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Résumé. 2014 Nous étudions numériquement la rupture de treillis réticulés élastiques dont les liens
sont élastiques-fragiles. Tous les liens ont une même raideur, mais une force critique de rupture
distribuée aléatoirement de façon uniforme entre 0 et 1. Nous analysons la caractéristique globale
moyenne force-déplacement ainsi que d’autres paramètres physiques en fonction de la taille du

système. Nous présentons des relations d’échelle liant ces quantités. Finalement, nous montrons
que la distribution des forces est multifractale au seuil ultime de rupture du réseau.

Abstract. 2014 We study numerically the rupture of elastic lattices consisting of fragile elastic springs
which can freely rotate around nodes. All bonds are given an identical force constant but the
threshold force for which they break is randomly attributed to each bond according to a uniform
probability distribution between 0 and 1. We analyse the overall force-displacement characteristics
of the lattices and other physical parameters as function of lattice size. Various scaling relations
are found. Finally, we found evidence for a multifractal distribution of forces at the ultimate stage
of the rupture.
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Introduction.

An old subject in engineering sciences has been the study of fracture processes in

heterogeneous materials [1]. However, due to the complex interplay of the « quenched »
disorder (of the élastic failure characteristics of the medium) and of the increasingly large
distribution of local stresses as the rupture proceeds through the medium, very few theoretical
results have been obtained. In addition to this, numerical simulations of this problem are in
general very « heavy ».

For these reasons, a natural strategy is to simplify the complex realistic cases in order to
capture first the essential properties of fracture which are independent - or at least only
weakly dependent - on the underlying microscopic (if the rupture proceeds on an atomic
scale) or mesoscopic scale (when the heterogenities are large compared to the atomic scale,
such as in the rupture of concrete). To an increasing degree, the methods of statistical
mechanics have been found useful in the study of the scaling properties of real phenomena
such as aggregation processes, etc. We attempt here such an approach to the problem of
rupture.
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We considered specifically a two-dimensional lattice model, where the local elastic moduli
are uniform and, finally, where disorder is introduced once at the beginning in the distribution
of failure thresholds. In this way, all the heterogenities of the material are captured in only
one quantity, thus making it possible to investigate which features of the heterogenities are
important during various stages of the rupture process.
The fuse problem [2-5] is one obvious simplification which has very often been studied since

it is the scalar equivalent of elastic rupture. It is now well-known that, in some respect, vector
and scalar problems differ significantly even in the scaling relations they obey, for instance, in
percolation [6]. From a practical point of view it is very important to understand which
features of the real rupture processes can be captured by using a scalar model only, for the
obvious reason that scalar problems are eomputerwise much less time consuming than vector
ones - besides being much simpler to work with theoretically. For this reason, we followed
the very same procedure and gathered the same information for three parallel cases [7] :
- an elastic central-force lattice which will be described in this article ;
- a beam lattice where each bond has a non-zero rigidity for axial and transverse force,

and for bending [8] ;
- a fuse lattice defining the corresponding scalar problem [9].

The reason for treating separately the central-force model and an angular elasticity model
as the beam model, is that the concept of rigidity in the central-force model is non-local [10],
making it possibly very different from the other models where the local elastic rigidity is

determined solely by the local connectivity properties of the lattice. On the other hand, in the
central-force model there are no free parameters since all the disorder is in the breaking
strengths as opposed to the angular elasticity case.
Within the framework of our model, there are still many possibilities to introduce disorder.

One natural way is to consider a percolation-type disorder, i.e. a finite fraction of bonds are
removed at random, whereas the remaining ones have identical elastic properties, and the
same failure threshold. This latter case has been considered in the past both for the fuse

problem [3] and the central-force case [11]. We consider here a different kind of disorder, by
introducing a continuous distribution of failure strength. This lead to very different results
than previously reported ones. We discuss the comparison of these two types of disorder later
in this paper.

Model.

We consider a triangular lattice where each bond consists of a linear Hookean spring free to
rotate around its endpoints at the nodes of the lattice. The elastic constant of these springs is
fixed to be unity by definition. Each bond is ideally brittle and breaks (i.e. its elastic constant
becomes zero) whenever the force f it is subjected to exceeds a positive limit 1 + (if the bond is
stetched) or a negative limit 1 - (if the bond is compressed). We consider here the case of a
symmetric rupture criterion f + = f _ = f c. Contrary to the elastic modulus, the threshold
fc for each bond is randomly picked, according to a probability density that we choose to be
uniform between 0 and 1. We assume that the bonds are very brittle, i.e. their deformation at

rupture is small compared to their length at rest. This allow us to treat the problem within the
limit of small deformation, i.e. to deal with a linear problem. This linearity property will be
used all along the paper. Since in the linearized equations there does not exist any length
scale, we will use a scale for force given by the distribution of breaking threshold, and a scale
for displacement given by the previous in setting arbitrarily the elastic modulus to unity. This

length scale with which we measure the deformation of the lattice has no direct relation with
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the lattice size. (Our small deformation assumption means that the lattice spacing expressed
in our length units is large compared to 1.)
The boundary conditions are periodic in the horizontal direction, and the top and bottom

rows are attached to two rigid bars at which we impose a given displacement : either a shear or
a compression.
The numerical procedure used is the following :
- we start with a regular lattice. For an imposed unit displacement of the rigid bars, we

know the force distribution in the lattice. Let fi be the force to which the i-th bond is

subjected to. Let us now imagine that the displacement of the rigid bars is A instead of 1, then
the force at bond j is Afj. If the displacement A is increased from 0, the bond

j will break when

We thus compute for each bond j :

and break the bond for which Aj has the smallest value 1B = minj (Aj) which corresponds to
the overall lattice displacement for which a first bond will break. After the bond j is broken,
the new force distribution is computed. The new value of Acis found, and the computation is
repeated until the entire lattice has a zero elastic modulus.
The complete « history » of the rupture of the lattice is given by the sequence of the

displacements A,(n), of the total extemal forces F(n), of the elastic modulus Y(n) =
F (n )/ Ac (n ), of local forces f (n ) for a unit extemal displacement of the bond that will
break... indexed by n, the number of already broken bonds.
Now, in order to obtain an average behavior, one has to take a mean over many samples. In

each sample, some controllable quantity has to be kept constant in order to be able, in a
meaningful way, to compare the samples. In the language of statistical mechanics, an
« ensemble » has to be chosen [12]. This question is not unimportant since it might very well
turn out that the resulting average behaviors differ, according to which quantity is kept
constant in comparing the different samples.

In this article (and in its companions [7-9]), we choose an « history » average. Any quantity
X (n ) is averaged over different lattices keeping n constant, and therefore, restricting the
average to the lattices that are not yet torn apart at this stage of the rupture. One should note
that the number of samples the quantity is averaged over will decrease with increasing
n. We generated 10 000 4 x 4, 1 000 8 x 8, 300 16 x 16 and 30 24 x 24 lattices.
The algorithm we used to solve the force distribution on the lattices was a conjugate

gradient relaxation method without Fourier acceleration [13] - for the lattice sizes we

considered, Fourier acceleration turned out to be unefficient.

Results.

Figure 1 shows the total displacement,  1B (n ) , (elongation) at rupture as a function of the
number, n, of bonds broken for different lattice sizes L. A striking feature of these graphs, is
that they clearly reveal a linear relation between these two quantities for n up to 100 forL=16
and n = 200 for L = 24. After this linear regime, the displacement increases drastically. On
these graphs, we also draw the straight line given by :

that fits the first regime very nicely.
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Fig. 1. - Evolution of the overall lattice displacement per unit length AL - at rupture as a function of
nL-2, the number of bonds already broken divided by L 2. This displacement is averaged over different
lattices with the same n. The four curves refer to four different lattice size 4, 8, 1 and 24. The straight
line is the linear relation of equation (3) in the text.

We can understand this relation by the following crude, mean-field type, argument : let us
assume that the strain is uniformly distributed in the lattice (as if it where intact). Since the
imposed displacement is an elongation, each bond parallel to the top and bottom rigid bars
will carry no force, due to the periodic boundary conditions. On the contrary, the bonds in the
other two directions will be elongated by an amount E = (B/3/2) A/L. For a given
A, the bonds that have been broken are those whose strain rupture threshold is less than

e. In the case of a uniform distribution of rupture thresholds between 0 and 1, the number of
these bonds carrying a strain less than E is given by the equation

resulting in equation (3).
The basic assumption of this argument is certainly very rough ; however, it gives an

unexpectedly good result (see Fig. 1). Let us note that the mean-field prediction of the elastic
modulus of the randomly depleted central-force triangular lattice [14] also works remarkably
well, almost up to the percolation threshold.

Figure 2 gives the force needed to break n bonds for the L = 16 and 24 lattices. In this case,
we performed a parabolic fit of the data according to :

or, equivalently, we searched for the first linear correction to the elastic modulus,

y (n) =  F (n ) &#x3E; /  LB (n ). Figure 2 displays these best fits which are quite good up to the
apex of the parabola (nu 90 for L = 16 and n = 160 for L = 24). They were obtained for
a = 1.0, a = 1.25, a = 1.5 and a = 1.65, respectively for L = 4, 8, 16 and 24. It turned out
that it was not possible to find a constant value of the parameter a that could fit all sizes
equally well. On the contrary, a tends to increase with L. We will come back to this point
later. We also note that if the rupture of bonds would be done completely at random (for
instance if the rupture thresholds would dominate the ratios of Eq. (2)), then the parameter
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Fig. 2. - Evolution of the overall force imposed to the lattice at rupture as a function of n, the number
of bonds already broken. Figure 2a refers to lattice size 16 (300 samples), and 2b to size 24 (100
samples). In each graph we have plotted the best parabolic fit of the first data points. (See Eq. (5) in the
text.)

a would have been given by the mean-field behavior encountered for random depletion, i.e.
a = 1 [14].
We also recorded the average elastic modulus (Y(n» shown in figure 3. This graph reveals

that a linear approximation for the dependence of (Y(n» on n is clearly insufficient to
account for its evolution.

In order to see which part of the ratio (r.h.s. of Eq. (2)) controls the rupture, we also
recorded the stress, f (n ), on the bond that was about to break, for a unit displacement.
Figure 4 displays the evolution of this quantity. We can see clearly that there exists a first
regime where this value is noisy, but constant on the average, and a second one where this
force drops to zero. It had been suggested [15] that a first regime of fracture is controlled only

Fig. 3. Fig. 4.

Fig. 3. - Elastic modulus versus number of bonds broken divided by L2 for the four lattice sizes
considered.

Fig. 4. - Force acting on the bond that is to be broken when a unit displacement per unit length is

imposed onto the lattice. The first regime is characterized by a constant, though noisy, force which
decreases slowly with the lattice size.
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by the disorder of thresholds. In other words, at the beginning of the rupture process we
would expect that the stresses onto the bonds of the lattice are more or less the same, whereas
the strengths of the bonds are widely distributed, therefore, through equation (2), the
breaking of bonds and the force f (n ) should be uncorrelated. This expectation is in

agreement with the fact that f (n ) is independent of n. We also notice that f (n ) decreases
when the lattice size increases and from the previous analysis, we get a 1 IL dependence which
is approximately verified (Fig. 4).
The approach followed up to now, i.e. relating the evolution of the observed quantities with

the number of bonds broken, is clearly unable to give a general description of the process,
independent of lattice sizes. Increasing the order of the expansion in n, would certainly give
better firts for a given size, however, without any knowledge of the evolution of the
coefficients of the expansion (e.g. like a) this procedure is useless. We thus turn to another
approach that takes into account these size effects more properly.

Rescaling.

We now try to find a simple relation between the different quantities reported up to now on
the lattice size. In this spirit, we propose the following Anzatz :

where /3 and y are unknown exponents and 0 is a universal function independent of the
system size. In physical terms, this scaling relation defines some reduced variables, here
(Fc(n»L -/3 and (Ac(n»L - ’Y, which are related through a function which is independent of
lattice size. The values of /3 and y are determined through the best collapse of the data
obtained for different sizes. Such a fit is shown in figure 5 for f3 = y = 3/4. Other trial

functions were also used, but the simple form of equation (6) fitted the data remarkably well
in the first part of the curve (a little after the apex of the breaking force) if we disregard the

. data of size 4 which is obviously too small to give any reliable estimates.
Using the property (seen previously) that the slope in the force-displacement relation in the

immediate vicinity of 0 is 1 (the elastic modulus is close to 1 at the beginning of the rupture),

Fig. 5. - Rescaled force-displacement relation according to equation (6) with {3 = y = 3/4, for

different sizes 4, 8, 16 and 24.



739

we obtain directly that /3 = y, in agreement with the result obtained above through the fitting 
*

procedure.
If now we rewrite the development of ( Ac (n ) ) and (Fc(n» respectively to the first and

second order in n as a function Fc(Ac), we obtain using equations (3) and (5)

Using the scaling relation equation (6) yields

where we have used f3 = y.
The smooth increase of a with L that was noted previously is consistent with this relation

since 1 - p = 0.25 is a very small exponent. (Fig. 6 shows it in a more quantitative way.)
The number of bonds broken at the maximum breaking force can also be obtained

accordingly since we have seen before that the linear ( Ac ) and the quadratic (Fc )
approximations were valid at least up to the apex of the force. Differentiating equation (7)
gives :

the number of bonds broken at this point should vary as (see Eq. (3))

and the maximum force F.a. should scale as :

We have plotted the different quantities LI a, Ac max, nmaxlL and Fmax as a function of the
lattice size on a log-log plot in figure 6. All those quantities should follow a power-law with
. the exponent 8. We thus get four determinations of this exponent that should be compared to
the 3/4 obtained from the global force-displacement characteristic. These estimates of

J3 read : 0.74, 0.69, 0.68, 0.77 respectively for the four quantities mentioned above. We see
that these determinations of the exponent J3 are consistent, and give in addition a rough
estimate of the uncertainty on the value of J3.
We also note that a similar rescaling is obtained in other models considered in reference [8]

for an elastic lattice with angular elasticity, and in reference [9] for a fuse model. A surprising
observation is that the value of J3 seems identical in all three models [7].
Another interesting output of the computation is the total number of bonds broken when

the lattices get a zero elastic modulus. This number ntot is to be distinguished from
nmax which refers to the number of bonds broken at the apex of the force-displacement curve.
However both numbers appear to follow a power law with L. In figure 6 we have reported the
value of nt,/L. The apparent slope is about 0.6, resulting in ntot oc L 1.6, somewhat smaller
than, but not inconsistent with, the corresponding law for nmax (1 + J3). In the other cases,
references [8, 9], where larger sizes were investigated, ntot and nmax seemed to follow the same
behavior. We also note that, for the central-force case considered here, the final stage of

rupture is not necessarily a complete partition of the lattice into two separate pieces : the
rupture stops when the elastic modulus of the lattice drops to zero, even if the system is still
connected. This is a particularity of the central-force model, that is not shared by the other
models where a non-zero rigidity (or conductivity) is in one to one correspondance with
connectivity.
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Fig. 6. - Log-log plot of LIOT, 4 max, nmaxl L, ntotl Land FmaX as a function of the lattice size L. All
those quantities should scale with the same exponent {3. The slope that would result from

{3 = 3/4 is shown as a straight line on the graph.

We would like to emphasize the fact that one parameter of the rescaling, e.g.
03B2, has been determined exclusively from numerical data. It certainly deserves an explanation
that we do not have at present. Theoretical approaches of this problem as references [3, 5]
would rather suggest an estimate of j6 of order 0 (logarithmic term) or 1, which are both
incompatible with our data. As a result of the strong generality of the results obtained for our
models of rupture, a conjecture has been made [7] that relates the exponent of the scaling of
nmax and ntot versus L with the fractal dimension of « diffusion-limited aggregation ». This
conjecture however deserves further studies that are being performed.

Finally, we also record the complete histogram N ( f , L ) of the logarithm of the force
distribution, just before the last bond breaks. In order to check the eventual « multifractal »
[16] nature of this distribution we plot in figure 7, log (N ( f , L ) )/log (L ) versus log ( f )/
log (L ). If the distribution is multifractal, this plot should tend to be size-independent for
large enough lattice and converge to the so-called « f (x ) » spectrum (we use this notation as
the « standard » one, however a has nothing to do with the coefficient discussed previously),
thus containing all available information on the scaling behavior of the average force

distribution inside the lattices at the breaking point. Indeed figure 7 seems to suggest this
property, although certainly the sizes considered here are too small to lead to a definitive
conclusion in this regard.
Another equivalent way of obtaining the multifractal spectrum f ( a ), is through the scaling

of the moments of the force distribution. Let us define Mq fi 1q where the sum runs over
i

all bonds carrying a non-zero force. These moments scale with L according to Mq oc
L-p(q). In particular, Mo is the mass of the force-carrying part of the lattice. Since the density
of broken bonds ntot/ L 2 represents a vanishingly small fraction of the whole lattice, we expect
p (0) = - 2. This is indeed what we observed (p(0) = 2.01 from the direct measurement).
Figure 8 shows the evolution of the reduced moments mq = (Mq/Mo)l/q as a function of
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Fig. 7. - Rescaled log-histogram of the force distribution in the lattices just before the last bond breaks,
for an imposed displacement of unity for three different sizes L = 8, 16 and 24. This histogram should
tend toward the multifractal spectrum « f (a) » when the lattice size increases (note that the « quoted
here has nothing to do with the coefficient appearing in Eq. (5)). We observe a good collapse of the
data, besides a small hump on the left of the apex of the curve that comes from the largest lattice size,
where the statistics is poor.

Fig. 8. - Evolution of the reduced moments mq of the force distribution just before the last bond
breaks, versus the lattice size in a log-log scale. The slope y(q) of these moments from

q = 1 to 5 varies, and thus reveals a multifractal behavior.

L for q = 1 to 5. The fact that these moments do not fall onto parallel lines in a log-log plot
implies a multifractal distribution of forces, or a non constant gap scaling. From these plots,
we can extract the difference slopes y (q ) and thus the corresponding exponent p (q ) =
p (0) - qy (q ). Figure 9 gives the estimates of p (q ) that are also reported in table I. For high
order of the moments we can approximate p (q ) by a linear relation : p (q ) = aq - b. The
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Table 1. - We report here the exponent p (q ) of the scaling of the moments of the force
distribution : p (0 ) is the negative o f the fiactal dimension o f the force carrying part o f the lattice
thus - 2. p(q) tends approximately to an asymptote p(q) = 0.8 q - 0.1 for high order
moments, revealing a localised zone of high stresses (of fiactal dimension of order 0.1,
eventually 0).

Fig. 9. - Evolution of the exponents p (q ) of the raw moments of the force distribution versus q. This
curve shows again the multifractal distribution of forces.

physical meaning of the quantity b is thé fractal dimension of the subset of bonds that carry
the highest forces. The numerical estimate of b is 0.1 is consistent with the picture that just
before the last bond breaks, the highest stresses are concentrated in a local zone, independent
of the lattice size. Indeed, in this latter case, the dimension b would be zero. To connect the
series p (q ) to the multifractal spectrum « f (a) », we recall the relations [16] :

The occurrence of multifractality has been seen clearly in the fuse case of rupture [7, 8] at
the final rupture point. However, the numerical values of p (q ) seem to be different in these
two cases.

We now turn to the comparison of our results with those already reported [11] for the case
of percolation-type disorder. This case can be cast in the same language as our model by
recognizing that the percolation case can be viewed as a breaking strength distribution
consisting in two Dirac functions, one situated at unity which a weight p and the other at zero
(i.e. the bonds break immediately) with a weight (1- p ) (see Fig. 10). Such a distribution
leads to the following main results :
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Fig. 10. - Distribution of failure strength te used in our study (a) and in a percolation type disorder (b).

- the average initial breakdown force behaves as

where g is an exponint between 1 and 2 ;
- the global rupture force distribution has the following form :

from this last expression, Beale and Srolovitz deduced the average failure force as :

The first scaling relation (13) has no meaningful equivalent in the case of a continuous
distribution of failure strength, such as the one studied in the present work. We did not study
the global breakdown force distribution, but rather its average as discussed previously. The
power-law dependence over the lattice size we have observed (Eq. (11)), is not consistent

with the percolation type disorder results (Eq. (15)). The discrepancy between the results may
be attributed to the existence of two peaks in the distribution of failure strength, separated by
a gap for the percolation type disorder. Therefore in this case, the breaking is solely
determined by the force distribution in the lattice. For the continuous distribution of local
failure thresholds we considered, the rupture process proceeds continuously as a competition
between the force and the failure strength distributions. This difference is the only possible
origin of the different scaling laws observed.

Conclusion.

Let us summarize the main points obtained in this study.
- The relation between the breaking displacement and the number of bonds broken is

remarkably linear over a substantial range (even beyond the apex of the breaking force).
- The relation between the breaking force and the number of bonds broken can be very

well approximated by a parabolic law, in the first stages of the breaking process.
- The beginning of the force-displacement characteristics can be rescaled through a

power-law dependence with an exponent of about 3/4 on the lattice size, which seems very
general, and non-trivial.
- The distribution of forces, just before the final completion of the rupture, is

multifractal.
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These numerical observations certainly deserve confrontation with experimental data, as
well as new theoretical approaches in order to understand, at least, the unexpected power-law
dependence with size of most observable physical quantities on the system size.
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