
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Asadollahi, Saleh, Goswami, Bhargavi, & Sameer, Mohammed
(2018)
Ryu controller’s scalability experiment on software defined networks.
In Proceedings of the 2018 IEEE International Conference on Current
Trends in Advanced Computing (ICCTAC 2018).
Institute of Electrical and Electronics Engineers Inc., United States of
America, pp. 1-5.

This file was downloaded from: https://eprints.qut.edu.au/197782/

c© IEEE

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1109/ICCTAC.2018.8370397

https://eprints.qut.edu.au/view/person/Goswami,_Bhargavi.html
https://eprints.qut.edu.au/197782/
https://doi.org/10.1109/ICCTAC.2018.8370397

Ryu Controller’s Scalability Experiment on
Software Defined Networks

Saleh Asadollahi
Computer Science

Saurashtra University
Rajkot, India

asadollahimcitp@gmail.com

Bhargavi Goswami,
Computer Science
Christ University
Bangalore, India

bhargavigoswami@gmail.com

Mohammed Sameer
Computer Science
Christ University
Bangalore, India

sameersam9519@gmail.com

Abstract—Software defined networks is the future of

Computer networks which claims that traditional networks
are getting replaced by SDN. Considering the number of
nodes everyday connecting to the global village of internet, it
becomes inevitable to adapt to any new technology before
testing its scalability in presence of dynamic circumstances.
While a lot of research is going on to provide solution as
SDN to overcome the limitations of the traditional network,
it gives a call to research community to test the applicability
and caliber to withstand the fault tolerance of the provided
solution in the form of SDN Controllers. Out of the existing
multiple controllers providing the SDN functionalities to the
network, one of the basic controllers is Ryu Controller. This
paper is a contribution towards performance evaluation of
scalability of the Ryu Controller by implementing multiple
scenarios experimented on the simulation tool of Mininet,
Ryu Controller and iPerf. Ryu Controller is tested in the
simulation environment by observing throughput of the
controller and checked its performance in dynamic
networking conditions over Mesh topology by exponentially
increasing the number of nodes until it supported tested on
high end devices.

Keywords— Software Defined Netwoks (SDN), Mininet,
OpenFlow, Ryu, iPerf, Gnuplot

I. INTRODUCTION

IoT, 4G, 5G, VANET [1], etc, are all thirst area of
network communication that offer more comfort in our
life in one side and make computer network complex in
other side by adding more and more users to Internet.
Huge Data Center infrastructure build before 10 years are
still running on complex traditional network equipment
such as routers and switches, where administrator are
supposed to implement high level policy through low
level and pre-defined commands that any company such
as Cisco, HP, Juniper who have their own commands and
configuration method [2]. Lack of programmability was
resisting programmers, researcher and developers from
writing the custom applications for networks. As a
solution, implementing the idea of research with new
approach in the area of network is the major focus of
researchers to look deeper to this complex equipment
architecture and that is why SDN was born [3].

According to Traditional Architecture, Forwarding
plane, Control plane and Management plane all are tied up
together in traditional routers. Combination of these three
planes in a same chassis makes it complex and tough to
manage. Software Defined Networks simplifies traditional
routers with main idea of separation of control plane from
data plane, and provide a centralized control by means of
controllers for whole or a part of networks.

According to SDN Architecture, devices are composed
of only forwarding plane that includes a) logical and
physical ports, b) flow and group tables. Based on the
configuration specifications of control plane (brain), flow
tables get filled up by controller. Once device receives
new packet, look into the flow tables and take proper
action. In case of lack of information, forwarding device
sends the packet to the controller or drops the packet base
on policy. In accordance to the controller’s configuration,
new records get added to the flow tables and further
forwarding of the packets happens independently in next
cycles.

The key component in SDN is Controller where, POX
[4], OpenDaylight [5], Floodlight [6], Beacon [7], Ryu
[8], NOX [9], etc, are few of them with different features
that were compared by the team of authors in [10].

There are two another major components: 1)
northbound interface, who is responsible to provide an
abstract for application layer. It also hides the detail of
down layer and makes writing the network management
and control application easier for developer. 2)
Southbound interface, which provides communication
between the controller and forwarding devices. OpenFlow
[11] is the most well documented SDN protocol that is
used majorly in research community with current version
of 1.5. Opflex [12], NETCONF [13], ForCES [14], POF
[15] are other options for southbound interface.

Separating the forwarding plane from control plan and
taking it on a remote system will generate questions on its
capabilities of scaling on diverse scenarios. To throw light
upon the scalability of the controller and checking the
behavior of controllers in multiple diversified networking
situations, the authors of this paper presents here the
experiments with criteria of scalability and performance
of the controllers.

The paper is formed in the following manner. Section
II is providing helicopter view on Ryu controller. Section
III provides details about the simulation test bed set to
perform the experiments on scalability with diversified
networking conditions. Section IV provides the obtained
experimental results and evaluation of performance
statistics followed by conclusion and references.

II. RYU SDN CONTROLLER

The Ryu Controller is open source and under
the Apache 2.0 license, written completely based on
Python, supported and deployed by NTT cloud data
centers. Main source code can be found on GitHub,
provided and supported by Open Ryu community. It
supports NETCONF and OF-config network management
protocols, as well as OpenFlow. Considering the
compatibility, OpenFlow switches, Hewlett
Packard, IBM, and NEC are tested and certified with Ryu
controller. It supports the OpenFlow protocol up to the
latest version 1.5.

Fig. 1. Ryu SDN controller architecture

Same as other SDN Controllers, Ryu is also creating
OpenFlow packets, managing events related to incoming
and outgoing packets. It has abundant list of libraries
which supports packet processing operations. In respect of
support for southbound protocols, Ryu is working hand in
hand with protocols such as XFlow (Netflow and Sflow),
OF-Config, NETCONF, Open vSwitch Database
Management Protocol (OVSDB), etc. VLAN, GRE and
VLAN, etc is also supported by Ryu Packet Libraries.

Let us have a look on Ryu Managers and Core-
Processes. The main executable is Ryu Manager. Ryu
runs and listens to peculiar IP and Port, eg. 0.0.0.0:6633 to
connect to Ryu manager which uses RyuApp class using
inheritance where, the Ryu messaging service does
support components developed in other languages.

Ryu is distributed with multiple applications such as
a simple_switch, router, isolation, firewall, GRE tunnel,
topology, VLAN, etc. Ryu applications are single-
threaded entities, which implement various functionalities.
Ryu applications send asynchronous events to each other.
The functional architecture of a Ryu application is shown
in Figure 2.

To preserve the order of events, each Ryu application
has a receive queue (FIFO) for events FIFO. The thread’s
main loop pops out events from the receive queue and

calls the appropriate event handler. Hence, the event
handler is called within the context of the event-
processing thread, which works in a blocking fashion, i.e.,
when an event handler is given control, no further events
for the Ryu application will be processed until control is
returned.

III. SIMULATION ENVIRONMENT

As a simulator, Mininet [16] is used and as a controller
Ryu. Mininet and Ryu controller, both are installed in a
same virtual machine. The switch used in this experiment
is OpenFlow kernel switch, also known as Open vSwitch
or OVSK-Switch [17] by enabling OpenFlow protocol
mode.

Python is used as scripting language to write the
topology instead to accepting the automatic decision of
number of host connecting to switch or default command
provided by Mininet. The code of the python script is
provided in Fig. 2. Python script of customized topology
includes the specification of host to switch, switch to
switch and switch to Ryu controller.

from mininet.topo import Topo
class MyTopo(Topo):
 "Simple topology example."
 def __init__(self):
 "Create custom topo."
 # Initialize topology
 Topo.__init__(self)
 #Add switches
 for s11Switch in range(1):
 s1Switch = self.addSwitch('s1')
 for s22witch in range(1):
 s2Switch = self.addSwitch('s2')
 self.addLink(s1Switch, s2Switch)
 for s33witch in range(1):
 s3Switch = self.addSwitch('s3')
 self.addLink(s2Switch, s3Switch)
 self.addLink(s1Switch, s3Switch)
 for s44witch in range(1):
 s4Switch = self.addSwitch('s4')
 self.addLink(s1Switch, s4Switch)
 self.addLink(s2Switch, s4Switch)
 self.addLink(s3Switch, s4Switch)
 for s55witch in range(1):
 s5Switch = self.addSwitch('s5')
 self.addLink(s1Switch, s5Switch)
 self.addLink(s2Switch, s5Switch)
 self.addLink(s3Switch, s5Switch)
 self.addLink(s4Switch, s5Switch)

 for s66witch in range(1):
 s6Switch = self.addSwitch('s6')
 self.addLink(s1Switch, s6Switch)
 self.addLink(s2Switch, s6Switch)
 self.addLink(s3Switch, s6Switch)
 self.addLink(s4Switch, s6Switch)
 self.addLink(s5Switch, s6Switch)
 # Add hosts and link to switches
 for h1_ in range(0,30):
 h1=self.addHost('h1_%s' % (h1_+1))
 self.addLink(h1, s1Switch)
 for h2_ in range(30,60):
 h2=self.addHost('h2_%s' % (h2_+1))
 self.addLink(s2Switch, h2)
 for h3_ in range(60,90):
 h3=self.addHost('h3_%s' % (h3_+1))
 self.addLink(s3Switch, h3)
 #for h4_ in range(30,40):
 #h4=self.addHost('h4_%s' % (h4_+1))
 #self.addLink(s4Switch, h4)
 for h5_ in range(90,120):
 h5=self.addHost('h5_%s' % (h5_+1))
 self.addLink(s5Switch, h5)
 for h6_ in range(120,150):
 h6=self.addHost('h6_%s' % (h6_+1))
 self.addLink(s6Switch, h6)

topos = { 'mytopo': (lambda: MyTopo()) }

Fig. 2. Python script for generating scenarios

To evaluate the statistics related to the performance of
controller, mesh topology is implemented over 6 switches
with five different scenario having difference in only
number of nodes connected to each peripheral switch. As
an effort to implement and test the controller’s
performance using scalability, we created a custom
topology with five different scenarios having difference in
the number of nodes as shown in Table 1.

Table1: Scenario Table for Experiment

Scenario Number of switch Number of nodes

Scenario 1 6 50

Scenario 2 6 100

Scenario 3 6 150

Scenario 4 6 200

Scenario 5 6 250

Scenario 6 6 300

Table2: Configuration Specification for Experiments

Ubuntu 16.04.3 LTS

Mininet 2.2.1 0dl

OpenFlow (0x1:0x4)1.3

iPerf 3.0.7

CPU Intel Core i5 520M

RAM 6GB DDR3

Now the step by step procedure is followed to perform
the experiment on Ryu using Mininet. For obtaining
statistics tool used is iPerf.

Step 1: The first step is to run the Ryu controller using
the script. Here, the name of application program is
simple_switch_stp_13.py. Simple_switch_stp_13 is an
application program to develop spanning tree scenario
because, we are using mesh topology and mesh topology
has loops. To avoid loops we need spanning tree and thus,
stplib.py library is used which performs Bridge Protocol
Data Unit BPDU packet exchange. Before executing this
command, control must be in the folder of ryu. Now, we
provide Command:

./bin/ryu-manager ryu/app/simple_switch_stp_13.py

Step 2: Next step is to run the mininet mesh topology
script, by providing topology name and switch OVSK
with the following command: sudo mn --custom
~/mininet/examples/mymesh.py --topo=mytopo --mac --
controller remote --switch ovsk. Once the command is
executed, check the connectivity between all the hosts
using mininet Command: pingall.

Step 3: Now we define one client and one server
which is done by any two host of the developed network.
The command to perform this task is: xterm h1_1 h6_60.
We have used first and last host with xterm command.
This will open two terminal windows, one as client and
another as server. Check configuration details on both the
windows with command: ifconfig.

Step 4: Now we need to generate the traffic between
client and server and log the events using iPerf tool. First
we go to server window and enter the command: iPerf –s
–p 6633 –i 1 > result. Here, ‘result’ is the filename
provided to store the results. Once the server starts waits
for the client. Now at the client side, to generate traffic,
we need to provide IP address of the server with the port
address by following command: iPerf –c 10.0.0.50 –p
6633 –t 100. Here 100 represent time in seconds.

Step 5: Next step is filtering the logged file for
obtaining experiment specific results. We can check the
content of generated file using command: more result. For
filtering we have used grep and awk command: cat result |
grep sec | head -100 | tr – “ ” | awk ‘{print $3,$5}’ >
myresults. Here, ‘myresults’ is the name of file where
filtered results are stored which can be checked for
content using ‘more’ command: more myresults.

Step 6: Next step is to plot the graphs of obtained
results for which Gnuplot is used in this experiment. To
start gnuplot tool, the command is: gnuplot. Next, plot the

content of ‘myresults’ file using command: plot
“myresults” title “Tcp_Flow” with linespoints.

In the same way, using the python script all other
scenarios are developed as stated in Table 1 with
configuration provided in Table 2.

 One by one each scenario is tested using the step 1 to
step 6 and results are obtained which is discussed in
upcoming section of performance analysis. Kindly note
that simulation execution of experiment needs RAM
support not less than 6GB, especially for the simulations
having nodes more than 200.

IV. PERFORMANCE ANALISIS

 This section provides the results obtained during the
experimentation. With this paper, authors have made
attempt to address the scalability features of the Ryu
controller by implementing six scenarios in simulation
experimental environment which will be discussed in this
section in detail. This section has total 6 graphs which
represents results for each scenario listed in Table 1. To
evaluate performance of Ryu controller in incremental
experiment with respect to scalability, throughput is the
best matching parameter which will suffice our aim of
experiment. Thus, in this section, we have limited the
study to throughput only.
 Graph of Fig. 3 shows the results obtained by
performing transmission between client and server having
the strength of nodes supported by network limited to 50.
It is observed from the graph that average throughput
stays at 1.65 Gbps. Graph of Fig. 3 also shows that the
variations are very high within the duration of 100 sec of
simulation.

Fig. 3. Throughput for scenarios with 50 nodes.

Similarly, the stability is a big concern if we look at
the Fig. 4 which demonstrates the throughput graph of
scenario with 100 nodes. It is even worst as far as stability
is concerned in comparison of Fig. 3. Again, if observed
well, Fig. 5 is a bit stable even in presence of number of
nodes equal to 150. However, there are few instances of
highly volatile behavior of the network in Fig.5. Fig. 6
graph describes again excessive variations in the
throughput when the number of nodes reaches to 200.
Once again, if we observe the graph shown in Fig. 7

having 250 nodes, it seems to be stable in comparison of
graph of Fig. 4 and Fig. 6 with 100 and 200 nodes. Still
few instances does not prove it better in comparison of
Fig.3 and Fig.5 with 50 and 150 nodes. Once, the final
result of 300 nodes scenario was obtained, it was observed
that throughput was increasing will tolerance of few
instance of dropping. For few seconds, simulation was
running well but, by the end of reaching to middle of the
simulation time, slowly, dropping instances were
observed frequently leading to degraded performance in
the second half of the simulation run.

Fig. 4. Throughput for scenarios with 100 nodes.

Fig. 5. Throughput for scenarios with 150 nodes.

Fig. 6. Throughput for scenarios with 200 nodes.

Fig. 7. Throughput for scenarios with 250 nodes.

Fig. 8. Throughput for scenarios with 300 nodes.

With these graphs shown from Fig. 3 to Fig. 8, it was
observed that Ryu is very much resource demanding
controller which uses CPU and RAM utilization to
optimum and thus results to degraded performance in
presence of increasing number of nodes. Even after
checking the performance with high end systems, the
resource utilization was observed to be too high in
comparison of scale of nodes support provided by the
controller. We limited the study to 300 nodes because
with even i7 processors with 8GB RAM resources were
proved not enough during the execution of
experimentation.

V. CONCLUSION AND FUTURE SCOPE

With this paper, authors have made attempt to address
the scalability features of the Ryu controller by
implementing various diversified scenarios in simulation
experimental environment. In this paper, authors have
provided the clear idea how to create experimental test
bed along with analysis of obtained statistical results
keeping the throughput performance as the central focus.
We would conclude this paper by providing negative sign
to move forward to the researchers who are looking for
implementation of their idea over Ryu Controller in the
domain of Software Defined Networks without any doubt.

The controller not just provide the simulation
experimental test bed support but, also provides clear
explanation for analysis of obtained statistics after the
experiments are simulated. The tools suggested,
simulated, shown through figures and graphs will help the
research community to further conduct such experiments
in the future by implementing their desired parameters
though these experiments to improvise Ryu Controllers
which is required as far as current performance is
concerned. This paper will also address the programmers,
developers and new bees in the area of SDN, who are
looking forward to touch the practical aspects of the SDN
by following implementation details provided in the
paper. Further, the research team will come up with few
more papers on implementation of other SDN controllers
in the coming future. The team also has planned to
compare the controllers of SDN, once all the stellar
controllers are implemented and experimented by them.

REFERENCES

[1] Gowsami, B. Asadollahi, S., (2016). “Novel Approach to
Improvise Congestion Control over Vehicular Ad Hoc
Networks (VANET)” Proceedings of the 10th INDIACom;
International Conference on “Computing for Sustainable Global
Development”, March 2016. Delhi, India. IEEE Xplore ISBN: 978-
9-3805-4421-2

[2] Gowsami, B. Asadollahi, S., (2017). “Enhancement of LAN
Infrastructure performance for data center in presence of
Network Security” Proceedings of Computer Society of India,
Springer, Next-Generation Networks pp 419-432 ISBN: 978-981-
10-6005-2

[3] Asadollahi, S., Gowsami, B. (2017). Revolution in Existing
Network under the Influence of Software Defined Network.
Proceedings of the INDIACom 11th, Delhi, March 1-3.2017 IEEE
Conference ID: 40353

[4] McCauley, M. (2012). POX, from http://www.noxrepo.org/

[5] Asadollahi, S., Gowsami, B. (2017). Implementation of SDN using
OpenDaylight Controller. Proceeding of An International
Conference on Recent Trends in IT Innovations - Tec'afe 2017.
ISSN(Online) : 2320-9801

[6] Project Floodlight, Floodlight. (2012). from
http://floodlight.openflowhub.org/

[7] Erickson, D. (2013). The Beacon OpenFlow controller.
Proceedings of ACM SIGCOMM Workshop Hot Topocs Software
Defined Network II, 13-18 p, 2013.

[8] Nippon Telegraph and Telephone Corporation, RYU network
operating system, 2012, from http://osrg.github.com/ryu

[9] Gude al, N. (2008). NOX: Towards an operating system for
networks. ACM SIGCOMM - Computer Communication Revie.
vol. 38, no. 3, pp. 105–110.

[10] Asadollahi, S., Gowsami, B. (2017). Software Defined Network,
Controller Comparison. Proceedings of Tec'afe 2017,Vol.5,
Special Issue 2, April 2017. ISSN: 2320-9798.

[11] McKeown et al, N. (2008). OpenFlow: Enabling innovation in
campus networks. ACM SIGCOMM - Computer Communication
Revie, vol. 38, no. 2, p. 69–74.

[12] Smith et al, M. (2014). OpFlex control protocol, Internet
Engineering Task Force, from : http://tools.ietf.org/html/draft-
smith-opflex-00

[13] Enns, R., Bjorklund, M., Schoenwaelder, J., Bierman, A. (2011).
Network configuration protocol (NETCONF). Internet Engineering
Task Forc, form http://www.ietf.org/rfc/rfc6241.txt

[14] Doria et al, A. (2010). Forwarding and control element separation
(ForCES) protocol specification. Internet Engineering Task Forc,
from http://www.ietf.org/r/fc/rfc5810.txt.

[15] Song, H. (2013). Protocol-oblivious forwarding: Unleash the
power of SDN through a future-proof forwarding plane.
Proceedings of ACM SIGCOMM Workshop Hot Topics Softw
Defined Netw II. p. 127–132.

[16] Lantz, B. Heller, and N. McKeown. (2010). A network in a laptop:
Rapid prototyping for software-defined network. Proceedings of
ACM SIGCOMM Workshop Hot Topics Netw, 19th. p. 19:1–19:6

[17] B. Pfaff and B. Davie. (2013). The Open vSwitch database
management protocol. Internet Engineering Task Force, RFC 7047,
from http://www.ietf.org/rfc/rfc7047.txt

