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Abstract

This work bridges recent advances in once-for-all (OFA)

networks [1] and sample-adaptive dynamic networks. We

propose a novel neural architecture dubbed as Russian doll

network (RDN). Key differentiators of RDN are two-folds:

first, a RDN topologically consists of a few nested sub-

networks. Any smaller sub-network is completely embed-

ded in all larger ones in a parameter-sharing manner. The

computation flow of a RDN starts from the inner-most (and

smallest) sub-network and sequentially executes larger ones

according to the nesting order. A larger sub-network can

re-use all intermediate features calculated at their inner

sub-networks. This crucially ensures that each sub-network

can conduct inference independently. Secondly, the nesting

order of RDNs naturally plots the sequential neural path

of a sample in the network. For an easy sample, much

computation can be saved without much sacrifice of accu-

racy if an early-termination point can be intelligently de-

termined. To this end, we formulate satisfying a specific

accuracy-complexity tradeoff as a constrained optimization

problem, solved via the Lagrangian multiplier theory. Com-

prehensive experiments of transforming several base mod-

els into RDN on ImageNet clearly demonstrate the superior

accuracy-complexity balance of RDN.

1. Introduction

Modern deep neural networks have been firmly estab-

lished as state of the art approaches in many computer vi-

sion and multimedia analysis tasks, such as image recog-

nition [8, 28, 5], object detection [31] and vision-language

learning [21]. The development of several key engineer-

ing techniques, particularly modular network design and

residual learning, has spurred the explosive growing of very

deep or dense models to obtain further performance gain.
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Figure 1. Conceptual comparison of Russian Doll Network (RDN)

(in (c)) with representative once-for-all networks [1] (in (a)) and

dynamic networks [25] (in (b)). Blocks with similar color (as in

(a)) or filled pattern (as in (b)) imply parameter-sharing, which are

jointly optimized during training.

Despite the remarkable new performance, large-sized deep

networks have limited practical use owing to the intensive

computations and memory footprint. Tremendous efforts

have been devoted to learning slimmer and faster networks,

such as using network compression [9, 32] and novel neu-

ral designs [22, 20]. In this work, we expose a novel net-

work architecture, dubbed as Russian Doll Network (RDN),

whose motivations are two-folds:

First, a deep model can be deployed on diverse hardware

platforms with different requirement, ranging from low-cost

smart-home sensors to dedicated Tensor Processing Unit

(TPU). These platforms enforce different efficiency con-

straints and thus demand neural networks with varying com-

plexities. Training an optimal model separately for each ap-
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plication scenario is seemingly possible yet economically

forbidden. Recently, once-for-all networks [1] (see Fig-

ure 1(a)) devise multiple sub-networks with varying depths,

widths, kernel sizes, and resolutions in a parameter-sharing

manner. The training cost can be amortized by jointly op-

timizing all sub-networks in a single process. The resul-

tant sub-networks can be flexibly deployed under diverse

architectural configurations without re-training the models.

Multiple sub-networks share similar architectures and con-

text information, which makes the larger sub-networks effi-

ciently deploy information and get faster and more accurate

predictions.

Secondly, in image recognition or object detection, the

difficulty level of confidently classifying an input signifi-

cantly varies across different image or candidate box. Pro-

cessing all samples equally is computationally inefficient

since a lot of computations would be wasted on easy sam-

ples. [14] allocates proper weights for discriminating easy

samples and hard samples during training. It is also cru-

cial to treat easy samples during inference stage [3]. Re-

searchers have recently proposed numerous methods for

dynamic inference. Based on predictive inspection at

some early network stage, a sample can choose different

routes [24, 26], adaptively emphasize specific image sub-

region according to a learnable policy [25], or follows a

gating mechanism for dynamically unrolling some neural

units [7].

This paper introduces Russian Doll Network (RDN) as

a new solution that bridges once-for-all networks and dy-

namic inference. Figure 1(c) shows the conceptual archi-

tecture of RDN, depicting a K-in-1 full network with re-

cursively nested sub-networks N1, N2, . . . , NK . Crucially,

we constrain RDNs to have strict sequential nesting order.

To be specific, an inner sub-network in the sequence is fully

embedded into any one larger than it, with all its param-

eters shared, which means the information flow from in-

ner sub-networks to larger sub-networks, irreversibly. The

computational flow always follows N1 → N2 → · · · →
NK . On the one hand, larger sub-networks have full ac-

cess of the feature maps calculated at all previous sub-

networks, but previous sub-networks are not affected by the

larger sub-networks. This way, each sub-network acts as

an uni-directional dependent classifier, and the residual net-

work Ni − Ni−1, i = 2 . . .K aggregates all previous sub-

networks N1, . . . , Ni−1 and progressively improves current

sub-network. On the other hand, the sequential nesting or-

der naturally enables dynamic inference. The calculation of

a sample can early terminate once the confidence at some

sub-network has been already sufficiently high. This will

avoid unnecessary computations without heavy sacrifice of

accuracy. In this work, we formulate the policy network

to estimate the confidence distribution of samples, and pro-

pose a sample-adaptive inference as searching an optimal

Lagrangian variable, which intelligently strives to achieve

some pre-specified accuracy-complexity trade-off. The cal-

culation of a sample can terminate by judging and weighing

the user-given expected accuracy in order to save the com-

putation complexity.

2. Related Works

Once-for-all network: Deep neural networks nowadays

have wide deployment at diverse scenarios, which request

different trade-off between latency and accuracy. Conven-

tionally, deep networks are trained for special hardware

platform, and need be re-configured and re-trained for any

new deployment. For economic concern, training once and

getting many diverse networks [30, 6] would alleviate the

expensive cost of multiple deployments. Slimmable neu-

ral networks [29] privatize all batch normalization layers

for each switch of channel width, producing varying-width

networks. Once-for-all (OFA) networks [1] derive multiple

networks along multiple dimensions (e.g., resolution, chan-

nel width, depth etc.) and jointly train them via progres-

sive shrinkage. In the model specialization stage, OFA-Net

samples a subset of sub-networks to train an accuracy pre-

dictor and latency predictors. An optimal choice of sub-

network will be thereby chosen for the target hardware and

constraint.

Nested structure in deep networks: Numerous non-

sequential structures in deep neural networks [13, 10, 23]

have been recently explored for improved performance.

Among them the most relevant work to ours is Nested-

Net [12]. Similar to our RDN, it is a resource-aware ver-

satile architecture as the same network can meet diverse

resource requirements. NestedNet is comprised of nested

multiple levels of networks. Model parameters are shared

across levels. However, NestedNet does not prune unnec-

essary connections between two levels of sub-networks,

allowing high-level sub-network to update the features at

lower level. This causes heavy parameter redundancy. In

contrast, our proposed RDN only permits uni-directional in-

formation flow from inner-nested sub-network to large ones

that it embeds, but not vice versa.

Dynamic deep networks: To avoid unnecessary com-

putations, some methods have developed various sophisti-

cated schemes for skipping part of the model. Examples

include dropping some neural layers as piloted by a con-

troller [27, 15] or conducting an early exit [11]. In image

recognition task, image resolution occupies an important

parts in both accuracy / complexity trade-off. GFNet [25]

micro-form the traditional convolution neural networks and

provides dynamic focusing to the enlarging image sub-

regions. In this work, the proposed RDN naturally enforces

a sequential nesting order of sub-networks. We adopt a La-

grangian multiple based policy for determining the optimal

nested sub-network where a sample achieves desired level
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of accuracy / complexity trade-off.

3. Russian Doll Network

3.1. Overview

Here we formulate the construction of RDN as a generic

network-transforming process. It aims to transform a pre-

trained super-net into a new network which satisfies the

primary requirement of RDNs, rather than learning RDNs

from scratch. This way decouples structure configuration

and parameter initialization, tending to lead to better accu-

racy as validated in our experiments. The construction of an

RDN is comprised of four consecutive steps: adjusting the

neuron connections that violate the nested structure, fine-

tuning the new network as a multi-objective optimization,

determining an optimal nesting order and eventually learn-

ing a policy that generates sample-adaptive neural route for

pre-specified accuracy-complexity trade-off.

3.2. Transform Pretrained Networks into RDN

In modern networks, channel-wise operators (variants

ReLU, Sigmoid, Batch Normalization, depth-wise convo-

lution etc.) need not any transform to become nested. But

there are several popular neural operators in-proper to be

transformed, including: 1) the output of L2 normalization,

Softmax or Layer Normalization in some intermediate lay-

ers are tightly coupled. Remove or change a neuron would

affect all others and violates the nesting requirement; 2) For

a few popularly-adopted variants of convolution (such as

grouped or depthwise separable convolution as used by Mo-

bileNeXt or MobileNetV2), they have already significantly-

reduced parameters. Further transforming will not bring

more model compression yet are prone to performance loss.

We thus keep such operators unchanged.

Inspired by OFA-Net [1], we explore multiple dimen-

sions to construct a nested network. In particular, we

demonstrate the construction by operating on the dimen-

sion of network depth or channels in a convolution. Other

dimensions are left for future exploration. Note the fully-

connected (FC) layers can be treated as a special convolu-

tion with 1× 1 receptive field.

Convolutional channel-wise nesting. Now let us elab-

orate on the surgery on vanilla convolutions. Let X ∈
R

c×h×w be the input feature tensor of a vanilla convolu-

tional layer, W ∈ R
c×d×k×k be the parameter matrix,

where h,w define the spatial resolution and c, d are the

counts of input / output channels respectively. Denote the

convolutional output as Y = W ⊗ X ∈ R
d×h×w. To

make a convolution nested, assume its channels are split

into k non-overlapping groups. Correspondingly, there are

k × k sets of inter-group convolutional parameters. The

main challenge of defining a nested convolution is tackling

the connections that violate the nesting order (e.g., red con-
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Figure 2. Learning a Russian Doll Network (RDN) can be accomplished

by re-organizing and fine-tuning a pre-trained super-net. This figure

overviews such a network surgery along the channel dimension. Each

block represents a group of channels. The results RDN has a nesting struc-

ture as N1 → N2 → N3 → N4 → ... → NK . We use different colors

to imply which sub-network a connection or channel belongs to.

Input

Output

Uni-directional Dependency

(a) (b)

Bi-directional Dependency

Figure 3. Illustration of transforming a vanilla convolution (a) with k

groups into a nested one (b) with K = 2k − 1 groups. Connections that

do not violate the nesting property are displayed in solid lines (e.g., those in

red and blue), otherwise shown in dashed lines. Note that the dependency

is uni-directional for the groups in (b).

nections in Figure 2. Our proposed solution is introducing

another k − 1 groups as the new destination of these con-

nections, forming a total of K = 2k − 1 groups. This way

eliminates all violating connections. For example, k = 4
and K = 7 in Figure 2.

Nested convolution can be regarded as group convolu-

tion + nested dependency among groups. Formally, we can
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define nested convolutions recurrently as below:

Yi+1 =

(

Yi

Yi→i+1

)

, 1 ≤ i ≤ K − 1,

Yi→i+1 = W
T

i→i+1 ⊗





Xqi
1

...

Xqini



+W
T

i+1 ⊗Xi+1,

(1)

where ( ),+ denote tensor concatenation / addition, respec-

tively. qi ∈ R
ni is a sequence of indices, which defines

the nested dependencies in group i. By the definition of

nested convolution, qij ≤ i is a necessary condition. Feature

Yi+1 concatenates two sources: one is the frozen Yi as cal-

culated by previous sub-networks in the nesting sequence,

and the other is computed via vanilla convolution using

both Xqi
1

, . . . ,Xqini

(parameterized by Wi→i+1) and Xi+1

(controlled by Wi+1). In this way it establishes nested de-

pendency among sub-networks. In Figure 4, we show two

popular base models, including MobileNeXt and ResNeXt.

The operators which violate nesting manners are colored

red.

Network initialization is widely-known to be crucial for

converging at high accuracy. We empirically find that train-

ing RDNs from scratch is not ideal, as later validated in

experiments. Instead, we directly borrow the parameters

in pre-trained super-net, namely using W to initialize all

{Wi} and {Wi→i+1}. Figure 3 presents an example of

transforming into a nested one. In addition, the supplemen-

tal materials describes more engineering implementation of

above transform, including a greedy selection scheme that

splits an input tensor into k groups and an inflation oper-

ation that solves the feature dimension mis-matching be-

tween nested convolution and other neural layers.

Depth-wise nesting. Nesting can be also accomplished

along the dimension of network depth. Figure 5 shows an

example of depth-wise split that divide a sub-network Nk

to Nk,0 and Nk,1. For the two new sub-networks, Nk,0

is a relatively-shallow network with some additional light

blocks for aligning spatial resolution and channel dimen-

sion between neural layers. The other Nk,1 reads the fea-

tures outputted by Nk,0. These new sub-networks still have

uni-directional dependency. Once the network Nk,0 finishes

the computation, its features will not be updated during run-

ning Nk,1. Again, all blocks can re-use the parameters of

the original Nk except for the newly-added light blocks.

Head design for sub-networks. We follow the common

practice of stacking multiple MLP layers as the classifier’s

head. As shown in Figure 2, since the active feature chan-

nel varies for different nested sub-networks, the eventual

flattened features for different heads may differ in length.

To tackle this issue, we simply append an extra MLP layer

in each head, aligning all the features to the same feature

dimension. More importantly, as inspired by [25], the last
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Figure 4. Two concrete examples (MobileNeXt and ResNeXt re-

spectively) for transforming a pre-trained network into RDN. The

surgical operations are mainly conducted on parameter-intensive

convolutions (highlighted in red in the figures). Specially-

designed convolutions (e.g., depth-wise separable convolution in

(a) or grouped convolution in (b) remain untouched, since their

parameters are already economically used in the original network.

layer of all heads are enforced to share parameters, which

supposedly improves the robustness. Note that in RDN, the

last layer is initialized by the classifier layer in the super-

net.

Greedy Select In Algorithm 1 we show the details of

greedy select. The main purpose is getting an optimized

permutation of filters which could reduce the differences

between outputs of vanilla convolution and nested convolu-

tion. The whole algorithm is organized by selecting filters

greedily and getting the target permutation step by step.

3.3. Learning Nesting Order

Previous works such as OFA-Net [1] adopt a large,

searchable space for sub-spaces. For example, OFA-Net

specializes a sub-network along four dimensions: depth,
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Figure 5. Our implementation of depth-wise nesting. On the left is

a network with a classification head Nk . The right are two new sub-

networks induced from Nk . Dependency of these two networks is still

uni-directional.

Algorithm 1 Greedy Select

Input: convolutional parameters matrix, W ∈ R
c×d×k×k;

input tensor, X ∈ R
c×h×w; nested groups which is a

divisor of both c and d, K ∈ N
+; input permutation of

length c from previous nested convolution, πin;

Output: output permutation for the next layers, πout;

1: sc← c
K

, sd← d
K

2: for g ∈ 1 . . .K − 1 do

3: π ← a full permutation of length d

4: πg ← πin
g×sc+1,...,c

5: for t ∈ 1 . . . sd do

6: b̂← argminb |W
T

πg×bXπg
|, b ∈ π

7: π ← π − b̂

8: πout ← πout ∪ b̂

9: end for

10: end for

11: πout ← πout ∪ π

12: return πout

width, kernel size and resolution. This brings tremendous

memory for storing all of them and jointing training many

sub-networks may cause interference with each other. The

authors thus proposed to actively select a limited number

of sub-networks occasionally during the training. Since the

search space is not our main focus, this work adopts a rel-

atively small space for sub-networks. As seen in Figure 6,

we only allow the variations along network width or depth,

establishing a 2-D grid of sub-networks. During training, a

unique head is appended onto each sub-network. To strictly

ensure a sequence of expanding nested sub-network, the

transition between sub-networks are naturally defined by

the network topology, as shown in the left panel of Figure 6.

Once the optimization converges, all sub-networks are plot-

ted with a complexity-accuracy frame. The optimality of
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Figure 6. Learning nesting order. Left: topology of 2-D sub-networks

along network depth and width; Right: plotting the learned sub-networks

according to their network complexity and accuracy. The best nesting order

is connected in red lines.
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Targets:   
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Figure 7. The training procedure of the policy network. Given an image,

RDN with K sub-networks outputs a vector (l1, ..., lK), which indicates

K classification results of each sub-networks. Policy network estimates

a vector (p1, ..., pK) of k probabilities as described in Section 3.4. The

bottom black dashed box indicates the adapting targets of policy network,

in which y is the ground-truth label of given image. Note that “[P ]” is the

Iverson bracket, i.e., 1 if P is true and 0 otherwise.

a nesting order is intuitively set as maximizing the integra-

tion under the curve, similar to the AUC (Area under the

ROC Curve) metric widely used in image search. The opti-

mal solution tends to be a convex hull of all sub-networks’

plots. In addition, topological constraints should be satis-

fied. A pursued optimal nesting order is illustrated in the

right panel of Figure 6.

3.4. AccuracyComplexity Tradeoff

Inspired by the DARTS algorithm in [3], we here

propose a Lagrangian theory based scheme for elegantly

searching a policy, which adaptively determines how far

a sample will go in the learned nested RDN. In specific,

we mis-use the notation K to denote the number of sub-

networks in a learned RDN. NK is the largest full model
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Models Avg Mem Used.(M) MAdds. Top-1 Acc.(%) Top-5 Acc.(%) Integrated Nets.

MobileNeXt-multi1.0 3.54 317M 74.02 91.65 1 full network

MobileNeXt-multi1.5 6.9 683M 76.64 93.10 1 full network

MobileNetV2-multi1.4 6.19 598M 74.16 91.63 1 full network

RDN-MobileNeXt-multi1.0 6.92 369M 74.17 91.68 7 sub-networks

RDN-MobileNeXt-multi1.5 14.40 789M 76.56 92.54 7 sub-networks

RDN-MobileNetV2-multi1.4 7.54 665M 73.96 91.67 7 sub-networks

RDN-MobileNeXt-multi1.0† 4.89 250M 74.15 91.56 7 sub-networks

RDN-MobileNeXt-multi1.5† 11.54 660M 76.68 93.54 7 sub-networks

RDN-MobileNetV2-multi1.4† 7.08 465M 74.03 91.65 7 sub-networks

Table 1. Main results of Russian Doll Network (RDN) and base models. “RDN-MobileNeXt”, “RDN-MobileNetV2” are RDNs transformed from Mo-

bileNeXt, MobileNetV2 respectively. “multi1.0”, “multi1.4”, and “multi1.5” are variants definded by different paramters of multiplier as in [19]. “Avg

Mem Used.(M)” are the average memory used during inference of whole network. In the top part, we show the results of base models. All of them are

integrated by only 1 full network. In the middle part, the performances of the largest sub-networks in RDNs are compared with corresponding base models.

In the bottom part, variants with a super-script † utilize our proposed dynamic inference. Number of parameters are slightly bigger than the basic RDN due

to the additional policy network, and MAdds. are significantly saved because of the sample-adaptive dynamic inference.

and consumes most expensive computations. For a sub-

network Nk, let the reward function rk ∈ [0, 1] to in-

dicate the percentage of saved computations in compari-

son with NK . Clearly rK = 0, and the sub-networks

in the nesting order exhibit a decreasing r-value, namely

r1 > r2 > . . . > rK .

Let f be a policy-induced classifier. Φ(f) is the aver-

aged accuracy of classifier f . The optimization objective of

accuracy-complexity trade-off can be written as below:

maximize
f

R(f) = E(rf(X)[f(X) is correct])

subject to Φ(f) ≥ 1− ǫ,
(2)

where ǫ (0 < 1 − ǫ ≤ 1) is a key hyper-parameter that

decides the target accuracy level. The corresponding La-

grangian is:

L(f, λ) = R(f) + λ(Φ(f)− 1 + ǫ). (3)

The optimization boils down to finding the Lagrangian

variable λ that maximizes L. In practice, we pile up some

Multi-Layer Perceptrons (MLPs) which reads the features

of N1 and plays as the policy net, seen in Figure 7. It is op-

timized to approximate pY |X(v|x) = Pr(v is correct|X =
x). A one-pass binary search then finds λ∗ for specific ǫ.

4. Experiments

In this section, we empirically evaluate the effectiveness

of the proposed RDN and present ablation studies to cor-

roborate various designs in our method. Firstly, we de-

scribe the experiment settings and critical implementation

details. Secondly, we analyze the main results of all sub-

networks in RDN, including the results when applying the

sample-adaptive inference described in Section 3.4 during

inference. Finally, we conduct a series of ablation experi-

ments to show the superiority of our approach over variants.

62

64

66

68

70

72

74

76

78

200 300 400 500 600 700 800 900 1000

Im
a

g
e

N
e

t 
To

p
-1

 A
cc

u
ra

cy
 (

%
)

MACs (million)

RDN-MobileNeXt-m1.5

MobileNeXt-m1.5

RDN-MobileNeXt-m1.5†

Figure 8. Performance of Russian Doll Network (RDN) trans-

formed from MobileNeXt-multi1.5 base model. x-axis indicates

the average MAdds during inference, and y-axis is the top-1 ac-

curacy on ImageNet validation partition. In the figure, RDN-

MobileNeXt-m1.5† (shown in red dots) is an enhanced RDN by

applying sample-adaptive dynamic inference. Each red dot corre-

sponds to the performance under a specific user-given λ.

4.1. Implementation Details

Dataset. Following previous work, we use Ima-

geNet [18] for all of our classification experiments. The

comparisons are based on accuracy versus various measures

of resource usages such as the number of parameters, la-

tency and multiply adds (MAdds) in mobile settings. We

adpot the same data augmentation and pre-processing con-

figurations as [2].

Setup. We adopt PyTorch toolbox [17] to implement all

experiments. Code and pretrained models are mainly based

on the implementation of public MobileNeXt-PyTorch [2].

If not mentioned, all the training and validation settings are

the same as [2]. In specific, we train our models using dis-

tributed training setup on 8 NVIDIA V100 GPUs. As for

both training-from-scratch or fine-tuning RDNs, we use the

initial learning rate of 0.1, with batch size 1024 (128 images

per GPU), and cosine learning rate scheduler [16] with de-

cay rate of 1.0 and minimum learning rate of 1× 10−5. We
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No. Base model Integrated Nets Top-1 Acc.(%)

1 MnXt1.5 7 sub-networks 76.56

2 MBv21.4 7 sub-networks 74.16

3 MnXt1.5 14 sub-networks 75.44

4 MBv21.4 14 sub-networks 73.35

Table 2. Impact of depth-wise transformation in RDN. Both

in MobileNeXt-multi1.5 and MobileNetV2-multi1.4, utilizing

depth-wise transformation cause performance drop on ImageNet

validation dataset by 1.12% and 0.81%, respectively.

use the standard SGD optimizer with Nesterov momentum

0.9 and weight decay 1 × 10−4, and exponential moving

average (EMA) with decay 0.9999. All convolutional lay-

ers use batch-normalization layers with an average decay of

0.99. The RDNs are further fine-tuned for 200 epochs after

transformed from pre-trained super-models until otherwise

clarified.

Backbones. MobileNetV2 [19] and MobileNeXt [2] are

used as the pre-trained large networks to be converted into

RDNs. After transforming them into nested architectures,

additional MLP heads will integrate the features generated

by each nested sub-networks. A shared classifier will output

the classification results of all the sub-networks.

Nested transformation details. In our experiments, We

adopt k = 4 by default, which totals 7 sub-networks in

the final RDN. If a depth-wise transform is also utilized

in RDN, we limit the transform to split the original sub-

network into 2 new ones, which doubles the number of sub-

networks to 14. A few shallow layers will be not involved in

the nesting conversion, avoiding unnecessary performance

drop. More concretely, the stem layer and the first two

Sandglass Blocks in MobileNeXts, as well as the stem layer

and the first two InvertedResidual Blocks in MobileNetV2s

remain non-transformed. RDN transforms all the other lay-

ers which violate the nested property.

Policy network details. The policy network utilizes the

features of the lightest sub-network in RDN. Given input

samples, policy network could estimate the classification

confidences of all the sub-networks in RDN. More con-

cretely, policy network outputs binary predictions, indicat-

ing the estimations for top-1 classification precision of sub-

networks. The (ǫ, λ∗) pairs are calculated on the training

split of ImageNet [18], and used for sample-adaptive infer-

ence on the validation / test data.

4.2. Main Results

Table 1 presents key experimental results. For

the notations, “RDN-MobileNeXt” is the RDN trans-

formed from corresponding MobileNeXt. Likewise “RDN-

MobileNetV2” is defined. “multi1.0”, “multi1.4”, and

“multi1.5” correspond to three variants defined by a param-

eter of multipliers, full definition of which is found in [19].

No. Pre-trained Training Duration Top-1 Acc.(%)

1 X 200 epochs 74.17

2 200 epochs 70.35

3 400 epochs 71.03

Table 3. Impact of pre-trained base models of RDN-MobileNeXt-

multi1.0. Note that the pre-trained MobileNeXt-multi1.0 is also

trained for about 200 epochs under the same configuration as ex-

periment 1 in this table.

The super-script † implies the use of our proposed dynamic

inference. We have two major observations: 1) the RDNs

demonstrate comparable performances, with slight increase

of computation caused by the k → K group expansion and

appending new network heads as described in Section 3.2,

2) our proposed dynamic inference can intelligently avoid

unnecessary computation and save MAdds without sacri-

fice of performance. For example, the MAdds of RDN-

MobileNeXt-multi1.0 and RDN-MobileNeXt-multi1.0† are

317M v.s. 250M respectively, with similar top-1 accuracy.

Depth-wise transformation. Transforming into depth-

wise nested manners brings drop of performance but dou-

bles the number of sub-networks. As shown in Table 2, af-

ter utilizing depth-wise transformation, both MobileNeXt-

multi1.5 and MobileNetV2-multi1.4 would cause perfor-

mance drop on ImageNet validation dataset by 1.12% and

0.81%, respectively.

Sample-adaptive dynamic inference. Figure 8

shows the accuracy-complexity trade-offs utilizing sample-

adaptive dynamic inference. The RDN with sample-

adaptive inference, termed RDN-MobileNeXt-m1.5† in

Figure 8, clearly improves the top-1 accuracy, particularly

at lower MACs.

4.3. Ablation study

Importance of pre-trained base models. In Table 3

we study the choice of utilizing pre-trained base models

as well as random initialization. It can be seen that us-

ing pre-trained base models achieves better performance.

Even after extending the training duration for the randomly-

initialized network, there is still ∼ 3% gap on Top-1 accu-

racy.

Importance of greedy select. In Table 4, we compare

randomly or greedily split the channels into k groups when

transforming vanilla convolutions. when utilizing greedy

select strategy, performance of all the sub-networks in RDN

will be improved, especially the lightest one. It is consistent

with the insights in previous studies [1], [4] that parameters

with better initialization and shared structures improve the

generalization ability.

Joint optimization of multiple sub-networks in RDN.

Table 5 investigates the mutual impact of multiple sub-

networks in an RDN. We report the performances with 7
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select strategy Top-1 Top-1(light)

RDN- greedy select 76.55 64.38

MnXt1.5 random select 76.21 62.17

Table 4. Impact of greedy select strategy of RDN-MobileNeXt-

multi1.5. “Top-1” indicates the top one accuracy on Ima-

geNet validation dataset of the largest sub-network in RDN, and

“Top-1(light)” indicates the accuracy of the lightest sub-network.

Greedy select strategy significantly improves the performance of

the lightest sub-net by ∼ 1.8%, and slightly effects the largest

sub-network.

No. Integrated Nets Top-1 Acc.(%)

1 7 sub-networks 76.55

2 6 sub-networks 76.61

3 1 sub-network 76.12

Table 5. Impact of all the sub-networks in RDN. No.1 is vanilla

RDN-MobileNeXt-multi1.5 model. No.2 shares the same struc-

tures with No.1, but is training without the lightest sub-network.

Similarly, No.3 also shares RDN structures, and is only training

with the largest sub-network.

(all), 6 (removing the lightest one), and 1 (only using the

largest one) sub-networks. It is observed that jointly opti-

mizing all sub-networks is apparently a better choice.

5. Conclusion

This work designs a novel Russian Doll Network (RDN)

and present a method that transforms modern deep networks

into RDNs. Additionally a dynamic inference scheme is

proposed, targeting expedited computation with RDN. Our

comprehensive evaluations clearly demonstrate the effec-

tiveness of our proposed method.
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