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We study an optical cavity coupled to a lattice of Rydberg atoms, which can be represented by a

generalized Dicke model. We show that the competition between the atom-atom interaction and atom-

light coupling induces a rich phase diagram. A novel superradiant solid (SRS) phase is found, where both

the superradiance and crystalline orders coexist. Different from the normal second order superradiance

transition, here both the solid-1=2 and SRS to SR phase transitions are first order. These results are

confirmed by large scale quantum Monte Carlo simulations.
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The study of quantum many-body problems and quan-
tum phase transitions (QPT) has attracted great interest,
and is currently one of the main issues in the condensed
matter community [1]. In the past decade, the successful
control of the interaction strength and dimensionality of
ultracold quantum gases has made it possible to explore
many interesting physical phenomena [2]. For example,
the observation of the superfluid-Mott insulator transition
[3], a Tonks gas [4], the BEC to BCS crossover [5], and the
Kosterlitz-Thouless phase transition [6] have all been
established in ultracold quantum gases.

More recently, ultracold atoms have been combined with
cavity QED [7,8] to study atom-light coupled many-body
problems, which give rise to new phenomena. In particular,
when the two-level atom gas is coupled to a cavity [9],
the coherent nonlocal atom-light interaction supports the
famous superradiance (SR) phase transition in the Dicke
model (DM) [10,11]. This SR phase is formed by the
condensation of atom-light coupled polaritons [12] and
breaks the U(1) symmetry. However, the interactions
between atoms, whichmay bring new phenomena or induce
novel QPTs, are not considered in the DM.

Atom-atom interactions promise to give interesting new
effects and can be implemented via Rydberg atoms
[13–19]. The unique properties of strong dipole-dipole
interactions and quite long lifetimes have made them a
powerful tool for the implementation of coherent blockade
effects and quantum information [13]. Especially, the suc-
cessful trapping of Rydberg atoms in a 1D optical lattice
[14,15] has stimulated the study of many-body quantum
systems, such as spin systems [16,17] and dynamical crys-
tallization or melting of ultracold atoms [18–20].

In this Letter, we consider a 1D lattice of Rydberg atoms
coupled to an optical cavity, where the dipole interaction
competes with the atom-light coupling. Such a system can
be described by a generalized DM. We see that, while the
atom-light interaction favors the SR phase, the atom-atom

interaction tends to form three incompressible Rydberg solid
states with filling numbers 0, 1=2, and 1, which destroy the
coherence of the cavity field. Most importantly, we find a
novel state corresponding to a ‘‘superradiant solid’’ (SRS)
phase, where both the superradiance and crystalline orders
coexist and the corresponding U(1) and translation symme-
tries are broken simultaneously. Compared with the super-
solid (SS) phase in an optical lattice [21–23], which breaks
the same symmetries, the SRS is rather unique as it is induced
by the nonlocal atom-light coupling and the condensation of
polaritons.Moreover,wefind thatwhile the solid-(0, 1) toSR
phase transitions remain second order, both the solid-1=2
and SRS to SR phase transitions become first order.
The system under investigation is schematically

depicted in Fig. 1(a), where we have considered an

(b)(a)

FIG. 1 (color online). (a) Schematic diagram of a 1D lattice of
atoms trapped inside an ultrahigh finesse optical cavity. Each site
is tuned to locate at the antinode of the cavity mode and occupied

by a single atom with the ground state jgi coupled to a high-lying
Rydberg state jei via a two-photon transition process. (b) Setup
for the internal energy levels of the atoms, where the cavity

mode transits the ground state jgi to an intermediate state jpi
with a large detuning �p ¼ !c �!g�p (!g�p is the transition

frequency between jgi and jpi states), while the transition jpi !
jei of frequency !p�e is driven by a laser with Rabi frequency

�l and frequency !l detuned by �e ¼ !l �!p�e.
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ultrahigh-finesse optical cavity with �c the cavity wave-
length and g0 the single-atom coupling rate. We add an
optical lattice with N sites into the cavity along the cavity
axis. Each site is occupied by a single atomwith the ground
state jgi coupled to a high-lying Rydberg state jei via a
two-photon transition process [24] [Fig. 1(b)], where the
cavity mode transits the ground state jgi to an intermediate
state jpiwith a large detuning �p, and jpi is coupled to jei
by a laser with Rabi frequency �l and frequency !l

detuned by �e. When �p is large, the intermediate state

jpi can be eliminated adiabatically and we arrive at the
effective Hamiltonian of site i with Heff

i ¼ ��jeiiheij þ
gðc jeiihgij þ H:c:Þ in the rotating-wave approximation,
where g ¼ g�0�l=j�pj is the effective coupling constant,

� ¼ �p þ�e is the total detuning and c y is the single-

mode creation operator of the cavity field. Then, by
performing a unitary transformation to the new rotating
frame (see the Supplemental Material [25] for details), and
extend the above two-photon transition process to a 1D
lattice of atoms coupled to the cavity field, we derive the
following effective Hamiltonian of the system [26]

H ¼!cc
yc þ

X

N

i¼1

�

2
ðbyi bi � ayi aiÞ þ g

X

N

i¼1

ðbyi aic þH:c:Þ

þV
X

hi;ji
PðiÞPðjÞ ��Nex; (1)

where � ¼ !c �� is the effective transition frequency.
Here we have introduced the boson operators ai and bi to
represent the lower level jgii and upper level jeii of

each atom i with the single-occupancy constraint byi biþ
ayi ai¼1. We consider a uniform atom-light coupling,
which can be realized conveniently by tuning the optical
lattice spacing a [14] to match the cavity wavelength.

In view of normalization of photons, here we rescale g �
�g=

ffiffiffiffi

N
p

as usual. The strong dipole interactions between two

Rydberg states is modeled by projectors PðiÞ¼ð1þ�ðiÞ
z Þ=2

onto the Rydberg state with �ðiÞ
z � byi bi � ayi ai, where

only nearest neighbor (NN) interactions with V ¼ C6=a
6

are considered [16]. The last term is the chemical potential

for the total number of excitations Nex ¼ c yc þ
P

N
i¼1 b

y
i bi in the grand canonical ensemble.

We start by discussing two limiting cases possessed in
the above model. First, for V ¼ 0 the Hamiltonian (1)
becomes the DM. Here we note that, because the ground
state jgi of the atoms is not directly coupled to the Rydberg
state jei, the so called no-go theorem [27] does not apply
[28], and the SR phase can occur. Recently, the SR phase
transition has been observed with a superfluid atomic gas
in an optical cavity [9]. Second, when g is zero this system
becomes a pure lattice of Rydberg atoms. Then by tuning
the chemical potential ~� � ��!c, one may derive three
‘‘incompressible’’ Rydberg solid states [29]: (i) ~�<��,
it forms a solid-0 phase with all the atoms staying in the

ground state; (ii)��< ~�< 2V � �, half of the atoms are
excited to the Rydberg states and form a solid-1=2 phase
with staggered order because of the nearest neighbor repul-
sion; (iii) ~�> 2V ��, all the atoms are excited to the
Rydberg states forming a solid-1 phase.
In the region between two such limits, the competition

of the atom-cavity interaction and the Rydberg atom-atom
repulsion may induce an intermediate phase. This invites
the question if it is possible to condense the atom-light
coupled polaritons to break the U(1) symmetry and at the
same time also break the translational symmetry, which
would be called a superradiant solid (SRS). In general, it is
quite rare to find systems which show long range phase
coherence and at the same time have spontaneously broken
translational invariance. In this respect the SRS phase is
reminiscent of the supersolid (SS) phase in the 1D Bose-
Hubbard model for the soft-core contact interaction [23].
However, the SRS phase here arises from the nonlocal

atom-cavity coupled system. The Rydberg atom-atom in-
teraction extends naturally over a longer range causing the
previously unknown state of matter beyond the traditional
Dicke model. In contrast to the previously studied SS phase
for bosons in other lattice systems, the SRS phase is
formed by the coherent cavity field combined with the
inherent coherence of the two-level atoms and possesses
a crystalline order at the same time. Furthermore, this does
not require frustration or soft-core interactions nor an
artificial longer range particle interactions. In this Letter,
we use an analytical variational approach and numerical
QMC simulation to study a possible SRS phase in detail.
We introduce a variational ground wave function [12]

which can describe crystalline order and a superradiant
phase simultaneously

j�; �i ¼ exp

�

�
ffiffiffiffi

N
p

c y

2

�

Y

i

�

cos

�

�i
2

�

byi þ sin

�

�i
2

�

ayi

�

j0i;

(2)

where j0i denotes the vacuum state with all atoms in the
ground state, and � and �i are the variational parameters
for the coherent cavity field and atomic fields. To find
the ground state, we calculate the energy density E �
4h�; �jHj�; �i=N:

E ¼ 4½� �g�ðsin�C þ sin�DÞ þ V cos�C cos�D

� ~��2 � ð ~�þ �� VÞðcos�C þ cos�DÞ�; (3)

where we have assumed two sublattices C and D which
allows us to describe the most dominant possible order of
the solid-1=2. From Eq. (3) we see that while the �g term
tends to enhance the cavity field � and the condensation of
polaritons, the second V term favors the staggered order of
the polaritons. After minimizing E in respect to the varia-
tional parameters, we derive the phase diagram Fig. 2. The
corresponding variational values are shown in Table I,
where the solid phases represent the Rydberg crystals
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without coherent cavity excitations. The usual superra-
diance phase is denoted by SR, where the atoms and light
form polaritons and condense with a nonzero order para-

meter hbyi aii ¼ sin�SR=2 and a coherent cavity field �SR.
The most interesting finding is that, when �g� V there
exists an intermediate SRS phase between the solid-1=2
and SR phases. Different from the SR phase where the
polaritons are excited uniformly, the SRS phase also breaks
the translation symmetry, which shows a characteristic
excitation density �C;D ¼ ðcos�1;2 þ 1Þ=2 that is not equal
on the two sublattices. Therefore, both the superradiance
and crystalline orders coexist in the SRS phase. In Fig. 2,
we also see that the solid lobes shrink with decreasing �.

However, the above results are derived from mean-field
calculations, so the SRS phase may not be stable when
quantum effects are taken into account. In particular,
when an additional Rydberg excitation is introduced (as a
quasiparticle) into or removed (as a quasihole) from the
solid-1=2 phase, the strong quantum fluctuation of the
nonlocal atom-cavity coupling may drive the particle (or
hole) to move freely on the whole lattice, which may destroy
the staggered solid order and drive the solid-1=2 phase
directly into the SR phase. Another possibility is that the
SRS phase may be unstable and separates into domains [22].
To settle these issues and demonstrate explicitly the phase
diagram, an unbiased numerical simulation is necessary.

We adopt the high-accuracy Stochastic Cluster
Series Expansion (SCSE) algorithm [30,31] (see the

Supplemental Material [25] for details), which is very
efficient for simulating the system with long range inter-
actions. In order to distinguish different phases, one needs
to calculate several observables—the average excitation
density � ¼ hNexi=N, the structure factor SðqÞ=N ¼
hjPN

k¼1 nke
iqrk j2i=N2, and the compressibility �T ¼

N�ðh�2i � h�i2Þ. For the half filled solid-1=2 phase, we
take the structure factor SðQÞ=N with staggered order
Q¼	 to characterize the translational symmetry breaking.
Figure 3(a) shows the zero-temperature phase diagram

for� ¼ 3 andV ¼ 1. Comparedwith themean-field results
the SRS phase is greatly suppressed, indicating that quan-
tum fluctuations weaken the SRS order. Nonetheless, the
SRS phase remains stable in a small region as shown in the
enlarged region of the SRS phase in Fig. 3(c). At first sight it
appears difficult to reach such narrow regions of the SRS
phase experimentally. However, this changes when consid-
ering the �- �g phase diagram in Fig. 3(b), where the SRS
phase exists in a wide region �� � 0:1 in the excitation
density. In Fig. 3(b) we also find that the region of the
particle-excited SRS phase is smaller than the hole-excited
one. The phase separated (PS) regions show that both the
solid-1=2 and the SRS to SR phase transitions are first
order. This differs from the mean-field results and may be
understood by the Ginzburg Landau theory [32]: Because
the U(1) and translation symmetries are broken simulta-
neously, the corresponding order parameters SðQÞ=N and

hbyi aii couple to each other and contribute to a sixth-order
term in the free energy, which results in the first order
phase transition. Moreover, a tricritical point appears
among the SRS, SR, and solid-1=2 phases, see Fig. 3(c).
To provide a convincing support for the above phase

diagram, we now concentrate on the properties of the phase

FIG. 2 (color online). Variational phase diagram for (a) � ¼ 3,
(b) � ¼ 2, (c) � ¼ 1, and (d) � ¼ 0:5. All the parameters are in
units of V.

TABLE I. The variational values for different phases, where
�1 � �2 in the SRS phase. These values are determined by
minimizing Eq. (3) which give rise to the phase diagram of
Fig. 2.

Variational values Solid-0 SRS SR Solid-1=2 Solid-1

�C 	 �1 �SR 0 0

�D 	 �2 �SR 	 0

� 0 �SRS �SR 0 0
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FIG. 3 (color online). (a) The �- �g phase diagram obtained by
different methods for V ¼ 1 and � ¼ 3 in the grand-canonical

ensemble. The red solid vertical lines are the traces evaluated in
Fig. 4. (b) The �- �g phase diagram obtained by QMC simulation.
Here, PS denotes the phase separation between the solid-1=2,
SRS, and SR phase transitions, see the context for detail. (c) The
enlarged region of the SRS phase, where the red arrow marks the
tricritical point among the SRS, SR, and solid-1=2 phases.
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transitions. Figure 4 shows SðQÞ=N and �T=10 along the

trajectories which are indicated by solid vertical lines (red)
in Fig. 3(a). Here, we take T ¼ V=500 which is low

enough to avoid the thermal effect, and the typical lattice

length N ¼ 100. In both panels, there exist regions where

a vanishing structure factor SðQÞ=N ! 0 is accompanied

by a finite �T , which means that the translational symmetry
is not broken and they are compressible, which is char-

acteristic of the SR phases. Regions of zero �T with finite

SðQÞ=N correspond to the incompressible solid-1=2
phases. Most significantly, there exist intermediate SRS

phases which have both finite SðQÞ=N and �T . The corre-
sponding structure factor SðQÞ=N and average density

excitation � have a finite jump and �T diverges on the

critical points ~� ¼ ~�c. It indicates that the SR to SRS

phase transition is first order. In Fig. 4, we also show

the results for different �. We find that, while the region
of the SRS phase in the left panel is hardly affected by �,
the one in the right panel shrinks faster by decreasing �.
This can be understood by the second-order atom-light

interaction process which differs for a particle or hole

excited state with corresponding second-order energies

Eð2Þ
p �� �g2

ð��2C6Þ and Eð2Þ
h �� �g2

�
, respectively. Note that

jEð2Þ
p j> jEð2Þ

h j, which means the particle excited SRS phase

is harder to form than the hole excited one and more easily

suppressed by decreasing �. After that, we also performed

a scaling analysis for the system. We find that both SðQÞ=N
and �T in the SRS phase converge to finite values with

N ! 1 (see the Supplemental Material [25]), which dem-

onstrate that the existence of the SRS phase is robust in the

thermodynamic limit.
Now, we discuss how to realize and identify the

predicted new phases in experiments. We consider for

illustration the experimentally achievable parameters:
�c¼850nm, L ¼ 170 �m, g0=2	 � 14:4 MHz, �=2	 �
0:66 MHz [33] and a 1D lattice of 87Rb atoms with the
lattice spacing a ¼ 2�c and N ¼ 100 sites are coupled to
the cavity. The 5S1=2 ground state of 87Rb atom is coupled

to the 5P3=2 intermediate state with the detuning�p=2	 �
400 MHz and the Rabi laser frequency �l can be tuned
continuously between 2	� ð0; 60Þ MHz, which give rise
to the effective strength �g=2	 � ð0; 21:6Þ MHz. Here, we
have taken, for example, the principal quantum number of
the nS1=2 excited state n ¼ 34, where only nearest neigh-

bors interact significantly and the van der Waals coefficient
C6=2	 � 195 MHz�m6 [34] with the NN interactions
V=2	 � 11:3 MHz. Under these parameters and with the
total detuning �=V ¼ 3, we see that �g=V varies between
(0, 1.91) and the wide regime of the phase diagram of Fig. 3

can be reached experimentally.
We then characterize the formation of the coherent

phases, which should be observed on the time scale of
the cavity damping. One may first pump the cavity field
with the photon density � ¼ 0:45 and then turn on the Rabi
laser to set �g=V � 1:4. The system will be in the SR phase
and the typical time of this coherent process is determined
by the energy scale of the atom-cavity coupling �g, which is
much larger compared to both decay rates of the cavity �
and of the Rydberg state with 
 ’ 2	� 1 kHz. Then, by
tuning �g=V � 1:0, the system may undergo a phase tran-
sition from SR to SRS phase. Both the two phases are
characterized by the coherent cavity field and distinct
polariton excitations which may be discriminated by the
absorption imaging [35] or the usual Bragg spectroscopy
methods. As for the 1=2-solid to SR phase transition, one

may initially pump the 1D lattice of atoms into an
1=2-filling Rydberg crystal by two external Rabi lasers
(see Ref. [14]) and then turn on �g. If �g=V < 1:3 there there
will be no coherent light, and the system stays in the
1=2-solid phase. While for �g=V > 1:3 the system will be
in the SR phase, and one may detect the leak of coherent
cavity field in the time scale ��1.
In summary, we have shown that the generalized Dicke

model of a cavity QED coupled with a Rydberg lattice gas

displays a rich phase diagram. The competition between
the nonlocal atom-light coupling and the atom-atom inter-
action can stabilize a novel SRS phase. By implementing
an unbiased QMC calculation, we find that both the
solid-1=2 and SRS to SR phase transitions are first
order, and the hole-excited SRS phase is more stable than
the particle-excited one. This system may act as a new

quantum simulator for the future study of quantum many-
body physics.
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FIG. 4 (color online). The structure factor SðQÞ=N (solid line)
and compressibility �T=10 (dashed line) along the trajectories of
the lower (left panel) and upper (right panel) vertical cuts
indicated by solid bars in Fig. 3(a). Here, the red arrows mark
the critical points with ~� ¼ ~�c. For all cases V ¼ 1, � ¼ 500,
N ¼ 100, and � ¼ 3 (� ¼ 2:5). The inset shows the corre-
sponding average excitation density �. For simplicity, the small
error bars for the observables are not shown here.
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