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Abstract We present a novel large vocabulary OCR system, which implements a5

confidence- and margin-based discriminative training approach for model adap-6

tation of an HMM based recognition system to handle multiple fonts, different7

handwriting styles, and their variations. Most current HMM approaches are HTK8

based systems which are maximum-likelihood (ML) trained and which try to adapt9

their models to different writing styles using writer adaptive training, unsupervised10

clustering, or additional writer specific data. Here, discriminative training based11

on the Maximum Mutual Information (MMI) and Minimum Phone Error (MPE)12

criteria are used instead. For model adaptation during decoding, an unsupervised13

confidence-based discriminative training within a two-pass decoding process is pro-14

posed. Additionally, we use neural network based features extracted by a hierar-15

chical multi-layer-perceptron (MLP) network either in a hybrid MLP/HMM ap-16

proach or to discriminatively retrain a Gaussian HMM system in a tandem approach.17

The proposed framework and methods are evaluated for closed-vocabulary isolated18

handwritten word recognition on the IfN/ENIT Arabic handwriting database, where19

the word-error-rate is decreased by more than 50% relative compared to a ML20

trained baseline system. Preliminary results for large-vocabulary Arabic machine21

printed text recognition tasks are presented on a novel publicly available newspaper22

database.23
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1 Introduction1

In this work, we describe our novel large vocabulary optical character recognition2

(OCR) system. Our hidden Markov model (HMM) based RWTH OCR system is3

based on a publicly available state-of-the-art large vocabulary continuous speech4

recognition (LVCSR) framework which has been designed for the special require-5

ments of research applications and supports for grid-computing.6

The aim of this work is to analyze for Arabic handwriting and machine printed7

text recognition tasks the effect of discriminative MMI/MPE training and the incor-8

poration of a margin and a confidence term into discriminative criteria. Therefore9

none of the preprocessing steps commonly applied in handwriting recognition like10

binarization, deskewing, deslanting or size-normalization are used.11

The focus of this work shall be on offline handwriting recognition of closed-12

vocabulary isolated Arabic words and large open-vocabulary machine-printed Ara-13

bic text recognition tasks in combination with n-gram language models. More ex-14

plicitly, the novelties of our investigation are as follows:15

1. Conversion of a state-of-the-art large vocabulary speech recognition framework16

for handwritten and machine-printed OCR.17

2. Analysis of offline handwritten and machine-printed Arabic text recognition.18

3. Direct evaluation of the utility of the margin term in MMI/MPE based training.19

Ideally, we can turn on/off the margin term in the optimization problem.20

4. Direct evaluation of the utility of an additional confidence term. Ideally, we im-21

prove over the best trained system by retraining the system with unsupervised22

labeled test data.23

5. Evaluation on state-of-the-art systems. Ideally, we directly improve over the best24

discriminative system, e.g. conventional (i.e., without margin) MMI/MPE for25

handwriting recognition.26

6. Evaluation of hybrid MLP/HMM and discriminatively retrained MLP-GHMM27

tandem approaches.28

The remainder of this chapter is structured as follows: First, the background29

in described in Section 2. Next, Section 3 gives a system overview, whereas the30

RWTH OCR software framework is presented in Section 4. The datasets we used for31

evaluating the proposed framework are explained in Section 5 where especially our32

ongoing work in creating a publicly available database for Arabic machine-printed33

text recognition is presented in Section 5.2. Experimental results are presented in34

Section 6, and finally, the chapter is concluded in Section 7.35

2 Background36

From a system point of view, many approaches for Arabic handwriting recognition37

[3] in the past were HMM based systems using the Hidden Markov Model Toolkit38

(HTK) [78]. BBN’s Glyph HMM system “Byblos” [46, 51, 67], has been extended39
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to “PLATO” [52] within the MADCAT [57] project, and is used for handwriting1

and machine-printed OCR tasks. SIEMENS [70] showed how to convert a Latin2

OCR system to Arabic handwritings. Other projects like OCRopus1 or Tesseract23

currently do not support the recognition of Arabic scripts, and apparently only a few4

commercial applications like Readiris3 and NovoDynamics VERUS4 can support5

those cursive scripts.6

Many commercial machine-printed OCR products or systems described in the7

published literature developed their recognition algorithms on isolated characters8

[45]. These systems usually assumed that characters can be segmented accurately as9

a first step, and made hard decisions at each stage which resulted in an accumulation10

of errors, thus broken and touching characters were responsible for the majority11

of errors. Obviously these assumptions are too strong for degraded or handwritten12

documents, or font-free approaches [37].13

Such approaches were surpassed by late-decision systems, e.g. tools developed14

by the speech recognition community, such as hidden Markov models (HMMs).15

In these systems, multiple hypotheses about both segmentations and identities are16

maintained, and the final decisions are made at the end of an observation sequence17

by tracing back the local decisions which led to the best global hypothesis [34].18

Similar to the framework presented in [67, 51] our novel RWTH OCR system is19

able to recognize Arabic handwritten and machine printed text.20

State-of-the-art speech recognition systems are based on discriminative Gaussian21

HMMs (GHMMs), where major points of criticism of this conventional approach22

are the indirect parameterization of the posterior model, the nonconvexity of the23

conventional training criteria, and the insufficient flexibility of the HMMs to incor-24

porate additional dependencies and knowledge sources [28]. State-of-the-art hand-25

written text recognition systems are usually based on HMMs too [7, 22, 70], but26

are typically trained using the maximum-likelihood (ML) criterion. Hybrid neural27

network based systems like RNN / CTC [27], MLPs / HMM [21] or tandem based28

approaches like MLP-GHMM [71] were recently very successful in online and of-29

fline handwriting recognition. However, most of the tandem based approaches use30

an ML based training criterion to retrain the GHMMs.31

Typical training criteria for string recognition like for example minimum phone32

error (MPE) and maximum mutual information (MMI) in speech recognition are33

based on a (regularized) loss function. In contrast, large margin classifiers - the de-34

facto standard in machine learning - maximize the separation margin. An additional35

loss term penalizes misclassified samples.36

The MMI training criterion has been used in [55] to improve the performance37

of an HMM based offline Thai handwriting recognition system for isolated charac-38

ters. They propose a feature extraction based on a block-based PCA and composite39

image features, which are reported to be better at discriminating Thai confusable40

1 http://code.google.com/p/ocropus/
2 http://code.google.com/p/tesseract-ocr/
3 http://www.irislink.com/readiris/
4 http://www.novodynamics.com/

http://code.google.com/p/ocropus/
http://code.google.com/p/tesseract-ocr/
http://www.irislink.com/readiris/
http://www.novodynamics.com/
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characters. In [8], the authors apply the Minimum Classification Error (MCE) crite-1

rion to the problem of recognizing online unconstrained-style characters and words,2

and report large improvements on a writer-independent character recognition task3

when compared to an ML trained baseline system.4

Similar to systems presented in [54, 12, 52], we apply the MMI/MPE criterion,5

but modified by a margin term. This margin term can be interpreted as an additional6

observation-dependent prior weakening the true prior [35], and is identical with the7

support vector machine (SVM) optimization problem of log-linear models [30].8

The most common way for unsupervised adaptation is the use of the automatic9

transcription of a previous recognition pass without the application of confidence10

scores. Many publications in automatic speech recognition (ASR) have shown that11

the application of confidence scores for adaptation can improve recognition results.12

However, only small improvements are reported for maximum likelihood linear re-13

gression (MLLR) adaptation [25, 60, 62] or confidence-based constrained MLLR14

(CMLLR) adaptation [5]. In addition to the margin concept, the MMI/MPE training15

criteria are extended in this work by an additional confidence term [15] to allow for16

novel unsupervised model adaptation.17

3 System Overview18

In offline handwriting recognition, we are searching for an unknown word sequence19

wN
1 := w1, . . . ,wN , for which the sequence of features xT

1 := x1, . . . ,xT fits best to the20

trained models. We maximize the posterior probability p(wN
1 |xT

1 ) over all possible21

word sequences wN
1 with unknown number of words N. This is modeled by Bayes’22

decision rule:23

xT
1 → ŵN

1 (xT
1 ) = argmax

wN
1

{
pκ(wN

1 )p(xT
1 |wN

1 )
}

(1)

with κ being a scaling exponent of the language model.24

Especially in Arabic handwriting with its position dependent glyphs [44], large25

white-spaces can occur between isolated-, beginning-, and end-shaped characters26

(see Figure 1 (a)). As a specific set of characters is only connectable from the right27

side, such words have to be cut into parts (Part of Arabic Word (PAW)). Due to28

ligatures and diacritics in Arabic handwriting, the same Arabic word can be written29

in several writing variants, depending on the writer’s handwriting style.30

In this work, we use a writing variant model refinement [19] of our visual model

p(xT
1 |wN

1 ) =

max
vN

1 |w
N
1

{
pα

Λv
(vN

1 |wN
1 )pβ

Λe,t
(xT

1 |vN
1 ,wN

1 )
}

(2)

with vN
1 a sequence of unknown writing variants, α a scaling exponent of the writing31

variant probability depending on a parameter set Λv, and β a scaling exponent of the32

visual model depending on a parameter set Λe,t for emission and transition model.33
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(a) (b)

Fig. 1 Two examples where each column shows the same Tunisian town name: large white-spaces
(a) and a large stretching of long drawn-out characters (b) occurs often in Arabic handwriting.
Therefore an adequate modeling of white-spaces and state-transition penalties are important parts
to be tuned in an HMM based Arabic handwriting recognition system.

During training, a corpus and lexicon with supervised writing variants instead1

of the commonly used unsupervised writing variants can be used, during decoding,2

the writing variants can only be used in an unsupervised manner. Obviously, the3

supervised writing variants in training can lead to better trained glyph models only4

if the training corpora have a high annotation quality. Usually, the probability p(v|w)5

for a variant v of a word w is considered as uniformly distributed [17]. Here we use6

the count statistics as probability7

p(v|w) =
N(v,w)
N(w)

(3)

where the writing variant counts N(v,w) and the word counts N(w) are estimated8

from the corresponding training corpora, and represent how often these events were9

observed. Note that ∑v′
N(v′,w)
N(w) = 1. The scaling exponent α of the writing variant10

probability of Equation 2 can be adapted in the same way as it is done for the lan-11

guage model scale κ in Equation 1.12

3.1 Feature Extraction13

The images are scaled down to a fixed height while keeping their aspect ratio.14

We extract simple appearance-based image slice features x′t at every time step15

t = 1, . . . ,T which are augmented by their spatial derivatives in horizontal direc-16

tion ∆ = x′t − x′t−1. Note that many systems divide the sliding window itself into17

several sub-windows and extract different features within each of the sub-windows18

[6, 36, 55, 70]19

In order to incorporate temporal and spatial context into the features, we concate-20

nate 7 consecutive features in a sliding window with maximum overlap, which are21

later reduced by a PCA transformation matrix to a feature vector xt of dimension 3022

(see Figure 2).23

Without any preprocessing of the input images, the simple appearance-based im-24

age slice features xt = [x′t ,∆ ] together with their corresponding state alignments can25

then be processed by a hierarchical MLP framework originally described in [76].26
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Fig. 2 Right-to-left sliding PCA window over input images without any preprocessing for Arabic
handwriting.
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Fig. 3 Hierachical MLP network for discriminative feature extraction in OCR

Depending on the MLP hierarchy, preprocessing, and postprocessing operations,1

several feature sets can be generated. In order to incorporate temporal and spatial2

context into the features, we concatenate consecutive features in a sliding window,3

where the MLP outputs are later reduced by a PCA or LDA transformation (cf.4

Figure 3). Two different MLPs are trained, RAW and TRAP-DCT networks, where5

network details are given in Section 6.6

Instead of using log-PCA/LDA reduced MLP posterior features for retraining7

a Gaussian HMM system, log-posterior features can be directly used without any8

reduction in a hybrid MLP/HMM framework [9], as briefly described in Section 3.2.9

3.2 Visual Modeling10

Arabic handwriting. Depending on the position in an Arabic word, most of the 2811

characters can have up to 4 different shapes [44]. Here we use position dependent12

glyph models to model the different presentation forms, and due to ligatures, a to-13

tal of 120 glyph models and one white-space model have to be estimated for the14

IfN/ENIT tasks (see Section 6). Additionally, a large stretching of long drawn-out15

glyphs occurs often in Arabic handwriting (see Figure 1 (b)). Therefore, we use16

very low loop penalties but higher skip penalties for our HMM state transitions (see17

Figure 4 (a)).18
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si 2 1 0 si

p(si|si)p(0|0)

p(1|0)

p(2|0)

p(1|1)

p(2|1)

p(2|2)p(si|si)

next si prev

p(si|si)

(a) (b)

Fig. 4 Different HMM topologies and transition probabilities are used for character models (a)
and white-space models (b) in Arabic and Latin handwriting recognition.

Arabic machine-printed text. As for Arabic handwriting, there are no distinct up-1

per and lower case letter forms in machine-printed texts. Both printed and written2

Arabic are cursive. Unlike cursive writing based on the Latin alphabet, the stan-3

dard Arabic style has substantially different shapes depending on the glyph context.4

Standard Arabic Unicode character encodings do typically not indicate the form5

each character should take in context, so it is left to the rendering engine to select6

the proper glyph to display for each character.7

The basic Arabic range encodes mainly the standard letters and diacritics. For8

our novel large vocabulary Arabic machine-printed text database described in Sec-9

tion 5.2, about 200 position dependent glyph models have to be trained.10

GHMM. Our hidden Markov model (HMM) based OCR system is Viterbi trained11

using the maximum-likelihood (ML) training criterion and a lexicon with multiple12

writing variants as proposed in [17, 19].13

Each glyph is modeled by a multi-state left-to-right HMM with skip transitions14

and a separate Gaussian mixture models (GHMMs) with globally pooled variances.15

The parameters of all Gaussian mixture models (GMMs) are estimated with the16

ML principle using an expectation maximization (EM) algorithm, and to increase17

the number of densities in the mixture densities, successive splitting of the mix-18

ture densities is applied. Different HMM topologies and transition probabilities are19

used for glyph models (cf. Figure 4(a)) and white-space models (cf. Figure 4(b)) in20

Arabic text recognition, where the white-space model itself is always modeled by a21

single GMM in all systems.22

The ML trained GMMs are refined using a discriminative training approach23

based on the margin-based M-MMI/M-MPE criteria [32] as briefly presented in24

Section 3.3.25

Hybrid MLP/HMM. The MLP posterior probabilities p(st |xt) are divided by the26

prior state probabilities p(st) in order to approximate the observation probabilities27

of an HMM, i.e. p(xt |st)≈ p(st |xt )
p(st )

as described in [9].28

MLP-GHMM. The MLP-GHMM system is trained from scratch using the MLP29

log-posterior features as described in Section 3.1 (also known as tandem approach30

[71]). Again, ML/M-MMI/M-MPE training criteria can be used for GMM training.31

Note that the MLP network itself can also be trained using different alignments32

generated by the correspondingly trained GHMM systems.33
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3.3 Discriminative Training: Incorporation of the Margin and1

Confidence Term2

In this work, we use a discriminative training approach based on the Maximum3

Mutual Information (MMI) and Minimum Phone Error (MPE) criteria as presented4

in [30, 31, 29]. In addition to the novel confidence-based extension of the margin-5

based MMI training presented in [15], the confidence concept has been incorporated6

in the margin-based MPE criterion in this work.7

The proposed approach takes advantage of the generalization bounds of large8

margin classifiers while keeping the efficient framework for conventional discrimi-9

native training. This allows us to directly evaluate the utility of the margin term for10

OCR. So, our approach combines the advantages of conventional training criteria11

and of large margin classifiers.12

This section briefly reviews how the MMI/MPE training criteria can be ex-13

tended to incorporate the margin concept, and that such modified training crite-14

ria are smooth approximations to support vector machines with the respective loss15

function [30].16

In OCR, the two-dimensional representation of an image is turned into a string17

representation X = x1, . . . ,xT where xt is a fixed-length array assigned to each18

column in the image (see Section 3.1 for further details). The word sequence19

W = w1, . . . ,wN is represented by a character string.20

Assume the joint probability pΛ (X ,W ) of the features X and the symbol string W .21

The model parameters are indicated by Λ . The training set consists of r = 1, . . . ,R22

labeled sentences, (Xr,Wr)r=1,...,R. According to Bayes rule, the joint probability23

pΛ (X ,W ) induces the posterior24

pΛ ,γ(W |X) =
pΛ (X ,W )γ

∑
V

pΛ (X ,V )γ
. (4)

The likelihoods are scaled with some factor γ > 0, which is a common trick in25

speech recognition to scale them to the “real” posteriors [31]. The approximation26

level γ is an additional parameter to control the smoothness of the criterion.27

Let pΛ (X ,W ) be the joint probability and L a loss function for each training28

sample r:29

L[pΛ (Xr, ·),Wr] (5)

with · representing all possible hypotheses W for a given lexicon, and Wr represent-30

ing the correct transcription of Xr.31

The general optimization problem can be formulated as a minimization of the32

total loss function:33

Λ̂ = argmin
Λ

{
C||Λ −Λ0||22 +

R

∑
r=1

L[pΛ (Xr, ·),Wr]
}

(6)
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and includes an `2 regularization term ||Λ−Λ0||22 (i.e. a prior over the model param-1

eters), where the constant C is used to balance the regularization term and the loss2

term including the log-posteriors. Here, the `2 regularization term is replaced by I-3

smoothing [66], which is a useful technique to make MMI/MPE training converge4

without over-training, and where the parameter prior is centered for initialization at5

a reasonable ML trained model Λ0 (see Section 3.2).6

3.3.1 Maximum Mutual Information7

In automatic speech recognition (ASR), maximum mutual information (MMI) com-8

monly refers to the maximum likelihood (ML) for the class posteriors. For MMI,9

the loss function to be minimized is described by:10

L(MMI)[pΛ (Xr, ·),Wr] =− log
pΛ (Xr,Wr)γ

∑
V

pΛ (Xr,V )γ
. (7)

This criterion has proven to perform reasonably as long as the error rate on the11

training data is not too low, i.e., generalization is not an issue.12

3.3.2 Margin-Based Maximum Mutual Information13

Conventional MMI is based on the true posteriors in Equation 4. The margin-based14

MMI (M-MMI) loss function to be minimized is described by:15

L(M-MMI)
ρ [pΛ (Xr, ·),Wr] =− log

[pΛ (Xr,Wr)exp(−ρA(Wr,Wr))]γ

∑
V
[pΛ (Xr,V )exp(−ρA(V,Wr))]γ

, (8)

which has an additional margin-term including the word accuracy A(·,Wr) based on16

the approximate word error [66]. Note that the additional term can be interpreted as17

if we had introduced a new posterior distribution. In a simplified view, we interpret18

this as a pseudo-posterior probability which is modified by a margin term.19

Compared with the true-posterior in Equation (4), the M-MMI loss function in-20

cludes the margin term exp(−ρA(V,Wr)), which is based on the string accuracy21

A(V,Wr) between the two strings V,Wr. The accuracy counts the number of matching22

symbols of V,Wr and will be approximated for efficiency reasons (see Section 3.3.5).23

As explained in [31], the accuracy is generally scaled with some ρ > 0, and24

this term weighs up the likelihoods of the competing hypotheses compared with the25

correct hypothesis [65]. On the contrary, this term can be equally interpreted as a26

margin term.27
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3.3.3 Minimum Phone Error1

The Minimum Phone Error (MPE) criterion is defined as the (regularized) posterior2

risk based on the error function E(V,W ) like for example the approximate phone3

error [64], which is probably the training criterion of choice in Large Vocabulary4

Continuous Speech Recognition (LVCSR). For MPE, the loss function to be mini-5

mized is described by:6

L(MPE)[pΛ (Xr, ·),Wr] = ∑
W∈·

E(W,Wr)
pΛ (Xr,Wr)γ

∑
V

pΛ (Xr,V )γ
, (9)

In OCR, a phoneme unit usually corresponds to a glyph if words are modeled by7

glyph sequences.8

3.3.4 Margin-Based Minimum Phone Error9

Analogously, the margin-based MPE (M-MPE) loss function to be minimized is10

described by:11

L(M-MPE)
ρ [pΛ (Xr, ·),Wr] = ∑

W∈·
E(W,Wr)

[pΛ (Xr,Wr)exp(−ρA(W,Wr))]γ

∑
V
[pΛ (Xr,V )exp(−ρA(V,Wr))]γ

, (10)

It should be noted that due to the relation E(V,W ) = |W | − A(V,W ) where |W |12

denotes the number of symbols in the reference string, the error E(V,W ) and the13

accuracy A(V,W ) can be equally used in Equation 9 and Equation 10. The accuracy14

for MPE and for the margin term do not need to be the same quantity [29].15

Finally, it should be pointed out that other posterior-based training criteria (e.g.16

MCE as used in [8]) can be modified in an analogous way to incorporate a margin17

term (for more details cf. [30, 31]).18

3.3.5 Optimization19

In [30] it is shown that the objective function F
(MMI)
γ (Λ) converges pointwise to20

the SVM optimization problem using the hinge loss function for γ → ∞, similar21

to [79]. In other words, F
(M-MMI)
γ (Λ) is a smooth approximation to an SVM with22

hinge loss function which can be iteratively optimized with standard gradient-based23

optimization techniques like Rprop [30, 79].24

In this work, the regularization constant C, the approximation level γ , and the25

margin scale ρ are chosen beforehand and then kept fixed during the complete op-26

timization. Note that the regularization constant C and the margin scale ρ are not27

completely independent of each other. Here, we kept the margin scale ρ fixed and28

tuned the regularization constant C. Previous experiments in ASR have suggested29
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that the performance is rather insensitive to the specific choice of the margin [30],1

and the results in [16] furthermore suggest that the choice of the I-smoothing con-2

stant C has less impact in an Rprop based optimization than in an Extendend Baum3

Welch (EBW) environment [66]. An I-smoothing regularization constant C = 1.0 is4

used in all results presented in Section 6.5

In large vocabulary OCR, word lattices restricting the search space are used to6

make the summation over all competing hypotheses (i.e. sums over W ) efficient.7

The exact accuracy on character or word level cannot be computed efficiently due8

to the Levenshtein alignments in general, although feasible under certain condi-9

tions as shown in [29]. Thus, the approximate character/word accuracy known from10

MPE/MWE [64] is used for the margin instead. With this choice of accuracy, the11

margin term can be represented as an additional layer in the common word lattices12

such that efficient training is possible. More details about the transducer-based im-13

plementation used in this work can be found in [29].14

As in ASR, were typically a weak unigram language model is used for discrimi-15

native training [72, 73], we use a unigram language model in our proposed discrim-16

inative training criteria.17

3.3.6 Confidences for Unsupervised Discriminative Model Adaptation18

Sentence or word confidences can be incorporated into the training criterion by sim-19

ply weighing the segments with the respective confidence. This is, however, not pos-20

sible for state-based confidences. Instead of rejecting an entire sentence or word the21

system can use state confidence scores to select state-dependent data in an unsuper-22

vised manner. State confidence scores are obtained from computing arc posteriors23

from the lattice output from a previous decoder pass.24

Rprop is a gradient-based optimization algorithm. The gradient of the training25

criterion under consideration can be represented in terms of the state posteriors26

prt(s|xTr
1 ). These posteriors are obtained by marginalization and normalization of the27

joint probabilities pΛ (xTr
1 ,sT

1 ,wNr
1 ) over all state sequences through state s at frame28

t. These quantities can be calculated efficiently by recursion, cf. forward/backward29

probabilities. Then, the state-based confidences cr,s,t are incorporated by multiplying30

the posteriors with the respective confidence before the accumulation. In summary,31

each frame t contributes ·prt(s|xTr
1 ) · cr,s,t · xt to the accumulator accs of state s.32

Another way to describe the incorporation of the confidence term into the margin
pseudo-posteriors is from a system point of view. The accumulator accs of state s
can be described by

accs =
R

∑
r=1

Tr

∑
t=1

ωr,s,t · xt ,

where the weight ωr,s,t , which is equal to δ (st ,s) in ML training, is replaced for the
proposed M-MMI-conf / M-MPE-conf criteria (with ρ 6= 0) by the margin modified
pseudo-posteriors of the corresponding loss functions. The additional confidence
term for the proposed M-MMI-conf criterion can be described as follows:
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ωr,s,t :=

∑

sTr
1 :st=s

[p(xTr
1 |s

Tr
1 )p(sTr

1 )p(Wr) · e−ρδ (Wr ,Wr)]γ

∑
V

∑
sTr
1 :st=s

[p(xTr
1 |s

Tr
1 )p(sTr

1 )p(V )

︸ ︷︷ ︸
posterior

·e−ρδ (V,Wr)︸ ︷︷ ︸
margin

]γ
·δ (cr,s,t ≥ cthreshold)︸ ︷︷ ︸

confidence selection

(11)

Here, the selector function δ (cr,s,t > cthreshold) with the parameter cthreshold controls1

the amount of adaptation data. The M-MPE-conf criterion can be defined in a sim-2

ilar manner. Note that due to the quality of the confidence metric, thresholding the3

confidence scores after feature selection can often result in an improved accuracy,4

as reported in [25]. On the one hand, the experimental results for word-confidences5

in Figure 9 and state-based confidences in [16] suggest that the confidences are6

helpful, but on the other hand that the threshold itself has little impact due the pro-7

posed M-MMI-conf / M-MPE-conf approaches, which are inherently robust against8

outliers.9

Analogously, the weight ωr,s,t would correspond to the true posterior (cf. Equa-10

tion 4) in an MMI-conf / MPE-conf criterion. According to [16,14,13] these criteria11

lead to no robust improvements, i.e. only the combination of margin and confidences12

makes the proposed approaches robust against outliers.13

3.4 Writer Adaptive Training14

Writer variations are compensated by writer adaptive training (WAT) [19] using con-15

strained maximum likelihood linear regression (CMLLR) [23] to train writer depen-16

dent models. The available writer labels of the IfN/ENIT database are used in train-17

ing to estimate the writer dependent CMLLR feature transformations. The param-18

eters of the writer adapted Gaussian mixtures are trained using the CMLLR trans-19

formed features. During decoding, unsupervised writer clustering with Bayesian in-20

formation criterion based stopping condition for a CMLLR based feature adaptation21

during a two-pass decoding process is used to cluster different handwriting styles of22

unknown test writers (cf. Section 3.5.2). It can be seen from the writer statistics in23

Table 1 that the number of different writers in set e is higher than in all other subsets,24

and thus the variation of handwriting styles. In machine-printed text recognition, the25

same approach could be applied to font labels available in the RAMP-N corpora (cf.26

Section 5.2).27

3.5 Decoding Architecture28

The recognition is performed in multiple passes. For model adaptation towards un-29

known data or unknown writing styles, the output of the first recognition pass (best30



RWTH OCR: A Large Vocabulary OCR System for Arabic Scripts 13

word sequences or word lattices) can be either used for discriminative model adap-1

tation (cf. Section 3.5.1) or writer adaptation (cf. Section 3.5.2). Although the au-2

tomatically generated transcript may contain errors, adaptation using that transcript3

generally results in accuracy improvements [25]. The adaptation techniques used4

are explained in the following sections.5

3.5.1 Discriminative Model Adaptation6

The model adaptation can be carried out by discriminatively training writer depen-7

dent models using the word sequences obtained by the first recognition pass. Ad-8

ditionally, the confidence-alignments generated during the first-pass decoding can9

be used on a sentence-, word-, or state-level to exclude the corresponding features10

from the discriminative training process for unsupervised model adaptation.11

Out-of-vocabulary (OOV) words are also meant to be harmful for adaptation [62]12

but even when a word is wrong, the pronunciation or most of the pronunciation can13

still be correct, suggesting that a state-based and confidence-based adaptation should14

be favored in such cases.15

Word Confidences16

As we are dealing with isolated word recognition on the IfN/ENIT database, the17

sentence and word confidences are identical. The segments to be used in the second-18

pass system are first thresholded on a word-level by their word confidences: only19

complete word segments aligned with a high confidence by the first-pass system are20

used for model adaptation using discriminative training.21

State Confidences22

Instead of rejecting an entire sentence or word, the system can use state confidence23

scores to select state-dependent data (cf. Section 3.3.6). State confidence scores are24

obtained from computing arc posteriors from the lattice output of the decoder. The25

arc posterior is the fraction of the probability mass of the paths that contain the26

arc from the mass that is represented by all paths in the lattice. The posterior prob-27

abilities can be computed efficiently using the forward-backward algorithm as, for28

example, described in [39]. Then, the word frames to be used in the second-pass sys-29

tem are first thresholded on a state-level by their state confidences: only word frames30

aligned with a high confidence by the first-pass system, are used for model adapta-31

tion using discriminative M-MMI-conf/M-MPE-conf training (see Section 3.3).32

An example for a word-graph and the corresponding 1-best state alignment is33

given in Figure 5: during the decoding, the ten feature frames (the squares) can be34

aligned to different words (long arcs) and their states. In this example, the word-35

confidence of the 1-best alignment is c = 0.7 (upper arc). The corresponding state-36
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Fig. 5 Example for a word-graph and the corresponding 1-best state alignment: word-confidence
of the 1-best alignment is c = 0.7. The corresponding state-confidences are calculated by accumu-
lating state-wise over all other word alignments

confidences are calculated by accumulating state-wise over all competing word1

alignments (lower arcs), i.e. the state-confidence of the 1-best alignment’s fourth2

state would stay 0.7 as this state is skipped in all other competing alignments, all3

other state-confidences would sum up to 1.0.4

3.5.2 Writer Adaptation5

The decoding in the second pass can be carried out using CMLLR transformed6

features. The segments to be recognized are first clustered using a generalized like-7

lihood ratio clustering with Bayesian Information Criterion (BIC) based stopping8

condition [10]. The segment clusters act as writer labels required by the unsuper-9

vised adaptation techniques. The CMLLR matrices are calculated in pass two for10

every estimated writer cluster and are used for a writer dependent recognition sys-11

tem, which uses the models from the writer adaptive training of Section 3.4.12

4 RWTH OCR Software Framework for Large Vocabulary OCR13

The RWTH OCR software framework5 is based on the RWTH Aachen University14

Open Source Speech Recognition System [68], short RWTH ASR. RWTH ASR has15

been designed for the special requirements of research applications. On the one hand16

it should be very flexible, to allow for rapid integration of new methods, and on the17

other hand it has to be efficient, so that new methods can be studied on real-life18

5 http://www.hltpr.rwth-aachen.de/rwth-ocr/

http://www.hltpr.rwth-aachen.de/rwth-ocr/
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tasks in reasonable time and system tuning is feasible. The flexibility is achieved by1

a modular design, where most components are decoupled from each other and can2

be replaced at runtime. The API is subdivided into several modules and allows for3

an integration of (high and low level) methods in external applications.4

The applicability of the toolkit to real-life speech recognition tasks has been5

proven by building several large vocabulary systems in recent international research6

projects, for example TC-STAR [43] (European English and Spanish), GALE [69,7

63] (Arabic and Chinese), and QUAERO [56] (English, French, German, and Span-8

ish).9

A good example for the flexibility of the toolkit is the expeditious development10

of systems for continuous sign language recognition using video input [18] and for11

handwriting recognition [19, 15]. Only the feature extraction had to be replaced to12

adapt the system to these tasks. In the following sections, we will focus on the parts13

of the framework, which are relevant for OCR.14

An important aspect for developing a system for a large vocabulary task is the15

support for grid-computing. Nearly all processing steps for training and decoding16

can be distributed in a cluster computer environment. The parallelization scales very17

well, because we divide the computations on the segment level, which requires syn-18

chronization only at the end of the computation.19

The toolkit is published under an open source license, called “RWTH ASR Li-20

cense” and publicly available6. This RWTH ASR License grants free usage includ-21

ing re-distribution and modification for non-commercial use.22

4.1 Feature Extraction23

The feature extraction is implemented in a generic framework for data processing,24

called Flow. The data flow is modeled by links connecting several nodes to a net-25

work. Each node performs some type of data manipulation including loading, stor-26

ing, and caching of data.27

The networks are created at runtime based on a network definition in XML docu-28

ments, which makes it possible to implement or modify data processing tasks with-29

out modifying and re-compiling the software. The individual nodes can be either30

instances of a C++ class or a subnetwork of other nodes.31

By using cache nodes, data types sent through the network can be written to disk32

at any point in the network. The stored data can be read afterwards without repeating33

the computations of the nodes before the cache node.34

Flow networks are used to compute feature vectors as well as to generate and pro-35

cess data alignments, i.e. mappings from feature vectors to HMM states. Using the36

caching nodes, features and alignments can be re-used in processing steps requiring37

multiple iterations.38

6 http://www.hltpr.rwth-aachen.de/rwth-asr/

http://www.hltpr.rwth-aachen.de/rwth-asr/
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4.2 Visual Modeling1

A word is modelled by a sequence of glyph models. The writing variant model2

gives for each word in the vocabulary a list of glyph model sequences together with3

a probability of the variant’s occurrence. The toolkit supports context dependent4

modeling of subunits (glyphs for OCR, phones for ASR) using decision trees for5

HMM state model tying. However, context dependent modeling has not been used6

so far for our OCR systems.7

The toolkit supports strict left-to-right HMM topologies, each representing a (po-8

tentially context dependent) sub-word unit. All HMMs consist of the same number9

of states, except for a dedicated white-space (or silence) model. The transition model10

implements loop, forward, and skip transitions with globally shared transition prob-11

abilities.12

The emission probability of an HMM state is represented by a Gaussian mixture13

model (GMM). By default, globally pooled variances are used. However, several14

other tying schemes, including density-specific diagonal covariance matrices are15

supported.16

For the unsupervised refinement or re-estimation of model parameters the toolkit17

supports the generation and processing of confidence weighted state alignments.18

Confidence thresholding on state level is supported for unsupervised training as well19

as for unsupervised adaptation methods. The toolkit supports different types of state20

confidence scores, most described in [25]. The emission model can be re-estimated21

based on the automatically annotated observations and their assigned confidence22

weights, as presented in [26, 15].23

4.3 Model Adaptation24

The software framework supports maximum likelihood linear regression (MLLR)25

and feature space MLLR (fMLLR) (also known as constrained MLLR, CMLLR)26

for writer adaptive modeling.27

The fMLLR consists of normalizing the feature vectors by the use of a maximum28

likelihood estimated affine transform, as described in [23]. As an extension, the es-29

timation of dimension reducing affine transforms, as described in [42], is supported.30

fMLLR is implemented in the feature extraction front-end, allowing for use in both31

recognition and in training, thus supporting writer adaptive training [19].32

For Maximum Likelihood Linear Regression (MLLR) [40] affine transforms are33

applied to the means of the visual model. A regression class tree approach [41] is34

used to adjust the number of regression classes to the amount of adaptation data35

available. As a variation, it is possible to do adaptation using only the offset part36

(and not the matrix part) of the affine transform.37

The adaptation methods can be utilized both for unsupervised and supervised38

adaptation. The transformation estimation can make use of weighted observations39

allowing for confidence based unsupervised adaptation.40
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4.4 Language Modeling1

The toolkit does not include tools for the estimation of language models. However,2

the decoder supports N-gram language models in the ARPA format, produced e.g.3

by the SRI Language Modeling Toolkit [75]. The order of the language model is4

not limited by the decoder. Class language models, defined on word classes instead5

of words, are supported as well. Alternatively, a weighted finite state automaton6

representing a (weighted) grammar can be used.7

4.5 Decoder8

The decoder included in our toolkit is based on the word conditioned tree search [53].9

Word conditioned tree search is a one-pass dynamic programming algorithm which10

uses a pre-compiled lexical prefix tree as representation of the writing variants dic-11

tionary. When using a tree lexicon, the word identity is not known until a leaf node12

is reached. Therefore, the language model (LM) probability can only be applied at13

the word end, although an early incorporation of the LM can be achieved using LM14

look-ahead. To make the application of the dynamic programming principle pos-15

sible, the search space has to be structured by introducing separate copies of the16

lexical tree for each preceding word sequence. The length of this word sequence17

depends on the order of the language model used, e.g. for a bigram language model18

only the direct predecessor word is required.19

The search space would be too large to be constructed as a whole, instead only20

the active portions are constructed dynamically in combination with a beam search.21

The beam search strategy retains for every time step only the most promising hy-22

potheses. Hypotheses with a too low score compared to the best state hypothesis are23

eliminated by state pruning. The beam width, i.e. the number of surviving hypothe-24

ses, is defined by a threshold. Language model pruning is applied to the word start25

hypotheses after applying the language model, which limits the number of active26

tree copies. In addition, histogram pruning restricts the absolute number of active27

hypotheses.28

The state pruning can be refined by incorporating the language model probabil-29

ities as early as possible using a language model look-ahead [59]. The anticipated30

language model probability for a certain state in the tree is approximated by the31

best word end reachable. This probability is incorporated in the pruning process by32

combining it with the probability of the state hypothesis.33

The decoder can also generate a word graph (also called lattice) which is a com-34

pact representation of the set of alternative word sequences with corresponding word35

boundaries [58]. This word graph can be used in later processing steps. Our system36

produces word graphs as finite state automata with attached word boundaries or37

alternatively in the HTK standard lattice format.38

The computation of emission probabilities can be optionally accelerated by the39

use of SIMD instructions provided by modern processors [38]. The feature vectors40



18 Philippe Dreuw, David Rybach, Georg Heigold, and Hermann Ney

as well as the means of the Gaussian mixture models are then transformed to integers1

using a scalar quantization. The following computations on these quantized vectors2

are performed using MMX or SSE2 instructions.3

4.6 Documentation4

The documentation is divided into two parts: usage documentation and source code5

documentation. While the source code documentation is helpful for extending the6

software, the usage documentation is more comprehensive and more relevant for the7

normal user.8

The usage documentation is organized in a wiki and covers all steps of the model9

training, multi-pass recognition, and describes the common concepts of the software10

and the used file formats. Emerging questions can be asked in a support forum.11

5 Datasets12

In the following we describe the corpora we used for closed-vocabulary isolated13

handwritten word recognition, and our novel Arabic newspaper corpus for open-14

vocabulary machine-printed text recognition tasks.15

5.1 IfN/ENIT Arabic Handwriting Database16

The IfN/ENIT database is divided into four training subsets with an additional fold17

for testing [49]. The current database version (v2.0p1e) contains a total of 3249218

Arabic words handwritten by about 1000 writers, and has a vocabulary size of19

937 Tunisian town names. Here, we follow the same evaluation protocol as for20

the ICDAR 2005, 2007, 2009, and ICFHR 2010 competitions [48, 50]. The corpus21

statistics for the different subsets can be found in Table 1.22

It should be noted that all experiments with this database in the following sections23

were done without any pruning, and thus the improvement of the system accuracy24

is due to the proposed refinement methods only.25

5.2 The RWTH Arabic Machine-Print Newspaper Corpus26

In 1995, the DARPA Arabic machine-print (DAMP) corpus was collected by SAIC27

[11, 52]. It consists of 345 images from newspapers, books, magazines, etc., but is28

not publicly available.29
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Table 1 Corpus statistics for the IfN/ENIT Arabic handwriting sub-corpora.

Subsets #Observations [k]

Writers Words Characters Frames

a 0.1 6.5 85.2 452
b 0.1 6.7 89.9 459
c 0.1 6.5 88.6 452
d 0.1 6.7 88.4 451

e 0.5 6.0 78.1 404

f n.a. 8.6 64.7 n.a.
s n.a. 1.5 11.9 n.a.

The synthetic APTI database [74] for Arabic machine-printed documents offers1

many synthetically rendered fonts but seems unsuitable for large vocabulary and2

domain specific OCR tasks.3

In [2] a Multi-Modal Arabic Corpus (MMAC)7 containing a list of six million4

Arabic words is presented, which may be used as a lexical lookup table to check the5

existence of a given word. However, no large amounts of image segments with cor-6

responding ground-truth annotations to be used in OCR experiments are currently7

provided. Recently, the PATDB [4] has been presented, which will be interesting for8

future work, but which is not yet available.9

The objective of the MADCAT [57] project is to produce a robust, highly accu-10

rate transcription engine that ingests documents of multiple types, especially Arabic11

scripts, and produces English transcriptions of their content. Some parts of the Ara-12

bic handwriting data, which was created by the Linguistic Data Consortium (LDC)13

and used in previous MADCAT evaluations [52], has been recently used for the14

OpenHaRT 2010 [1] competition. However no machine-printed documents have15

been provided so far.16

Therefore we started in 2010 with the generation of the large vocabulary RWTH17

Arabic Machine-Print Newspaper (RAMP-N) corpus8 suitable for OCR research,18

by collecting more than 85k PDF pages of newspaper articles from the following19

websites:20

• http://www.addustour.com (Lebanon)21

• http://www.albayrakonline.com (Jordan)22

In our current collection (cf. Table 2), the newspaper data in the training cor-23

pus ranges from April to May 2010, development corpus from May 2010, and the24

evaluation corpora were collected in September 2010.25

We automatically generate ground-truth annotations with the freely available26

PDFlib Text Extraction Toolkit (TET)9, which reliably extracts Unicode text, im-27

7 http://www.ashrafraouf.com/mmac
8 http://www.hltpr.rwth-aachen.de/˜dreuw/arabic.php
9 http://www.pdflib.com/products/tet/

http://www.addustour.com
http://www.albayrakonline.com
http://www.ashrafraouf.com/mmac
http://www.hltpr.rwth-aachen.de/~dreuw/arabic.php
http://www.pdflib.com/products/tet/
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Table 2 RAMP-N corpora statistics

Train Dev Eval a Eval b Eval c LM Training

Running words 1,483,136 7,775 20,042 17,255 15,290 228,492,763
Running Characters 5,970,997 30,884 72,358 64,293 62,065 989,494,230
Text lines 222,421 1,155 3,480 2,439 2,224 22,910,187
Pages 409 2 5 4 4 85,316
Fonts 20 5 12 7 6 -

OOV Rate 1.90% 2.79% 2.21% 2.90% 2.75% -
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Fig. 6 Perplexities (PP) for different n-gram contexts using modified Kneser-Ney smoothing and
a vocabulary size of 106k words

ages and metadata from PDF documents. Additionally, detailed glyph and font in-1

formation as well as the position on the page can be extracted.2

In addition to the 28 Arabic base forms, and after filtering out texts with Latin3

glyphs, the Arabic texts in our current collection include 33 ligatures, 10 Arabic-4

Indian digits, and 24 punctuation marks. They are modeled by 95 position indepen-5

dent or by 197 position dependent glyph HMMs [67, 17]. The position dependent6

glyph transcriptions have been created by a rule based approach based on the six7

Arabic characters, which have only an isolated or final form [44].8

Text Corpora. About 228M running words have been collected for domain specific9

language model (LM) estimation. As vocabulary we currently use the 106k most10

frequent words of the 228M LM data corpus, resulting in about 126k writing vari-11

ants due to ligatures, an average out-of-vocabulary (OOV) rate of 2.5% (cf. Table 2),12

and a 0% out-of-glyph rate. None of the segments in the development or evaluation13

corpora belong to the LM training data. The resulting perplexities, which are rel-14

atively high due to the rich morphology in Arabic, for different n-gram language15

models using modified Kneser-Ney smoothing are presented in Figure 6.16
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6 Experimental Results1

The proposed approach is applied to isolated Arabic handwritten and continuous2

Arabic machine-printed texts. The experiments for isolated word recognition are3

conducted on the IfN/ENIT database [61] using a closed lexicon, experiments for4

continuous line recognition on the novel large vocabulary RWTH Arabic Machine-5

Print Newspaper (RAMP-N) corpus.6

6.1 First Pass Decoding7

In this section we compare our ML trained baseline systems (cf. Section 3.2 for8

visual model details) to our discriminatively trained systems using the MMI and9

MPE criteria and their margin-based extensions.10

Each of the 120 glyph models in our Arabic handwriting recognition base system11

is modeled by a 3-state left-to-right HMM with three separate GMMs. The position12

dependent glyph model of our ML trained baseline system includes 361 mixtures13

with 36k Gaussian densities with globally pooled diagonal variances.14

The discriminative training is initialized with the respective ML trained baseline15

model and iteratively optimized using the Rprop algorithm (cf. Section 3.3). For16

isolated Arabic word recognition on the IfN/ENIT database, we compare our ML17

trained baseline system with MMI/M-MMI criteria only.18

6.1.1 Discriminative GHMMs19

In general, the number of Rprop iterations and the choice of the regularization con-20

stant C have to be chosen carefully (cf. optimization in Section 3.3), and were em-21

pirically optimized in informal experiments to 30 Rprop iterations and C = 1.0 (cf.22

detailed Rprop iteration analysis and convergence without over-training in Figure 8).23

The results in Table 3 show that the discriminatively trained models clearly out-24

perform the ML trained baseline models, especially the models trained with the ad-25

ditional margin term. The strong decrease in word error rate (WER) for experiment26

setup abd-c might be due to the training data being separable for the given con-27

figurations, whereas the strong improvement for experiment abcde-e was expected28

because of the test set e being part of the training data.29

In the following experiments, we additionally use glyph dependent lengths30

(GDL) as described in [17, 19], resulting in ML trained baseline model with 21631

glyph models, 646 mixtures, and up to 55k densities (cf. Section 3.2). The necessity32

of this glyph dependent model length estimation is exemplified by visualizing the33

state alignment in Figure 7. Different background colors are used for the respective34

HMM states.35

By estimating glyph dependent model lengths, the overall mean of glyph length36

changed from 7.89px (i.e. 2.66 px/state) to 6.18px (i.e. 2.06px/state) when down-37
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Table 3 Comparison of ML trained baseline systems, and discriminatively trained systems using
MMI and M-MMI criteria after 30 Rprop iterations on the IfN/ENIT database.

Train Test WER[%]

ML MMI M-MMI

abc d 10.88 10.59 8.94
abd c 11.50 10.58 2.66
acd b 10.97 10.43 8.64
bcd a 12.19 11.41 9.59

abcd e 21.86 21.00 19.51

abcde e 11.14 2.32 2.95

3 states 9 states

Fig. 7 Top: more complex characters should be represented by more states. Bottom: using GDL
glyph models, frames previously aligned to a wrong neighboring glyph model (left, black shaded)
are aligned to the correct glyph model (right).

scaling the images to 16px height while keeping their aspect-ratio. Thus every state1

of an GDL glyph model has to cover less pixels due to the relative reduction of2

approx. 20% pixels.3

In Figure 8 detailed WER and character error rate (CER) plots over M-MMI4

training iterations are shown. It can be observed that both WER and CER are5

smoothly and almost continuously decreasing with every Rprop iteration, and that6

about 30 Rprop iterations are optimal for the considered datasets.7
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Fig. 8 Decreasing word error rates (WER) character error rates (CER) and for all different training
subsets of the IfN/ENIT database over M-MMI Rprop iterations (baseline with glyph dependent
length (GDL) estimation).

Table 4 Results for margin-based M-MMI criterion after 30 Rprop iterations on the IfN/ENIT
database using glyph dependent lengths (GDL).

Train Test WER[%]

ML GDL +MMI +M-MMI

abc d 10.88 7.83 7.4 6.12
abd c 11.50 8.83 8.2 6.78
acd b 10.97 7.81 7.6 6.08
bcd a 12.19 8.70 8.4 7.02

abcd e 21.86 16.82 16.4 15.35

The final results for discriminative GHMM training with additional glyph depen-1

dent lengths estimation are presented in Table 4.2

6.1.2 Hybrid MLP/HMM vs. Tandem MLP-GHMM3

Due to a position and glyph-dependent length modeling of the 28 base Arabic char-4

acters [17], we finally model the Arabic words in the IfN/ENIT database by 2165

different glyph models (i.e., 215 glyphs and one white-space model). The system6

described in [15] (cf. also M-MMI column in Table 7) is used to generate an ini-7

tial alignment of the features to the 216 labels. Our discriminative GHMM baseline8

system (cf. Table 5) uses 3 mixtures per glyph label, resulting in up to 646 mix-9

tures with 55k densities. The MLP networks have been trained on raw pixel column10

features from the sets a, b, and c only.11

RAW MLP Features. The hierarchical system uses at the first level no windowing12

of the input features, a single hidden layer with 2000 nodes, and 216 output nodes,13

which are reduced by a log-PCA transformation to 32 components. The second net-14

work concatenates these features in addition to the raw features, and uses a window15

size of 9 consecutive features The 576-dimensional features (i.e. 32 × 2 × 9 fea-16
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Table 5 System comparison: MLP-GHMM performs best, both GHMM and MLP-GHMM sys-
tems are M-MMI trained

Train Test GHMM MLP/HMM MLP-GHMM

WER[%] CER[%] WER[%] CER[%] WER[%] CER[%]

abc d 6.12 2.41 4.54 1.70 3.47 1.50
abd c 6.78 2.63 2.64 0.93 1.38 0.75
acd b 6.08 2.19 2.70 0.87 2.52 0.98
bcd a 7.02 3.05 3.11 1.32 2.60 1.09

abcd e 15.35 6.14 11.57 4.54 7.26 3.03

tures) are forwarded to a single hidden layer with 3000 nodes, and reduced by a1

log-PCA transformation to 32 components.2

TRAP-DCT MLP Features. The system uses a TRAP-DCT [33] preprocessing3

of the raw pixel input features. The TRAP-DCT preprocessing for sliding window4

image patches can be interpreted as a modular block-based DCT of the patches at5

image row level. The hierarchical system uses at the first level a spatio-temporal6

TRAP-DCT window to augment the 32-dimensional raw pixel input feature vectors7

to a 256-dimensional vector. Again, the first level hierarchical network uses a sin-8

gle hidden layer with 1500 nodes, and 216 output nodes, which are reduced by a9

log-LDA transformation to 96 components. The second network concatenates these10

features in addition to the raw features, and uses a window size of 5 consecutive11

log-LDA network features, and a window size of 9 consecutive raw input features12

to account for different spatio-temporal information. The 768-dimensional features13

(i.e. 96 × 5 + 32 × 9 features) are forwarded to a single hidden layer with 300014

nodes, and finally reduced by a log-LDA transformation to 36 components.15

We empirically optimized RAW, TRAP-DCT, and feature combinations on the16

different IfN/ENIT training subsets, which showed no significant difference. The17

TRAP-DCT log-posterior features are used in Table 5 for the hybrid MLP/HMM18

approach, which turned out to perform slightly better than the RAW features in19

these informal experiments. Furthermore, we observed that a discriminative MLP-20

GHMM system is about 25% relative better than a generatively trained one, espe-21

cially in combination with the concatenated RAW+TRAP-DCT features. The com-22

parison in Table 5 shows a significant advantage of the retrained MLP-GHMM sys-23

tem over the hybrid MLP/HMM and the GHMM baseline. The achieved 7.26 %24

WER on evaluation set e is about 50% relatively better than the M-MMI trained25

baseline system, and to the best of the authors knowledge, outperforms all error26

rates reported in the literature.27
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Fig. 9 Results for word-confidence based M-MMI-conf training on the on the evaluation setup
abcd-e of the IfN/ENIT database using different confidence thresholds and their corresponding
number of rejected segments (baseline without glyph dependent length (GDL) estimation).

6.2 Second Pass Decoding and Unsupervised Model Adaptation1

In this section we evaluate our discriminative training for unsupervised model or2

writer adaptation during a second pass decoding step.3

6.2.1 Confidence-Based Discriminative GHMMs4

In a first experiment we used the complete first-pass output of the M-MMI system5

for an unsupervised model adaptation. The results in Table 6 show that the M-MMI6

based unsupervised adaptation without confidences cannot improve the system ac-7

curacy. With every Rprop iteration, the system is even more biased by the relatively8

large amount of wrong transcriptions in the adaptation corpus.9

The discriminative M-MMI-conf training is initialized with the respective M-MMI10

trained model and iteratively optimized using the Rprop algorithm (cf. Section 3.3).11

Using the word-confidences for M-MMI-conf based model adaptation of our first-12

pass alignment to reject complete word segments (i.e. feature sequences XT
1 ) from13

the unsupervised adaptation corpus, the results in Table 6 show a slight improve-14

ment only in comparison to the M-MMI trained system. Figure 9 shows the resulting15

WER for different confidence threshold values and the corresponding number of re-16

jected segments. For a confidence threshold of c = 0.5, more than 60% of the 603317

segments of set e are rejected from the unsupervised adaptation corpus, resulting in18

a relatively small amount of adaptation data.19

Using the state-confidences for M-MMI-conf based model adaptation of our first-20

pass alignment to decrease the contribution of single frames (i.e. features xt ) during21
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Table 6 Results for M-MMI-conf model adaptation on the evaluation setup abcd-e of the
IfN/ENIT database after 30 Rprop iterations (baseline without glyph dependent length (GDL) es-
timation).

Training/Adaptation WER[%] CER[%]

ML 21.86 8.11

M-MMI 19.51 7.00
+ unsupervised adaptation 20.11 7.34
+ supervised adaptation 2.06 0.77

M-MMI-conf (word-confidences) 19.23 7.02
M-MMI-conf (state-confidences) 17.75 6.49

Table 7 Results for confidence-based M-MMI-conf model adaptation after 15 Rprop iterations on
the IfN/ENIT database using glyph dependent lengths (GDL), and margin-based M-MMI criterion
after 30 Rprop iterations.

Train Test WER[%]

1st pass 2nd pass

ML GDL +MMI +M-MMI M-MMI-conf

abc d 10.88 7.83 7.4 6.12 5.95
abd c 11.50 8.83 8.2 6.78 6.38
acd b 10.97 7.81 7.6 6.08 5.84
bcd a 12.19 8.70 8.4 7.02 6.79

abcd e 21.86 16.82 16.4 15.35 14.55

the iterative M-MMI-conf optimization process (cf. optimization in Section 3.3),1

the number of features for model adaptation is reduced by approximately 5% for a2

confidence threshold of cthreshold = 0.5: 375 446 frames of 396 416 frames extracted3

from the 6033 test segments are considered during the optimization, only 20 9704

frames are rejected based on state-confidence thresholding (cf. also Figure 5). Note5

that also the CER is decreased to 6.49%.6

Interestingly, the supervised adaptation on test set e, where only the correct tran-7

scriptions of set e are used for an adaptation of the model trained using set abcd, can8

again decrease the WER of the system down to 2.06%, which is even better than an9

M-MMI optimization on the full training set abcde (cf. Table 3).10

Table 7 shows the final results of our Arabic handwriting recognition system with11

additional glyph dependent lengths (GDL) as described in [19]. Again, the WER of12

the GDL based system can be decreased by our proposed M-MMI training during13

both decoding passes down to 14.55%.14

In Figure 10 a combined WER/CER plot over M-MMI-conf training iterations15

on the evaluation setup abcd-e (cf. initialization plots) is shown. It can be observed16

that both WER and CER are slightly decreasing with every Rprop iteration, and that17

between 10 and 15 Rprop iterations are optimal for the considered small amount18

of unsupervised labeled test datasets. Due to the robustness of the confidence- and19

margin-based M-MMI-conf criterion against outliers, the proposed unsupervised20



RWTH OCR: A Large Vocabulary OCR System for Arabic Scripts 27

 14

 14.5

 15

 15.5

 16

 0  5  10  15  20  25  30
 5

 6

 7

W
E

R
 [%

]

C
E

R
 [%

]

Iteration

initialization, abcd-e, WER
initialization, abcd-e, CER

re-initialization 1, abcd-e, WER
re-initialization 1, abcd-e, CER
re-initialization 2, abcd-e, WER
re-initialization 2, abcd-e, CER

Fig. 10 Evaluation of iterative M-MMI-conf model adaption on the evaluation setup abcd-e of
the IfN/ENIT database : text transcriptions are updated in an unsupervised manner after 15 Rprop
iterations. The performance remains robust even after several re-initializations.

and text dependent model adaptation can even be applied in an iterative manner by1

a re-initialization of the text transcriptions. In Figure 10, we re-initialize 2 times the2

model adaptation process after 15 Rprop iterations. The results in Figure 10 show3

the robustness of our approach, leading to a slightly improved WER of 14.39%.4

6.2.2 Writer Adaptation5

The writer adaptive trained (WAT) models (cf. Section 3.4) can also be used as a6

first pass decoding system. The results in Table 8 show that the system performance7

cannot be improved without any writer clustering and adaptation of the features8

during the decoding step.9

To show the advantage of using CMLLR based writer adapted features in combi-10

nation with WAT models, we estimate in a first supervised experiment the CMLLR11

matrices directly from the available writer labels of the test subsets. The matrices12

are calculated for all writers in pass two and are used for a writer dependent recog-13

nition system, which uses the WAT models from Section 3.4. Note that the decoding14

itself is still unsupervised!15

In the unsupervised adaptation case, the unknown writer labels of the segments to16

be recognized have to be estimated first using BIC clustering. Again, the CMLLR17

matrices are calculated in pass two for every estimated cluster label and are used18

for a writer dependent recognition system, which uses the WAT models from Sec-19

tion 3.4.20
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Fig. 11 Histograms for unsupervised clustering over the different test subsets and their resulting
unbalanced segment assignments.

Table 8 shows that the system accuracy could be improved by up to 33% rela-1

tive in the supervised-CMLLR adaptation case. In the case of unsupervised writer2

clustering, the system accuracy is improved in one fold only.3

If we look at the cluster histograms in Figure 11 it becomes clear that the un-4

supervised clustering is not adequate enough. Each node in our clustering process5

as described in [10] is modeled as a multivariate Gaussian distribution N (µi,Σi),6

where µi can be estimated as the sample mean vector and Σi can be estimated as the7

sample covariance matrix. The estimated parameters are used within the criterion8

as distance measure, but more sophisticated features than the PCA reduced sliding9

window features seem necessary for a better clustering, which will be interesting for10

future work.11

Opposed to the supervised estimation of 505 CMLLR transformation matrices12

for the evaluation setup with training sets abcd and test set e (cf. Table 1), the un-13

supervised writer clustering could estimate only two clusters being completely un-14

balanced, which is obviously not enough to represent the different writing styles of15

505 writers. Due to the unbalanced clustering and only a small number of clusters,16

all other cases are similar to the usage of the WAT models only (cf. Table 8).17

However, the supervised-CMLLR adaptation results show that a good writer18

clustering can bring the segments of the same writer together and thus improve19

the performance of the writer adapted system.20
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Table 8 Comparison of GDL, WAT, and CMLLR based feature adaptation using unsupervised and
supervised writer clustering.

Train Test WER[%]

1st pass 2nd pass

ML +GDL +WAT WAT+CMLLR

unsup. sup.

abc d 10.88 7.83 7.54 7.72 5.82
abd c 11.50 8.83 9.09 9.05 5.96
acd b 10.97 7.81 7.94 7.99 6.04
bcd a 12.19 8.70 8.87 8.81 6.49

abcd e 21.86 16.82 17.49 17.12 11.22

6.3 Visual Inspections1

The visualizations in Figure 12 show training alignments of Arabic words to their2

corresponding HMM states. The upper rows show the alignment to the ML trained3

model, the lower rows to the M-MMI trained models. We use R-G-B background4

colors for the 0-1-2 HMM states, respectively, from right-to-left. The position de-5

pendent glyph model names (cf. Section 3.2) are written in the upper line, where the6

white-space models are annotated by ’si’ for ’silence’; the state numbers are written7

in the bottom line. Thus, HMM state-loops and state-transitions are represented by8

no-color-changes and color-changes, respectively.9

It can be observed in the left column of Figure 12 that especially the white-10

spaces, which can occur between compound words and Parts of Arabic Words11

(PAWs) [17], help in discriminating the isolated- (A), beginning- (B), or end-shaped12

(E) glyphs of a word w.r.t. the middle-shaped (M) glyphs, where usually no white-13

spaces occur on the left or right side of the character (cf. [61, 44] for more details14

about A/B/M/E shaped characters). The frames corresponding to the white-space15

part of the words are aligned in a more balanced way in Figure 12(a) and Fig-16

ure 12(b) using the M-MMI modeling (lower rows) opposed to ML modeling (upper17

rows): the proposed M-MMI models learned that white-spaces help to discriminate18

different glyphs. This can even lead to a different writing variant choice without any19

white-space models [17] (see Figure 12(c)). Note that we cannot know in advance20

in training if a white-space is used or not, and if so, how large it is, as it is not tran-21

scribed in the corpora and depends on the writer’s handwriting style (e.g. cursive22

style used in Figure 12(a)).23

In the right column of Figure 12, unsupervised test alignments are compared.24

The upper rows show incorrectly recognized words by unsupervised alignments to25

the ML trained model, the lower rows correctly recognized words by unsupervised26

alignments to the M-MMI trained models. Due to the discriminatively trained glyph27

models, the alignment in Figure 12(d) to the M-MMI model is clearly improved28

over the ML model, and the system opts for the correct compound-white-space29

writing variant [17]. In Figure 12(e), again the alignment is improved by the dis-30
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(a) (d)

(b) (e)

(c) (f)

Fig. 12 Left column: Supervised training alignment comparisons - The upper rows show align-
ments to the maximum-likelihood (ML) trained model, the lower rows to the margin-based max-
imum mutual information (M-MMI) trained models. Right column: Unsupervised test alignment
comparisons: The upper rows show incorrect unsupervised alignments to the ML trained model,
the lower rows correct unsupervised alignments to the M-MMI trained models.

criminatively trained white-space and glyph models. Figure 12(f) shows a similar1

alignment to the white-space model, but a clearly improved and correct alignment2

to the discriminatively trained glyph models.3
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6.4 Comparisons with other Systems1

IfN/ENIT Competitions at ICDAR/ICFHR. In Table 9 we compare or own eval-2

uation results on the ICDAR 2005 [49] setups (without any tuning on test data as3

explained in Section 6.2 ) and ICDAR 2007/2009 and ICFHR 2010 [48, 50] setups.4

It should be noted that the result for the abcd-e condition is the best known error5

rate in the literature [20].6

The ICDAR 2009 test datasets which are unknown to all participants were col-7

lected for the tests of the ICDAR 2007 competition. The words are from the same8

lexicon as those of the IfN/ENIT database and written by writers, who did not con-9

tribute to the data sets before, and are separated into set f and set s. Our results10

(externally calculated by TU Braunschweig) in Table 9 ranked third at the ICDAR11

2009 competition and are among the best purely HMM based systems, as the A2iA12

and MDLSTM systems are hybrid system combinations or full neural network based13

systems, respectively. Also note that our single HMM based system is better than14

the independent A2iA systems (cf. [48] for more details). In particular, our proposed15

M-MMI-conf based approach for unsupervised model adaptation even generalizes16

well on the set s, which has been collected in the United Arabic Emirates and rep-17

resents significantly different handwriting styles.18

Note the 36% relative improvement in Table 9 we achieved in the recent ICFHR19

2010 Arabic handwriting competition [50] with the proposed M-MMI training20

framework and an MLP based feature extraction. Our system ranked second and21

used again no system combinations. Interesting is the result of the UPV PRHLT22

group who significantly improved their relatively simple baseline system due to a23

vertical centroid normalization of sliding window based features [50, 24]. Note that24

our MLP-GHMM does not perform any preprocessing.25

6.5 Machine-Printed Arabic Text Recognition26

In a first set of experiments we optimized the feature extraction parameters and27

compared position independent and dependent glyph models, using single-density28

models only. In both cases we used glyph HMMs with 6 states with skip transitions29

and 3 separate GMMs with a globally pooled covariance matrix. The results for30

the development set of the RAMP-N database (cf. Section 5.2) in Figure 13 show an31

error rate reduction of about 50% relative for position dependent glyph models com-32

pared to a position independent glyph modeling. Note that we empirically optimized33

the PCA reduction to 30 components, and that the feature extraction parameters are34

similar to those used in handwritten text recognition.35

Some examples of the professional ArabicXT fonts10 occurring in the RAMP-N36

corpus, which are widely used by newspapers, magazines, or book publishers, are37

shown in Figure 14.38

10 http://www.layoutltd.com/arabicxt.php

http://www.layoutltd.com/arabicxt.php
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Table 9 Comparison to ICDAR/ICFHR Arabic handwriting recognition competition results on the
IfN/ENIT database

Competition Group WER [%]

abc-d abcd-e abcde-f abcde-s

ICDAR 2005 [49] UOB 15.00 24.07
ARAB-IFN 12.06 25.31 - -
ICRA (Microsoft) 11.05 34.26 - -

ICDAR 2007 [47] SIEMENS [70] - 18.11 12.78 26.06
MIE (DP) - - 16.66 31.60
UOB-ENST (HMM) - - 18.07 30.07

ICDAR 2009 [48] MDLSTM - - 6.63 18.94
A2iA (combined) - - 10.58 23.34

(MLP/HMM) - - 14.42 29.56
(HMM) - - 17.79 33.55

RWTH OCR (this work,M-MMI) 6.12 15.35 14.49 28.67
RWTH OCR (this work, M-MMI-conf) 5.95 14.55 14.31 27.46

ICFHR 2010 [50] UPV PRHLT (HMM) 7.50 12.30 7.80 15.38
RWTH OCR (this work, MLP-GHMM) 3.47 7.26 9.12 18.94
UPV PRHLT (HMM, w/o vert. norm.) - - 12.09 21.55
CUBS-AMA (HMM) - - 19.68 32.10

Other results BBN [51] 10.51 - - -
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Fig. 13 Comparison of position independent and dependent glyph modeling on the RAMP-N de-
velopment corpus, using single-density models, and PCA reduced appearance-based sliding win-
dow features.
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AXtAlFAres

AXtManalFont

AXtSHAReQXL

AXtGIHaneBoldItalic

AXtKarim

AXtMarwanBold

AXtMarwanLight

AXtSHAReQ

AXtCalligraph

AXtHammed

AXtThuluthMubassat

Fig. 14 Some examples of various professional newspaper fonts used in the RAMP-N corpora
(example images taken from http://www.layoutltd.com/)
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Fig. 15 Results for position dependent GMMs on the RAMP-N subset Eval a

Experiments with Gaussian mixture models (GMMs) instead of single densities1

in Figure 15 improve the WER/CER as expected, as they implicitly model the up2

to 20 different font appearances in the corpora. Note that glyph dependent length3

(GDL) models as e.g. successfully used for handwriting in [17,15,24] (also cf. Fig-4

ure 7) lead only to small improvements so far for machine-printed text recognition.5

The results in Table 10 show detailed results for each font appearing in the6

RAMP-N subset Eval a: high WER but low CER are due to OOV words, which7

are often recognized as a sequence of PAWs instead of a single word, resulting in8

one substitution and many insertion errors, but zero edits at the character level. Sim-9

ply replacing those word sequences between white-space blocks can further reduce10

http://www.layoutltd.com/)
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Table 10 Font-wise results for ML trained GMMs on the RAMP-N subset Eval a.

Font Lines Errors Words OOV WER[%] Errors Glyphs CER[%]

AXtAlFares 2 10 2 2 500.00 0 19 0.00
AXtCalligraph 1 0 8 0 0.00 0 21 0.00
AXtGIHaneBoldItalic 15 19 129 4 14.73 12 591 2.03
AXtHammed 3 0 5 0 0.00 0 31 0.00
AXtKaram 9 2 83 0 2.41 4 300 1.33
AXtManal 1 0 2 0 0.00 0 4 0.00
AXtManalBlack 5 5 27 1 18.52 11 112 9.82
AXtMarwanBold 109 46 385 18 11.95 13 2002 0.65
AXtMarwanLight 3261 828 18963 405 4.37 79 83091 0.10
AXtShareQ 5 10 64 0 15.62 7 299 2.34
AXtShareQXL 68 35 371 13 9.43 10 1973 0.51
AXtThuluthMubassat 1 0 3 0 0.00 0 13 0.00

Total (Eval a) 3480 955 20042 443 4.76 136 88456 0.15

Table 11 Results for ML trained GMMs using rendered and scanned data of the RAMP-N subset
Eval a.

Layout Analysis Rendered Scanned

WER CER WER CER

Supervised 4.76 0.15 5.79 0.64
OCRopus - - 17.62 3.79

the WER. Interesting for future work will therefore remain larger lexica or charac-1

ter and PAW language models to further reduce the effect OOVs. Due to unbalanced2

font frequencies a re-rendering of the training data in other fonts might further re-3

duce the error rates in future works.4

The results in Table 11 show the difference between rendered and scanned re-5

sults, where we additionally compared supervised layout and unsupervised layout6

analysis using OCRopus11. The scans were generated by printing and scanning the7

PDFs in their original size, i.e. DIN-A2 at 600dpi. It can be seen that the main per-8

formance decrease is due to OCRopus’ layout analysis problems and not due to the9

scan quality.10

As it is often observed that discriminative GHMM training performs better with11

fewer Gaussian mixture densities, we use a split-6 ML trained model to initialize12

our M-MPE training (cf. Λ0 in Section 3.3). The results in Figure 16 show again13

a significant reduction in terms of WER and CER. Note that BBN’s Glyph HMM14

system PLATO [52] reported similar relative improvements for position dependent15

glyph models and discriminative MMI/MPE training.16

In Figure 17 an unsupervised alignment example is shown for a line segment17

of RAMP-N subset Eval a, which seems suitable for postprocessing steps such as18

syntax highlighting or reCAPTCHA-like [77] processes. We used an ML trained19

GHMM model resulting in zero word/character errors.20

11 http://code.google.com/p/ocropus/

http://code.google.com/p/ocropus/
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Fig. 16 Results for M-MPE training on RAMP-N corpus Eval a

Fig. 17 Example of an unsupervised alignment on RAMP-N corpus Eval a

7 Conclusions1

We presented our hidden Markov model (HMM) based RWTH OCR system which2

represents a unique framework for large vocabulary optical character recognition3

(OCR). The advantages of confidence- and margin-based discriminative training4

using a MMI/MPE training criterion for model adaptation using an HMM based5

multi-pass decoding system were shown for Arabic handwriting on the IfN/ENIT6

corpus (isolated word recognition), and preliminary results were shown for Ara-7

bic machine-printed text on the RAMP-N corpus (open-vocabulary, continuous line8

recognition). More details are presented in r [13].9

We discussed an approach how to modify existing training criteria for handwrit-10

ing recognition like for example MMI and MPE to include a margin term. The mod-11

ified training criterion M-MMI was shown to be closely related to existing large12

margin classifiers (e.g. SVMs) with the respective loss function. This approach al-13

lows for the direct evaluation of the utility of the margin term for handwriting recog-14

nition. As expected, the benefit from the additional margin term clearly depends on15

the training conditions. The proposed discriminative training approach could out-16

perform the ML trained systems on all tasks.17

The impact of different writing styles was dealt with a novel confidence-based18

discriminative training for model adaptation, where the usage of state-confidences19

during the iterative optimization process based on the modified M-MMI-conf crite-20
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rion could decrease the word-error-rate on the IfN/ENIT database by 33% relative1

in comparison to an ML trained system.2

Interesting for further research will remain hybrid HMM/ANN approaches [27,3

21], combining the advantages of large and non-linear context modeling via neural4

networks while profiting from the Markovian sequence modeling. This is also sup-5

ported by the 36% relative improvement we could achieve in the ICFHR 2010 Ara-6

bic handwriting competition [50] with the proposed discriminative GHMM frame-7

work but an MLP based feature extraction.8

We proposed an approach to automatically generate large corpora for machine-9

printed text recognition. The preliminary results on the novel RAMP-N database10

showed that our framework is able to recognize Arabic handwritten and machine-11

printed texts. Future work will focus on using more visual training data, larger lex-12

ica, higher order n-gram language models, and character or PAW based language13

models as e.g. successfully used in [52].14
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73. Ralf Schlüter. Investigations on Discriminative Training Criteria. PhD thesis, RWTH Aachen22

University, Aachen, Germany, September 2000.23

74. F. Slimane, R. Ingold, S. Kanoun, M. A. Alimi, and J. Hennebert. A new Arabic printed text24

image database and evaluation protocols. In International Conference on Document Analysis25

and Recognition (ICDAR), pages 946–950, Barcelona, Spain, July 2009.26

75. Andreas Stolcke. SRILM - an extensible language modeling toolkit. In International Confer-27

ence on Spoken Language Processing (ICSLP), Denver, CA, USA, September 2002.28

76. Fabio Valente, Jithendra Vepa, Christian Plahl, Christian Gollan, Hynek Hermansky, and Ralf29
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