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Abstract—Software defined networks is the future of 

Computer networks which claims that traditional networks 
are getting replaced by SDN. Considering the number of 
nodes everyday connecting to the global village of internet, it 
becomes inevitable to adapt to any new technology before 
testing its scalability in presence of dynamic circumstances. 
While a lot of research is going on to provide solution as 
SDN to overcome the limitations of the traditional network, 
it gives a call to research community to test the applicability 
and caliber to withstand the fault tolerance of the provided 
solution in the form of SDN Controllers. Out of the existing 
multiple controllers providing the SDN functionalities to the 
network, one of the basic controllers is Ryu Controller. This 
paper is a contribution towards performance evaluation of 
scalability of the Ryu Controller by implementing multiple 
scenarios experimented on the simulation tool of Mininet, 
Ryu Controller and iPerf. Ryu Controller is tested in the 
simulation environment by observing throughput of the 
controller and checked its performance in dynamic 
networking conditions over Mesh topology by exponentially 
increasing the number of nodes until it supported tested on 
high end devices. 
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I.  INTRODUCTION  

IoT, 4G, 5G, VANET [1], etc, are all thirst area of 
network communication that offer more comfort in our 
life in one side and make computer network complex in 
other side by adding more and more users to Internet. 
Huge Data Center infrastructure build before 10 years are 
still running on complex traditional network equipment 
such as routers and switches, where administrator are 
supposed to implement high level policy through low 
level and pre-defined commands that any company such 
as Cisco, HP, Juniper who have their own commands and 
configuration method [2]. Lack of programmability was 
resisting programmers, researcher and developers from 
writing the custom applications for networks. As a 
solution, implementing the idea of research with new 
approach in the area of network is the major focus of 
researchers to look deeper to this complex equipment 
architecture and that is why SDN was born [3]. 

According to Traditional Architecture, Forwarding 
plane, Control plane and Management plane all are tied up 
together in traditional routers. Combination of these three 
planes in a same chassis makes it complex and tough to 
manage. Software Defined Networks simplifies traditional 
routers with main idea of separation of control plane from 
data plane, and provide a centralized control by means of 
controllers for whole or a part of networks.  

According to SDN Architecture, devices are composed 
of only forwarding plane that includes a) logical and 
physical ports, b) flow and group tables. Based on the 
configuration specifications of control plane (brain), flow 
tables get filled up by controller. Once device receives 
new packet, look into the flow tables and take proper 
action. In case of lack of information, forwarding device 
sends the packet to the controller or drops the packet base 
on policy. In accordance to the controller’s configuration, 
new records get added to the flow tables and further 
forwarding of the packets happens independently in next 
cycles. 

The key component in SDN is Controller where, POX 
[4], OpenDaylight [5], Floodlight [6], Beacon [7], Ryu 
[8], NOX [9], etc, are few of them with different features 
that were compared by the team of authors in [10].  

There are two another major components: 1) 
northbound interface, who is responsible to provide an 
abstract for application layer. It also hides the detail of 
down layer and makes writing the network management 
and control application easier for developer. 2) 
Southbound interface, which provides communication 
between the controller and forwarding devices. OpenFlow 
[11] is the most well documented SDN protocol that is 
used majorly in research community with current version 
of 1.5. Opflex [12], NETCONF [13], ForCES [14], POF 
[15] are other options for southbound interface. 

Separating the forwarding plane from control plan and 
taking it on a remote system will generate questions on its 
capabilities of scaling on diverse scenarios. To throw light 
upon the scalability of the controller and checking the 
behavior of controllers in multiple diversified networking 
situations, the authors of this paper presents here the 
experiments with criteria of scalability and performance 
of the controllers. 



The paper is formed in the following manner. Section 
II is providing helicopter view on Ryu controller. Section 
III provides details about the simulation test bed set to 
perform the experiments on scalability with diversified 
networking conditions. Section IV provides the obtained 
experimental results and evaluation of performance 
statistics followed by conclusion and references. 

II. RYU SDN CONTROLLER 

The Ryu Controller is open source and under 
the Apache 2.0 license, written completely based on 
Python, supported and deployed by NTT cloud data 
centers. Main source code can be found on GitHub, 
provided and supported by Open Ryu community. It 
supports NETCONF and OF-config network management 
protocols, as well as OpenFlow. Considering the 
compatibility, OpenFlow switches, Hewlett 
Packard, IBM, and NEC are tested and certified with Ryu 
controller. It supports the OpenFlow protocol up to the 
latest version 1.5. 

 

Fig. 1. Ryu SDN controller architecture 

Same as other SDN Controllers, Ryu is also creating 
OpenFlow packets, managing events related to incoming 
and outgoing packets. It has abundant list of libraries 
which supports packet processing operations. In respect of 
support for southbound protocols, Ryu is working hand in 
hand with protocols such as XFlow (Netflow and Sflow), 
OF-Config, NETCONF, Open vSwitch Database 
Management Protocol (OVSDB), etc. VLAN, GRE and 
VLAN, etc is also supported by Ryu Packet Libraries.  

Let us have a look on Ryu Managers and Core-
Processes. The main executable is Ryu Manager. Ryu 
runs and listens to peculiar IP and Port, eg. 0.0.0.0:6633 to 
connect to Ryu manager which uses RyuApp class using 
inheritance where, the Ryu messaging service does 
support components developed in other languages. 

Ryu is distributed with multiple applications such as 
a simple_switch, router, isolation, firewall, GRE tunnel, 
topology, VLAN, etc. Ryu applications are single-
threaded entities, which implement various functionalities. 
Ryu applications send asynchronous events to each other. 
The functional architecture of a Ryu application is shown 
in Figure 2. 

To preserve the order of events, each Ryu application 
has a receive queue (FIFO) for events FIFO. The thread’s 
main loop pops out events from the receive queue and 

calls the appropriate event handler. Hence, the event 
handler is called within the context of the event-
processing thread, which works in a blocking fashion, i.e., 
when an event handler is given control, no further events 
for the Ryu application will be processed until control is 
returned. 

III. SIMULATION ENVIRONMENT  

As a simulator, Mininet [16] is used and as a controller 
Ryu. Mininet and Ryu controller, both are installed in a 
same virtual machine. The switch used in this experiment 
is OpenFlow kernel switch, also known as Open vSwitch 
or OVSK-Switch [17] by enabling OpenFlow protocol 
mode.  

Python is used as scripting language to write the 
topology instead to accepting the automatic decision of 
number of host connecting to switch or default command 
provided by Mininet. The code of the python script is 
provided in Fig. 2.   Python script of customized topology 
includes the specification of host to switch, switch to 
switch and switch to Ryu controller. 

from mininet.topo import Topo 
class MyTopo( Topo ): 
    "Simple topology example." 
    def __init__( self ): 
        "Create custom topo." 
    # Initialize topology 
        Topo.__init__( self ) 
    #Add switches 
    for s11Switch in range(1): 
        s1Switch = self.addSwitch( 's1' ) 
    for s22witch in range(1): 
        s2Switch = self.addSwitch( 's2' ) 
        self.addLink( s1Switch, s2Switch ) 
    for s33witch in range(1): 
        s3Switch = self.addSwitch( 's3' ) 
        self.addLink( s2Switch, s3Switch ) 
        self.addLink( s1Switch, s3Switch ) 
    for s44witch in range(1): 
        s4Switch = self.addSwitch( 's4' ) 
        self.addLink( s1Switch, s4Switch ) 
        self.addLink( s2Switch, s4Switch ) 
        self.addLink( s3Switch, s4Switch ) 
    for s55witch in range(1): 
        s5Switch = self.addSwitch( 's5' ) 
        self.addLink( s1Switch, s5Switch ) 
        self.addLink( s2Switch, s5Switch ) 
        self.addLink( s3Switch, s5Switch ) 
        self.addLink( s4Switch, s5Switch ) 

   for s66witch in range(1): 
        s6Switch = self.addSwitch( 's6' ) 
        self.addLink( s1Switch, s6Switch ) 
        self.addLink( s2Switch, s6Switch ) 
        self.addLink( s3Switch, s6Switch ) 
        self.addLink( s4Switch, s6Switch ) 
        self.addLink( s5Switch, s6Switch ) 
        # Add hosts and link to switches     
    for h1_ in range(0,30): 
        h1=self.addHost('h1_%s' % (h1_+1)) 
        self.addLink( h1, s1Switch ) 
        for h2_ in range(30,60): 
        h2=self.addHost('h2_%s' % (h2_+1)) 
        self.addLink( s2Switch, h2 ) 
    for h3_ in range(60,90): 
        h3=self.addHost('h3_%s' % (h3_+1)) 
        self.addLink( s3Switch, h3 ) 
    #for h4_ in range(30,40): 
        #h4=self.addHost('h4_%s' % (h4_+1)) 
        #self.addLink( s4Switch, h4 ) 
    for h5_ in range(90,120): 
        h5=self.addHost('h5_%s' % (h5_+1)) 
        self.addLink( s5Switch, h5 ) 
    for h6_ in range(120,150): 
        h6=self.addHost('h6_%s' % (h6_+1)) 
        self.addLink( s6Switch, h6 ) 
     
topos = { 'mytopo': ( lambda: MyTopo() ) } 

Fig. 2. Python script for generating scenarios 

To evaluate the statistics related to the performance of 
controller, mesh topology is implemented over 6 switches 
with five different scenario having difference in only 
number of nodes connected to each peripheral switch. As 
an effort to implement and test the controller’s 
performance using scalability, we created a custom 
topology with five different scenarios having difference in 
the number of nodes as shown in Table 1.  

Table1: Scenario Table for Experiment 

Scenario Number of switch  Number of nodes

Scenario 1 6 50

Scenario 2 6 100

Scenario 3 6 150

Scenario 4 6 200

Scenario 5 6 250

Scenario 6 6 300



 

Table2: Configuration Specification for Experiments 

Ubuntu 16.04.3 LTS 

Mininet 2.2.1 0dl 

OpenFlow ( 0x1:0x4)1.3 

iPerf 3.0.7 

CPU Intel Core i5 520M 

RAM 6GB DDR3 

 

Now the step by step procedure is followed to perform 
the experiment on Ryu using Mininet. For obtaining 
statistics tool used is iPerf.  

Step 1: The first step is to run the Ryu controller using 
the script. Here, the name of application program is 
simple_switch_stp_13.py. Simple_switch_stp_13 is an 
application program to develop spanning tree scenario 
because, we are using mesh topology and mesh topology 
has loops. To avoid loops we need spanning tree and thus, 
stplib.py library is used which performs Bridge Protocol 
Data Unit BPDU packet exchange. Before executing this 
command, control must be in the folder of ryu. Now, we 
provide Command:  

./bin/ryu-manager ryu/app/simple_switch_stp_13.py 

Step 2: Next step is to run the mininet mesh topology 
script, by providing topology name and  switch OVSK 
with the following command: sudo mn --custom 
~/mininet/examples/mymesh.py --topo=mytopo --mac --
controller remote --switch ovsk. Once the command is 
executed, check the connectivity between all the hosts 
using mininet Command: pingall. 

Step 3: Now we define one client and one server 
which is done by any two host of the developed network. 
The command to perform this task is: xterm h1_1 h6_60. 
We have used first and last host with xterm command. 
This will open two terminal windows, one as client and 
another as server. Check configuration details on both the 
windows with command: ifconfig. 

Step 4: Now we need to generate the traffic between 
client and server and log the events using iPerf tool. First 
we go to server window and enter the command: iPerf –s 
–p 6633 –i 1 > result. Here, ‘result’ is the filename 
provided to store the results. Once the server starts waits 
for the client. Now at the client side, to generate traffic, 
we need to provide IP address of the server with the port 
address by following command: iPerf –c 10.0.0.50 –p 
6633 –t 100.  Here 100 represent time in seconds. 

Step 5: Next step is filtering the logged file for 
obtaining experiment specific results. We can check the 
content of generated file using command: more result. For 
filtering we have used grep and awk command: cat result | 
grep sec | head -100 | tr – “ ” | awk ‘{print $3,$5}’ > 
myresults. Here, ‘myresults’ is the name of file where 
filtered results are stored which can be checked for 
content using ‘more’ command: more myresults. 

Step 6: Next step is to plot the graphs of obtained 
results for which Gnuplot is used in this experiment. To 
start gnuplot tool, the command is: gnuplot. Next, plot the 

content of ‘myresults’ file using command: plot 
“myresults” title “Tcp_Flow” with linespoints.  

In the same way, using the python script all other 
scenarios are developed as stated in Table 1 with 
configuration provided in Table 2. 

 One by one each scenario is tested using the step 1 to 
step 6 and results are obtained which is discussed in 
upcoming section of performance analysis. Kindly note 
that simulation execution of experiment needs RAM 
support not less than 6GB, especially for the simulations 
having nodes more than 200.   

IV. PERFORMANCE ANALISIS 

 This section provides the results obtained during the 
experimentation. With this paper, authors have made 
attempt to address the scalability features of the Ryu 
controller by implementing six scenarios in simulation 
experimental environment which will be discussed in this 
section in detail. This section has total 6 graphs which 
represents results for each scenario listed in Table 1. To 
evaluate performance of Ryu controller in incremental 
experiment with respect to scalability, throughput is the 
best matching parameter which will suffice our aim of 
experiment. Thus, in this section, we have limited the 
study to throughput only.  
 Graph of Fig. 3 shows the results obtained by 
performing transmission between client and server having 
the strength of nodes supported by network limited to 50. 
It is observed from the graph that average throughput 
stays at 1.65 Gbps. Graph of Fig. 3 also shows that the 
variations are very high within the duration of 100 sec of 
simulation. 
 

 
Fig. 3. Throughput for scenarios with 50 nodes.  

Similarly, the stability is a big concern if we look at 
the Fig. 4 which demonstrates the throughput graph of 
scenario with 100 nodes. It is even worst as far as stability 
is concerned in comparison of Fig. 3. Again, if observed 
well, Fig. 5 is a bit stable even in presence of number of 
nodes equal to 150.  However, there are few instances of 
highly volatile behavior of the network in Fig.5. Fig. 6 
graph describes again excessive variations in the 
throughput when the number of nodes reaches to 200. 
Once again, if we observe the graph shown in Fig. 7 



having 250 nodes, it seems to be stable in comparison of 
graph of Fig. 4 and Fig. 6 with 100 and 200 nodes. Still 
few instances does not prove it better in comparison of 
Fig.3 and Fig.5 with 50 and 150 nodes. Once, the final 
result of 300 nodes scenario was obtained, it was observed 
that throughput was increasing will tolerance of few 
instance of dropping. For few seconds, simulation was 
running well but, by the end of reaching to middle of the 
simulation time, slowly, dropping instances were 
observed frequently leading to degraded performance in 
the second half of the simulation run.     

 

Fig. 4. Throughput for scenarios with 100 nodes.  

 

Fig. 5. Throughput for scenarios with 150 nodes.  

 

Fig. 6. Throughput for scenarios with 200 nodes.  

 

Fig. 7. Throughput for scenarios with 250 nodes.  

 

Fig. 8. Throughput for scenarios with 300 nodes.  

With these graphs shown from Fig. 3 to Fig. 8, it was 
observed that Ryu is very much resource demanding 
controller which uses CPU and RAM utilization to 
optimum and thus results to degraded performance in 
presence of increasing number of nodes. Even after 
checking the performance with high end systems, the 
resource utilization was observed to be too high in 
comparison of scale of nodes support provided by the 
controller. We limited the study to 300 nodes because 
with even i7 processors with 8GB RAM resources were 
proved not enough during the execution of 
experimentation. 

V. CONCLUSION AND FUTURE SCOPE 

With this paper, authors have made attempt to address 
the scalability features of the Ryu controller by 
implementing various diversified scenarios in simulation 
experimental environment. In this paper, authors have 
provided the clear idea how to create experimental test 
bed along with analysis of obtained statistical results 
keeping the throughput performance as the central focus. 
We would conclude this paper by providing negative sign 
to move forward to the researchers who are looking for 
implementation of their idea over Ryu Controller in the 
domain of Software Defined Networks without any doubt. 



 

The controller not just provide the simulation 
experimental test bed support but, also provides clear 
explanation for analysis of obtained statistics after the 
experiments are simulated. The tools suggested, 
simulated, shown through figures and graphs will help the 
research community to further conduct such experiments 
in the future by implementing their desired parameters 
though these experiments to improvise Ryu Controllers 
which is required as far as current performance is 
concerned. This paper will also address the programmers, 
developers and new bees in the area of SDN, who are 
looking forward to touch the practical aspects of the SDN 
by following implementation details provided in the 
paper. Further, the research team will come up with few 
more papers on implementation of other SDN controllers 
in the coming future. The team also has planned to 
compare the controllers of SDN, once all the stellar 
controllers are implemented and experimented by them. 
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