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KEY PO INT S

• RUNX1 isoform
disequilibrium toward
RUNX1A and its
interaction with
MYC:MAX are key
in the pathogenesis
of trisomy 21–
associated ML.

• Restoration of
RUNX1A:RUNX1C
equilibrium and
pharmacological
interference with
MYC:MAX dimerization
reverses the oncogenic
phenotype.
 gu
Gain of chromosome 21 (Hsa21) is among the most frequent aneuploidies in leukemia.
However, it remains unclear how partial or complete amplifications of Hsa21 promote
leukemogenesis and why children with Down syndrome (DS) (ie, trisomy 21) are partic-
ularly at risk of leukemia development. Here, we propose that RUNX1 isoform disequi-
librium with RUNX1A bias is key to DS-associated myeloid leukemia (ML-DS). Starting
with Hsa21-focused CRISPR–CRISPR-associated protein 9 screens, we uncovered a strong
and specific RUNX1 dependency in ML-DS cells. Expression of the RUNX1A isoform is
elevated in patients with ML-DS, and mechanistic studies using murine ML-DS models and
patient-derived xenografts revealed that excess RUNX1A synergizes with the patho-
gnomonic Gata1s mutation during leukemogenesis by displacing RUNX1C from its
endogenous binding sites and inducing oncogenic programs in complex with the MYC
cofactor MAX. These effects were reversed by restoring the RUNX1A:RUNX1C equilib-
rium in patient-derived xenografts in vitro and in vivo. Moreover, pharmacological
interference with MYC:MAX dimerization using MYCi361 exerted strong antileukemic
effects. Thus, our study highlights the importance of alternative splicing in leukemogen-
esis, even on a background of aneuploidy, and paves the way for the development of
est on 25
specific and targeted therapies for ML-DS, as well as for other leukemias with Hsa21 aneuploidy or RUNX1 isoform
disequilibrium.
 S
ept
em

ber 2023
Introduction
Major multiomic efforts have mapped the cytogenetic, muta-
tional, and epigenetic landscape of many cancers, including
acute myeloid leukemia (AML).1,2 Subsequent functional studies
involving disease modeling in mice or in human cells have
pointed toward complex cooperation between common fusion
oncogenes and recurrently mutated genes during disease initi-
ation and progression. However, the contribution of aneuploidy
to oncogenesis remains poorly understood3 because of context-
dependent effects, technical challenges, and a lack of appro-
priate models. Gain of chromosome 21 (Hsa21), one of the most
frequent numerical alterations in leukemia,4,5 is no exception.
Myeloid leukemia associated with Down syndrome (ML-DS) and
its preleukemic antecedent, transient abnormal myelopoiesis
(TAM), are excellent paradigms for studying leukemic progres-
sion associated with trisomy 21. TAM is caused by a single
genetic mutation in the transcription factor GATA1 in trisomic
fetal stem and/or progenitor cells, which causes the exclusive
expression of a shorter isoform known as GATA1s.6 We, and
others, have shed light on the additional mutational events that
are required for progression to overt ML-DS,7,8 however, far less
is known about the role of trisomy 21 in the development of the
TAM/ML-DS disease phenotype. A critical region has been
identified on Hsa21 that mediates the expansion of early
hematopoietic progenitors observed in patients with DS9-11 and
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several Hsa21 genes, such as ERG,12,13 DYRK1A,14 CHAF1B,15

and microRNA 125b (miR-125b),16,17 have been postulated to
play a role in leukemogenesis. In contrast, Ts65dn mice that are
trisomic for 104 orthologs of Hsa21 genes do not fully reca-
pitulate the human phenotype in association with GATA1s,18

and the postulated factors are either located outside of the
critical region, not overexpressed in trisomic fetal progenitor
cells,11 or lack full leukemic potential in humans when com-
bined with mutated GATA1s.14,19,20

The transcription factor RUNX1, which is essential for the
establishment of definitive hematopoiesis,21-23 has attracted
considerable attention as a candidate Hsa21 oncogene.
Although RUNX1 has been extensively studied in leukemia
development,24,25 its expression is reduced in trisomic fetal
progenitor cells11 and its trisomy is dispensable for myelopro-
liferative disease in elderly Ts65dn mice.24 Despite initial hints
pointing toward differential roles for alternatively spliced
RUNX1 isoforms in ML-DS,26 studies, to date, have not
accounted for the fact that RUNX1 is transcribed from 2 distinct
promoters and undergoes alternative splicing, giving rise to 3
main isoforms with diverse effects on hematopoiesis27:
RUNX1C, transcribed from the P1 promoter, is the most abun-
dant isoform in definitive hematopoiesis. RUNX1A and
RUNX1B, both transcribed from the P2 promoter, are differen-
tially expressed throughout hematopoietic differentiation.28-30

Interestingly, because of the lack of a splice acceptor site in
an isoform-specific exon, mice do not express RUNX1A, the
short RUNX1 isoform that lacks the transactivation domain,
underlining important species-specific differences31 and
contributing, in part, to the incomplete understanding of
isoform-specific roles for RUNX1.

In this study, we systematically investigated protein-coding
genes on Hsa21 for dependency in ML-DS and found that
disequilibrium of the RUNX1 isoforms, specifically excess
RUNX1A, is key to trisomy 21–associated leukemogenesis.
2-017619-m
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Methods
Reagents and resources
Supplemental Table 1, available on the Blood website, contains
a list of all relevant reagents.

Patient samples
Samples from pediatric patients with AML were collected from
patients enrolled in the AML Berlin-Frankfurt-Münster treatment
protocols for children and adolescents. Written, informed con-
sent was obtained from all patients and custodians in accor-
dance with the Declaration of Helsinki and local laws and
regulations, and the study was approved by the institutional
review boards of all participating centers. For details, refer to
supplemental Table 2.

Animal studies
All animal experiments were performed according to protocols
approved by the local authorities (Niedersächsisches Land-
esamt für Verbraucherschutz und Lebensmittelsicherheit,
Landesverwaltungsamt Sachsen-Anhalt, and Regierungs-
präsidium Darmstadt). The animals were maintained under
pathogen-free conditions.
1106 9 MARCH 2023 | VOLUME 141, NUMBER 10
Statistical analysis
Statistical evaluation was performed using the Student t test,
the Mann-Whitney U test, and 1-way or 2-way analysis of vari-
ance. The Kaplan-Meier method and log-rank tests were used
to estimate overall survival and to compare differences between
survival curves, respectively. All data are presented as mean ±
standard deviation. Calculations were performed using Graph-
Pad Prism version 8/9 (STATCON). All statistical tests and
sample numbers are disclosed in the respective figure legends/
supplemental tables.

Additional detailed methods can be found in the supplemental
Methods.
Results
CRISPR-Cas9 screen reveals RUNX1 dependency in
ML-DS
To identify potential oncogenes on Hsa21 that contribute to the
pathogenesis of TAM and ML-DS, we generated a lentiviral
CRISPR–CRISPR-associated protein 9 (CRISPR-Cas9) library
(1090 single-guide RNA [sgRNA]) targeting the 218 annotated
coding genes on Hsa21 and performed a dropout screen in the
ML-DS cell line CMK, as well as in the erythroleukemia cell line
K562 (Figure 1A). We identified 19 genes specifically required
for the survival of CMK cells (Figure 1B; supplemental Table 3).
Interestingly, we observed a strong depletion of RUNX1-
targeting sgRNAs in CMK but not in K562 cells (Figure 1B-C).
Subsequent flow cytometry–based depletion assays using
individual sgRNAs found RUNX1 to be the most specific ML-DS
dependency in our screen, with the sgRNAs’ impact on cell
survival corresponding to RUNX1 knockdown levels (Figure 1C;
supplemental Figure 1A-D). These results were recapitulated
in vitro in stable Cas9-expressing blasts derived from patients
with ML-DS and in vivo by fluorescence-based competitive
transplantation assays (Figure 1C-E; supplemental Figure 1E-G;
supplemental Table 2).

Considering that former studies have disputed the role of
RUNX1 in TAM/ML-DS pathogenesis, and given that Bourquin
et al hypothesized that alternatively spliced RUNX1 isoforms
may lead the reduced expression of RUNX1 targets in ML-
DS,11,24,26 we wondered whether deregulation of the RUNX1
isoforms, rather than altered overall expression, might underlie
its dependency phenotype in ML-DS cells. Nanopore full-length
RNA sequencing (RNA-seq) revealed that the main isoforms,
RUNX1A, RUNX1B, and RUNX1C, are predominant in TAM and
ML-DS (Figure 1F). Thus, we further quantified the expression of
these 3 isoforms in healthy hematopoietic cells (hematopoietic
stem and progenitor cells [HSPCs], erythrocytes, megakaryo-
cytes, granulocytes, and monocytes) and TAM/ML-DS blasts.
RUNX1C is the predominant isoform in all cell types, but ML-DS
and trisomy 21 samples presented with elevated expression of
the RUNX1A isoform, resulting in a significantly higher RUN-
X1A:RUNX1B/C ratio compared with HSPCs or terminally
differentiated cells (Figure 1G; supplemental Figure 1H-K).

Notably, trisomy 21 is associated with an elevated RUNX1A:
RUNX1B/C ratio, as determined by comparing fetal trisomy 21
and nontrisomic CD34+ HSPCs (supplemental Figure 1H-I).
Interestingly, this imbalance can be induced by elevated levels
GIALESAKI et al
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Figure 1. CRISPR-Cas9 screen reveals RUNX1 dependency in ML-DS. (A) Schema of the high-throughput Hsa21 CRISPR-Cas9 in vitro screen. (B) Dot plots showing the
log10 fold change and −log10 (P 2-sided) of the Hsa21 sgRNAs in CMK (left), K562 (middle), and CMK + K562 (right; maximum likelihood estimation [MLE] β score) cell lines.
Dark green dots represent highly depleting sgRNAs in CMK cells that also deplete in K562s. Light green dots represent positive controls (MYB, MYC, ACTB, SF3B3, RPL9,
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of the splicing factor subunit U2AF1, which is encoded by
chromosome 21 (supplemental Figure 2A). Moreover, GATA1s’
ability to regulate RUNX1 isoforms appears to be impaired
compared with full-length GATA1; it shows reduced occupancy
at the RUNX1 P1 und P2 promoter regions in Gata1s–fetal liver
cells (FLCs) (supplemental Figure 2B-D) and causes higher
RUNX1A levels in CRISPR-Cas9–edited human megakaryocytic/
erythroid precursors cultured in vitro compared with wild-type
controls (supplemental Figure 2E). Induced expression of
GATA1 and GATA1s in K562 cells activated transcription from
the P2 promoter, leading to increased RUNX1A and RUNX1B
expression, whereas RUNX1C transcription from the P1 pro-
moter was enhanced by GATA1 but repressed by GATA1s
(supplemental Figure 2F). Altogether, these data suggest a
mechanism in which trisomy 21 and GATA1s synergize to
amplify RUNX1 isoform imbalance.

Thus, our CRISPR-Cas9 screen of Hsa21 genes and subsequent
RUNX1 isoform expression analyses in patient samples suggest
that RUNX1 isoform disequilibrium and RUNX1A bias
contribute to the pathogenesis of TAM and ML-DS.

Increased RUNX1A:RUNX1C ratio induces
malignant ML-DS phenotype
To probe the functional relevance of unbalanced RUNX1 isoform
expression in TAM and ML-DS development, we modulated the
RUNX1A:RUNX1C ratio in fetal and neonatal CD34+ HSPCs of
human origin and in patient-derived ML-DS blasts (supplemental
Figure 3A). Methylcellulose-based colony-forming unit assays
showed the sustained growth of RUNX1A-expressing CD34+

HSPCs, as evidenced by increased replating capacity (Figure 2A).
In culture conditions that promote megakaryocytic differentia-
tion, RUNX1A expression induced the expansion of CD34+

immature cells and blocked their differentiation to CD41+/
CD61+CD42b+ megakaryocytes (Figure 2B-C; supplemental
Figure 3B), effects that were more pronounced in fetal cells
and that we confirmed in collagen-based megakaryocytic
colony-forming unit assays (supplemental Figure 3C). To better
understand the effects of RUNX1A and RUNX1C on lineage fate
decision, we also cultured CD34+ HSPCs in conditions allowing
for differentiation along the erythroid as well as megakaryocytic
lineages. RUNX1C and RUNX1A conferred a lineage bias toward
megakaryopoiesis (CD41+/CD235a−) over erythropoiesis
(CD41−/CD235a+) in neonatal CD34+ HSPCs. RUNX1A halted
cells in an undifferentiated CD117+ stage (supplemental
Figure 3D-E).

Importantly, restoring the RUNX1A:RUNX1C equilibrium
through RUNX1C expression in patient-derived ML-DS blasts
(supplemental Figure 3A) halted proliferation and accelerated
differentiation, as indicated by loss of CD117 and gain of CD33
Figure 1 (continued) and POLR2A). Blue dots represent sgRNAs targeting RUNX1. (C
sgRUNX1.1-1.5 indicated by shape) CMK and K562 cells (with stable Cas9 expression) afte
(D) Experimental setup for evaluating RUNX1 knockout in vivo. ML-DS blasts (with stable
sgCtrl (E2Crimson+) and mixed 1:1 with sgCtrl-transduced blasts (GFP+), before transpla
E2Crimson+ to green fluorescent protein–positive (GFP+) cells after 12 days of culture, no
euthanized 6 to 8 weeks after transplantation (right; n = 5, Mann Whitney U test). (F) Schem
transcript isoforms (bottom; not to scale). Functional exons encoding the DNA-binding
showing RUNX1 isoform distribution (Oxford Nanopore sequencing) in polyA+-enriched R
isoforms normalized to the expression of β2-microglobulin (B2M) (left graph; 2-way analys
in CD34+ HSPCs, erythrocytes, megakaryocytes, granulocytes, and monocytes isolated
gDNA, genomic DNA; NGS, next-generation sequencing; PCR, polymerase chain reacti
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and CD41 expression (Figure 2D-F). Inversely, further
increasing the expression of RUNX1A conferred a mild
growth advantage in ML-DS blasts and an increase in the
fraction of cells with an immature phenotype (CD33+CD117+

or CD41+CD42b−CD117+ myeloid/megakaryocytic blasts;
Figure 2D-F). Lastly, we evaluated restoration of the RUN-
X1A:RUNX1C ratio in vivo through fluorescence-based
competitive transplantation assays using 2 patient-derived
xenografts from patients with ML-DS (Figure 2G). In both
cases, RUNX1C-expressing leukemic blasts were significantly
diminished in the bone marrow of recipient mice at the
experimental end point, whereas RUNX1A-expressing leukemic
blasts were unchanged compared with control-transduced
blasts (Figure 2H).

In summary, these experiments in primary human cells depict a
landscape of perturbed differentiation and accelerated prolif-
eration guided by RUNX1A. Our data further demonstrate that
restoring RUNX1A:RUNX1C equilibrium can overcome differ-
entiation arrest in ML-DS blasts, leading to their depletion.

RUNX1A synergizes with Gata1s in the leukemic
transformation of FLCs
Because TAM occurs in utero, implying a fetal origin for this
disease, we employed a murine FLC-based in vitro model to
study the oncogenic potential of RUNX1 isoform imbalance in
concert with mutated Gata1s (supplemental Figure 3A).7

Notably, mice do not express the RUNX1A isoform,31 under-
lining important species-specific differences that could explain
the inability of previous DS mouse models to recapitulate the
human TAM/ML-DS phenotype.18,32 Combined lentiviral
transduction of Cas9-knockin FLCs with RUNX1A and a sgRNA
targeting exon 2 of Gata1, thereby introducing Gata1s muta-
tions, indeed resulted in a robust hyperproliferative phenotype
(Figure 3A; 4140-fold) compared with cells transduced with a
combination of a nontargeting control sgRNA and an empty
vector (EV). Individually, Gata1s (sgGata1 + EV) and RUNX1A
expression (control sgRNA + RUNX1A) also enhanced growth
(Figure 3A; 366-fold and 140-fold, respectively), but the effect
was less pronounced than in combination, suggesting synergy
between Gata1s and RUNX1A. Inversely, ectopic expression of
RUNX1C or RUNX1B alone or in combination with Gata1s
mutations resulted in a growth disadvantage (Figure 3A;
supplemental Figure 4A). We note that none of the other Hsa21
candidate genes selected from our sgRNA dropout screen
produced a synergistic hyperproliferative phenotype with
Gata1s (supplemental Figure 4B). Immunophenotypically, the
hyperproliferative RUNX1A Gata1s-FLCs were mainly
CD117+CD41+ and partially CD71+Ter119+ (Figure 3B), corre-
sponding to megakaryocytic progenitors with erythroid fea-
tures, a hallmark of TAM/ML-DS. The expression of erythroid
) Dot plot showing the number of sgRNA-transduced (control sgRNA [sgCtrl] and
r 14 days of culture, normalized to day 0 (n = 2 per sgRNA, 2-tailed unpaired t test).
Cas9 expression) were transduced with sgRUNX1 (E2Crimson+ and sgRUNX1.1) or a
ntation into sublethally irradiated recipient mice. (E) Dot plot showing the ratio of
rmalized to day 0 (left; n = 4, 2-tailed unpaired t test) and in the bone marrow of mice
atic representation of the human RUNX1 genomic locus (top) and the 3 main RUNX1
domain (Runt; red) and transactivation domain (TAD; blue) are indicated. Bar graph
NA samples from TAM and ML-DS samples. (G) Expression of RUNX1A and RUNX1C
is of variance [ANOVA]) and RUNX1A to RUNX1C ratios (right graph; 1-way ANOVA)
from healthy donors, as well as in leukemic blasts from patients with TAM/ML-DS.
on.
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markers was increased upon RUNX1A expression compared
with control Gata1s-FLCs (Figure 3B). The synergistic effect of
RUNX1A and Gata1s on the proliferation of FLCs was also
observed in culture conditions promoting the expansion and
differentiation of erythroid progenitor cells but not in conditions
promoting myeloid expansion and differentiation
(supplemental Figure 4C).

Comparative transcriptomic analysis of RNA-seq data substan-
tiated the synergy between Gata1s mutations and RUNX1A
expression. As previously described, gene set enrichment
analysis revealed a reduced expression of erythroid genes and
concurrent activation of proproliferative genes, including MYC
and E2F targets, in Gata1s mutated FLCs (Figure 3C-D;
supplemental Table 4).16,18,33 Although RUNX1A expression
mitigated the reduced expression of erythroid genes caused by
Gata1s, it triggered a similar upregulation of MYC and E2F
target genes, suggesting convergence on these oncogenic
pathways. In addition, RUNX1A expression in the background
of Gata1s induced target genes of EVI1, one of the most
invasive proto-oncogenes in human leukemia34 and a long-term
hematopoietic stem cell signature, whereas the opposite was
true upon RUNX1C expression (Figure 3D-E; supplemental
Table 4). Hence, the synergistic oncogenic expression pro-
gram of Gata1s and RUNX1A is characterized by the induction
of EVI1, MYC, and E2F target genes, together with a long-term
hematopoietic stem cell signature and the concomitant
repression of erythroid and megakaryocytic differentiation
signatures.

To further explore the leukemogenic potential of RUNX1 iso-
form disequilibrium in the pathogenesis of DS-associated leu-
kemia, we performed in vivo experiments using Gata1s-FLCs.
Upon transplantation into sublethally irradiated syngeneic
recipients (C57Bl/6J), Gata1s-FLCs typically become transiently
abundant in the peripheral blood.7 In contrast, RUNX1A-
expressing Gata1s-FLCs caused high-penetrance leukemia
(100%) with a short latency (median survival, 39 days) and organ
infiltration (Figure 3F-G; supplemental Figure 4D). Detailed flow
cytometry analysis revealed cells of a megakaryocytic
progenitor–like phenotype (CD41+CD117+CD34−CD16/32low)
resembling TAM and ML-DS (Figure 3H; supplemental
Figure 4E), which reinitiated disease when transplanted into
secondary recipients (supplemental Figure 4F). Notably,
RUNX1A expression did not cause leukemia in wild-type Gata1-
FLCs (supplemental Figure 4G). Transcriptomic analysis of RNA-
seq data from the murine leukemias compared with stringently
sorted murine fetal liver stem and/or progenitor populations
confirmed the megakaryocytic progenitor–like phenotype and
the ML-DS–like gene expression profile26,35 (Figure 3I-J;
supplemental Table 5). Importantly, Cre recombinase–
mediated excision of the LoxP-flanked RUNX1A complemen-
tary DNA induced rapid depletion of the leukemic blasts
in vitro, underlining their dependency on RUNX1A and its
Figure 2 (continued) cells after 7 days in media promoting megakaryocytic differentiation
were lentivirally transduced with RUNX1A, RUNX1C, or EV control. (D) Percentage of GFP
ANOVA, **P < .01). Bar graphs show the percentage of CD41+CD117+ and CD41+CD
(F) 5 days after transduction (mean ± SD, n = 3, 2-way ANOVA). (G) Experimental setup fo
transduced with RUNX1A (GFP+), RUNX1C (GFP+), or EV control (GFP+) and mixed 1:1 w
irradiated recipient mice. (H) Ratio of GFP+ to dTomato+ cells in the bone marrow of
dTomato; ns, not significant.
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importance in ML-DS pathogenesis (supplemental Figure 4H).
Of note, miR-125 further accelerated the leukemic trans-
formation of Gata1s-FLCs by RUNX1A, suggesting synergy
between RUNX1A and another well-characterized oncogene on
chromosome 21 (supplemental Figure 4I).16,36

These data demonstrate that the interplay between Gata1s and
RUNX1 isoform disequilibrium results in the proliferation and
accumulation of immature megakaryocytic progenitors in vitro,
and in ML-DS–like leukemia or an aggressive form of TAM
in vivo.
Distinct RUNX1A and RUNX1C protein interaction
networks
To better understand the oncogenic mechanisms mediated by
RUNX1A in TAM/ML-DS, we compared RUNX1A and RUNX1C
protein interaction networks via coimmunoprecipitation of
doxycycline-inducible hemagglutinin (HA)-tagged RUNX1A and
RUNX1C in CMK cells, followed by mass spectrometry of the
bound cofactors (Figure 4A; supplemental Figure 5A). In total,
98 and 57 proteins were significantly bound by RUNX1C and
RUNX1A, respectively (Figure 4B; supplemental Figure 5B-C).
Of these, 45 proteins were commonly bound by both RUNX1
isoforms, including CBFβ and other bona fide RUNX1 interac-
tion partners, whereas 53 protein interactions were unique to
RUNX1C. RUNX1C-specific cofactors were enriched for proteins
involved in the regulation of cell cycle, gene expression, protein
and messenger RNA metabolism, as well as chromosome
organization (Figure 4B). Interestingly, members of the spli-
ceosome A/C and NSL complexes (eg, SF3B1, WDR5, and
KANSL2) were among the RUNX1C-specific cofactors
(supplemental Figure 5D), suggesting an active role in splicing
and chromosomal organization that is lost in RUNX1A, as
demonstrated with the RUNX1::RUNX1T1 fusion oncoprotein.37

In contrast, the 12 RUNX1A-specific cofactors were involved in
active transcription/replication and G1-S transition, including
the megakaryocytic transcription factor NFE2, which is mutated
in a subset of patients with myeloid neoplasms and is func-
tionally involved in the megakaryocyte differentiation blockage
of GATA1s pluripotent stem cells (Figure 4B).38-40 Importantly,
MAX, a crucial cofactor of MYC, was among the RUNX1A-
specific interacting proteins, as verified via western blot
(Figure 4C). GATA1s coimmunoprecipitated with RUNX1A and
RUNX1C, albeit not at a significant enrichment level (data not
shown). As GATA1 is a well-described RUNX1 interaction
partner41 and as GATA1s mutations characterize TAM/ML-
DS,42,43 we investigated their putative differential binding of
RUNX1A and RUNX1C in more detail. To this end, we pulled
down doxycycline-induced HA-tagged GATA1 or GATA1s in
stably transduced CMK cells, which harbor endogenous
GATA1s mutations and, hence, exclusively express GATA1s;
this is an important point, because GATA1 forms homo-
dimers44,45 precluding the enrichment of GATA1s-specific
(mean ± SD, n = 5, 2-way ANOVA) (C). (D-F) Cells derived from patients with ML-DS
+ transduced cells normalized to day 0 after transduction (mean ± SD, n = 3, 1-way

117− megakaryocytic cells (E) and CD33+CD117+ and CD33+CD117− myeloid cells
r evaluating RUNX1A:RUNX1C restoration in vivo. ML-DS blasts from 2 patients were
ith EV control–transduced blasts (dTomato+), before transplantation into sublethally
mice euthanized 4 to 8 weeks after transplantation (n = 5, Kruskal-Wallis test). dT,
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Figure 3. RUNX1A synergizes with Gata1s in leukemic transformation of murine FLCs. Cas9-knockin Ter119− FLCs were lentivirally transduced with either Gata1
(sgGata1s) or sgCtrls, as well as with RUNX1A, RUNX1B, RUNX1C, or EV control. (A) Absolute cell number of murine FLCs after combined transduction with lentiviral vectors
and maintenance in liquid cultures. Data from 1 representative experiment performed in replicates are shown as mean ± SD (2-way ANOVA); *P < .05, **P < .001, ****P < .0001.
(B) Flow cytometry plots of murine sgGata1s + RUNX1A, sgGata1s + EV, and sgCtrl + RUNX1A transduced FLCs in liquid culture. The percentage of cells belonging to each
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protein complexes in the presence of GATA1. We found that
both GATA1 and GATA1s interact with RUNX1C, as previously
described.46 However, neither GATA1 nor GATA1s appear to
interact with RUNX1A (Figure 4D). Thus, our proteomic data
suggest an altered protein interaction network, which may
contribute to the TAM/ML-DS–specific phenotype of RUNX1A
in GATA1-mutated cells.

RUNX1A affects gene regulation by displacing
endogenous RUNX1C
To further interrogate the RUNX1A-centered protein interaction
network and determine the consequences of its inability to form
a complex with GATA1 or GATA1s, we performed CUT&RUN
on endogenous GATA1s and RUNX1C (using a C-terminal
antibody that does not recognize exogenous RUNX1A) in
Gata1s-FLC with or without exogenous expression of
doxycycline-inducible HA-tagged RUNX1A or RUNX1C
(Figure 5A; supplemental Figure 6A)47. We found that 33% of
the promoter or enhancer regions occupied by endogenous
RUNX1C were also occupied by HA-RUNX1A, and that half
(52%) of the RUNX1C/RUNX1A-occupied regulatory regions
were cobound by GATA1s (Figure 5B; supplemental Table 6),
corroborating the known GATA1-RUNX1 interplay in transcrip-
tional regulation.48

Unsupervised clustering of peaks at regulatory regions bound
by endogenous RUNX1C, GATA1, and HA-RUNX1A revealed 3
clusters (Figure 5C). De novo motif discovery uncovered an
enrichment of RUNX family motifs in clusters 1 and 3, whereas
GATA family motifs were most abundant in cluster 2
(supplemental Figure 6B-C). Importantly, we observed a global
reduction of endogenous RUNX1 occupancy upon HA-RUNX1A
expression across all clusters (Figure 5D; supplemental
Figure 6D; supplemental Table 6). Consistent with our
protein-protein interaction studies, GATA1s binding increased
globally upon expression of HA-RUNX1C, compared with HA-
RUNX1A and the EV control (Figure 5D; supplemental
Figure 6E).

Interestingly, most of the genes in the 3 CUT&RUN clusters
were upregulated upon HA-RUNX1A expression (67.6% to
81.5%) (supplemental Figure 6C). Transcription factor motif
analysis of peaks in the promoter regions of differentially
expressed genes revealed an overrepresentation of the MYC-
coactivation factor E2F, as well as of single MYC, MAX, and
MYC:MAX dimeric motifs (Figure 5E; supplemental Table 7).
The median distance between the RUNX1 and MYC:MAX
binding motifs (under HA-RUNX1A peaks) was 298 base pairs.
Figure 3 (continued) immunophenotype is indicated in the corresponding gates. Data
upregulated or downregulated gene sets associated with differentiation and oncogenic
blue), and Gata1s- and RUNX1A- (sgGATA1s + RUNX1A, red) murine FLCs compared
functional features of Gata1s and RUNX1A. *False discovery rate (FDR) q < .25; **FDR q <
sets in (red) Gata1s + RUNX1A– and (green) Gata1s + RUNX1C–expressing FLCs compa
features of RUNX1A and RUNX1C on a Gata1s background. *FDR q < .25; **FDR q < .05. (
10 per group), including comparisons of Kaplan-Meier survival curves (log-rank test) (F), sp
from the diseased mice (2-way ANOVA) (H). (I) Heat map representation of RNA-seq data,
1) across 5 bone marrow samples from leukemic mice and fluorescence-activated cell
genitors (CMPs) (Lin−Sca1−cKit+CD34+ CD16/32med), granulocyte-monocyte progenitors
(MEPs) (Lin−Sca1−cKit+CD34− CD16/32low)]. The sample types are color coded on the bott
(J) Bar graph showing NESs of significantly upregulated or downregulated gene sets in th
**FDR q < .05. LT-HSCs, long-term hematopoietic stem cells.
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Among the RUNX1A-induced genes with MAX or MYC:MAX
binding motifs in their promoter regions are Max dimerization
protein 1 (Mxd1 [Mad1]), MYC target 1 (Myct1), known onco-
genic drivers such as Lyl1 and Malat1, as well as the megakar-
yocyte gene Itga2b (CD41), all of which were repressed by
RUNX1C in RNA-seq experiments (Figure 5F; supplemental
Figure 6F-H). These data are consistent with our comparative
transcriptomic analyses in Gata1s-FLCs that uncovered that the
activation of MYC and E2F targets by GATA1s and RUNX1A
results in a synergistic induction of proliferation and an imma-
ture phenotype, whereas the opposite was true for RUNX1C
(Figure 3C-E).

Taken together, our proteomic and genomic analyses imply
that RUNX1A interferes with normal RUNX1C function by dis-
placing it from target gene promoters. Instead, RUNX1A
interacts with the MYC cofactor MAX and induces an MYC- and
E2F-driven expression program. The concerted alteration of
normal megakaryocytic progenitor gene expression programs
through GATA1s and RUNX1A leads to malignant trans-
formation in these cells via the upregulation of oncogenic gene
expression programs and the perturbation of RUNX1C-
regulated differentiation programs, respectively.

Targeting MYC:MAX dimerization as a therapeutic
approach for ML-DS
Finally, we investigated the role of the MYC cofactor MAX,
which we hypothesized to be central in the synergy between
GATA1s and RUNX1A, during leukemia pathogenesis. Short
hairpin RNA–mediated knock down and sgRNA-mediated
knock out of MAX inhibited the growth of CMK cells in vitro
(supplemental Figure 7A-B). These findings were confirmed in
murine RUNX1A Gata1s-FLCs and in ML-DS blasts derived from
2 patients (supplemental Figure 7C-F). Normal CD34+ HSPCs
showed only a mild growth impairment upon MAX depletion
(supplemental Figure 7G-H). Importantly, pharmacological
disruption of MYC:MAX dimerization using the MYC inhibitor
MYCi36149 caused apoptotic cell death in RUNX1A Gata1s-
FLCs and in CMK and K562 cells, which are MYC-dependent
(Figure 1B), in a dose-dependent manner (Figure 6A;
supplemental Figure 8A-B). Accordingly, MYCi361 also induced
apoptosis and partial differentiation in ML-DS blasts derived
from 3 patients, with median lethal concentration (50% inhibi-
tory concentration [IC50]) values of 2.09 μM, 2.63 μM, and 3.82
μM, respectively (Figure 6B; supplemental Figure 8C). Similarly,
blasts derived from patients with non-DS acute mega-
karyoblastic leukemia (AMKL) or KMT2Ar, 2 other AML sub-
groups that have elevated RUNX1A:RUNX1C ratios
from 3 replicates ± SD are shown. (C-D) Bar graphs showing NESs of significantly
cellular programs, in Gata1s- (sgGata1s + EV, orange), RUNX1A- (sgCtrl + RUNX1A,
with sgCtrl + EV control FLCs. This analysis highlights the unique and synergistic
.05. (E) Bar graph showing NESs of significantly upregulated or downregulated gene
red with control sgCtrl + EV FLCs. This analysis highlights the contrasting functional
F-H) Analysis of mice transplanted with RUNX1A- or EV-transduced Gata1s-FLCs (n =
leen weights (unpaired Student t test) (G), and flow cytometry on bone marrow cells
showing unsupervised hierarchical clustering on the 2824 most variable genes (SD >
sorter–sorted murine fetal liver HSCs [LSK (Lin−Sca1+cKit+), common myeloid pro-
(GMPs) (Lin−Sca1−cKit+CD34+ CD16/32+), and megakaryocyte-erythroid progenitors
om of the heat map and z scores are indicated by the legend at the top of the panel.
e murine leukemia samples compared with all progenitor populations. *FDR q < .25;
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Figure 6. Interfering with MYC:MAX dimerization as a therapeutic strategy. Dose response curves for MYC:MAX dimerization inhibitor MYCi361 in Gata1s-FLC cells
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(supplemental Figure 1H-K) also showed good responses with
partial differentiation and median IC50 values between 3.9 and
4.32 μM and from 3.9 to 5.88 μM, respectively (supplemental
Figure 8D-H). Normal CD34+ HSPCs from 2 donors had IC50

values of 7.291 μM and 7.168 μM, respectively (supplemental
Figure 8I-K), outlining a therapeutic window. Lastly, we evalu-
ated MAX knockdown in vivo through fluorescence-based
competitive transplantation assays using patient-derived xeno-
grafts from patients with ML-DS and AMKL (Figure 6C). In both
cases, MAX-depleted leukemic blasts were significantly dimin-
ished in the bone marrow of recipient mice at the experimental
end point (Figure 6D).

Thus, we have demonstrated that the MYC cofactor MAX is key
to leukemic transformation mediated by RUNX1A and GATA1s,
and that it can be therapeutically exploited.
Figure 5 (continued) doxycycline-induced RUNX1A expression (log2 fold change = 1).
(F) Integrative Genomics Viewer snapshots of Mxd1 and Lyl1 gene promoters showing o
FLCs after doxycycline-induced HA-RUNX1A/HA-RUNX1C expression or in EV control–
million reads mapped) (left). Scale and chromosome location are shown (top).

RUNX1 ISOFORMS IN TRISOMY 21–ASSOCIATED LEUKEMIA
Discussion
Aneuploidies, and in particular, partial or complete amplifica-
tions of chromosome 21, are frequent alterations in leukemia;
however, their underlying pathomechanisms remain enig-
matic.3 In this study, we leveraged the model system of DS-
associated TAM and ML-DS to interrogate oncogenic factors
on chromosome 21 for their roles in AML pathogenesis. A
CRISPR-Cas9 screen of chromosome 21 genes unexpectedly
revealed RUNX1 as an ML-DS dependency in cell lines and
patient-derived blasts in vitro and in vivo, despite former con-
troversy regarding its role in TAM and ML-DS.3,24 Through
detailed functional validation, we discovered that RUNX1 iso-
form disequilibrium in the form of RUNX1A bias, rather than
RUNX1 gene dosage, is key to trisomy 21–associated leuke-
mogenesis. By dissecting the consequences of RUNX1
Human promoter regions were used as background. z score intensities are shown.
ccupancy of endogenous GATA1s, RUNX1, and HA-RUNX1A/-RUNX1C in Gata1s-
expressing cells. The tracks display coverage (reads per kilobase of transcript per
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disequilibrium in TAM/ML-DS, we showed that RUNX1A acts in
concert with pathognomonic GATA1s mutations in this context,
thereby blocking megakaryocytic differentiation and acceler-
ating progenitor proliferation, effects that were reversed upon
restoring the RUNX1A:RUNX1C equilibrium in murine models
and patient-derived blasts in vitro and in vivo. These findings
are in line with the known function of RUNX1C during adult
hematopoiesis,50-52 in which it regulates megakaryopoiesis by
controlling the proliferation and survival of committed pro-
genitors.53 Thus, through the systematic interrogation of chro-
mosome 21–encoded coding genes, our work contributes to
understanding the synergy between trisomy 21 and GATA1
mutations in ML-DS leukemogenesis. We suggest a model in
which RUNX1A:RUNX1C disequilibrium in TAM and ML-DS is a
consequence of the combination of trisomy 21 and GATA1s
mutations in fetal HSPCs. Our findings have further implications
for other types of leukemia with numerical or structural alter-
ations of chromosome 21 and/or RUNX1 isoform disequilib-
rium. Indeed, we also observed elevated RUNX1A:RUNX1C
ratios in non-DS AMKL, KMT2A-rearranged AML, and AML with
complex karyotype (supplemental Figure 1E-K). The exact
mechanism leading to RUNX1A:RUNX1C dysregulation in tri-
somy 21 HSPCs remains an open question. One hypothesis is
that altered transcriptional regulation by GATA1s and elevated
levels of the Hsa21-encoded splicing factor U2AF1 may
combine to drive RUNX1 isoform imbalance in TAM and ML-DS
(supplemental Figure 2); different mechanisms or mutations in
splicing factors may be responsible in other subtypes of AML or
myelodysplastic syndromes.54 In addition, RUNX1A might
further enhance the oncogenic effect of miR-125b, another
well-characterized oncogenic driver on chromosome 21.16

Mechanistically, we showed that the altered protein interaction
network of RUNX1A (compared with RUNX1B/C) underlies its
oncogenic function. RUNX1A fails to interact with GATA1 and
GATA1s to control megakaryopoiesis.46 Our proteomics ana-
lyses point toward RUNX1A’s increased affinity for the MYC
cofactor MAX. We propose a model in which RUNX1A, in
complex with MAX, displaces RUNX1C from its endogenous
binding sites where it normally recruits GATA1. Thus, RUNX1A
perturbs RUNX1C:GATA1 regulated gene expression and
activates MYC:MAX and E2F target genes, leading to a
megakaryocytic differentiation block and acceleration of pro-
genitor proliferation. This model would help explain the syn-
ergistic oncogenic effect of RUNX1A and GATA1s; GATA1s not
only fails to repress RUNX1A but also E2F and MYC target
genes during megakaryopoiesis,18 suggesting a double hit on
these pathways in fetal trisomy 21 HSPCs. The central role of
MAX in the RUNX1A-induced phenotype was validated by
genetically interfering with MAX expression. Importantly, the
dependency of ML-DS blasts on intact MAX represents a
vulnerability that can be therapeutically exploited, as we
demonstrated by using the MYC:MAX dimerization inhibitor
MYCi36149 to eradicate blasts from patients with ML-DS.

Although previous studies have reported the oncogenic
and overriding negative effects that RUNX1A exerts on
RUNX1B,54-58 our findings are unexpected and have general
implications for basic oncology research. First, this study
demonstrates that species-specific differences in isoform
expression must be considered when interpreting species-
specific or divergent phenotypes in mouse models. RUNX1A
1116 9 MARCH 2023 | VOLUME 141, NUMBER 10
is a primate-specific isoform of RUNX1,31 which may explain the
inability of DS mouse models32,59 to recapitulate the human
TAM/ML-DS phenotype or the interplay of GATA1s and trisomy
21 seen in human induced pluripotent stem cells.3,11,19,60 Sec-
ond, this study underlines the importance of accounting for all
isoforms when studying the oncogenic effects of a given gene
and emphasizes the importance of alternative splicing in the
pathogenesis of cancer. Various mutations in splicing factors
have been identified in AML and MDS genomes.61 Whether
these mutations are causative for the increased RUNX1A:R-
UNX1B/C ratio observed in MDS54 will need to be investigated
in the future.

Overall, our study provides a general framework for interro-
gating the contribution of aneuploidy in oncogenesis. Given the
current state of the field, in which we have a near-complete map
of the cytogenetic, mutational, and epigenetic landscape of
cancer, these insights will be crucial for understanding the
complex cooperation between common fusion oncogenes,
recurrently mutated genes, and larger amplifications or dele-
tions during disease initiation and progression. As we have
illustrated with the identification of MAX as a RUNX1A cofactor
and its pharmacological inhibition, this knowledge can have
direct therapeutic implications.
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