea is to

reduce the problem of deciding whether en ⊧ ψ to deciding several instances of en′ ⊧ ψ ′,

where ψ ′ is a subformula of ψ and n′ ≤ n. Thereby for each subformula ϕ1S[a,b]ϕ2 of ψ , the

formulas ϕ1S[a−1,b−1]ϕ2, ϕ1S[a−2,b−2]ϕ2, . . . , ϕ1S[0,b−a]ϕ2, . . . , ϕ1S[0,0]ϕ2 are defined to be

subformulas of ψ . For example, in case ψ ≡ ϕ1S[1,3]ϕ2, where ϕ1 and ϕ2 are atomic proposi-

tions, the reduced formulas of ψ are ϕ1, ϕ2 as well as ϕ1S[0,2]ϕ2, ϕ1S[0,1]ϕ2, and ϕ1S[0,0]ϕ2.

Denoting by m the number of subformulas an MTL formula ψ is reduced to, the space com-

plexity of their observer is within O(m2m) and its time complexity is within O(m323m)
for each time n in N0, the observer is executed. For the special cases of ψ ≡ ϕ1 SJ ϕ2, the

observer still requires a memory of at least 2m ≥ 2 max(J ) bit. While this bound is incom-

parable in general to our bound, for large values of max(J ) we immediately obtain that our



234 Form Methods Syst Des (2014) 44:203–239

solution has less memory complexity. For example for ϕ1S[5,1500]ϕ2 the solution in [78] re-

quires at least 3000 bit of memory, whereas our observer requires 208 bit, assuming (upper

bounded) time points of 52 bit.

Maler et al. [57] presented an on-line observer algorithm for ϕ1 SJ ϕ2 that is based on

having active counters for each event of ϕ2. Divakaran et al. [26] improved the number of

counters of bit width log max(J ) to 2⌈min(J )/(len(J ))⌉ + 2 and proved that any Since

observer realized as a timed transition system must use at least 2(⌈min(J ))/(len(J ))⌉ + 1

clocks. While their space complexity is incomparable to ours in general, their solution is

very resource intensive for a hardware realization: While we may store list values in cheap

RAM blocks, their solution requires to store the current counter values in registers, since

their values are incremented at every time step. Further, one can show by simple algebraic

manipulations that:

Proposition 2 For all intervals J , with 0 ≤min(J ) <max(J ) <∞,

2 max(J ) −min(J ) + 2

2+ len(J )
−

min(J )
len(J )

≤ 2. (9)

Proposition 3 For all intervals J = [a,a + 1], where a ∈N0,

min(J )
len(J )

−
2 max(J ) −min(J ) + 2

2+ len(J )
=

2

3
(a − 2).

From Proposition 2 immediately follows that our observer requires at most two tuples in

addition to the (counter) tuples required by Divakaran et al.’s observer. On the other hand,

it follows from Proposition 3 that there exists a choice of parameters where our observer

requires significantly less memory.

In contrast to the solution presented by Divakaran et al. [26], our solution is tailored to

a discrete time base, dictated by our application domain: not only that at the hardware level

a (discrete) system clock is naturally available, but also adding and comparing fractions

would incur a significant overhead with respect to latency and circuit size. Nonetheless, our

algorithms also work in the dense time domain with only two small modifications: (i) instead

of running the algorithms at every time n ∈N0, they need to be executed at every transition of

an input signal, and (ii) the term “n− 1” must be replaced by “n” in Algorithms 2 and 3. By

analogous proofs we obtain that, in this case, list ℓ is of size at most (max(J ))/(len(J ))+1

tuples, which is at most one more than the number of clocks required by the Since observer

by Divakaran et al. [26].

Basin et al. [11] present a (discrete time) point-based observer for formula ϕ1 SJ ϕ2 which

runs in time O(log max(J ∪{n})) if executed at time n ∈N0. Their algorithm, however, re-

quires memory in the order of max(J ). They further presented an interval-based observer

algorithm for ϕ1SJ ϕ2 with space complexity comparable to our solution. However, the al-

gorithm is clearly motivated with a software implementation in mind, whereas we aim at

efficient (highly parallel) circuit implementations. For example, for an arbitrary ptMTL for-

mula ϕ, our time-complexity bounds scale with the depth of the parse tree of ϕ, in case the

μSpy executes observer algorithms in parallel, and with the number of nodes in the parse tree

of ϕ, in case the μSpy executes observer algorithms sequentially. By contrast, the bounds

in [11] scale with the fourth power of the number of nodes in the parse tree of ϕ. Further,

a direct implementation of their algorithm would require considerable hardware overhead,

as it makes use of doubly-linked lists to store and manipulate time points. In comparison,

our ring buffer design can easily be mapped to block RAM elements that are abundant on

modern day FPGAs.



Form Methods Syst Des (2014) 44:203–239 235

Hardware observers In previous work, we have shown that ptLTL can, within certain

bounds, be checked in hardware running at the same frequency as the SUT [68]. Assertion-

based verification (ABV) [36] gained momentum in industrial-strength hardware verifica-

tion, especially driven by the emerge of the Property Specification Language (PSL). PSL is

based on LTL, augmented with regular expressions, thus, we will not compare our work to

PSL monitoring algorithms but rather to the hardware architecture of the resulting check-

ers. Existing work largely aims at synthesizing hardwired circuits out of various temporal

specifications, whereas our approach (a) focuses on ptMTL specifications and (b) aims at

providing a reconfigurable framework that has also applications in testing and not only as

hard-coded observer. Translations from PSL into hardware either follow the modular or the

automata based synthesis.

In the modular approach [14, 15, 25, 27, 60], sub-circuits for each operator are built

and inter-connected according to the parse tree of the PSL expression being monitored.

These circuits then output a pair of signals indicating the status of the assertion. Boulé and

Zilic [15] present a hardware-checker generator capable of supporting ABV, by translating

PSL to hardware language descriptions that can be included into the source design. The

input to their circuit generator is the source file of the design under test (DUT). This lim-

its their approach to designs where the source is available, whereas our framework can be

attached to a variety of targets (cp. Fig. 1), even third party proprietary systems. Unfortu-

nately, their algorithms lack a complexity analysis. Borrione et al. [14] describe a method

of translating properties of the PSL foundation layer into predefined primitive components.

A component is a hardware unit, consisting of a checking window and an evaluation block.

They make use of shift register chains in the checking window block to trigger the execution

of the evaluation block. Primitive components representing a timed operator (e.g., within in

the next τ time units), need to individually count the number of elapsed time points. Das

et al. [25] presented a modular approach by decomposing System Verilog Assertions (SVA)

into simple communicating parallel hardware units that, when connected together, act as an

observer for a SVA. Morin-Allory and Borrione [60] describe a generation of synthesizable

hardware from regular expressions included in PSL. Drechsler [27] describes an approach

to synthesize checkers for online verification of SoC designs through chains of shift regis-

ters, but does not allow for checking arithmetic relations among bit-vectors. For hardware

designs, these specifications are often directly available from the specification [75].

In the automata based approach [4, 16, 17, 37, 38, 56], state machines are synthe-

sized that check a property during simulation. The generated automata are generally of

non-deterministic nature. To avoid a blowup of the automaton capable of monitoring for-

mulas that are required to hold for a certain number of clock cycles, additional counters

are inserted. However, this is only feasible if the output language natively supports non-

deterministic finite automata (NFA), unfortunately, major hardware descriptions languages

(e.g., Verilog and VHDL) do not. Consequently, observers need to be converted to a de-

terministic finite automaton (DFA) first, which, in the worst case, yields an exponential

blowup of the resulting DFA in the size of the NFA [43]. This theoretical limitations were

also reflected in the experiments of Straka et al. [76] where they report on an attempt to

verify trivial properties of a simple counter, where the resulting observers synthesized by

FoCs [1] from a PSL specification requires 120 logic slices whereas the resources for the

counter itself accounts only for 3 slices. This performance issues motivate them to turn to

a self-made tool to design on-line checkers instead of using existing toolchains. Lu and

Forin [56] present a compiler from PSL to VERILOG, which translates a subset of PSL as-

sertions (SPSL, a C-language binding for PSL [20]) about a software program (written in C

in their approach) into hardware execution blocks for an extensible MIPS processor, thus al-

lowing for transparent runtime verification without altering the program under investigation.



236 Form Methods Syst Des (2014) 44:203–239

The synthesized verification unit is generated by a property rewriting algorithm developed

by Roşu and Havelund [72]. Atomic propositions are restricted to a single comparison op-

erator only. For comparison, our approach supports more complex relations among memory

values in the atomic propositions, thus yielding greater flexibility and expressiveness in the

specification language. Armoni et al. [4] describe an automata-theoretic construction based

on determinization for unrestricted temporal logic, i.e., ForSpec [3]. They showed how to

obtain deterministic compilation targeting dynamic verification that is as close as possible

to the nondeterministic compilation of temporal assertions.

8 Conclusion

We presented an on-line runtime verification framework to check a ptMTL formula on ex-

ecutions with discrete time domain. At the framework’s heart is an observer design for the

time-bounded Since operator and the special cases of exists/invariant previously and within

interval. Correctness proofs of all presented algorithms have been given and bounds on their

time and space complexity have been proven. The promising complexity results are mainly

due to the integration of a garbage collection and a filtering strategy that automatically drop

events that can neither validate nor invalidate the specification.

We further discussed a reconfigurable hardware realization of our observer algorithm

that provides sufficient flexibility to allow for changes of the monitored specification with-

out necessarily re-synthesizing the hardware observer. Reconfigurability is indeed a valuable

property of the presented approach since logic synthesis is itself a very time-consuming task.

To demonstrate the feasibility of our approach for practical applications, we implemented

the algorithms on a Field Programmable Gate Array. The predictable and low resource re-

quirements of the presented hardware solution together with its reconfigurability support the

application in the diagnosis of embedded real-time systems during execution time.

Based on the framework presented in this article, we plan to investigate the following

directions: who guards the guardians? [74] is a legitimate question with regard to the imple-

mentation of our runtime verification unit. Whereas we gave a formal correctness analysis

for the algorithms itself, however, doing so for the implementation is an open issue. Addi-

tionally, we plan to extend our work to (bounded) future time MTL specifications.

Acknowledgements The work of Thomas Reinbacher and Matthias Függer has been supported within the

FIT-IT project CevTes managed by the Austrian Research Agency FFG under grant 825891 and (partially)

supported by the Austrian Science Foundation (FWF) under project S11405 (RiSE). The work of Jörg Brauer

has been, in part, supported by the DFG Cluster of Excellence on Ultra-high Speed Information and Com-

munication, German Research Foundation grant DFG EXC 89 and by the DFG research training group 1298

Algorithmic Synthesis of Reactive and Discrete-Continuous Systems. The authors want to thank Dejan Nick-

ovic, Andreas Steininger, Kristin Y. Rozier, and Johann Schumann for helpful discussions. Additionally, the

authors want to thank Andreas Hagmann, Johannes Geist, and Patrick Moosbrugger for their help with the

hardware implementation and experiments.

Open Access This article is distributed under the terms of the Creative Commons Attribution License

which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the

source are credited.

References

1. Abarbanel Y, Beer I, Gluhovsky L, Keidar S, Wolfsthal Y (2000) FoCs: automatic generation of simula-

tion checkers from formal specifications. In: CAV. LNCS, vol 1855. Springer, Berlin, pp 538–542



Form Methods Syst Des (2014) 44:203–239 237

2. Alur R, Henzinger TA (1990) Real-time logics: complexity and expressiveness. In: LICS. IEEE, New

York, pp 390–401

3. Armoni R, Fix L, Flaisher A, Gerth R, Ginsburg B, Kanza T, Landver A, Mador-Haim S, Singer-

man E, Tiemeyer A, Vardi MY, Zbar Y (2002) The Forspec temporal logic: a new temporal property-

specification language. In: TACAS. Springer, Berlin, pp 196–211

4. Armoni R, Korchemny D, Tiemeyer A, Vardi M, Zbar Y (2006) Deterministic dynamic monitors for

linear-time assertions. In: Formal approaches to software testing and runtime verification. LNCS, vol

4262. Springer, Berlin, pp 163–177

5. Austin TM (1999) DIVA: a reliable substrate for deep submicron microarchitecture design. In: MICRO.

IEEE, New York, pp 196–207

6. Baier C, Katoen JP (2008) Principles of model checking. MIT Press, Cambridge

7. Bardin S, Herrmann P, Védrine F (2011) Refinement-based CFG reconstruction from unstructured pro-

grams. In: VMCAI. Springer, Berlin, pp 54–69

8. Barre B, Klein M, Soucy-Boivin M, Ollivier PA, Hallé S (2012) MapReduce for parallel trace validation

of LTL properties. In: RV. LNCS. Springer, Berlin

9. Barringer H, Falcone Y, Finkbeiner B, Havelund K, Lee I, Pace GJ, Rosu G, Sokolsky O, Tillmann

N (eds) (2010) Runtime verification—first international conference, proceedings. LNCS, vol 6418.

Springer, Berlin

10. Bartocci E, Grosu R, Karmarkar A, Smolka S, Stoller S, Zadok E, Seyster J (2012) Adaptive runtime

verification. In: RV. LNCS. Springer, Berlin

11. Basin D, Klaedtke F, Zălinescu E (2011) Algorithms for monitoring real-time properties. In: RV. LNCS,

vol 7186. Springer, Berlin, pp 260–275

12. Bate I, Conmy P, Kelly T, McDermid J (2001) Use of modern processors in safety-critical applications.

Comput J 44(6):531–543

13. Bauer A, Leucker M, Schallhart C (2010) Comparing LTL semantics for runtime verification. J Log

Comput 20(3):651–674

14. Borrione D, Liu M, Morin-Allory K, Ostier P, Fesquet L (2005) On-line assertion-based verification with

proven correct monitors. In: ICICT, pp 125–143

15. Boulé M, Zilic Z (2005) Incorporating efficient assertion checkers into hardware emulation. In: ICCD.

IEEE Computer Society Press, Los Alamitos, pp 221–228

16. Boulé M, Zilic Z (2006) Efficient automata-based assertion-checker synthesis of PSL properties. In:

High-level design validation and test workshop. Eleventh annual IEEE international, pp 69–76

17. Boulé M, Zilic Z (2008) Automata-based assertion-checker synthesis of PSL properties. ACM Trans Des

Autom Electron Syst 13(1)

18. Brörkens M, Möller M (2002) Dynamic event generation for runtime checking using the JDI. Electron

Notes Theor Comput Sci 70(4):21–35

19. Chenard JS (2011) Hardware-based temporal logic checkers for the debugging of digital integrated cir-

cuits. PhD thesis, McGill University

20. Cheung PH, Forin A (2007) A C-language binding for PSL. In: Proceedings of the 3rd international

conference on embedded software and systems. ICESS ’07. Springer, Berlin, pp 584–591

21. Clarke EM (2009) My 27-year quest to overcome the state explosion problem. In: LICS. IEEE Computer

Society Press, Los Alamitos, p 3

22. Clarke EM, Grumberg O, Peled DA (1999) Model checking. MIT Press, Cambridge. ISBN 0262032708

23. Colombo C, Pace GJ, Schneider G (2009) Safe runtime verification of real-time properties. In: FOR-

MATS. LNCS, vol 5813. Springer, Berlin, pp 103–117

24. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In: POPL

25. Das S, Mohanty R, Dasgupta P, Chakrabarti P (2006) Synthesis of system verilog assertions. In: DATE,

vol 2, pp 1–6

26. Divakaran S, D’Souza D, Mohan MR (2010) Conflict-tolerant real-time specifications in metric temporal

logic. In: TIME, pp 35–42

27. Drechsler R (2003) Synthesizing checkers for on-line verification of system-on-chip designs. In: ISCAS,

vol 4, pp IV-748–IV-751

28. Druilhe A, Daumas F, Nguyen T (2010) Formal verification of an FPGA emulation of the motorola 6800

microprocessor. In: NPIC&HMIT. American Nuclear Society, New York, pp 1316–1325

29. Drusinsky D (2003) Monitoring temporal rules combined with time series. In: CAV. LNCS, vol 2725.

Springer, Berlin, pp 114–118

30. Dvorak D (ed) (2009) NASA study on flight software complexity. NASA office of chief engineer

31. Eide E, Regehr J (2008) Volatiles are miscompiled, and what to do about it. In: EMSOFT. ACM, New

York, pp 255–264



238 Form Methods Syst Des (2014) 44:203–239

32. Emerson EA (1990) Temporal and modal logic. In: Handbook of theoretical computer science, vol B.

MIT Press, Cambridge, pp 995–1072

33. Engblom J (2001) On hardware and hardware models for embedded real-time systems. In: RTSS

34. Fischmeister S, Lam P (2010) Time-aware instrumentation of embedded software. IEEE Trans Ind In-

form 6(4):652–663

35. Flexeder A, Mihaila B, Petter M, Seidl H (2010) Interprocedural control flow reconstruction. In: APLAS.

LNCS, vol 6461. Springer, Berlin, pp 188–203

36. Foster H, Lacey D, Krolnik A (2003) Assertion-based design, 2nd edn. Kluwer Academic, Norwell

37. Gheorghita S, Grigore R (2005) Constructing checkers from PSL properties. In: CSCS’05 international

conference on control systems and computer science, pp 757–762

38. Gordon M, Hurd J, Slind K (2003) Executing the formal semantics of the accellera property specifica-

tion language by mechanised theorem proving. In: CHARME 2003. LNCS, vol 2860. Springer, Berlin,

pp 200–215

39. Havelund K, Roşu G (2004) An overview of the runtime verification tool Java PathExplorer. Form Meth-

ods Syst Des 24(2):189–215

40. Havelund K (2008) Runtime verification of C programs. In: TestCom/FATES. Springer, Berlin, pp 7–22

41. Havelund K, Roşu G (2004) Efficient monitoring of safety properties. Int J Softw Tools Technol Transf

6:158–173

42. Havelund K, Rosu G (2002) Synthesizing monitors for safety properties. In: TACAS. LNCS. Springer,

Berlin, pp 342–356

43. Hopcroft JE, Motwani R, Ullman JD (2006) Introduction to automata theory, languages, and computa-

tion. Addison-Wesley Longman, Reading

44. Horowitz P, Hill W (1980) The art of electronics. Cambridge University Press, Cambridge. ISBN

0521370957

45. Howe J, King A (2009) Logahedra: a new weakly relational domain. In: ATVA. LNCS, vol 5799.

Springer, Berlin, pp 306–320

46. Kinder J, Veith H, Zuleger F (2009) An abstract interpretation-based framework for control flow recon-

struction from binaries. In: VMCAI. LNCS, vol 5403. Springer, Berlin, pp 214–228

47. Kogge PM, Stone HS (1973) A parallel algorithm for the efficient solution of a general class of recurrence

equations. IEEE Trans Comput 22(8):786–793

48. Kopetz H (2011) Real-time systems, 2nd edn. Springer, Berlin

49. Kroening D, Strichman O (2008) Decision procedures: an algorithmic point of view. Springer, Berlin

50. Laroussinie F, Markey N, Schnoebelen P (2002) Temporal logic with forgettable past. In: LICS. IEEE,

New York, pp 383–392

51. Lee I, Kannan S, Kim M, Sokolsky O, Viswanathan M (1999) Runtime assurance based on formal

specifications. In: PDPTA, pp 279–287

52. Leroy X (2006) Formal certification of a compiler back-end or: programming a compiler with a proof

assistant. In: POPL. ACM, New York, pp 42–54

53. Leroy X (2009) A formally verified compiler back-end. J Autom Reason 43:363–446

54. Lichtenstein O, Pnueli A, Zuck L (1985) The glory of the past. In: Logics of programs. LNCS, vol 193.

Springer, Berlin, pp 196–218

55. Lindig C (2005) Random testing of C calling conventions. In: AADEBUG. ACM, New York, pp 3–12

56. Lu H, Forin A (2007) The design and implementation of P2V, an architecture for zero-overhead online

verification of software programs. Tech rep MSR-TR-2007-99, Microsoft Research

57. Maler O, Nickovic D, Pnueli A (2005) Real time temporal logic: past, present, future. In: FORMATS,

pp 2–16

58. Manna Z, Pnueli A (1992) The temporal logic of reactive and concurrent systems. Springer, Berlin

59. Marwedel P (2011) Embedded system design. Springer, Berlin. ISBN 9789400702578

60. Morin-Allory K, Borrione D (2006) Proven correct monitors from PSL specifications. In: DATE, pp 1–6

61. Parr TJ, Quong RW (1995) ANTLR: a predicated-ll(k) parser generator. Softw Pract Exp 25:789–810

62. Pellizzoni R, Meredith P, Caccamo M, Rosu G (2008) Hardware runtime monitoring for dependable

COTS-based real-time embedded systems. In: RTSS, pp 481–491

63. Pellizzoni R, Meredith P, Caccamo M, Rosu G (2008) Hardware runtime monitoring for dependable

COTS-based real-time embedded systems. In: RTSS, pp 481–491

64. Pike L, Goodloe A, Morisset R, Niller S (2010) Copilot: a hard real-time runtime monitor. In: RV. LNCS,

vol 6418. Springer, Berlin, pp 345–359

65. Pike L, Niller S, Wegmann N (2011) Runtime verification for ultra-critical systems. In: RV. LNCS, vol

7186. Springer, Berlin, pp 310–324

66. Puschner P (2002) Is worst-case execution-time analysis a non-problem? – towards new software and

hardware architectures. In: Proceedings of the 2nd Euromicro international workshop on WCET analysis,

Department of Computer Science, University of York



Form Methods Syst Des (2014) 44:203–239 239

67. Reinbacher T, Brauer J (2011) Precise control flow reconstruction using boolean logic. In: EMSOFT.

ACM, New York, pp 117–126

68. Reinbacher T, Brauer J, Horauer M, Steininger A, Kowalewski S (2011) Past time LTL runtime verifica-

tion for microcontroller binary code. In: FMICS. LNCS, vol 6959. Springer, Berlin, pp 37–51

69. Reinbacher T, Brauer J, Horauer M, Steininger A, Kowalewski S (2012) Runtime verification of micro-

controller binary code. Sci Comput Program (in press)

70. Reinbacher T, Brauer J, Schachinger D, Steininger A, Kowalewski S (2011) Automated test-trace in-

spection for microcontroller binary code. In: RV. LNCS, vol 7186. Springer, Berlin, pp 239–244

71. Reinbacher T, Függer M, Brauer J (2013) Real-time runtime verification on chip. In: Qadeer S, Tasiran S

(eds) RV. LNCS, vol 7687. Springer, Berlin, pp 110–125

72. Roşu G, Havelund K (2005) Rewriting-based techniques for runtime verification. Autom Softw Eng

12(2):151–197

73. RTCA/DO-178B (1992) Software considerations in airborne systems and equipment certification

74. Schumann J, Srivastava A, Mengshoel O (2010) Who guards the guardians? Toward V&V of health

management software. In: RV. LNCS, vol 6418, pp 399–404

75. Shimizu K, Dill DL, Hu AJ (2000) Monitor-based formal specification of PCI. In: FMCAD. Springer,

Berlin, pp 335–353

76. Straka M, Kotásek Z, Winter J (2008) The design of hardware checkers for verification and diagnostic

purposes. In: CSE, pp 320–327

77. Tabakov D, Rozier KY, Vardi MY (2012) Optimized temporal monitors for SystemC. Form Methods

Syst Des 41(3):236–268

78. Thati P, Roşu G (2005) Monitoring algorithms for metric temporal logic specifications. Electron Notes

Theor Comput Sci 113:145–162

79. Tsai JJP, Fang KY, Chen HY, Bi Y (1990) A noninterference monitoring and replay mechanism for

real-time software testing and debugging. IEEE Trans Softw Eng 16:897–916

80. Watterson C, Heffernan D (2007) Runtime verification and monitoring of embedded systems. IET Softw

1(5):172–179

81. Yang X, Chen Y, Eide E, Regehr J (2011) Finding and understanding bugs in C compilers. In: PLDI.

ACM, New York, pp 283–294


	Runtime veriﬁcation of embedded real-time systems
	Abstract
	Introduction
	Contributions and roadmap
	Logics for runtime veriﬁcation
	Past-time linear temporal logic
	Past-time metric temporal logic
	Rewriting past-time metric temporal logic to past-time linear temporal logic

	Observer design for real-time properties
	Decomposing a speciﬁcation
	Running example

	The invariant and exists previously operators
	Invariant previously (tau phi)
	Running example
	Exists previously (tauphi)

	The invariant and exists within interval operators
	Invariant within interval (J phi)
	Running example
	Exists within interval (J phi)

	The since within interval operator
	Garbage collection
	Discussion of space and time complexity

	Mapping the framework into hardware structures
	Interfacing the system under test
	Registers and lists of pairs of time points
	Real-time clock
	Evaluation of atomic propositions
	Runtime observers
	Evaluating the observer algorithms' predicates
	Lists and garbage collection
	Control logic and modularity

	A microcomputer to evaluate ptMTL and ptLTL speciﬁcations
	Workﬂow
	Instruction set architecture
	Architectural features
	Execution time per operator


	Evaluation
	Simulation results
	(a) Invariant previously tau phi
	(b) Since within interval phi1SJphi2

	Performance study
	Scalability


	Related work
	Frameworks and tools
	Observer algorithms
	Hardware observers

	Conclusion
	Acknowledgements
	References


