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RX-band Noise Reduction in All-Digital

Transmitters with Configurable Spectral Shaping of

Quantization and Mismatch Errors
Enrico Roverato, Student Member, IEEE, Marko Kosunen, Member, IEEE, Jerry Lemberg,

Kari Stadius, Member, IEEE, and Jussi Ryynänen, Member, IEEE

Abstract—This paper describes the first purely digital ap-
proach to reduce the receive band noise in digitally-intensive
RF transmitters. The proposed solution applies bandpass delta-
sigma modulation and dynamic element matching (DEM) to
the receive band (RX-band) instead of the transmit band.
This enables selective attenuation of the noise originating from
amplitude quantization and static mismatches of the digital-
to-analog converter (DAC), which would otherwise reach the
transmitter output almost unattenuated. A highly configurable
4th-order noise transfer function is designed to achieve optimum
attenuation in the programmable RX-band, while ensuring neg-
ligible degradation of the transmitted signal quality as well as
stable operation of the tree structure DEM encoder. A general
validation of DEM, independent from the duration of the DAC
impulse response, is also presented. The proposed solution is
verified through system-level simulations with LTE signals. In the
presence of typical amplitude and timing mismatches, the RX-
band noise can be reduced below –160 dBc/Hz without filtering
after the DAC, thus potentially enabling SAW-less operation of
all-digital transmitters.

Index Terms—All-digital transmitter, RX-band noise, bandpass
delta-sigma modulation, dynamic element matching (DEM), mis-
match shaping, programmable noise transfer function (NTF).

I. INTRODUCTION

DURING the last 15 years, the trend in the design of

radio-frequency (RF) integrated circuits (ICs) has been to

move from analog to digital and mixed-signal circuit solutions

[1]–[11]. The main reasons behind this change come from

the increasing transmission bandwidth and flexibility needed

in modern wireless communication systems, as well as the

continuous development of sub-micron CMOS technologies.

The ultimate target of this digitalization trend is the so-called

“all-digital radio transceiver”, where most of the RF functions

are performed by digital circuits, and the interface with the

analog domain is located just in front of the antenna.

In the context of radio transmitters, digitalization started first

with digital baseband modulators [1], [2]. However, the first

true effort towards an all-digital solution is the direct-digital

RF-modulator (DDRM) [3]–[5]. Fig. 1 compares the DDRM

with the classical direct-conversion transmitter. In the DDRM,
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Fig. 1. (a) Direct conversion transmitter architecture. (b) Direct-digital RF-
modulator (DDRM) transmitter architecture [3]–[5].

the digital-to-analog converter (DAC) and upconverting mixer

are combined into a single circuit block, also known as RF-

DAC. This combination is enabled by the increasing speed

of modern CMOS processes, which allows to interpolate the

baseband signal to very high sampling rates in the digital

domain. As a consequence, the analog reconstruction filter

after the DAC is no longer needed, because the digital images

are located far enough from the transmitting band, where they

are highly attenuated by the sinc response of the converter’s

zero-order hold.

In frequency-division duplexing (FDD) systems, the trans-

mitter (TX) and the receiver (RX) are usually constrained to

share the same antenna. Because of limited duplexer isolation,

an excess of transmit power leaking to the receive band (RX-

band) can interfere with the reception of weak signals, thus

degrading the receiver sensitivity. The TX-RX isolation can

be boosted through the use of Surface Acoustic Wave (SAW)

filters. These filters are bulky, expensive, and their frequency

response is fixed, which is very undesirable in the context of

increasing flexibility demand.

Digitally-intensive TX architectures (like the one shown

in Fig. 1(b)) tend to make this interference problem even

worse. Because there is no analog reconstruction filter after

the DAC, the quantization noise reaches the TX output almost
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unattenuated. Theoretically, the problem could be straight-

forwardly solved by increasing the effective number of bits

(ENOB) of the converter [5]. However, the maximum ENOB

that can be achieved without calibration is typically around

10-12 bits, which is not sufficient to meet the tight RX-band

noise requirement [6]. Hence, such a solution is controversial

to the objectives of digital RF, i.e. simplification of the analog

part and relaxation of its performance requirements.

Recently, a few alternative methods have been proposed to

reduce the out-of-band quantization noise of digital-like TX

architectures. For example, the concept of semi-digital finite

impulse response (FIR) filtering was demonstrated in [7] for

single-bit, and in [8], [9] for multibit RF-DACs. This approach

consists of connecting many converters with different weights

in a FIR-like configuration, in order to reduce the quantization

noise floor at a programmable distance from the main channel.

Because the filter coefficients are implemented by means of

tunable current sources, the design of this circuit is essen-

tially analog, and the maximum achievable performance is

thus limited by mismatches among different converters. Other

techniques to improve the resolution of the amplitude path of

all-digital polar transmitters, thus decreasing the out-of-band

noise, are presented in [10], [11]. However, these methods

cannot be fully implemented within DSP, as they make use of

e.g. adaptive predistortion and variable delay chains.

This paper describes the first ever purely digital approach

to alleviate the problem. Purely digital methods benefit more

of CMOS process evolution, and are therefore preferable over

the semi-digital approaches discussed above. The method pre-

sented here exploits tunable bandpass ∆Σ modulation to push

the quantization noise outside the programmable RX-band,

instead of the main signal band [12]–[18]. Dynamic element

matching (DEM) is similarly used to shape the noise origi-

nating from amplitude and timing mismatches of the DAC,

that would otherwise degrade the maximum achievable per-

formance [19]–[26]. In order to perform highly tunable noise

shaping, a flexible 4th-order noise transfer function (NTF) is

developed, with emphasis on pole placement. The designed

NTF achieves optimum attenuation in the programmable RX-

band, while ensuring negligible degradation of the transmitted

signal quality as well as stable operation of the tree structure

DEM encoder. Moreover, this paper extends the existing theory

on DEM with a more general analysis, which is independent

from the duration of the DAC impulse response. The robust-

ness of the proposed approach in the presence of realistic

amplitude and timing DAC mismatches is accurately verified

through system-level simulations, performed with Long Term

Evolution (LTE) signals in a number of different channel

configurations and mismatch scenarios.

The paper is organized as follows. Section II introduces

bandpass ∆Σ modulation, illustrates the proposed NTF design

method, and shows that simple noise shaping is not sufficient

to solve the out-of-band noise challenge in the presence of

mismatch induced DAC nonlinearities. Section III reviews

and extends the theory of DEM from a signal processing

perspective. Various system-level simulations to demonstrate

the effectiveness of the proposed method are presented in

Section IV. Finally, Section V concludes the paper.

H(z)

u[n] q[n]

Fig. 2. Error-feedback ∆Σ modulator.

II. TUNABLE BANDPASS ∆Σ MODULATION

∆Σ modulation is an established and effective technique

to enhance the linearity of analog-to-digital and digital-to-

analog data converters [12]–[18]. The main idea behind ∆Σ
modulation is to connect an amplitude quantizer in a properly

designed feedback loop, which enables the spectral density

of the quantization error (resulting from the quantizer’s fi-

nite resolution) to be shaped according to a predetermined

noise transfer function (NTF). Traditionally, the noise shaping

capabilities of ∆Σ modulation have been exploited in data

conversion applications, to augment the converter’s signal-to-

noise ratio (SNR) in the frequency band occupied by the main

signal. In this paper, we explore the possibility to use ∆Σ
modulation to remove the quantization noise from the RX-

band, which is located at a programmable distance from the

main signal band.

A wide variety of loop architectures can be used to im-

plement ∆Σ DACs [12]. Among them, one of the simplest

and hence most attractive is the error-feedback (EF) structure

(Fig. 2). In this architecture, the quantization error is evaluated

by subtracting the quantizer input from its output, and it is

then fed back to the input through the loop filter H(z). If the

quantizer is replaced by its linear model, consisting of additive

random white uniformly-distributed quantization noise e[n],
linear analysis results in

Q(z) = U(z) +
(
1 +H(z)

)
E(z), (1)

where Q(z), U(z) and E(z) are the z-transforms of the

modulator output, input and quantization error respectively.

Therefore, the modulator output contains a replica of the

input signal, i.e. the signal transfer function (STF) is unity.

Furthermore, the noise transfer function is given by

NTF(z) = 1 +H(z). (2)

Hence, the spectral properties of the noise appearing at the

modulator output can be altered by properly designing the

loop filter H(z).
The feedback loop in Fig. 2 is physically realizable only if

there is at least one delay between the input and the output

of the loop filter. It can be demonstrated that this requirement

translates into the important NTF realizability condition

NTF(z) =

1 +

N∑

i=1

biz
−i

1 +

N∑

i=1

aiz
−i

, (3)

where N is the modulator order, and {bi, ai} is the set of NTF

coefficients [12].
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Fig. 3. (a) Frequency response of a digital single-notch filter, with ωi = 2πfi.
(b) Frequency response of the cascade of two single-notch filters.

A. NTF Design

The topic of NTF design is thoroughly treated in the

literature on ∆Σ modulation [12]–[17]. However, very little

can be found regarding the design of a highly tunable NTF

in the discrete-time domain. One example is the method

adopted in [18], which uses the discrete-time lowpass-to-

bandpass transformation to shift a prototype lowpass NTF to

a programmable center frequency. In this paper, we describe

how to design a tunable NTF by directly placing the poles

and zeros on the z-plane, thus giving more insight into the

synthesis process.

The RX-band noise reduction technique proposed in this

paper assumes that the quantizer resolution is large enough

to represent the transmitted signal with sufficient performance

overhead, but too low to achieve the RX-band noise require-

ment. This allows to design the NTF for noise removal only

from the RX-band, as long as the NTF gain in the transmit

band is less than the SNR overhead. In addition, because the

EF structure has STF = 1, the transmitted signal is not affected

by the shape of the NTF.

In order to attenuate the quantization noise in the RX-band,

the NTF must contain at least one programmable zero. In the

z-domain, the function

Ni(z) = 1− (2 cosωi)z
−1 + z−2 (4)

realizes a digital notch filter (Fig. 3(a)), where the position of

the zero ωi can be programmed over the whole Nyquist range

[0, π] by adjusting the coefficient of z−1. By cascading several

such single-notch filters, attenuation can be provided over a

wider range of frequencies. For example, Fig. 3(b) shows the

frequency response of the filter given by

N(z) = N1(z) ·N2(z), (5)

where the two single-notch transfer functions N1(z) and

N2(z) (each defined as in (4)) create two slightly displaced

zeros at frequencies ω1 and ω2 respectively. It can be immedi-

ately verified that the cascade of any number of single-notch

filters fulfills the realizability condition given by (3).

If we choose (5) as our candidate NTF, an obvious question

concerns the optimal zero location, that minimizes the total

noise power over the RX-band. Since the quantization noise

was assumed to be white, this problem is equivalent to

minimizing the integral of the squared magnitude of N(ejω)

over the same band, expressed by the function

I(ω1, ω2) =

∫ ω0+
ωR
2

ω0−
ωR
2

∣
∣N1(e

jω) ·N2(e
jω)

∣
∣
2
dω, (6)

where ω0 and ωR are the center and the width of the RX-

band respectively [12], [13]. The above integral can be solved

in closed form under the following simplifying assumptions:

• the two zeros ω1 and ω2 are equidistant from the RX-

band center (that is, they are located at ω0 ± ωZ), and

• the relationship ωR ≪ ω0 holds, allowing the squared

magnitude of each single notch function Ni(e
jω) to be

approximated around ωi as
∣
∣Ni(e

jω)
∣
∣
2
=

∣
∣1− (2 cosωi)e

−jω + e−j2ω
∣
∣
2

=
∣
∣(1− e−j(ωi+ω)) · (1− ej(ωi−ω))

∣
∣
2

≈
∣
∣(1− e−j2ωi)

∣
∣
2 ·

∣
∣j(ω − ωi)

∣
∣
2

= κi(ω − ωi)
2,

(7)

where κi ,
∣
∣(1 − e−j2ωi)

∣
∣
2

is a constant. The optimal zero

location is found by setting

d

dωZ

I(ω0 + ωZ , ω0 − ωZ) = 0, (8)

which yields

ωZ =
ωR

2
√
3
. (9)

In practice, an EF ∆Σ modulator with NTF given by (5) can

be implemented with extremely low complexity. Our synthesis

results in a 28nm CMOS process show that the system can be

realized with less than 2000 gates, it works at least up to

1 GHz clock frequency (worst case corner), and consumes

about 2000 µm2 silicon area and 1.5 mW power. These

results were obtained for a modulator with 8-bit quantizer

implemented in fixed-point arithmetic. The wordlengths of

input signal u[n] and programmable NTF coefficients were

chosen to be 15 and 8 bits respectively, which are sufficient

to achieve low round-off noise and fine tuning resolution.

Fig. 3(b) shows that the filter N(z) provides good at-

tenuation around ω1 and ω2, but the gain increases rapidly

outside the stopband, up to a maximum exceeding 20 dB. This

translates into large quantization noise amplification outside

the RX-band, which may cause degradation of the transmitted

signal quality, as well as violation of the spectral mask

requirements of some radio standards. In order to reduce the

out-of-band filter gain, the poles of the transfer function must

be moved away from the point z = 0, closer to the zeros.

The poles of the NTF are usually arranged in a Butterworth

or Chebyshev configuration [12]–[17]. However, due to the

high range of tunability needed in our application, here we

follow a more intuitive and flexible approach. The concept is

illustrated in Fig. 4(a). The basic idea is to place each pole at

the same angle of the corresponding zero, on a circle of radius

r < 1 (necessary stability condition). As r approaches 1, the

poles approach the zeros, resulting in more effective zero/pole

compensation that reduces the out-of-band gain of the filter.

Correct pole placement is achieved by modifying (5) into

R(z) =
N(z)

D(z)
=

N1(z) ·N2(z)

D1(z) ·D2(z)
, (10)
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Fig. 4. Illustration of the proposed out-of-band gain reduction approach for
a double-notch digital filter. (a) Placement of zeros and poles in the z-plane.
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Fig. 5. Comparison between the proposed transfer function (with f1 = 0.11,
f2 = 0.13, r = 0.8) and a 4th-order Chebyshev filter of the second kind
with the same zero location and stopband ripple. (a) Frequency responses. (b)
Location of zeros and poles.

where the Ni(z) factors are still given by (4), while each Di(z)
term is in the form

Di(z) = 1− (2r cosωi)z
−1 + r2z−2. (11)

Note that the modified transfer function still satisfies (3).

Fig. 4(b) shows the frequency response of (10) for different

values of r. Although the out-of-band filter gain is effectively

reduced as r approaches 1, an increasing sharpness of the two

notches around ω1 and ω2 is also observed. The net effect is a

degradation of the average stopband attenuation performance

of the filter. Thus, the parameter r can be used to trade-off

the levels of the quantization noise floor inside and outside

the RX-band.

Fig. 5 compares (10) with a classical 4th-order Chebyshev

filter of the second kind, designed to achieve the same zero

location and stopband ripple (and properly scaled as to fulfill

(3)). It can be seen that the two transfer functions yield a com-

parable performance. Thus, we finally select (10) as the NTF

for our ∆Σ modulator, as it enables the additional flexibility to

use very simple closed form expressions for filter coefficient

calculation. The optimal zero location is still given by (9),

provided that the denominator of the NTF is approximately

constant over the entire RX-band. This condition holds well

for values of r up to about 0.9.

B. Sensitivity to DAC Mismatches

A preliminary system-level simulation was performed, in

order to evaluate the effectiveness and feasibility of ∆Σ
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Fig. 6. System-level simulation performed to assess the effectiveness of ∆Σ

modulation for RX-band noise removal. The plot shows the spectra at the
output of an ideal 10-bit DAC (with and without ∆Σ modulation), and a real
10-bit DAC with static amplitude mismatch σLSB = 3%.

modulation for RX-band noise removal. In the simulation, a

20 MHz LTE signal (with sampling rate fs = 983 MHz) is

fed to the cascade of a ∆Σ modulator and a 10-bit DAC. No

upconversion to RF is performed at this point. The RX-band

center frequency is located at 190 MHz offset from the main

signal band, which is the duplex distance used in E-UTRA

Band 1 [27]. The target average noise floor level in the RX-

band is –160 dBc/Hz [5], [28].

The 10-bit DAC was modeled as an array of conversion

cells. The function of each cell is to convert to analog a single

1-bit signal bi[n] from the digital circuitry. In the discrete-time

domain, the cell output is given by

yi[n] =

{

Ki
∆
2 + εi if bi[n] = 1

−(Ki
∆
2 + εi) if bi[n] = 0,

(12)

where ∆ is the DAC’s minimum step size, Ki is the weight

of the conversion cell, and εi models the inevitable ampli-

tude error due to CMOS process variations. The two output

values are assumed to be symmetrical because of differential

implementation. The conversion cell array is split into a 6-bit

binary-coded Least Significant Bit (LSB) segment, and a 4-

bit thermometer-coded Most Significant Bit (MSB) segment.

The amplitude error of each cell is independently taken from

a Gaussian distribution with zero mean and standard deviation

σ(εi) = σLSB ·
√

Ki, (13)

where σLSB is the reference deviation in the LSB cell (with

weight 1). This expression is justified by the fact that a cell

with weight Ki > 1 can be thought as the sum of Ki cells

with weight 1, driven by the same 1-bit signal.

The simulation results are displayed in Fig. 6. The black

line is the spectrum at the output of the ideal DAC (with

σLSB = 0). The ∆Σ modulator implements the NTF given

by (10) through the EF structure of Fig. 2. For reference, the

spectrum with no ∆Σ modulation (i.e. uniform quantization

only) is also shown in Fig. 6. In both cases, the chosen
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resolution of 10 bits provides excellent transmitted signal

quality, as measured by the Error Vector Magnitude (EVM)

and Adjacent Channel Leakage Ratio (ACLR) [27], [28].

However, the average RX-band noise can be reduced below

the target level only through ∆Σ modulation, reaching a

theoretical value of –172 dBc/Hz. The pole radius of 0.8

keeps the maximum NTF gain around 3 dB, thus ensuring

a negligible ACLR and EVM penalty compared to the case

with no ∆Σ modulation.

The dark gray line in Fig. 6 is the spectrum of the DAC

output, when σLSB = 3% relative to ∆. The shown curve was

obtained from a single simulation run, since the small variation

that can be observed when using different sets of randomly

generated static mismatches is irrelevant at this point. Despite

the high-order nonlinearity resulting from amplitude errors,

the EVM and ACLR of the transmitted signal undergo only

a slight degradation, which still leaves a large margin to LTE

specifications. However, the notch at the RX-band is almost

totally “filled”, with the noise floor degrading to –148 dBc/Hz.

The reason for this performance degradation lies in the

reconstruction mechanism of the analog signal at the DAC

output. Even though the spectral density of the digital input is

effectively shaped by the ∆Σ modulator, all the bi[n] signals

driving each conversion cell show a nearly white spectrum,

as they have little or no correlation with the input. Therefore,

if the recombination of these 1-bit signals is not exact, their

spectra will leak to the DAC output. The resulting “mismatch

noise” will fill the notch at the RX-band, thus vanishing the

action of the ∆Σ modulator.

III. DYNAMIC ELEMENT MATCHING

Dynamic element matching (DEM) denotes a set of popular

techniques, that have been used to boost the linearity of

multibit digital-to-analog converters for over 20 years [19]–

[26]. The basic idea behind DEM is to scramble the order of

the conversion cells in a DAC on a sample-by-sample basis, in

order to convert the nonlinearity caused by static mismatches

into pseudorandom noise. Optionally, the power density of

this noise can be also spectrally shaped, a process known as

mismatch error shaping. Like for ∆Σ modulation, in this paper

we propose to apply these established techniques to improve

the noise floor in the RX-band, rather than the SNR in the

main signal band.

Among the various architectures that have been developed

over the years to realize DEM, the tree structure encoder

is highly attractive, due to its ability to implement a wide

range of mismatch noise filtering profiles, as well as the

ease with which the structure can be pipelined for high-speed

digital implementation. The structure, shown in Fig. 7, applies

to segmented DACs with unary-weighted MSBs and binary-

weighted LSBs [21]–[23]. Note that each conversion cell in the

LSB segment has to be duplicated, in order to create sufficient

redundancy for DEM to work properly.

The tree encoder of Fig. 7 consists of a cascade of seg-

menting and nonsegmenting switching blocks. The function

of a nonsegmenting switching block (Fig. 8(a)) is to split its
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Fig. 7. Architecture of a segmented tree structure DEM encoder, driving a
10-bit DAC with 4-bit MSB segment and 6-bit LSB segment [23].
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Fig. 8. Switching block architecture. (a) Nonsegmenting. (b) Segmenting.

input signal into two components, according to

xk−1,2r−1[n] =
1

2

(
xk,r[n] + sk,r[n]

)
,

xk−1,2r[n] =
1

2

(
xk,r[n]− sk,r[n]

)
,

(14)

where sr,k[n] is a switching sequence generated within the

block, which must satisfy

sk,r[n] =

{

0 if xk,r[n] is even

±1 if xk,r[n] is odd.
(15)

Likewise, the outputs of a segmenting switching block

(Fig. 8(b)) are given by

xk−1,1[n] = 1 + sk,1[n],

xk−1,2[n] =
1

2

(
xk,1[n]− 1− sk,1[n]

)
,

(16)

where the switching sequence sk,1[n] is now constrained by

sk,1[n] =

{

0 if xk,1[n] is odd

±1 if xk,1[n] is even.
(17)

The theory behind the tree structure encoder has been

explained rigorously [19], [23]. The basic working principle

can be intuitively understood as follows. Let x[n] be the

encoder input, which is a linear mapping of the ∆Σ modulator

output to the set of nonnegative integers belonging to the

encoder’s maximum linear range (defined as in [23]). By

applying recursively (14) and (16), it can be demonstrated that
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H(z)

sk,r[n]

LSB(xk,r[n])

eq. (15)

eq. (17)

Fig. 9. Sequence generator internal to each switching block. The position
of the switch depends on whether the switching block is nonsegmenting or
segmenting.

each 1-bit output bi[n] can be written as

bi[n] = αi · x[n] +
[

∑

(k,r)∈Pi

βk,r · sk,r[n]
]

+ γi, (18)

where αi, βk,r and γi are constants, and Pi is the set of switch-

ing block indexes found along the path from x[n] to bi[n] (for

example, referring to Fig. 7, P3 = {(10, 1), (9, 1), (1, 2)}).

Therefore, if the spectral densities of all switching sequences

sk,r[n] show a notch at the RX-band similar to that of x[n],
then the 1-bit outputs share the same property, due to the linear

combination in (18). In addition, (14)–(17) ensure that

M∑

i=1

Kibi[n] = x[n], (19)

where M is the total number of conversion cells, and Ki is

the weight of the cell driven by bi[n]. This constraint is known

as number conservation rule.

A. Switching Sequence Generation

A block diagram of the sequence generator internal to each

switching block (segmenting and nonsegmenting) is shown in

Fig. 9. At the signal processing level, the structure differs from

the generic EF ∆Σ modulator discussed in Section II only in

the following:

• it has no signal input;

• the quantizer has only two output levels {−1,+1};

• the loop includes an additional LSB multiplier.

Note that the upper input of the LSB multiplier changes

whether the sequence generator belongs to a nonsegmenting

or segmenting switching block. This causes either (15) or (17)

to be satisfied, respectively.

With good approximation, the quantizer and multiplier

together can be seen as introducing additive random error.

This error is shaped by the loop, with NTF still given by (2).

Furthermore, because there is no other input to the system,

the output sequence consists only of the shaped error. This

generation mechanism is sufficient to ensure that each sk,r[n]
has the desired spectral properties.

From an implementation perspective, the complexity of

the sequence generator (which is essentially equivalent to

the EF ∆Σ modulator) is an important factor. Indeed, the

complexity of a single switching block (Fig. 8) is largely

determined by that of the sequence generator. In turn, the

overall complexity of the DEM encoder is proportional to the

total number of switching blocks. For example, the encoder of

Fig. 7 contains 27 switching blocks, thus leading to the overall

implementation complexity of 27 parallel ∆Σ modulators.

Still, by extrapolating our synthesis results in 28nm CMOS

reported in Section II, we estimate that such a DEM encoder

could be realized within less than 0.1 mm2 of silicon area,

with a power consumption in the order of 50 mW.

Because the quantizer in the sequence generator has only

two output levels, the ∆Σ loop is highly prone to instabil-

ity. Even though there is no signal input, implementing the

4th-order NTF given by (10) can easily lead to unbounded

growth of the modulator’s states. Fortunately, it is known that

the stability of 1-bit ∆Σ modulators can be strengthened by

reducing the maximum gain of the NTF [12]–[14]. Hence, the

flexible NTF pole placement criterion discussed in Section II

can be successfully exploited to stabilize the switching se-

quence generators. This is the key enabling factor of 4th-order

tunable DEM with a tree structure encoder. Nevertheless,

the reader is reminded that there exists a trade-off between

the maximum NTF gain and the average attenuation in the

RX-band (Fig. 4(b)). In practice, this limits the maximum

achievable performance of the DEM approach, especially with

wideband signals.

B. Correction of DAC Nonlinearities

The mechanism that underlies the operation of DEM has

been thoroughly explained in some good theoretical papers

[23]–[26]. Here, we further extend the existing analysis with a

more general validation. Because our derivation is independent

from the duration of the conversion cell impulse response, the

results apply to a wider class of DAC types.

Static amplitude mismatches in a DAC can be modeled as

follows. In the discrete-time domain, the output yi[n] of a

single conversion cell is given by

yi[n] =

{

Ki
∆
2 + ehi if bi[n] = 1

−(Ki
∆
2 + eli) if bi[n] = 0,

(20)

where ehi and eli are the amplitude mismatch errors for

the positive and negative cell state respectively. The only

difference between this expression and (12) is that here ehi
and eli are not necessarily constrained to be the same. Hence,

the validity of the theory discussed in the following is not

restricted to differential DAC implementations.

Equivalently, (20) can be written as

yi[n] = Ki∆

(

bi[n]−
1

2

)

︸ ︷︷ ︸

yID,i[n]

+ ehibi[n] + eli
(
bi[n]− 1

)

︸ ︷︷ ︸

eDAC,i[n]

, (21)

where the ideal cell output yID,i[n] and the mismatch error

signal eDAC,i[n] are highlighted. The overall DAC output is
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given by summing (21) over all M conversion cells, yielding

y[n] =

yID[n]
︷ ︸︸ ︷

M∑

i=1

Ki∆

(

bi[n]−
1

2

)

+
M∑

i=1

{

ehibi[n] + eli
(
bi[n]− 1

)}

︸ ︷︷ ︸

eDAC [n]

, (22)

where again the ideal DAC output yID[n] and the total

mismatch noise eDAC [n] are marked. Note that yID[n] is

linearly related to x[n], since the bi[n] signals satisfy the

number conservation rule.

As anticipated at the end of Section II, static amplitude

mismatches cause the spectra of the bi[n] signals to leak to

the overall DAC output y[n]. For a given static mismatch

profile, (22) now indicates that the relation between y[n] and

the bi[n] signals is linear. Therefore, if DEM is implemented

as described above, the spectral density of y[n] will show

the desired notch at the RX-band, regardless of the mismatch

statistics.

The results derived above can be generalized to the

continuous-time domain. It is sufficient to modify (20) to

yi(t, n) =

{

u(t− nT )Ki
∆
2 + ehi(t− nT ) if bi[n] = 1

−
(
u(t− nT )Ki

∆
2 + eli(t− nT )

)
if bi[n] = 0,

(23)

where T is the sampling period, u(t) is the ideal, unity-

weighted impulse response of all conversion cells, and ehi(t)
and eli(t) are error pulses that can now include not only ampli-

tude mismatches, but also timing and pulse shape mismatches.

This equation shows how the n-th sample of the discrete-time

1-bit driving signal bi[n] is converted to a continuous-time

analog signal. The complete output signal of the conversion

cell is found by convolving (23) with bi[n], leading to

yi(t) =

yID,i(t)
︷ ︸︸ ︷
+∞∑

n=−∞

{

u(t− nT ) ·Ki∆

(

bi[n]−
1

2

)}

+

+∞∑

n=−∞

{

ehi(t− nT ) · bi[n] + eli(t− nT ) ·
(
bi[n]− 1

)}

︸ ︷︷ ︸

eDAC,i(t)

,

(24)

which is the equivalent continuous-time form of (21). The

overall DAC output can be again found by summing (24) over

all M conversion cells, yielding an expression similar to (22).

The theory presented in [23]–[26] is developed under the

assumption that u(t), ehi(t) and eli(t) are zero outside of

0 6 t < T . Here, it is shown that DEM works properly re-

gardless of the shape and duration of the impulse response.

This result follows immediately by rewriting the expression

10

purely digital

LTE in RF out
RF-DAC

EF ΔΣ
modulator

DEM

encoder

4 MSBs

6 LSBs

Fig. 10. Complete functional block diagram of the proposed solution.

of eDAC,i(t) from (24) as

eDAC,i(t) =
{

ehi(t) + eli(t)
}

⊗ ci[n]

+

+∞∑

n=−∞

ehi(t− nT )− eli(t− nT )

2
, (25)

where ci[n] ,
(
bi[n]−1/2

)
is the 1-bit digital signal shifted to

the zero-mean range {±1/2}, and the convolution operation

is explicitly marked with ⊗. The second term in (25) only

contains harmonics at the multiples of the sampling frequency

if ehi(t) and eli(t) differ from each other. By neglecting this

term, the frequency-domain form of (25) becomes

EDAC,i

(
f
)
=

{

Ehi

(
f
)
+ Eli

(
f
)}

· Ci

(
f
)
. (26)

Hence, because Ci

(
f
)

is shaped by the tree encoder described

above, it follows that our system always “filters” the spec-

tra of ehi(t) and eli(t) around the RX-band, regardless of

their extension beyond [0, T ). Nevertheless, as the attenuation

performance is limited by the instability problems mentioned

earlier, the energy of the error pulses must be kept within

reasonable bounds.

In conclusion, DEM can effectively correct all nonlinearities

arising from static amplitude, timing, and pulse shape mis-

matches among different DAC conversion cells. On the other

hand, this approach is ineffective against those nonlinearities

arising from phenomena that are common to all conversion

cells, such as the nonlinear output impedance in current-

steering DACs. Fortunately, the relatively high immunity to

mismatch problems enabled by DEM allows to specifically

optimize the DAC with respect to these phenomena [21]. The

many successful implementations of DEM realized over the

years have undoubtedly demonstrated the performance advan-

tage enabled by this technique. Last, it must be also mentioned

that our solution does not take into consideration the possible

nonlinearities introduced after the digital-to-analog conversion,

for example if an external power amplifier (PA) is needed in

the TX chain. The linearization of the PA response is a topic

of its own, which is out of scope of this paper.

IV. SYSTEM-LEVEL SIMULATIONS

In order to verify the validity of the proposed method, a

system-level model of the ∆Σ DEM RF-DAC was created.

The system block diagram is shown in Fig. 10. Both the

∆Σ modulator and DEM encoder implement the same pro-

grammable NTF given by (10). Similarly as in Section II, the

RF-DAC has been modeled as an array of conversion cells

with 10 bits of resolution, segmented into 4 unary-weighted

MSBs and 6 binary-weighted LSBs. This segmentation choice

represents a balanced trade-off between the total number of
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εi τi

di
KiΔ

Tc

T

ideal

real

yi(t,0)

t

Fig. 11. Ideal and real impulse responses of a single differential RF-DAC
conversion cell used in our system-level model.

switching blocks in the DEM encoder, the complexity of the

RF-DAC circuitry, and the sensitivity to static mismatches [3].

The impulse response of each RF-DAC conversion cell is

a waveform designed to fulfill (23). Fig. 11 plots the ideal

and real responses for n = 0 and bi[0] = 1. A differential

implementation of the conversion cell is assumed, meaning

that the waveforms with bi[0] = 0 are the exact negation of

those shown in Fig. 11. In order to avoid systematic glitches in

the RF output, the sampling period of the digital input signal T
should be a multiple of the carrier period Tc [4]. In Fig. 11, as

well as in all simulations presented in the following, T = 2Tc

is assumed (i.e. the carrier frequency fc is twice the digital

sampling rate fs). A configurable fractional interpolation chain

that efficiently converts the base sampling rate of LTE signals

to the gigahertz-range carrier-dependent sampling rate needed

at the RF-DAC input has been published in [6].

The real impulse response differs from the ideal waveform

in that it has finite rise and fall times defined by the time

constant τi, is delayed by an amount di, and settles to an incor-

rect full-amplitude value determined by the amplitude error εi.
These static parameters are used to model, respectively, the RC

settling transient of the cell output, the nonzero propagation

delay of the clock distribution network, and the inaccuracy

of the circuitry determining the steady-state cell output value.

Furthermore, note that the real waveform in Fig. 11 extends

beyond the time window [0, T ).
Fig. 12(a) and (b) show the spectra of the analog output of

the RF-DAC, when converting two LTE signals of bandwidths

20 and 15 MHz to E-UTRA bands 1 and 3 respectively

[27]. Similarly as in Fig. 6, these spectra result from single

simulation runs. Here, the delay mismatches di are taken

from a Gaussian distribution with σd = 0.05% relative to

T , resulting in a worst case cell-to-cell delay difference of a

few picoseconds. The time constant of all cells in the LSB

segment is τLSB = 3% of T , whereas that of the MSB

cells is 5% higher (i.e. τMSB = 1.05 · τLSB). This models a

nonlinear scaling of the cell drivers between the two segments.

The amplitude mismatches εi are still modeled by (13), with

σLSB = 1% relative to ∆. This value has been decreased

compared to the simulation of Fig. 6, because now timing

mismatches are also present. Nevertheless, in the authors’

design experience, the chosen quantities are representative of

the matching accuracy that can be achieved through careful

analog design in current deep sub-micron CMOS technologies.

1950 2000 2050 2100 2150 2200

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency [MHz]

N
o

rm
a

liz
e

d
 P

S
D

 [
d

B
]

 

 

• E−UTRA Band 1 (RX−band at 190 MHz)
• f

c
 = 1966 MHz (f

s
 = 983 MHz)

• LTE BW = 20 MHz

RX−BAND NOISE AT RF−DAC OUTPUT

• ideal converter = −173 dBc/Hz

• real (DEM off) = −144 dBc/Hz

• real (DEM on) = −161 dBc/Hz

RX−band

ideal RF−DAC

real RF−DAC (DEM off)

real RF−DAC (DEM on)

noise floor
target

(a)

1750 1800 1850 1900 1950 2000 2050

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Frequency [MHz]

N
o

rm
a

liz
e

d
 P

S
D

 [
d

B
]

 

 

• E−UTRA Band 3 (RX−band at 95 MHz)
• f

c
 = 1776 MHz (f

s
 = 888 MHz)

• LTE BW = 15 MHz

RX−BAND NOISE AT RF−DAC OUTPUT

• ideal converter = −175 dBc/Hz

• real (DEM off) = −139 dBc/Hz

• real (DEM on) = −164 dBc/Hz

RX−band

ideal RF−DAC

real RF−DAC (DEM off)

real RF−DAC (DEM on)

noise floor
target

(b)

Fig. 12. Spectra of the signals at the output of the ideal RF-DAC, and the real
RF-DAC with DEM activated and deactivated. Simulations with σLSB = 1%,
σd = 0.05%, τLSB = 3%, and τMSB = 1.05 ·τLSB . The two simulations
(a) and (b) are performed in different channel configurations, in order to
highlight the flexibility of the ∆Σ DEM RF-DAC.

The simulations shown in Fig. 12 prove that DEM is

capable of recovering the performance loss due to static DAC

mismatches. Therefore, reducing the RX-band noise below

–160 dBc/Hz is still possible without analog or semi-digital

filtering. Note that, when DEM is activated, the shape of

the spectral density follows closely that of the ideal signal,

since the ∆Σ modulator and the switching sequence generators

implement the same programmable NTF.

Similarly as in Section II, it has been verified that, with

a pole radius of 0.8, the quality of the transmitted signal (in

terms of ACLR and EVM) always remains well above the

minimum LTE requirements. More importantly, the chosen

pole radius also guarantees the stability of the sequence gen-

eration loops, thus demonstrating the feasibility of 4th-order

tunable DEM with a tree structure encoder. Even though only

two tuning settings are shown here, the authors have checked

that stable operation can be achieved for all possible band-
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Fig. 13. Simulated RX-band noise as a function of the standard deviation
of (a) the amplitude mismatch, and (b) the delay mismatch among different
RF-DAC conversion cells, with all other nonidealities set to zero.

bandwidth combinations specified in the LTE standard.

Fig. 13(a) shows the dependence of the RX-band noise on

the standard deviation of the amplitude mismatch, with no

timing mismatches present. Likewise, Fig. 13(b) depicts the

RX-band noise level when only delay mismatches are taken

into consideration. Each point in the curves is averaged from

10 simulation runs. In both cases, for a given value of σ,

activating DEM yields a 10 ∼ 15 dB improvement in the

RX-band noise. Equivalently, DEM allows to meet a given

noise target when the mismatch deviation is 3 ∼ 5 times

larger. The performance improvement can be even larger when

different mismatch sources are combined, as can be seen from

the simulated noise levels in Fig. 12. Therefore, the combined

effect of ∆Σ modulation and DEM boosts the RX-band noise

performance considerably, without increasing at all the design

effort of the analog circuitry.

The simulations presented above were performed with LTE

signals of largest bandwidths (15 and 20 MHz). The bar

graph of Fig. 14 illustrates the RX-band noise level for all

six supported LTE bandwidths. This simulation was performed

with the same mismatch scenario as in Fig. 12. Each bar results

from the average of 10 simulation runs. The improvement

brought by DEM grows remarkably with narrower bandwidths,

as can be expected from the increase in oversampling ratio.

This feature supports well frequency-division multiple access

schemes such as LTE, because in most practical scenarios only

a fraction of the total LTE bandwidth is assigned to a single

user [28]. Hence, the NTF notches can be dynamically placed
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Fig. 14. Simulated RX-band noise as a function of the LTE channel
bandwidth. The mismatch scenario is the same as in Fig. 12.

around the frequencies corresponding to the allocated band,

thus further increasing the robustness of the transceiver.

V. CONCLUSION

In this paper, a new approach to reduce the RX-band noise

in all-digital transmitters was described. The proposed solution

applies bandpass ∆Σ modulation and DEM to the RX-band

instead of the transmit band, in order to shape the quantization

and mismatch noise of the DAC. A method to design a highly

flexible NTF was described, with emphasis on pole placement.

The designed NTF enables stable 4th-order tunable DEM with

a tree structure encoder. Moreover, this paper presented a

general analysis of DEM. The effectiveness of the proposed

approach was verified through a number of accurate system-

level simulations, showing a very good robustness against

typical amplitude and timing DAC mismatches. Even though

the simulations were performed in an LTE environment, the

results would be equally valid in other FDD systems.

Unlike semi-digital methods, our fully digital approach

inherits all the advantages of digital RF, such as simplification

of the analog circuitry and relaxation of its performance

requirements. Because the trend in RF IC design is to move

to digitally-intensive architectures, our technique is a good

candidate to reduce the filtering requirements at the TX

output, eventually allowing to replace altogether the bulky and

expensive SAW filters in the TX chain.

ACKNOWLEDGMENT

This work has been supported by Nokia Foundation.

REFERENCES

[1] J. Vankka, J. Ketola, J. Sommarek, O. Vaananen, M. Kosunen, and
K. A. I. Halonen, “A GSM/EDGE/WCDMA modulator with on-chip
D/A converter for base stations,” IEEE Trans. Circuits Syst. II, vol. 49,
no. 10, pp. 645–655, Oct. 2002.

[2] M. Kosunen, J. Vankka, M. Waltari, and K. Halonen, “A multicarrier
QAM modulator for WCDMA base-station with on-chip D/A converter,”
IEEE Trans. VLSI Syst., vol. 13, no. 2, pp. 181–190, Feb. 2005.

[3] P. Eloranta, P. Seppinen, S. Kallioinen, T. Saarela, and A. Pärssinen,
“A multimode transmitter in 0.13 µm CMOS using direct-digital RF
modulator,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2774–2784,
Dec. 2007.

[4] N. Zimmermann, B. Thiel, R. Negra, and S. Heinen, “System architec-
ture of an RF-DAC based multistandard transmitter,” in 52nd IEEE Int.

Midwest Symp. Circuits and Systems, Aug. 2009, pp. 248–251.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. ??, NO. ?, DECEMBER 2099 10

[5] Z. Boos, A. Menkhoff, F. Kuttner, M. Schimper, J. Moreira, H. Geltinger,
T. Gossmann, P. Pfann, A. Belitzer, and T. Bauernfeind, “A fully digital
multimode polar transmitter employing 17b RF DAC in 3G mode,” in
IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2011, pp. 376–
378.

[6] E. Roverato, M. Kosunen, J. Lemberg, T. Nieminen, K. Stadius,
J. Ryynänen, P. Eloranta, R. Kaunisto, and A. Pärssinen, “A configurable
sampling rate converter for all-digital 4G transmitters,” in 21st European

Conf. Circuit Theory and Design (ECCTD), Sep. 2013.
[7] S. Taleie, T. Copani, B. Bakkaloglu, and S. Kiaei, “A bandpass ∆Σ RF-

DAC with embedded FIR reconstruction filter,” in IEEE Int. Solid-State

Circuits Conf. Dig. Tech. Papers, 2006, pp. 2370–2379.
[8] W. Gaber, P. Wambacq, J. Craninckx, and M. Ingels, “A CMOS IQ

direct digital RF modulator with embedded RF FIR-based quantization
noise filter,” in Proc. ESSCIRC, 2011, pp. 139–142.

[9] S. Fukuda, S. Miya, M. Io, K. Hamashita, and B. Nauta, “Direct-
digital modulation (DIDIMO) transmitter with –156dBc/Hz Rx-band
noise using FIR structure,” in Proc. ESSCIRC, 2012, pp. 53–56.

[10] M. Park, M. Perrott, and R. Staszewski, “An amplitude resolution
improvement of an RF-DAC employing pulsewidth modulation,” IEEE

Trans. Circuits Syst. I, vol. 58, no. 11, pp. 2590–2603, Nov. 2011.
[11] J. Mehta, R. Staszewski, O. Eliezer, S. Rezeq, K. Waheed, M. Entezari,

G. Feygin, S. Vemulapalli, V. Zoicas, C.-M. Hung, N. Barton, I. Bashir,
K. Maggio, M. Frechette, M.-C. Lee, J. Wallberg, P. Cruise, and
N. Yanduru, “A 0.8mm2 all-digital SAW-less polar transmitter in 65nm
EDGE SoC,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers,
2010, pp. 58–59.

[12] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Con-

verters. Hoboken (NJ): Wiley, 2005.
[13] R. Schreier, “An empirical study of high-order single-bit delta-sigma

modulators,” IEEE Trans. Circuits Syst. II, vol. 40, no. 8, pp. 461–466,
Aug. 1993.

[14] K.-H. Chao, S. Nadeem, W. Lee, and C. Sodini, “A higher order topology
for interpolative modulators for oversampling A/D converters,” IEEE

Trans. Circuits Syst., vol. 37, no. 3, pp. 309–318, Mar. 1990.
[15] T.-H. Kuo, K.-D. Chen, and J.-R. Chen, “Automatic coefficients design

for high-order sigma-delta modulators,” IEEE Trans. Circuits Syst. II,
vol. 46, no. 1, pp. 6–15, Jan. 1999.

[16] M. Snoeij, O. Bajdechi, and J. Huijsing, “A 4th-order switched-capacitor
sigma-delta A/D converter using a high-ripple Chebyshev loop filter,” in
IEEE Int. Symp. Circuits and Systems (ISCAS), May 2001, pp. 615–618.

[17] Z.-M. Lin and W.-H. Sheu, “A generic multiple-feedback architecture
and method for the design of high-order Σ∆ modulators,” IEEE Trans.

Circuits Syst. II, vol. 49, no. 7, pp. 465–473, Jul. 2002.
[18] J. Lindeberg, J. Vankka, J. Sommarek, and K. Halonen, “A 1.5-V

direct digital synthesizer with tunable delta-sigma modulator in 0.13-
µm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1978–1982,
Sep. 2005.

[19] I. Galton, “Spectral shaping of circuit errors in digital-to-analog convert-
ers,” IEEE Trans. Circuits Syst. II, vol. 44, no. 10, pp. 808–817, Oct.
1997.

[20] T. Kaplan, J. Jensen, C. Fields, and M.-C. Chang, “A 2-GS/s 3-bit
∆Σ-modulated DAC with tunable bandpass mismatch shaping,” IEEE

J. Solid-State Circuits, vol. 40, no. 3, pp. 603–610, Mar. 2005.
[21] K. L. Chan and I. Galton, “A 14b 100MS/s DAC with fully segmented

dynamic element matching,” in IEEE Int. Solid-State Circuits Conf. Dig.

Tech. Papers, 2006, pp. 2390–2399.
[22] K. L. Chan, J. Zhu, and I. Galton, “A 150MS/s 14-bit segmented DEM

DAC with greater than 83dB of SFDR across the Nyquist band,” in
IEEE Symp. VLSI Circuits, Jun. 2007, pp. 200–201.

[23] K. L. Chan, N. Rakuljic, and I. Galton, “Segmented dynamic element
matching for high-resolution digital-to-analog conversion,” IEEE Trans.

Circuits Syst. I, vol. 55, no. 11, pp. 3383–3392, Dec. 2008.
[24] I. Galton, “Why dynamic-element-matching DACs work,” IEEE Trans.

Circuits Syst. II, vol. 57, no. 2, pp. 69–74, Feb. 2010.
[25] N. Sun, “High-order mismatch-shaping in multibit DACs,” IEEE Trans.

Circuits Syst. II, vol. 58, no. 6, pp. 346–350, Jun. 2011.
[26] ——, “High-order mismatch-shaped segmented multibit ∆Σ DACs with

arbitrary unit weights,” IEEE Trans. Circuits Syst. I, vol. 59, no. 2, pp.
295–304, Feb. 2012.

[27] User Equipment (UE) radio transmission and reception, 3GPP Std. TS
36.101, Rev. 12.2.0, Dec. 2013.

[28] O. Oliaei, M. Kirschenmann, D. Newman, K. Hausmann, H. Xie,
P. Rakers, M. Rahman, M. Gomez, C. Yu, B. Gilsdorf, and K. Sakamoto,
“A multiband multimode transmitter without driver amplifier,” in IEEE

Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2012, pp. 164–166.

Enrico Roverato (S’13) was born in Padova, Italy,
in 1988. He received the B.Sc. degree in information
engineering from University of Padova, in 2010, and
the M.Sc. degree in electrical engineering from Aalto
University, Espoo, Finland, in 2012. He is currently a
researcher at Aalto University, Department of Micro-
and Nanosciences, where he is working towards the
Ph.D. degree. His research interests are on all-digital
RF transmitter circuits, with special focus on the
implementation of high-speed DSP algorithms.

Marko Kosunen (S’97–M’07) received his M.Sc,
L.Sc and D.Sc (with honors) degrees from Helsinki
University of Technology, Espoo, Finland, in 1998,
2001 and 2006, respectively. He is currently a Senior
Researcher at Aalto University, Department of Micro
and Nanosciences. His expertise is in implementa-
tion of the wireless transceiver DSP algorithms and
communication circuits. He is currently working on
cognitive radio spectrum sensors, energy autonomus
wireless sensor nodes, digital intensive transceiver
circuits and medical sensor electronics.

Jerry Lemberg was born in Lohja, Finland, in
1986. He received the Master of Science degree in
electrical engineering from Aalto University, Espoo,
Finland, in 2013. He is currently pursuing the Doc-
toral degree at the School of Electrical Engineering,
Aalto University. His research interests include high-
speed digital-to-analog converters and digital inten-
sive transmitters.

Kari Stadius (S’95–M’03) received the M.Sc.,
Lic. Tech., and Doctor of Science degrees in elec-
trical engineering from the Helsinki University of
Technology, Helsinki, Finland, in 1994, 1997, and
2010, respectively. He is currently working as a
research scientist at the Department of Micro- and
Nanosciences, Aalto University School of Electri-
cal Engineering. His research interests include the
design and analysis of RF transceiver blocks with
special emphasis on frequency synthesis, and new
emerging RF technologies such as graphene. He has

authored or coauthored over 70 refereed journal and conference papers in the
areas of analog and RF circuit design.

Jussi Ryynänen (S’99–M’04) was born in Ilma-
joki, Finland, in 1973. He received the Master of
Science and Doctor of Science degrees in elec-
trical engineering from the Helsinki University of
Technology (HUT), Helsinki, Finland, in 1998, and
2004, respectively. He is currently a Professor in
the Department of Micro- and Nanosciences, Aalto
University School of Electrical Engineering. His
main research interests are on integrated transceiver
circuits for wireless applications. He has authored or
coauthored over 100 refereed journal and conference

papers in the areas of analog and RF circuit design. He holds several patents
on RF circuits. He is currently a member of the technical program committee
of the IEEE International Solid-State Circuits Conference and IEEE European
Solid-State Circuits Conference.


