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Rupture Velocity of Plane Strain Shear Cracks 

D. J. ANDREWS 

U.S. Geological Survey, Menlo Park, California 94025 

Propagation of plane strain shear cracks is calculated numerically by using finite difference equations 
with second-order accuracy. The rupture model, in which stress drops gradually as slip increases, 
combines two different rupture criteria: (1) slip begins at a finite stress level; (2) finite energy is absorbed 
per unit area as the crack advances. Solutions for this model are nonsingular. In some cases there may be a 
transition from rupture velocity less than Rayleigh velocity to rupture velocity greater than shear wave 
velocity. The locus of this transition is surveyed in the parameter space of fracture energy, upper yield 
stress, and crack length. A solution for this model can be represented as a convolution of a singular 
solution having abrupt stress drop with a 'rupture distribution function.' The convolution eliminates the 
singularity and spreads out the rupture front in space-time. If the solution for abrupt stress drop has an 
inverse square root singularity at the crack tip, as it does for sub-Rayleigh rupture velocity, then the 
rupture velocity of the convolved solution is independent of the rupture distribution function and depends 
only on the fracture energy and crack length. On the other hand, a crack with abrupt stress drop 
propagating faster than the shear wave velocity has a lower-order singularity. A supershear rupture front 
must necessarily be spread out in space-time if a finite fracture energy is absorbed as stress drops. 

INTRODUCTION 

Theoretical predictions of the velocity of propagation of the 
tips of plane strain shear cracks (mode 2 cracks) appear con- 
tradictory. By one hypothesis it is agreed that if a finite frac- 
ture energy is absorbed per unit area of crack surface as the 
crack advances, then the rupture velocity must be less than the 
Rayleigh wave velocity [Kostrot;, 1970; Freund, 1972; Fossum 
and Freund, 1975]. On the other hand, if slip begins when shear 
stress on the crack plane reaches a finite static friction level, 
then for a certain range of friction levels the rupture velocity 
cannot be less than the P wave velocity [Burridge, 1973]. In 
both theoretical models, stress drops abruptly when slip starts, 
and the material is elastic off the crack plane. Stress drop 
arising from either fracture stick-slip friction is mathemati- 
cally equivalent for motion in the medium, except for the 
criterion for propagation of the stress drop. In this paper the 
word rupture refers in general to the stress drop as slip begins. 

In any real material there is a limit to the shear stress that 
the material can support, so that a solution with a stress 
singularity satisfying a fracture surface energy criterion must 
be modified in the neighborhood of the crack tip. On the other 
hand, a solution with rupture velocity chosen to give bounded 
shear stress on the crack plane will still have singularities at the 
crack tip in other components of shear stress due to the dis- 
placement having a singular derivative. Therefore even in the 
case of stick-slip friction, a region near the crack tip will be 
driven to its. elastic limit and will absorb energy in excess of 
work done against the sliding friction stress [Andrews, 1976]. 
The energy absorbed need not be a material constant. A realis- 
tic rupture propagation criterion should combine both con- 
cepts, that sh'ear stress be bounded and that the rupture front 
be a sink for energy of the elastic stress field. 

Burridge, ignoring inelastic energy loss, concluded that mo- 
lecular cohesive energy on a single ideal surface had a negli- 
gible effect at a length scale appropriate for an earthquake. 
Accordingly, he considered the limiting case of zero cohesive 
energy together with a finite stress limit. It is paradoxical that 
his conclusion regarding rupture velocity does not agree with 
the conclusion of fracture mechanics in the limit of vanishing 
fracture energy. The solution to the paradox, as we shall see in 
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the last section of this paper, is that stress drop is not abrupt. If 
both the finite stress and the finite fractu, re energy criteria 
apply, then energy is absorbed at the rupture front as inelastic 
deformation increases a finite amount driven by finite stress. 

Rupture propagation at the P wave velocity has been re- 
ported in a numerical calculation with a finite stress rupture 
criterion [HamanD, 1974]. In the present work, numerical cal- 
culations are performed to explore how the transition between 
sub-Rayleigh and super-Rayleigh rupture propagation de- 
pends on the three parameters, stress limit, fracture surface 
energy, and crack length. 

MODEL 

In this work, rupture propagation is calculated numerically 
with a uniform finite difference grid. In order that meaningful 
results may be obtained, a material model must be chosen for 
which the rupture front is nonsingular and is spread out in 
space enough to be adequately resolved by the finite difference 
grid. A particular idealized model is chosen that is character- 
ized by an upper limit on shear stress on the crack plane and 
an effective fracture surface energy. Slip occurs only on a 
prescribed crack plane. The medium is infinite, homogeneous, 
isotropic, and linearly elastic off the crack plane. The rupture 
front is modeled with a slip-weakening law, in which shear 
stress on the crack drops gradually as slip (the discontinuity of 
displacement across the crack) increases. In this model, energy 
absorbed in inelastic strain near the crack tip is modeled as 
work done on the crack plane by the gradually decreasing 
stress. 

Plane strain is assumed. Let the y axis of a Cartesian coordi- 
nate system be normal to the crack plane. All variables are 
assumed to be independent of z, and the z component of 
displacement is zero everywhere. Slip is in th e x direction. The 
possibility of inelastic coupling between antiPlane strain and 
plane strain deformation at the rupture front [Richards, 1976] • 
is disregarded. 

In the slip-weakening model, a maximum traction T at each 
point on the fault plane is prescribed as a function of'the slip 
Au at that point. Traction is chosen to be a function of slip 
simply for convenience, so that fracture energy Will be a con- 
stant of the model. In more realistic models, traction might be 
a function of slip velocity, as indicated by some friction experi- 
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melts, and inelastic energy loss might occur in a zone of finite 
thickness governed by a strain-weakening law. In these cases, 
fracture energy is not a material constant, but if it is a slowly 
varying function of crack length, the present analysis will 
apply approximately. The slip-weakening model is specified as 
follows. When the crack is not slipping, 

Ot 

and during slip 

[OAu• OAu :r•,, = T(Au).sign \•-/ Ot 
The slip-weakening model chosen (see Figure 1) is 

T(Au) = ru- (ru- rf)Au/do Au < do 

T(Au) = rf Au > do 

where r, is the upper yield point, rr is the sliding friction level, 
and do is the slip required for stress to drop. Ida [1972] has 
shown that this slip-weakening model leads to solutions with 
no singularity in antiplane strain, and it is expected that the 
same conclusion holds in plane strain. The inelastic work done 
at the rupture front in excess of the work done against the 
constant stress r r is divided between the two sides of the crack 
and identified as the effective fracture surface energy, 

G = ¬(r, - rr)do 

A further arbitrary assumption is that the reference state 
from which slip is measured is a state of uniform stress, rxy = 
to, throughout the medium. It is assumed that this ambient 
stress level lies between the upper yield point and the sliding 
friction level 

ru ;> ro ;> r t 

If a crack propagates in this model, it will not stop. The 
ultimate size of real cracks is determined by nonuniformities of 
initial stress and material properties. 

If initial slip is zero with respect to the arbitrary reference 
state, a rupture cannot nucleate. The reference state does not 
represent a fault just before an earthquake. The initial state 
that we choose for this model is a critical state, with nonuni- 

SLIP-WEAKENING MODEL 
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Fig. 1. Slip-weakening model. 

form stress and slip, which is on the verge of instability. The 
critical state isa generalization of a critical crack. 

The ratio of the surfac e energy to the strain energy per unit 
volume available from the stress drop determines a character- 
istic length. With appropriate numerical factors the character- 
istic length is chosen to be the critical half-length of a Griffith 
crack in plane strain (derived in a later section of this paper), 

8 #(x+ G 
me • 

r (X + 2#) (ro -- r•) 2 

where }, and u are the Lam6 constants. Lc is the unit of length 
in the calculations, and Lc/O, where • is the shear wave veloc- 
ity, is the unit of time. Poisson's ratio is chosen to be 0.25, so 
that }, = t•, the P wave velocity is 3•/"•, and the Rayleigh wave 
velocity is 0.9194•. All calculations are for bilaterally symmet- 
ric cracks in an infinite medium. 

RESULTS 

The remaining adjustable parameter of the model is the 
ratio of the stress increase required to initiate slip to the final 
stress drop. The case (r• - ro)/(ro - rr) = 0.8 is chosen for 
detailed examination. An approximate solution for the critical 
crack in this case is shown in Figure 2. It was found by a 
method used in earlier work in antiplane strain [Andrews, 
1976]. In a critical state the strain energy released as the crack 
lengthens a small increment balances the energy absorbed in 
the region of the crack tip. The static stress solution for the slip 
function shown in Figure 2 lies about 2.5% above the stress 
solution consistent with the slip-weakening relation. Therefore 
the slip function shown is slightly supercritical. This nearly 
critical solution is chosen as the initial state in the dynamic 
calculation in order to examine the smooth initial growth. 

Rupture propagation in the dynamic solution evolving from 
the nearly critical solution is shown in Figure 3. The leading 
and trailing edges of the rupture front are plotted as two solid 
lines in the space-time plane. The leading edge is the locus 
separating zero from nonzero values of slip velocity, and the 
trailing edge is the locus Au = do, where stress drop is com- 
plete. 

Initial growth of a crack with singular tips is represented by 
a hyperbola in the x-t plane [Ida, 1972]. Initial growth in this 
calculation appears slower and may be exponential rather than 
quadratic in time. 

The rupture is propagating at a significant fraction of the 
Rayleigh velocity by the time the crack has doubled its length 
and then approaches the Rayleigh velocity asymptotically. The 
width of the rupture front decreases as the crack lengthens. 
This behavior is consistent with that found in antiplane strain 
[Andrews, 1976], with the terminal velocity being the Rayleigh, 
rather than the shear wave, velocity. 

Slices through the solution at a sequence of instants in time 
are shown in Figures 4-7, showing slip and shear stress on the 
crack plane as a function of position on the crack plane. A 
stress peak propagating ahead of the rupture front at the shear 
wave velocity gradually becomes higher, to the point where it 
starts driving some slip on the crack beyond x = 8L•. Beyond 
x = 12L•, the entire rupture front propagates faster than the 
shear wave velocity. The leading edge of rupture, shown in 
Figure 3, never propagates at a velocity between the Rayleigh 
and shear wave velocities. The rupture front is wider after the 
transition to higher velocity than before. After the transition 
the rupture velocity quickly goes to values greater than 1.SB. 

In Figure 4 the rupture front is propagating at less than the 
Rayleigh velocity. The stress peak at the leading edge of rup- 
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Fig. 2. Critical crack for the slip-weakening model with (ru - ro)/(ro - rf) = 0.8. Solid curve is dimensionless slip function, 
t•Au/[Lc(ro - rf)]' dashed curve, dimensionless stress change, (rxy - ro)/(ro - r/). 

ture is preceded by another stress peak with smaller amplitude. 
In an analytic solution for a self-similar crack with abrupt 

stress drop propagating at the Rayleigh velocity, Burridge 
[1973] predicts a finite stress peak at the shear wave front. The 
present numerical solution may be interpreted as such a self- 
similar solution smeared out in space-time to account for the 
finite rupture width and smeared out further to account for 
different initial growth. As the rupture propagates to greater 
lengths, the smearing out becomes relatively less important, so 
the stress .peak at the shear wave front becomes more sharply 
defined and increases in amplitude. 

The calculation was done with a grid spacing of Ax = 0. I Lc 
to the time shown in Figure 4. In a second calculation going to 
a later time, Ax = 0.2Lc was used. 

In Figure 5 the stress peak at the shear wave front has 
reached the upper yield point. The amount of slip that has 
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Fig. 3. Space-time plot of rupture propagation in dynamic calcu- 
lation starting from nearly static soluti6n of Figure 2. Region be- 
tween the two solid lines is the rupture front, where slip velocity is 
nonzero and stress drop is incomplete. Dashed lines labeled R, S, and 
P, drawn for reference with slopes corresponding to Rayleigh, shear, 
and compressional wave velocities, respectively, diverge from the 
solid point on the time axis. 

been driven by this peak at this time is too small to show in the 
figure. 

In Figure 6 the first arriving stress peak is broader, and the 
slip that it has driven is evident. The amount of slip at the 
second stress peak reduces the amplitude of that peak accord- 
ing to the slip-weakening relation. As this second stress peak 
propagates farther, it encounters larger values of slip and must 
attenuate more. 

In Figure 7 the entire rupture front is propagating faster 
than the shear wave velocity. 

In Figure 8 the slip velocity (discontinuity of particle veloc- 
ity across the crack plane) is plotted as a function of position 
at the same instant of time as in Figure 6. Each point from the 
finite difference solution is shown. Point-to-point oscillation is 
generally suspect in any numerical calculation. The finite dif- 
ference equations used in this work have no inherent damping 
for any wavelength, and no damping or smoothing operation, 
other than the slip-weakerting law itself, has been added. 
Therefore the degree of smoothness of this solution is an 
indicator of its credibility (see appendix). 

Other calculations were performed with the relative upper 
yield point parameter, (r•, - ro)/(ro - rr), having values 0.5, 
0.667, and 1.0. In order to save computer time these calcu- 
lations did not start from critical states but rather were started 

by forcing the stress drop to propagate at least as fast as 0.5/3 
in the computer calculation. From each calculation, two crack 
lengths were picked, marking the beginning and the com- 

d o - 

x/Lc 

Fig. 4. Dynamic solution as a function of position on the crack 
plane at the dimensionless time 13t/Lc = 8.07. Solid curve is dimen- 
sionless slip function divided by 10, u/Xu/[lOL•(ro - rr)]; dashed 
curve, dimensionless change of shear stress, (rxy -- ro)/(ro - rf). 
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Fig. 5. Dynamic solution at 13tiLe = 10.38. Legend is same as that 
for Figure 4. 

pletion of the transition in rupture velocity. These picks, 
shown as the reciprocal of the ratio of length to critical length, 
are plotted as points in Figure 9. The points may be uncertain 
by about a factor of 2. At small values of the relative upper 
yield point, the picks may be influenced by the starting pro- 
cedure, and at larger values the rupture width is smaller and 
the calculation therefore less accurate. The shaded region in 
the figure is an interpretation of the transition region. It is 
drawn to intersect the horizontal axis at Burridge's predicted 
value for zero surface energy (Lc = 0). 

• DISCUSSION OF RESULTS 

The length ratio plotted in Figure 9 is equivalent to the ratio 
of energy absorbed at the rupture front to available strain 
energy released from a static crack of the same length. For a 
static crack with length L and singular tips, the slip function is 
[Starr, 1928] 

Au = X + 2• ro -- rf (L •. _ x•.)•/•. 

A dynamic crack propagating slower than the Rayleigh veloc- 
ity has the same shape [Burridge and Willis, 1969]. The slip 
function in Figure 4 is about 0.73 times the slip function for a 
static crack with the same length and stress drop. The virtual 
work done in creating the static crack is 

U= -«(to+ r•)fAudx 
and the work done against friction is 

As the crack lengthens by an increment dL, the energy avail- 
able to be radiated away and to supply surface energy to 
extend the crack is 

r Xq-2u 

--dU-- dH/- 2U(X q- U) (rø -- rf)2L dL 
The energy absorbed at both ends and on both sides of the 
crack is 4G dL• 

The crack length at which the available energy released 
equals the energy-absorbed is by definition the critical length. 
Equating the two expressions above, we find 

8 g(X -+- u) G 
me • 

r(X+ 2u)(ro -- rs) 2 
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Fig. 6. Dynamic solution at/•t/Lc = 12.36. Legend is same as that 
for Figure 4. 

It follows that in general the ratio of energy absorbed to 
available energy released is Lc/L. 

These calculations have been performed with constant val- 
ues of fracture surface energy. This assumption is not realistic 
at a large length scale (as for an earthquake) or in any case in 
which the energy is absorbed in inelastic strain distributed 
through a volume around the crack tip. If the energy absorp- 
tion is governed by an inelastic stress-strain relation, then th e 
thickness of the inelastic volume will be proportional to crack 
length, and G and Lc will be proportional to L. A rupture 
propagating at constant stress drop will tend toward a con- 
stant value of L•/L as L increases. In an antiplane strain 
calculation with parameters chosen to give large energy ab- 
sorption, the value L•/L = 0.3 was found [Andrews, 1976]. 
Smaller values can be expected in general, particularly for 
stick-slip friction on a preexisting fault. 

The amplitude of the slip function of a propagating crack 
and stress intensity at the crack tip are determined primarily 
by stress drop, crack length, and instantaneous crack velocity. 
Variation arising from dependence on past history of rupture 
propagation will be less than a factor of 2 for the smooth 
variation considered here. Therefore within a factor of 2, 
Figure 9 will obtain for cases with constant Lc/L, and each 
calculation has sampled crack behavior through a range of 
values of Lc/L. 

THEORETICAL DISCUSSION 

Some insight into the rupture process may be gained by 
relating two different general approaches to modeling sources 
in an otherwise linear medium. One approach starts with a 
constitutive relation for the medium (which will be nonlinear 
in the source region) and deals with the system of partial 
differential equations that represent the interaction of each 
infinitesimal volume element with its neighbors. The finite 
difference calculations discussed in this paper are approximate 
solutions found following this first approach. 

A second general approach starts with a Green's function, a 
solution to the linear problem for a point source. M ore general 
solutions are represented by convolutions of source distribu- 
tion functions with the Green's function. A source distribution 

function can be judged to be physically realistic by the degree 
to which stress and strain in the convolved solution are in 

accord with a realistic material response. A constraint on 
admissible material response, such as a bound on stress, con- 
strains the class of admissible source distributions. 

For example, the Green's function representing a point 
double couple, convolved with an elliptical slip function, is the 
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Fig. 7. Dynamic solution at [3t/Lc = 14.34. Legend is same as that 
for Figure 4. 
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Fig. 9. Rupture velocity domains in parameter space. Shaded re- 
gion is transitional. Vertical axis is ratio of critical length to crack 
length; horizontal axis is ratio of stress increase required to initiate slip 
to final stress drop. 

solution for a shear crack. Such a solution is appropriate to the 
constitutive relation that stress on the crack is uniform for any 
nonzero value of slip. 

If a solution for a crack With singular tips is further con- 
volved with a function, f(t), called here the 'rupture distribu- 
tion function,' the crack tip can be smeared out to become a 

, 

smooth rupture front. If the domain on which f(t) has nonzero 
values is small, the extent of the smearing out is small, and 
there is still Uniform stress on the slipped region in the large- 
scale solution. To preserve the normalization of the large-scale 
solution, we require ' 

f• }'(t) dt = 1 (1) 
To each rupture distribution there corresponds a constitutive 
relation, which may or may not be realistic. As the crack 
grows, it may be necessary that the rupture distribution func- 
tion change to maintain the Same constitutive relation. 

Response of real materials during rup•ture is generally un- 
known. If stress is bounded, then inelastic work must be done 

in a finite deformation to yield a finite fracture energy; the 
transition from th6 elastic to the fractured state cannot be 

ß 

abrupt. A smeared out rupture front is reasonable Any con- 
clusion regarding rupture propagation that holds for a general 

6 
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Fig. 8. Dimensionless slip velocity, #(0 Au/a t)/[•3(ro - rt), as a func- 
tion of position on the crack in the dynamic solution at t3t/Lc = 12.36. 

l 

class of rupture distributions can be expected to hold for a 
general class of constitutive relations. 

The convolution of a singular crack solution with a rupture 
distribution function is a valid elastodynamic solution every- 
where off the crack plane. The crack tip is smeared out into a 
rupture front region on the c, rack plane. Stress, rxy, and par- 
ticle velocity on each side of the crack, au+/St and au_/at, in 
the convolved solution are continuous functions of time, t, and 
position on the crack plan e, x, for a rupture distribution 
function that is piecewise continuous. Are these quantities 
continuous with the solution off the crack plane? Assume that 
the singular solution is a continuous function of y, the coordi- 
nate normal to the crack plane, in the sense of distribution 
theory [Zemanian, 1965, pp. 36, 72], meaning that averages 
over any finite interval of x or t are continuous functions ofy. 
If this conjecture is true, then the convolved solution is a 
continuous function of y as the crack plane is approached 
from either side, by the continuity property of convolution 
[Zemant.'an, 1965, p. 135]. 

Then the product rxyOAu/Ot in the rupture front on the 
crack plane represents the flux of energy to the crack plane 
from the stress field off th e crack plane. 

In order to resolve the paradox discussed in the in- 
troduction, the question of energy absorption at the rupture 
front for supershear rupture velocity needs to be examined. 
For an abrupt stress drop propagating faster than the 'shear 
wave speed, Burridge [1973] predicts a stress singularity of 
smaller' order than the inverse square root singularity of slower 
cracks. We will see that such a .crack tip can absorb energy 
only if it is smeared out in spaCe-time. 

Let the arrival time of the crack' tip at x = L be t = to. Near 
th e arrival time the self-simil•ar solutions obtained by Burridge 
for both sub-Rayleigh and s•upershear rupture velocity can be 
put in the form 

r•(L, t) -- K(v)A•[V(to -- t)/L] -• 

ß H(to- t)- ArH(t- to) 

Au(L, t) --- u+ -- u_ -- Q(v)(LAr/la) 

ß [v(t- to)/Ll•-aH(t- to) 

OAu(L, t) 
= (1 -- a)Q(1;)(1;Ar/la)[v(t- to)/Ll-aH(t- to) Ot 

where H is the Heaviside step function, Ar is the initial minus 
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the sliding friction stress, and v is rupture velocity. For v less 
than the Rayleigh velocity, the exponent of the crack tip 
singularity is a = {; for v >/• we will see below that 0 < a < {. 
These equations have been written to make clear the dimen- 
sional scaling appropriate for a crack growing in an infinite 
uniform medium. The functions K and Q are dimensionless 
and depend on rupture velocity alone. K is not the conven- 
tional stress intensity factor, for the dependence on stress drop 
and crack length has been factored out. Explicit expressions 
for K and Q might be found by extending Burridge's analysis 
but are not needed here. The stress singularity does not over- 
lap the slip function. 

For the purpose of illustration, let the rupture distribution 
function be a square pulse, 

f(t) = (2e)-'H(e + t)H(e- t) 

and find the convolved stress and slip velocity 

(rx•(t)) = f ](t')rx•(t - t')dt' 

/OAu(t)• f O Au(t--t')dt , •----0•--/ = J(t') Ot 
The result can be expressed in three different time domains as 
follows. If t < to- •, 

K(v)Ar L 
(r,,•(t)) = (1 a) 26v {[v(to- t-t-'0/L] 

Au(t)• o 
If t0- • < t < t0+ •, 

(rx,,(t)) = K(v)Ar L 
(1 -- a) 26v 

-- Iv(to- t--6)/L] x-a} 

Iv(to- t -t'- 6)/L] 1-a 

AT 
(t- to + 

tt •-• [v(t -- to -t'- 6)/L]•-• 
If t > to + •, 

(•,,(t)) = 

u {[v(t- to + 0/t] 
- [v(t- to- 0/t] 

The •ak value of stress occurs at t = to - 6: 

max (rx•(t))= (1 -- a) (2) 

In the region where the stress and velocity peaks overlap, to - • 
< t < to + •, stress is a decreasing function of time, and slip is 
increasing, as in some slip-weakening model. Different rupture 
distribution functions will represent different slip-weakening 
models. 

With a finite overlap of finite functions the energy absorp- 
tion is determined straightforwardly. We want to calculate the 
work done per unit area by the excess of stress over the final 
stress. 

The substitution s = (t - to)/e removes the dependence on 
from the integrals. Then 

K(v)Q(v)L(Ar)•(•) •-•" 2G = 4(1 -- a) 

ß (1 -- s)'-"(1 + s) •-" ds 
1 

4 n , (1 -- s)(1 + ds (3) 
For small e the first term will dominate the second. 

Peak stress and G are characteristic of the constitutive rela- 

tion. If the shape of the slip-weakening curve is consistent with 
a square pulse rupture distribution, then (2) and (3) are a pair 
of simultaneous equations that determine e and v. If G/L is 
constant, then the solution is self-similar with e proportional 
to L and v constant. In that case this analysis is rigorous. 
Otherwise, v will vary with L, and values of K and Q from a 
self-similar analysis will not apply exactly. 

Other shapes of the rupture distribution function can be 
considered. Assume that f(t) is normalized according to (1), 
that it is zero outside a bounded domain, and that it is piece- 
wise continuous. Then the one-parameter family of rupture 
distribution functions (1/e)f(t/e) satisfies the same conditions. 
Then expressions found for peak stress and fracture energy in 
the convolved solution, analogues of (2) and (3), will depend 
on the rupture width e. The two equations together will deter- 
mine e and v. The solution will depend on the choice of shape 
of the rupture distribution function f(t). 

From this point we will assume that e is small enough that 
only the first term of (3), the term arising from the overlap of 
the two smeared out singularities, need be considered. This 
assumption may require that peak stress be large. Then if a = 
•, as for sub-Rayleigh rupture velocity, some special properties 
apply. The dependence on e disappears from (3). Then rupture 
velocity is determined by (3) alone and is independent of the 
extent of smearing out that is required to satisfy the stress 
limit. 

For a = •, rupture velocity is also independent of the shape 
of the rupture distribution function. In this case the fracture 
energy, calculated from the overlap of the singularities, is 

2G = K(v)O(v)L(6r) 
2• 

where 

I = fff ](t')(t' + to- t)-•/•H(tt + to- t) 
ß ](ttt)(t- to- tt')-'/•m(t- to- t 't) dt t dt't dt 
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Let s = t- to. Then 

ß '[/(s')l(s")(s'- s") 

Note that the domain of integration is restricted to s' > s", s' > 
s, and s > s", and change the order of integration 

I = ds' ds" f(s')f(s") 

ß ds (S t-- S)-1/2(S- Sit) -1/2 
, 

The last integral is simply ;r. Let 

F(s) l(s') ds' 

Then 

f_" f I = rr ds" /(s t) ds" f(s") = rr F dF 

= (rr/2)[F'(s = q-m)- F2(s = --oo)1 = •r/2 

so that 

20 = (rr/4)K(v)Q(v)L(Ar)2/# 

The same result for energy absorption may be found for the 
case of a singular crack with a = • by considering the Fourier 
transforms of ro•y and a Au/a t and applying Parseval's relation 
to their inner product [Freund, 1972; Richards, 19.76]. The ' 
reason that it is physically realistic to deal with singular cracks 
in the case a = • is that rupture velocity is independent of the 
rupture distribution 'function, so that only the Dirac delta 
function need be considered. If a =• •, we must retreat from this 
level of abstraction. 

If v >/•, the exponent a of the singularity at the crack tip is 
determined bY the phas e of the Rayleigh function with the 
rupture velocity v as its argument [Burridge, 1973], 

point focus is not possible, but energy can still be delivered to a 
distributed rupture front. 

After the completion of the transition in the numerical 
calculations, the rupture velocity quickly goes to values larger 
than 2•/2•, the domain where a is a decreasing function of v. It 
is a reasonable conjecture that stable values of rupture velocity 
are confined to the domains 0 < v < vR and 2•/•'• < v < a, 
where vR is Rayleigh velocity. 

The condition for the transition from sub-Rayleigh to super- 
shear rupture velocity might be found analytically. For a par- 
ticular choice of shape of rupture distribution function, the 
question can be posed as follows. When a self-similar solution 
for sub-Rayleigh rupture velocity is smeared out to reduce 
stress at the crack tip to the upper yield point, is stress at the S 
wave peak above or below the upper yield point? 

The finite difference method is not well suited to prob- 
lems having two length scales that are greatly different. For 
values of rupture front length that are smaller fractions of 
crack length than considered here, convolution of analytic 
solutions would be a preferable method. 

The slip-weakening model is not entirely realistic but is itself 
an abstraction of a strain-weakening model, in which failure 
takes place in a volume of finite thickness. Numerical solutions 
for a strain-weakening model [Andrews, 1976] resemble a 
crack solution smeared out in the direction normal to the 

crack plane, as well as on the crack plane. The rupture distri- 
bution function would have nonzero values over a finite inter- 

val in y, as well as in t or x. To establish that such.a conVolved 
solution is valid, it would be necessary to show that the correct 
equation of motion is satisfied within the rupture frOnt volume 
and that only the constitutive relation is changed, I have no 
proof of this conjecture. 

The ideas discussed in this section have been arrived at 

largely by induction. Concepts from distribution theory [Ze- 
manJan, 1965] have been he!pful to me in establishing to some 
extent a logical foundation for the ideas. In this point of view a 
singular crack solution is regarded .as a distribution functional, 
and physical solutions are regularizations of it defined by 
convolutions with testing functions. 

CONCLUSIONS 

R(v) = (- 1 )a I R(V)I 

where 

R(v) = [l - vut(2'f/2)] 2 - (1 - vu/f/2)•/2(1 - v2/a2) •/2 

and a is P wave velocity. On the appropriate branch of the 
Rayleigh function, 

0_<a_<i 

Burridge, s analysis also allows other values of a, larger by any 

In real materials a rupture propagation criterion should 
require both that shear stress be bounded and that energy' be 
absorbed at the rupture front. For a rupture propagating 
slower than the Rayleigh wave speed, only the energy absorp- 
tion enters into the determination of rupture velocity, and the 
smearing out needed to satisfy the stress limit leaves the former 
relation unchanged. However, both criteria enter into the de- 
termination of whether a plane strain shear crack will propa- 
gate faster than the shear wave velocity. In that case, the 
rupture front cannot be singular but must be spread out in 

integer. TheSe. values are excluded by the requirement that space.time 
energy be finite. The value of a increases from zero at v = ;• to • NUmerical calculations have bee n Performed with a partiCu, 
at v = 2•/2• and then: decreases to zero at v = a. lar model COmbining both rupture criteria. The only kinematic 

With a < •ther e is'no energy absorption for e = 0, by (3). If asSumPtion of the work is that rupture be restricted to a plane. 
fracture energY is nonzero, then (2)and (3)together determine surface. Rupture velocity domains have been surveyed in th e 
e and v, and {;Will be nonzero. parameter space of upper yield point and ratio of energy 

The •olutiøn to the paradox is that for supershear rupture absorbed to energy released. ' 
propagatio n with energy absorption, the stress drop cannot be What is the rupture velocity of an earthquake? The question 
abrupt. will be best answered from observations. A predictive calc u- 

Released strai n energy is radiated preferentially in the direc- lation of rupture velocity in an actual case would requi re 
tion of rupture propagation. For rupture velocity less than the detailed specification of material response during failur e' for 
Rayleigh velocity ' a Portion of the released energy can be both the fault zone and the surrounding rock. Such properties 
focused on a point, the rupture front, and is absorbed there. are poorly understood. And in an actual case, stress drop Will 

ß 

For rupture velocity greater than the shear wave velocity, a not be uniform as in the idealized model considered here. 
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APPENDIX' NUMERICAL ACCURACY 

The numerical method used in this work has been reported 
previously [At•drews, 19.73!. The spatial differencing is equiva- 
lent to uniform strain triangular finit e elements, and the ex- 
plicit' time stepping-is equivalent to the leapfrog scheme 
[RichtmYer and Morton, 1967]. 

Naive attempts to calculate crack propagation numerically 
are quite vul,nerable to error. For instance, I or•ce experi- 
mented 'wi.th rup.ture calculations with abrupt stress drop trig- 
gered at a finite stress level. In some cases the initial crack 
would not propagate at all, for the stress concentration was 
not resolved well enough by the grid. In other cases the rupture 
would advance one grid point in every time step, faster than 
the P'wave velocity. Although those results could b e changed 
with Various averaging procedures at the crack tip' they dem- 
onstrate that humerical .crack calculations will not be credible 
wiihout an understa0ding, first, of singularities to be expected 

, 

for the problem as posed, second, of reasonable physical 
mechanisms that will remove the singularities, and, third, of 
the characteristics of the numerical system itself. Special pro- 
cedures to match an expected singularity to a numerical solu- 
tion could introduce unexpected complications and would re- 
quire some kinematic assumptions' Therefore I chose a 
physical model for which no singularity is expect •ed and used a 
simp!e numerical procedure having properties that are well 
understood. 

The essential cha, racteristics of the numerical system can be 
illustrated in one dimension with a uniform material and a 

uniform grid. The one-dimensional linear scalar wave equa- 
tion can be represented by the pair of coupled equations 

Ov 10tr Otr ,. Ov 
Ot -- pox Ot -- pco Ox 

where v is particle velocity, a is stress, p is density, and Co is 
wave speed. In the finite difference equations, a subscript j 
indicates the point in space, x = jAx; a superscrip't n, the point 
in time, t = nat. The leapfrog finite difference scheme is 

+1 n 

0'i+1/2 n • O'i + l/2 • 
pCo •' A t 

Ax 
/')i + I n+l/2 • l)i n+l/2) 

With these equations the solution can be stepped through time 
explicitly. If the'time step does not satisfy the stability condi- 
tion 

At < AX/Co 

the shortest wavelength component of the solution will grow 
exponentially. As instability in a solution will be obvious, it is 
more important to understand accuracy. 

Accuracy of the finite difference equations can be expressed 
in terms of impedance, dissipation, and dispersion as a func- 
tion of wavelength for a sinusoidal wave. Assume 

v = v0 exp i(kx -- cot) 

• = •o exp i(kx -- cot) 

and substitute into the finite difference equations. One finds, 
first, that 

ao = + pCot)o 

The impedance is therefore correct for all wavelengths. Sec- 
ond, if the stability condition is met, then k and w are both 
real, and the•e is no dissipation. Third, k and w are related by 
the dispersion relation 

sin (kAx/2) = Ax/(CoAt) sin (wAt/2) 

To second order, the phase velocity is 

1 [1- (Cø•t•l(•)• = = - g J 
At the stability limit, Co•t/Ax = 1, the truncation error in 

time differences cancel s the truncation error in space differ- 
ences. However, dispersion cannot be avoided in this way in 
two dimensions, for the effective parameter Co•t/Ax is not the 
same in different directions, nor is it the same for S waves and 
P waves. For small •t the phase velocity for 2 points per 
wavelength is C/Co = 0.638; for 4 points per wavelength, 0.902. 

The dispersion relation for a two-dimensional grid has been 
worked out by Alford et al. [1974]. In the symmetry directions 
of the grid the result is the same as the one-dimensional case, 
and this will be true for any second-order generalization to two 
space'dimensions. The equations of Madariaga [1976] are 
more efficient than mine in storage requirements and number 
o[ operations, but the dispersion relation is the same. 

Implicit equations, for which there may be no stability re- 
quirement, provide no significant advantage in accuracy. 

For a linear problem, different wavelengths are not coupled, 
so short-wavelength noise is irrelevant. It can be either filtered 
out or ignored. In the present work a nonlinear boundary 
condition is used on the crack surhce, and short-wavelength 
components can affect the rupture propagation. In order that a 
numerical solution be accurate, it is necessary that the correct 
solution for the assumed physical model be smooth enough 
that amplitudes of short-wavelength components are not sig- 
nificant. For a rupture width of 4Ax, the shortest significant 
wavelength would be about 8•x, and the relative error would 
be less than 2% for all components. Unfortunately, the min-. 
imum rupture width in this work is only Ax. The grid size used 
was 100 X 200, and it would be quite expensive to go to finer 
resolution. Two calculations, one with Ax = O. ILc, the other 
with Ax = 0.2Lc, agreed reasonably well and showed similar 
stress peaks at shear wave front ahead of the rupture. The 
calculation with finer resolution did not go hr enough for the 
transition in rupture velocity to occur. 

Dispersion Will tend to reduce peak values of stress and 
particle velocity. Therefore the transition to higher rupture 
velocity will tend to occur too late. 

i do not claim that the transition length found in this work is 
more accurate than a factor of 2. I do claim that since the 

physical model has a nonsingular solution and the rupture 
width is at least •x, the trends and relations found in this work 
are meaningful. 

Additional constraints can be put on the error of a solution 
by considering conservation principles. For the leapfrog equa- 
tions there exist discrete analogues of momentum and energy. 
if boundary conditions on stress or velocity are imposed in a 
manner consistent With the internal differencing, then the sums 
over the grid of these discrete analogues agree precisely with 
the impulse and work, respectively, done at the boundaries. 

At grid point j and time step n the analogue of momentum 
per unit mass is 

•vf + •/: + vf-•/•) 

and the analogue of energy per unit mass is 
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lvjn+•/•. vjn-•/•. + I(E•+•/•. • + E•_•/•. •) 

where E is the strain energy function. Note that a mode with 
alternating velocity from one time step to the next is not 
limited by this energy analogue and is subject to instability. All 

-other modes, even those significantly dispersed, are con- 
strained by energy, conservation. These conservation principles 
can be extended to two dimensions, nonuniform grids, and 
nonlinear materials [Trulio and Trigger, 1961; Trulio, 1964, 
1966]. 

A numerical solution for a crack propagating with an 
abrupt stress drop can be quite noisy. One reason is simply 
that amplitudes of short-wavelength components are signifi- 
cant, and those components are dispersed. There is a second 
cause. With an abrupt stress drop in a numerical calculation, 
there is no energy absorption at the rupture front as at the 
singularity in the corresponding analytic solution. Amplitudes 
of long-wavelength components will be accurate, so that the 
energy that should be absorbed must go into shorter-wave- 
length components. Therefore the crack tip is a source of 
short-wavelength noise. Figure 8 shows that the slip-weak- 
ening model is not generating much noise, even with the rup- 
ture front as narrow as 

Note added in proof The question of the validity of spread- 
ing out a crack so{ution in space-time is equivalent to the 
question of superposition of solutions with prescribed plastic 
strain. Burridge and Knopoff [1964] and Nyland [1971] have 
shown that plastic strain is equivalent to distributed body 
force, and the validity of superposition follows immediately. 
The superposed solution will satisfy the equation of motion, 
consistent with the superposed plastic strain. At points where 
plastic strain is zero, Hooke's law will be satisfied. However, 
a given constitutive law relating plastic strain to stress history 
will not be satisfied both before and after superposition. If a 
superposed solution satisfies a desired constitutive relation, 
then it is the desired solution, even though it is formed from 
solutions satisfying different constitUtive relations. 
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