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Abstract: 14 

Pyrogenic organic matter (PyOM) is considered as a technique to improve soil fertility and 15 

store carbon (C) in soil. However, little is known regarding soil organic C and nitrogen (N) 16 

mineralization in PyOM-amended soils. To investigate the relationship between the C and N 17 

mineralization rates and the possible consequences in terms of C storage and N availability, 18 

we incubated ryegrass-derived PyOM (pyrolyzed at 450°C) enriched in 
13

C (4.33 atom %) in 19 

a forest Cambisol for 158 days with and without mineral N addition. We determined PyOM 20 

and native soil organic C mineralization, NH4
+
 and NO3

-
 contents in the soil, gross N 21 

mineralization, phenol-oxidase and protease activities, and microbial biomass throughout the 22 

incubation experiment and the incorporation of PyOM in microbial biomass at the end of the 23 

experiment (158 days). We determined that 4.3% of the initial PyOM-C was mineralized after 24 

158 days. Moreover, PyOM induced a strongly positive priming effect within the first 18 25 

days; a negative priming effect was observed from days 18 to 158. The initial increase in 26 

organic matter mineralization corresponded to a higher gross N mineralization and NH4
+ 

27 

content in the PyOM-treated soil than in the untreated soil. Ammonium was rapidly 28 

transformed into nitrate and stored in this form until the end of the experiment. We conclude 29 

that the presence of PyOM affected the mineralization pattern of native soil organic matter 30 

mineralization and increased mineral N content, while N addition did not influence PyOM or 31 

soil organic matter mineralization. 32 

  33 
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1. Introduction: 34 

Pyrogenic organic matter (PyOM), the product of incomplete combustion of biomass 35 

(Goldberg, 1985), plays an important role in the terrestrial C cycle because it can constitute up 36 

to 45% of soil organic carbon (Schmidt et al. 1999). PyOM has a turnover time of several 37 

centuries (Singh et al. 2012), a magnitude longer than any other class of soil organic 38 

compounds (Schmidt et al. 2011). Despite several recent developments in the assessment of 39 

PyOM stability (Bruun et al. 2008; Major et al. 2010; Santos et al. 2012), many uncertainties 40 

remain regarding its fate in the soil. In particular, little is known concerning the interaction 41 

between PyOM and the mineralization of native soil organic matter. Understanding this 42 

interaction is crucial for assessing the effect of PyOM on the soil C cycle because it may 43 

significantly modify the long-term C balance (Woolf and Lehmann, 2012). We define the 44 

priming effect to be the change in the native organic matter mineralization rate due to the 45 

addition of an organic substrate (Bingeman et al. 1953). Specifically, we used the term 46 

positive priming effect when mineralization of the native organic matter is increased and 47 

negative priming effect when mineralization is decreased. PyOM has been observed in 48 

previous studies either to induce a positive priming effect (Wardle et al. 2008; Major et al. 49 

2010; Novak et al. 2010; Keith et al. 2011; Luo et al. 2011; Zimmerman et al. 2011), a 50 

negative priming effect (Liang et al. 2010; Cross and Sohi, 2011; Jones et al. 2011), or no 51 

priming effect (Kuzyakov et al. 2009; Abiven and Andreoli, 2010; Cross and Sohi, 2011; 52 

Santos et al. 2012). 53 

Changes in N mineralization were often found to follow C fluxes (Booth et al. 2005; 54 

Herrmann and Witter, 2008) because they are bound in the same organic compound. In fact, 55 

as for soil organic C mineralization, PyOM was found to exert a broad range of effects on the 56 

N cycle. This variability results from the differences in PyOM feedstock, pyrolysis 57 

temperature, and soil characteristics. Nelissen et al. (2012) found that a C-rich maize-derived 58 

PyOM increased gross short-term N mineralization in loamy soil. They suggested that 59 
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microbes were “mining” soil organic matter to acquire N (Craine et al. 2007). DeLuca et al. 60 

(2002, 2006) observed that PyOM produced during wildfires increased nitrification in boreal 61 

and temperate forests and explained this as the result of sorption of phenols, which are known 62 

for being nitrification inhibitors, on PyOM surfaces (DeLuca and Sala, 2006; Ball et al. 2010). 63 

Moreover, Wang et al. (2012) observed an increase in nitrate content in a fertilized plot one 64 

year after the addition of rice husk-derived PyOM. Across three different soil types, Kolb et 65 

al. (2009) found that increasing the rate of PyOM addition, derived from a mix of manure and 66 

wood, reduced the amount of available N because of increasing microbial N demand. A 67 

similar conclusion was drawn using pecan-shell derived PyOM by Novak et al. (2010), while 68 

Bruun et al. (2012) found a relation between pyrolysis duration and the C:N ratio of the 69 

resulting PyOM, which was in turn affecting the quantity of N immobilized in the soil 70 

amended with PyOM. In contrast, no PyOM effect on the N cycle was observed by Zavalloni 71 

et al. (2011) and Zhang et al. (2011) using wood-derived PyOM and wheat straw-derived 72 

PyOM, respectively.  73 

While many studies investigated the PyOM effects on mineral N, very little is known about 74 

the effect of mineral N on PyOM decomposition. Santos et al. (2012) found no effect of N 75 

addition on PyOM mineralization. However, Maestrini et al. (personal communication) found 76 

a decrease in PyOM mineralization. We hypothesized that N addition may decrease the 77 

PyOM decomposition because increased N deposition depresses the activity of phenol-78 

oxidase (Sinsabaugh et al. 2002; Grandy et al. 2008), which is responsible for the 79 

decomposition of aromatic compounds. Moreover, we hypothesized that increased N 80 

availability will decrease microbial decomposition of the more recalcitrant fraction of PyOM, 81 

which is generally thought to be more rich in N, as proposed by the nitrogen mining theory 82 

(Craine et al. 2007). Similarly, Brodowski et al. (2005) suggested that microbes may 83 

decompose PyOM to have access to the N adsorbed on their surfaces. Changes in N fluxes 84 
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due to increased microbial decomposition may be related to microbial biomass dynamics and 85 

thus can give an indication of both PyOM-C and mineral N stored by soil microflora 86 

(Nannipieri and Eldor, 2009). 87 

To our knowledge, this study was the first to couple C fluxes and gross N mineralization in a 88 

PyOM-amended soil. The present paper is aimed to investigate if PyOM affects organic 89 

matter mineralization and if changes in C fluxes due to priming are reflected in N 90 

mineralization. We also hypothesize that N addition may reduce PyOM decomposition. To 91 

investigate the mechanisms responsible for the alteration of C and N fluxes, we used a holistic 92 

approach: we divided the system into pools (native soil organic matter, PyOM, microbial 93 

biomass, and mineral N) and related the C and N fluxes to the changes in the size of the pools 94 

and to the activity of enzymes targeting aromatic molecules, such as PyOM (phenol-oxidase) 95 

and N-rich compounds (protease). We believe that the holistic approach is the most efficient 96 

and well-adapted method for studying soil functionality compared to approaches based on the 97 

inference of C and N dynamics from microbial taxonomy and functional characterization 98 

(Nannipieri et al. 2003). 99 

We incubated 
13

C-labeled PyOM (4.33 atom %) for 158 days in a mineral forest soil with and 100 

without mineral N addition. We measured SOC mineralization, gross N mineralization, NH4
+
 101 

and NO3
- 

content, incorporation of PyOM derived C into microbial biomass and potential 102 

enzymatic activity of phenol-oxidase and protease over the course of the period.  103 

Our research questions were the following: (i) Does ryegrass-derived PyOM increase native 104 

soil organic matter mineralization, gross N mineralization and net nitrification in a Cambisol? 105 

(ii) If so, can these changes be explained by the phenol oxidase and protease activity and 106 

microbial biomass-C and N? Lastly, (iii) does N addition affect mineralization of ryegrass-107 

derived PyOM? 108 
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2. Materials and Methods 109 

2.1 PyOM characteristics 110 

Two different sets of ryegrass (Lolium perenne L.) were grown under controlled conditions in 111 

labeling growth-chambers. One set was grown under an atmosphere enriched in 
13

C-CO2 (6 112 

atom %); the other was grown under an ambient atmosphere. Edaphic, light, and air 113 

temperature conditions were identical for the two setups. Ryegrass was harvested after 1 114 

month in both cases. 115 

Labeled and not labeled grasses were pyrolyzed in a quartz tube oven (Montanaro 116 

manufacturer, Glattbrugg, CH) at 450°C under a N2 stream of 1 l min
-1

 (equivalent to 0.45 117 

times the volume of the oven per minute) for 4 hours as described in Hammes et al, (2006). 118 

The recovery of PyOM after pyrolysis was approximately 33% (weight %) of the initial 119 

material. Characteristics of the 
13

C-labeled PyOM are summarized in Table 1. The set of 120 

ryegrass grown under enriched 
13

C-CO2 conditions had slightly higher C and N contents (30 121 

vs. 34% C and 3.2 vs. 3.6% N, p<0.05, t-test, n = 4), compared to the one grown under 122 

unlabeled conditions. However, the C:N ratios of the two sets did not significantly differ. The 123 

PyOM had a low C content (34%) and a high O (28.0%) and ash contents (53% residual after 124 

ignition at 550 °C for two hours). The H:C atomic ratio was 0.67±0.02, which is similar to 125 

values reported by Hammes et al. (2006) and Keiluweit et al. (2010) for grass-derived PyOM. 126 

This indicates that the PyOM had a relatively low C content due to a high content in 127 

microelements (resulting in high ash content). However, the aromaticity level, indicated by 128 

the H:C ratio, did not differ from other grass-derived PyOM. The low C content of our PyOM 129 

agrees with findings from Knicker, (2010), who also observed a C content of 30% for 130 

ryegrass-derived PyOM due to the low thermal stability of cellulose, a major component of 131 

grass, as also observed by Chatterjee et al. (2012). Our PyOM was characterized by a narrow 132 

C:N ratio, smaller than 10, and a very high ash content (Table 1), values similar to C:N ratio 133 
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and ash content of PyOM derived from ryegrass obtained in another study (Knicker, 2010) 134 

this indicates that characteristics of ryegrass-derived PyOM maybe similar. In contrast 135 

Keiluweit et al. (2010), using a different grass species, found a higher value. The main 136 

explanation for the low value is the higher level of N incorporation in the pyrolysis products 137 

compared to C. In the study from Knicker, (2010), N was observed to occur mostly in 138 

heterocyclic forms, like pyrroles. High ash content may also result from low thermal stability 139 

of cellulose. 140 

The 
13

C-labeled PyOM had a 
13

C value of 4.33 atom % (Table 1); we have assumed that 
13

C 141 

was uniformly distributed within the plant because it was grown in an atmosphere enriched in 142 

13
C-CO2 from the first emergence of a leaf. 143 

2.2 Incubation setup 144 

We sampled the top 10 cm of a Cambisol in a clearance of a temperate forest on Laegeren 145 

Mountain (NW of Zurich, Swiss Plateau, 800 m asl., Ruehr et al. 2009). The characteristics of 146 

the soil are summarized in Table 1. The soil was sieved fresh through a 2-mm mesh. The 147 

equivalent of 80 g dry soil was weighed into crystallizing dishes (Duran, Germany) 70 mm in 148 

diameter and placed inside a sealed 1.8-liter jar (Korken, IKEA). In the vessels the soil had a 149 

bulk density of 0.7 g cm
-3

, and no effect of PyOM was observed on bulk density. The soil was 150 

pre-incubated at 27 °C for 23 days prior to the beginning of the incubation. The temperature 151 

and soil moisture were kept constant throughout the entire incubation period at 27°C and 70% 152 

of the water holding capacity, respectively. The soil moisture content was periodically 153 

adjusted (fluctuations in the soil moisture content were therefore generally lower than 1% 154 

weight). A bottle containing 20 ml of water was placed inside the jar to maintain the humidity 155 

saturation of the air. The incubation consisted of a 2x2 factorial experiment with the following 156 

treatments: soil control, soil + PyOM, soil + mineral N, soil +PyOM + mineral N. Nitrogen 157 
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treatment corresponds to an addition of 25 µg N-NH4NO3 g
-1

 dry soil at the beginning of the 158 

incubation. This quantity is equivalent (considering the top 15 cm of the soil) to 53 kg N ha
-1

, 159 

which is in the range applied yearly in two well-known field experiments on N deposition 160 

(Aber et al. 1998; Egli et al. 1998). N was added from an aqueous solution containing 161 

approximately 181.32 mg N-NH4NO3 l
-1

. We added an equivalent amount of water to the 162 

control soils.  163 

At the beginning of the incubation we added the equivalent of 13 mg PyOM g
-1

 dry soil to 164 

PyOM-treated vessels and all samples were  mixed thoroughly. This quantity was equivalent 165 

to an addition rate of 27 t ha
-1

, considering an application to the first 15 cm of the soil and a 166 

bulk density of 1.4 g cm
-3

. Unlabeled PyOM was added to vessels to be extracted after 4, 18, 167 

46 and 88 days whereas 
13

C-labelled PyOM was added to the vessels to be extracted on the 168 

last sampling date, i.e., after 158 days. On days 4, 18, 46, 88, and 158 after incubation started, 169 

soils were sampled for analysis of mineral N content (NH4
+
 and NO3

-
), gross N mineralization 170 

(see section 2.4) and microbial biomass (see section 2.5). Phenol-oxidase and protease 171 

activities and soil pH were measured on days 4, 46, and 158 (see section 2.5). 172 

2.3 CO2 efflux and partitioning 173 

CO2 efflux and 
13

C-CO2 were monitored throughout the incubation experiment. CO2 efflux 174 

from the soil was trapped in bottles containing 20 ml of 1 M NaOH and subsequently placed 175 

in the jars. The amount of CO2 trapped as sodium carbonate (Na2CO3) was estimated by 176 

measuring the decrease in conductivity using the linear model described by Wollum and 177 

Gomez, (1987) and recently applied by Abiven and Andreoli, (2010). A set of blanks (n=4) 178 

was also measured to account for the CO2 initially present in the container; both the quantity 179 

of CO2 emitted and the isotopic signal were accordingly corrected. The jars were opened only 180 

at the reported sampling dates. After measuring the conductivity, the NaOH vials were 181 
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removed and substituted with new ones so that on each date we could measure the cumulative 182 

CO2 emitted from the sample. 183 

Briefly, the 
13

C-CO2 was measured by precipitating trapped CO2 with BaCl2 as described in 184 

Gaillard et al. (2003). An aliquot of 5 ml of NaOH solution was added to 10 ml 1 M BaCl2, 185 

and subsequently filtered (<0.45 µm cellulose acetate filter paper, GVS, Bologna, Italy). The 186 

precipitates remaining on the filter were then dried, crushed with a spatula, and an aliquot of 187 

approximately 5 mg was used for the 
13

C analysis using an isotope mass ratio spectrometer 188 

(Delta S, Thermo Finnigan, USA). To partition the origin of the trapped CO2 between the 189 

native soil organic matter and PyOM, we used a two-source isotope mixing model equation: 190 

f = 1 - (
13

Cmix - 
13

CPyOM) / (
13

Ccontrol -
13

CPyOM),   [1] 191 

where f is the fraction of CO2 derived from PyOM, 
13

Cmix is the 
13

C content of the trapped 192 

CO2, 
13

CPyOM represents the 
13

C content of PyOM, i.e., 4.33%, and 
13

Ccontrol is the isotopic 193 

signature of soil CO2 in the corresponding control treatment. 194 

The priming effect induced by PyOM on native soil organic C mineralization was calculated 195 

using 196 

PE = (SRPyOM * (1-f) - SRcontrol) / SRcontrol * 100, [2] 197 

where SRPyOM and SRcontrol are soil respiration in PyOM and the control soil, respectively, and 198 

f is the fraction of soil respiration derived from PyOM mineralization using equation 1. In 199 

equation 2, PE is expressed as the percentage of soil respiration in the control treatment.To 200 

calculate mean residence time based on the cumulative PyOM mineralization data,  we used a 201 

two-pool parallel exponential decay model (Manzoni and Porporato, 2009; Minderman, 1968 202 

equation 3):  203 

Ct = C0 * fr * exp (-k1*t) + C0 * (1-fr) * exp (-k2 * t),                     [3] 204 
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where Ct is PyOM at time t and C0 is the initial quantity of PyOM added. The fitted 205 

parameters were fr, k1 and k2, which represent the fast pool fraction (dimensionless), and the 206 

PyOM mineralization rate, expressed as % of PyOM-C lost per day, of the fast (k1) and slow 207 

(k2) pools, respectively; t is the time in years. Parameters where refined by successive 208 

iterations to minimize the residual sum-of-squares. From the mineralization rates (k1 and k2) 209 

we derived the mean residence time (MRT) of the corresponding pool using  210 

MRT = 1/k1,2,                                     [4] 211 

where k1 corresponds to the MRT of the fast turning pool and k2 refers to the slow turning 212 

pool. 213 

2.4 Mineral N content and gross N mineralization 214 

Total mineral N was extracted using a 1 M KCl solution (1 hour of shaking, 180 rpm, 1:4 215 

soil:solution ratio). Nitrate and ammonium concentrations were determined using 216 

spectrophotometry (San
++

, Skalar, Netherlands). To measure gross N mineralization, we used 217 

the 
15

N pool isotope dilution technique (Murphy et al. 2003). 40 g of dry soils were amended 218 

with 2 ml of a 100 mg N-(NH4)2SO4 l
-1

 solution labelled with 
15

N (2.7 atom %), giving a 5 µg 219 

N-(NH4)2SO4 g
-1

 dry soil. The solution was added drop-wise onto the soil surface after which 220 

the soil samples were thoroughly mixed to homogenize added N distribution. After 4, 24, and 221 

72 hours, an aliquot of 10 g of fresh soil was extracted (using 1 M KCl) and measured for 222 

total NH4
+
 content and 

15
N-NH4

+ 
using the diffusion technique described by Herrmann et al. 223 

(2007). Briefly, 15 ml of KCl soil extract was filled into a 20 ml scintillation vial and 224 

approximately 200 mg MgO was added to generate NH3 for the determination of the atom % 225 

15
N of the NH4

+
 pool. The evolved NH3 was trapped onto an acidified paper disk which was 226 

placed between a double layer of polytetrafluoroethylene (PTFE) tape and stretched over the 227 

top of the scintillation vials which were then capped. All samples were gently shaken for 72 228 
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hours to transform NH4
+
 into NH3. To prevent the introduction of sulphur in the isotopic ratio 229 

mass spectrometer the method was modified according to Schleppi et al. (2006), i.e., using 230 

citric acid instead of sulphuric acid. The isotopic signature of the 
15

N-NH4
+
 trapped on the 231 

acid filters was then measured using an isotope ratio mass spectrometer (Delta S, Thermo 232 

Finnigan, USA). To calculate gross N mineralization fluxes, we used the formula from 233 

Khirkham and Bartholomew, (1949), as reported in Smith et al. (1992): 234 

gross mineralization =  235 

={[(AT1 — AT2��ǻW@�
�>�log (AL1 * AT2) / log (AL2* AT1)]} / log (AT1/AT2),  236 

where AT is the total amount of NH4
+ 

(µg N g
-1

 dry soil), AL is the amount of recovered 
15

N-237 

NH4
+
 (µg N g

-1
 dry soil), and ǻW� LV� WKH� WLPH�EHWZHHQ�VXEVHTXHQW�H[WUDFWLRQs (hours). In our 238 

study two times intervals were considered: (i) 20 hours, i.e.  KCl extraction 4 and 24 hours 239 

after 
15

N addition, and (ii) 48 hours, i.e. KCl extraction 24 and the 72 hours after 
15

N addition. 240 

The subscripts indicate the extraction time. Estimated gross N mineralization rates were 241 

similar in the two time intervals, i.e., 2-24 and 24-72 hours (paired t-test, p>0.05). Therefore, 242 

the assumption of zero-order kinetics of gross N mineralization was met in the present 243 

experiment and we calculated an average value of gross N mineralization across the two time 244 

intervals. 245 

2.5 Enzyme activities, pH and microbial biomass 246 

Protease activity was measured using casein as substrate as described by Alef and Nannipieri, 247 

(1995); phenol-oxidase was measured using a di-phenol (3,4-diidrossi-l-fenilalanina, also 248 

named L-DOPA) substrate as described by Carreiro et al. (2000). Although other substrates 249 

have been proposed to assess phenol-oxidase, e.g., guaiacol, a mono-phenol (Nannipieri et al. 250 

1991), and others (Baldrian, 2006), we used L-DOPA because it is the most adopted substrate 251 

in environmental studies and has a very high sensitivity (Sinsabaugh, 2010). Both reactions 252 
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were performed at pH 8.2. Soil pH was measured in a 1:5 soil:water (fresh weight:weight) 253 

mixture after shaking and subsequent sedimentation for 12 hours. 254 

Microbial C and N were measured by the fumigation-extraction method (Vance et al. 1987) in 255 

which 10 g of fresh soil were fumigated with alcohol free chloroform in a desiccator for 24 256 

hours. The samples (both fumigated and non-fumigated) were then extracted using a 1 M KCl 257 

solution. The total organic C (TOC) and total N in the fumigated extracts were analyzed using 258 

a TOC-TN analyzer (TOC-V, Shimadzu Corporation, Japan). Microbial C and N 259 

concentrations were determined by subtracting C and N in the non-fumigated treatment from 260 

C and N in the fumigated treatment and multiplying by a factor of 2.64 (Vance et al, 1987).  261 

We also determined the fraction of the microbial biomass derived from labeled PyOM on the 262 

last sampling date (158 days). An aliquot of 10 ml from the fumigated and non-fumigated 263 

extracts was freeze-dried and the resulting material was measured for 
13

C content with an 264 

isotope mass ratio spectrometer (Delta S, Thermo-Finnigan, USA). The 
13

C signature of the 265 

microbial biomass was then estimated using equation 5 (Dawson et al. 2002): 266 

13
Cmb = ( (

13
Cfum* C.fum)-(

13
Cnon-fum*Cnon-fum) ) / (Cfum-Cnon-fum),                                             [5] 267 

where Cfum and Cnon-fum are the amounts of C extracted from the fumigated and non-fumigated 268 

samples (µg C g
í1

 dry soil) and 
13

Cfum and 
13

Cnon-fum were the 
13

C contents of the fumigated 269 

and non-fumigated extracts (atom %). To quantify the portion of microbial C derived from the 270 

added PyOM, we used equation 1, substituting 
13

Cmix with 
13

Cmb and 
13

C with the 
13

Cmb in the 271 

control treatment. Liang et al. (2010) pointed out that the use of chloroform fumigation 272 

extraction in soils rich in PyOM, might underestimate microbial biomass due to the 273 

readsorption of lysed cells on PyOM walls. Nevertheless, we believe that even if such 274 

underestimation may be pronounced, it is of minor importance in our experiment, as the ratio 275 

between the PyOM-C and soil organic carbon ratio was 7 times lower than reported in Liang 276 
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et al. (2010). Therefore, we expect that the underestimation of the microbial biomass due to 277 

PyOM sorption of lysed cells will have a minor effect. 278 

2.6 Statistical analyses 279 

The effects of PyOM and N addition were tested using a two-way analysis of variance 280 

(ANOVA) for all variables, except for CO2 effluxes, where repeated measures two-way 281 

ANOVA was adopted. Two-way ANOVA were also performed separately for each sampling 282 

date. When data were not normally distributed according to the Shapiro normality test 283 

(p>0.05), the data were log transformed. The Kruskal-Wallis test was adopted instead of 284 

ANOVA, if also log-transformed data were not normally distributed. When time was a 285 

significant factor, we performed a Tukey-post-hoc test to determine which sampling dates 286 

were significantly different. All computations were performed using the statistical software R. 287 

The “agricolae” package was used to perform the Tukey test; the “ezANOVA” package was 288 

used for the repeated measures ANOVA. 289 

3. Results 290 

3.1 Soil respiration, native and pyrogenic organic matter (PyOM) 291 

mineralization 292 

Soil respiration was significantly influenced by time (p<0.05), the presence of PyOM 293 

(p<0.05) and the interactions between PyOM and time (p<0.05). Particularly, the presence of 294 

PyOM increased the total soil respiration within the first 18 days and decreased it afterwards 295 

(Figure 1 a). Neither PyOM nor N addition altered the total net cumulative soil respiration 296 

over 158 days of incubation (Table 2). After 158 days, PyOM-C losses as CO2 were 4.3±0.1 297 

and 4.4±0.1% of the added PyOM-C, with and without N addition, respectively. Most of the 298 

PyOM mineralization occurred within the first 4 days (approximately 2.9% of the initial 299 

PyOM-C). The PyOM mineralization was not influenced by N addition at any sampling date 300 
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during the incubation; the cumulative mineralization at the end of the experiment was also not 301 

affected (Table 2). We fitted a two-pool exponential decay model to our PyOM mineralization 302 

data (Equation 3) and found no significant differences in the mean residence times (Table 3) 303 

between N addition treatments. The fast pool represented 3.3% of the initial PyOM-C and had 304 

an MRT of 2 days; the slow pool had an MRT of 40 years (Table 3). Over the 158-day period, 305 

the presence of PyOM inhibited cumulative native organic matter mineralization (p<0.05, 306 

Table 2), i.e., it induced a negative priming effect equivalent to 10.09 ± 3.08 or 13.53 ± 3.11% 307 

of the soil respiration in the control treatment with or without N treatment, respectively. 308 

However, the priming effect direction changed over time. Within the first 18 days, PyOM 309 

induced a positive priming effect; a negative effect occurred from day 18 to day 158 (Kruskal-310 

test or ANOVA test on individual dates, p<0.05, Figure 1 c). The N addition did affect the 311 

priming effect. 312 

3.2 Microbial biomass 313 

Over the entire incubation period, the PyOM addition increased the microbial biomass C 314 

(p<0.05, Figure 1 d) in comparison with control treatments. Within treatments, the microbial 315 

biomass C decreased over time (Tukey post-hoc test between dates, p<0.05), while the N 316 

addition did not alter the microbial biomass C. The increase in soil microbial biomass C due 317 

to PyOM addition was only significantly different on days 4, 18, and 88 (p<0.05). We did not 318 

find an effect of PyOM or N addition on microbial biomass N and the microbial C:N ratio 319 

(Table 1, supplementary material). The fraction of PyOM-derived C recovered in the 320 

microbial biomass after 158 days was 0.45±0.03 and 0.47±0.02% (t-test, p<0.05, Table 2) 321 

with and without N addition, respectively, corresponding to 0.07± 0.01 and 0.08 ± 0.01% of 322 

the initially added PyOM-C, with no significant difference between the N addition treatments. 323 

3.3 Nitrogen cycling 324 
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Mineral N content in the soil increased significantly after PyOM addition (p<0.05), mineral N 325 

addition (p<0.05) and over time (p<0.05, Figure 2 a). PyOM increased the NH4
+
 content after 326 

4 days (Kruskal-test, p<0.05, Figure 2 b), while we found almost no NH4
+ 

on day 18 in both 327 

treatments. After 18 days, the NH4
+ 

content increased again. However, we could not observe a 328 

clear trend in NH4
+
 content for all treatments. For individual dates, PyOM addition affected 329 

significantly the gross N mineralization on days 4 (p<0.05) and 158 (Kruskal test, p<0.05). 330 

However, on sampling days 18 and 46, the NH4
+
 contents in the extracts after 72, and 331 

sometimes even 24 hours after 
15

N addition, were extremely low. More specifically, NH4
+
 332 

was not detectable in some PyOM-amended soils. Therefore, measurements from those dates 333 

are unreliable. This decrease of NH4
+ 

from the mineral N pool in soil amended with PyOM 334 

may be directly related to PyOM sorption capacities (Jones et al. 2012). Overall net 335 

nitrification rates (Figure 2 d) were not affected by PyOM addition. However, it was affected 336 

by N addition (p<0.05) and time (p<0.05). For individual dates, N addition increased 337 

nitrification from day 0 to day 4 (p<0.05), very likely a result of the nitrification of NH4
+ 

338 

added as NH4NO3 at the beginning of the experiment. In comparison, PyOM increased the net 339 

nitrification from day 4 to 18 (p<0.05). No differences in nitrification were observed after day 340 

18 due to the addition of PyOM or N.  341 

3.4 Enzyme activities and soil pH 342 

PyOM addition decreased the activity of phenol-oxidase (p<0.05, Figure 3) compared to the 343 

control treatment; we did not observe an N addition effect. In contrast no PyOM addition, N 344 

addition or time effects were observed on protease activity. PyOM addition significantly 345 

increased pH (Kruskal-Wallis test, p<0.05, Figure 1 supplementary material) for the entire 346 

duration of the experiment. Soil pH decreased for all sampling dates for the PyOM treatment 347 

and only between the first and second sampling dates for the control treatment (pairwise 348 

Wilcox-test, p<0.05). Moreover, for the first sampling date, the control with N had a lower pH 349 
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than the control without N (Wilcox-test, p<0.05). This could be attributed to the initial 350 

nitrification of the added NH4
+
.  351 

4.  Discussion 352 

4.1 PyOM mineralization, soil respiration and phenol oxidase activity 353 

After five months of incubation, 4.3% of PyOM-C was mineralized (Table 2). Our results are 354 

comparable to previous findings on ryegrass-derived PyOM decomposition from Hilscher et 355 

al. (2009). They found a decomposition ranging between 2.5 and 3.2% of the initial PyOM-C 356 

after 52 days, depending on the duration of the pyrolysis process, with longer durations 357 

delivering more resistant PyOM. Using our model (Figure 1b) we found that 3.7% of PyOM-358 

C was decomposed after 52 days. We believe that the difference between the two studies is 359 

due to the different edaphic conditions. Specifically, they incubated PyOM in a B horizon 360 

poorer in organic C (3.4 mg C g
-1

 soil), and most likely also less microbial biomass compared 361 

to our study. Also the PyOM characteristics may have played a role. In fact their PyOM was 362 

produced at a lower temperature and was characterized by a higher C:N ratio. Hamer et al. 363 

(2004) incubated ryegrass-derived PyOM and microbial inocula in quartz sand and found that 364 

only 0.8% of PyOM-C was decomposed after 60 days. This confirmed that soil 365 

characteristics, e.g., microbial structure, and aggregation play a crucial role in determining 366 

PyOM stability. We fitted a two-pool decomposition model to our PyOM mineralization data 367 

(Figure 1 b) and observed that PyOM had a fast pool with a turnover time of 2 days, 368 

equivalent to 3.3% of PyOM-C, and a slower pool, with a turnover time of 40 years (Table 3). 369 

These values are in agreement with previously reported PyOM turnover times determined 370 

from a meta-analysis for grass-derived PyOM in incubation studies by Singh et al. (2012). 371 

Several authors observed that pyrolysis may increase carbonate content of the pyrolysis 372 

product (Lehmann and Joseph, 2009). Therefore it is likely that part of the initial high PyOM-373 

C losses derives from PyOM-inorganic C, i.e., carbonates (Jones et al. 2011; Bruun et al. 374 
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2013). The release of CO2 from carbonates is also reflected in the pH decrease over time 375 

(Figure 1, supplementary materials), decreasing as PyOM-carbonates were consumed. Using 376 

the two-pool model, we predict that the quantity of PyOM remaining in the soil after 100 377 

years (which is the minimum permanence requested by many C reduction schemes) will be 378 

8% of the initial PyOM-C. Such a relatively fast decomposition rate would represent a 379 

challenge for the use of PyOM as a tool to store C in the soil. Nevertheless, caution is 380 

necessary when using exponential decomposition models to predict the long-term stability of 381 

PyOM. In fact, models calibrated on short-term experiments capture only the initial fast 382 

decomposition rate of PyOM and therefore they may overestimate PyOM decomposition 383 

(Singh et al. 2012).  384 

N addition did not affect PyOM-C losses over time, confirming previous findings by Santos et 385 

al. (2012). Because our soil was not N-limited and the net N mineralization was positive 386 

throughout the incubation period, it was unlikely that N addition would play an important 387 

role. Surprisingly, the activity of phenol-oxidase was inhibited by PyOM addition but not by 388 

N addition, which is not in agreement with previous observations that N addition may inhibit 389 

phenol-oxidase (Sinsabaugh, 2010). DeLuca et al. (2002) observed that PyOM has the 390 

capacity to absorb phenols. This may lead to a decrease in the concentration of the assay, 391 

resulting in a lower availability of the assay for the targeted enzymes and therefore in a 392 

decrease of enzymatic activity. A decrease in phenol oxidation due to sorption on mineral 393 

surfaces was also observed by Scott et al. (1983). It is important to consider that the assay 394 

method used in the present study (L-DOPA, an o-diphenol), although widely used, is only one 395 

of the plethora of assays that have been employed to measure phenol-oxidase activity. It is 396 

most likely that it does not cover the entire range of enzymes involved in the oxidation of 397 

phenols or related molecules, e.g., the aromatic structures forming PyOM.  398 

4.2 Microbial biomass 399 
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Microbial biomass and soil respiration decreased over time (Figure 1 d), as it has been shown 400 

in many models using microbial biomass to predict soil respiration (Fang et al. 2005; Fontaine 401 

and Barot, 2005). PyOM significantly increased the microbial biomass amount on days 4, 18 402 

and 88, confirming previous observations by Steiner et al. (2008) and Kolb et al. (2009). The 403 

increase may be explained by the easily decomposable fraction initially present in the PyOM 404 

(Lehmann et al. 2011) and by the PyOM capacity to host a microbial community (Pietikäinen 405 

et al. 2000). Moreover, the increase in soil pH following PyOM addition to the soil may have 406 

contributed to increased microbial biomass (Badalucco et al. 1992). The fraction of PyOM 407 

incorporated into microbial biomass after 158 days was very low, 0.4% of added PyOM-C, 408 

confirming findings by Singh et al. (personal communication), Bruun et al. (2008), and Santos 409 

et al. (2012). In contrast, Kuzyakov et al. (2009) observed that, 1.5 % of added PyOM, was 410 

incorporated into microbial biomass after nearly 20 months incubation. This finding implies 411 

that incorporation of PyOM into microbial biomass may be time dependent. 412 

 Jones et al. (2012) found that the microbial community of a soil containing PyOM was 413 

characterized by a lower microbial efficiency, and hypothesized that this was due to a relative 414 

increase in bacteria instead of fungi in the microbial community. In fact, bacteria are known 415 

for being characterized by a lower efficiency. This hypothesis was not confirmed in the 416 

present study where a significant change in microbial biomass C:N  was not observed (Table 417 

1, supplementary material), a commonly used indicator of the fungal:bacterial composition of 418 

microbial biomass (Fierer et al. 2009). 419 

4.3 Temporal mineralization pattern of native soil organic matter 420 

The presence of PyOM promoted the mineralization of native soil organic matter, i.e., induced 421 

a positive priming effect, in the first 18 days and inhibited mineralization from day 18 until 422 

the end of the incubation, i.e., induced a negative priming effect (Figure 1 c). Our findings are 423 

similar to those by Zimmerman et al. (2011) who hypothesized that in an initial phase, the 424 



19 

 

organic matter promoted the decomposition of PyOM and in a second phase, PyOM sorbed 425 

the organic matter and protected it from decomposition. Such a priming effect pattern was 426 

also used in the process-based model developed by Woolf and Lehmann, (2012) to evaluate 427 

the impact of yearly PyOM addition on soil C storage in a maize crop ecosystem over 100 428 

years. In our experiment, the partitioning of soil respiration between PyOM and soil organic 429 

matter derived-C indicated that the mineralization of native organic matter was also promoted 430 

in the short term, confirming the findings of Keith et al. (2011). 431 

Several processes that may be simultaneous, sequential or mutually exclusive may have 432 

occurred to explain these observations. One hypothesis for the initial positive priming effect is 433 

that the labile fraction present in PyOM triggers soil microflora. Several authors distinguished 434 

two processes occurring in the priming effect that are induced by labile substrates: apparent 435 

and real priming effects (Blagodatsky et al. 2010; Kuzyakov, 2010). The apparent priming 436 

effect is an increase in the CO2 efflux resulting from the activation of the dormant biomass 437 

due to the addition of available substrates. This results in an increase in the maintenance 438 

respiration of the total soil microflora (Blagodatsky and Richter, 1998; Blagodatsky et al. 439 

2010). The real priming effect appears in a second phase and is the result of increased 440 

mineralization of the soil organic matter by some of the activated microbes (Kuzyakov, 2010) 441 

or by the K-strategist microorganisms. The latter take advantage of the enzymes released by 442 

the activated one (Fontaine et al. 2003). The apparent priming effect has often been observed 443 

as a result of the addition of labile substrates, e.g., glucose (Wu et al, 1993; Conde et al, 2005; 444 

Blagodatsky et al, 2010; Blagodatskaya et al, 2011). Although PyOM is often treated as a 445 

homogeneous recalcitrant compound it may contain a fraction of easily decomposable 446 

substances which have the potential to trigger microbial biomass activity. In our study, the 447 

two-pool decomposition model indicated that PyOM also contained a fast pool corresponding 448 

to 3.3% of the total PyOM-C (Table 3). The presence of a readily available fraction was 449 
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confirmed by Hilscher et al. (2009) who observed that ryegrass-derived PyOM contained a 450 

fraction of water-soluble C equivalent to 3.9% of PyOM-C. The occurrence of an apparent 451 

priming effect in the first four days of the incubation is supported by the following indicators: 452 

(i) the easily decomposable fraction of PyOM is lower than the initial microbial biomass 453 

(approximately 13% of microbial biomass C) and thus considered to be an insufficient 454 

quantity to induce a real priming effect (Blagodatskaya et al. 2011), and (ii) the quantity of 455 

primed C after 4 days was lower than the amount of microbial C in the soil (8% of microbial 456 

C). This lower level is also assumed to be an indicator of an apparent priming effect 457 

(Kuzyakov, 2010).  458 

The positive priming effect may also result from the pH change induced by PyOM addition 459 

(Figure 1 supplementary materials). Luo et al. (2011) found that the increase in native organic 460 

matter mineralization promoted by the presence of PyOM was proportionally higher in acidic 461 

than in alkaline soils, suggesting that liming could play a role in determining the magnitude of 462 

the positive priming effect. It is well known that liming in acid soils may cause a short-term 463 

increase in soil respiration (Badalucco et al. 1992; Haynes and Naidu, 1998; Haynes, 1984). 464 

Jones et al. (2011) suggested that PyOM may change the soil pH towards the optimum for 465 

extracellular enzymes. In our study, the presence of PyOM increased the pH of soil 466 

throughout the entire incubation period (Figure 1 supplementary material). However, we 467 

observed a change in the direction of priming after 18 days. Therefore, we can only speculate 468 

that the change in soil pH was not the prevailing factor responsible for the change in the 469 

native soil organic matter mineralization after 18 days. The most often cited explanation for 470 

the negative priming effect is that PyOM adsorbs organic matter on its surfaces (Liang et al. 471 

2010; Cross and Sohi, 2011; Zimmerman et al. 2011). Alternatively, the negative priming 472 

effect could be explained by a depletion in the available substrate (Bingeman et al. 1953). 473 

However, this explanation is unlikely in our soil, which had a very high C content, and 474 
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therefore was not likely to be C-limited. Moreover, Hamer and Marschner (2005) did not 475 

observe a limitation in the availability of soil organic C due to the priming effect in a 476 

Cambisol incubation in which different substrates were added. We also observed that PyOM 477 

caused a decrease in the phenol-oxidase activity (Figure 3). This could have contributed to a 478 

decrease in mineralization of more condensed compounds. However, such decrease was 479 

already observed in the first sampling date when the positive priming effect was observed. 480 

Moreover, we believe that such a decrease was more likely an artifact of PyOM sorption of 481 

the assay (see section 4.1). Thus, we can only speculate that the reduction in phenol-oxidase 482 

may have contributed to the negative priming effect in the second part of the experiment.  483 

4.4 N dynamics 484 

PyOM only altered the NH4
+
 content of the soil up to day 4 of the incubation period (Figure 2 485 

b and c). NH4
+
 content of PyOM (Table 1) can only explain 26% of the additional NH

4+
 that 486 

was recovered on day 4. Therefore, we concluded that the remaining 74% mineral NH4
+
 was 487 

derived from the increased mineralization of the native organic matter (i.e., priming effect) 488 

and PyOM mineralization. Moreover, PyOM addition increased gross N mineralization on 489 

day 4 (Kruskal test, p<0.05, Figure 2 c). This confirms the findings of Nelissen et al. (2012) 490 

who observed an increase in gross N mineralization in the first week after PyOM addition. By 491 

modeling N fluxes using 
15

N tracer, they found that increased gross N mineralization was 492 

mostly derived from the recalcitrant pool of organic matter. We hypothesize that the increase 493 

in gross N mineralization is mainly derived from increased microbial activity, therefore we 494 

favor the microflora triggering explanation for priming effect over the pH change one, as 495 

liming does affect neither gross (Cheng et al. 2013) nor net (Dancer et al. 1972) N 496 

mineralization. Gross N mineralization in the PyOM treatment was also slightly higher than in 497 

the control treatment in the fifth sampling date, i.e., after 158 days. The higher N 498 

mineralization rate at the end of the incubation period could be due to the mineral N derived 499 
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from the PyOM decomposition, which in the present study, was shown to have a very low 500 

C:N ratio and was therefore a source of N. Moreover, the adsorption of added labelled NH4
+
 501 

onto PyOM surfaces (Jones et al. 2012) may have also reduced the content of labelled NH4
+ 

502 

recovered in the extract. This would result in a bias when interpreting gross mineralization 503 

data, i.e. the observed NH4
+
 decrease in mineral N pool would be interpreted as an increase of 504 

gross mineralization, but low amounts of NH4
+
 were due to its adsorption onto PyOM 505 

surfaces and not because of an increase in mineralization per se. The NH4
+
 mineralized within 506 

the first few days was rapidly transferred to the NO3
-
 pool and remained in this form until the 507 

end of the incubation period. Nitrification was very high in our soil. On day 4, the initial N 508 

addition induced a higher nitrification rate, which was probably derived from the nitrification 509 

of NH4
+
 from the N added as unlabeled NH4NO3 at the start of the experiment. From day 4 to 510 

18, we found a higher nitrification in the PyOM treatments compared to the control soils 511 

likely because of the transformation of the NH4
+
 derived from the strong initial priming effect. 512 

Our results disagree with the findings of DeLuca and Sala, (2006) who observed higher 513 

nitrification rates in burned forest soil compared to unburned. They suggested that PyOM 514 

removed nitrification inhibitors, e.g., phenols, derived from shrubs growing in the understory. 515 

In the present study, nitrification seemed to be limited by its substrate NH4
+
 rather than by the 516 

presence of phenols. Bruun et al. (2012) found that PyOM induced a net N immobilization, 517 

while in our study we observed that PyOM induced a net N mineralization. This discrepancy 518 

can be explained by the different C:N ratio of the two PyOM (40 and 47, Bruun et al. 2012 519 

versus 9 in the present study). These findings confirm the importance of C:N to predict N 520 

mineralization in soils amended with PyOM or other substrates (Mary et al. 1996). The 521 

increased N mineralization was not accompanied by an increase in protease activity (Table 2). 522 

This is in agreement with the N mining theory that postulates that higher N availability 523 

decreases the decomposition of the recalcitrant fraction of a substrate only when it is poor in 524 

N (Craine et al. 2007), which was obviously not the case for the PyOM in our study (Table 1). 525 
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Moreover, the unchanged protease activity in the presence of PyOM might also be because 526 

casein is an assay representative of high molecular weight compounds, while the organic 527 

matter decomposed at the beginning of the experiment was more likely composed of soluble 528 

low-weight N molecules rather than relatively less soluble large molecules. 529 

5. Conclusions 530 

We incubated ryegrass-derived 
13

C-labeled PyOM for five months in the topsoil of a 531 

Cambisol with and without additional N amendments. The PyOM was characterized by a 532 

narrow C:N ratio, and mineralized relatively fast. Therefore its efficiency as C-sink in soil 533 

system would be rather limited. PyOM promoted native organic matter mineralization during 534 

the first 18 days and inhibited it afterward. We suggest that the positive priming effect 535 

resulted from an increase in the activity of soil microflora or from the shift in pH following 536 

PyOM addition. While negative priming effect may follow from depletion of available C or 537 

from the adsorption of organic matter on PyOM surfaces. Our initial hypothesis that N 538 

addition may decrease PyOM decomposition via depressing phenol-oxidase activity was not 539 

confirmed. On the contrary, PyOM decreased the potential activity of the enzyme, most likely 540 

by partly adsorbing the assay. The initial positive priming effect was concurrent to an increase 541 

in gross N mineralization and NH4
+
 content. The latter was rapidly nitrified in our soil system. 542 

We believe that our results were strongly influenced by the characteristics of the PyOM used, 543 

which was characterized by a notably narrow C:N ratio and by the presence of an easily 544 

decomposable C-pool. Therefore, we conclude that special attention needs to be paid to 545 

PyOM characteristics when evaluating the effect of PyOM on soil C and N dynamics. 546 
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Figure captions: 

Figure 1: Cumulative total soil respiration (a), PyOM remaining in the soil as measured 

and modeled according to equation 3 (b), cumulative mineralization of native soil organic 

matter (c) and (d) microbial C dynamics throughout the incubation period. Full symbols 

represent the experiment without N addition treatment: empty symbols are for the N 

addition treatment. The circles represent the control treatments and triangles are for 

PyOM addition treatments. The dashed line represents the modeled PyOM mineralization 

with N treatment; the continuous line is for the PyOM mineralization without N 

treatment. In all figures, the error bars represent the standard error of the mean (n = 4). 

Figure 2: Mineral N dynamics in the soil along the incubation period: (a) soil mineral N 

content, (b) soil NH4
+
 content (c) gross mineralization and, (d) nitrification. Full symbols 

represent without N addition treatment, empty symbols represent with N addition 

treatment, circles are for control treatments and triangles are for PyOM addition 

treatments. Error bars represent the standard error of the mean (n = 4). On sampling days 

18 and 46, the measurement of gross N mineralization failed because the NH4
+
 contents 

in the extracts after 72, and sometimes even 24 hours after 
15

N addition, were extremely 

low, sometimes below the detection limit. 

Figure 3: Potential phenol-oxidase activity (using L-DOPA as substrate). Error bars 

represent the standard error of the mean (n = 4). Within each sampling date, the bars are 

in the following order: control without N addition, control with N addition, PyOM 

without N addition and PyOM with N addition. 
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Table 1: Characteristics of the soil and PyOM, values are the average of 4 replicates ± standard error. 

 

  

 
pH Texture C content N content C/N 

Ashes 

(n=2) 
15N 13C 

Bulk 

density (in 

the field) 

NO3
-
 NH4

+
 

  
( mass %) 

mg C g-1 dry 

soil 

mg N g-1 dry 

soil 
(w/w) (mg g-1) (atom %) g cm-3 

µg N g-1 soil 

 

  
Sand Silt Clay 

   
 

  
 

Soil 5.72±0.04 45.5±3.5 24.2±4.4 31.5±2.4 35.6±0.01 2.93±0.03 12.1  0.3664±0.0001 1.0761±0.0001 1.4 56.85±0.76 1.53±0.65 

mg C g-1 PyOM mg N g-1 PyOM  mg N g-1 PyOM 

PyOM 10.02±0.01 
   

344±3 36.87±0.06 9.3 530.4±2 0.36888±0.00005 4.33±0.01 
 

0.05±0.02 

 

0.4±0.1 

 



Table 2: Total soil respiration, cumulative native organic matter mineralization, potential 

protease activity (substrate caseine), and cumulative PyOM mineralization. Values are 

average of four replicates ± standard error of the mean. 

 

Cumulated Soil 

respiration 

(after 158 days) 

Cumulated 

native organic 

matter 

decomposition 

(after 158 days) 

Cumulative 

PyOM 

decomposition 

(after 158 days) 

Mean Protease 

activity 

Fraction of 

microbial 

biomass C 

derived from 

PyOM 

(after 158 days) 

(mg C-CO2 g
-1

 

soil) 

(mg C-CO2 g
-1

 

soil) 

(% of initial 

input) 

(µg tyrosine g
-1

 

soil hour
-1

) 

% 

Control -N 2.37±0.08 2.37±0.08   1.73±0.12  

PyOM input -

N 2.34±0.05  2.15±0.05 4.4±0.18  1.76±0.08 

0.47 ± 0.02 

Control +N 2.48±0.10 2.48±0.10   1.70±0.07  

PyOM input 

+N 2.33±0.07 2.14±0.06 4.3±0.1 1.92±0.12 

0.45 ± 0.03 



Table 3: Mean residence time (MRT) calculated with the two-pool exponential decay model 

fitted to the mineralization dynamics corresponding to the treatments without and with N 

addition. Values are average of four replicates ± standard error. 

 

MRT labile MRT resistant fast pool fraction 

(days) (years) (% of initial PyOM-C) 

without N 1.92 ± 0.03 40.35 ± 0.31 3.4 ±0.1 

with N 1.92 ± 0.02 39.79 ± 0.33 3.3 ± 0.1 

 




