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Abstract: This study reports the efficient use of a direct

laser modulated response measured with the return-to-

zero coding scheme in optical transmission systems. The

measured direct laser modulated response has a bit rate

of 1.2 Gbps for an optical fiber cable of a transmission

length of 10 km. The eye diagram analyzer is used to cal-

culate the maximum quality factor and minimum bit er-

ror rate of the proposed model. The maximum quality fac-

tor is 531.2, and the minimum bit error rate tends to zero

for the same optical fiber channel length compared with

that of the previous model. The proposed model provides

better results than the previous model. The figures of the

proposed model are more stable than those of its previous

counterpart. Bit error rate approximately tends to zero in

the proposed model.

Keywords: Max. Q-factor, Optical fiber channel, Laser re-

sponse, Return-to-zero coding, Cable length

1 Related works

Many recent studies have proposed designs to enhance

transmission capacity to meet end-user demand for

broadband services in social networking, high definition

video-on-demand, and cloud storage and computing. To

meet this goal, optical injection technology has emerged

to serve as multiple wavelength-divisionśmultiplexed
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(WDM) transmitters.WDMpassive optical networks (WDN-

PONs) are considered a promising solution for broadband

PONs, in which the capacity of optical networks is en-

larged by transmitting different wavelengths at the same

time. Cavity design was considered for matching the need

for the dense wavelength-divisionśmultiplexed channel

spacing in high speed optical networks [1]. Return-to-zero

(RZ) andnon-return-to-zero (NRZ) data and its encoding re-

sponse have been investigated [2ś4]. Although substantial

efforts focusing on long-haul access networks are under-

way, the transmission distance is limited to approximately

20 km at a data rate of 10 Gb/s because of the chromatic

dispersion related to direct modulation [5].

Therefore, transmission distancewas accounted for in

these studies. Light source devices, especially tunable in-

jection lasers, play the most important role in this field [6ś

8]. In general, two kinds of devices are used as light

sources: lasers and light-emitting diodes. In addition, light

canbeproduced in twoways: by spontaneous emission [9ś

14] and simulated emission. Laser light is an example of

the simulated emission of radiation used for light ampli-

fication, whereas fluorescent light is an example of spon-

taneous emission of radiation. There are many types of

lasers, including semiconductor laser diodes, fiber lasers,

and gas lasers [11ś17]. Semiconductor laser diodes are un-

suitable for application over extended distances or for

wavelength multiplexing. Fiber lasers exhibit important

characteristics such as high power output, low noise, and

preselected wavelength. A gas laser is a simple type of

laser, but it is not used in modern communications [18ś

24]. Stimulated emission by a recombination of injected

carriers has been encouraged for semiconductor injec-

tion lasers [25ś30]. The provision of an optical cavity in

the crystal structure provides photon feedback [15, 31ś

33]. This characteristic provides numerous advantages for

injection lasers over other semiconductor laser sources.

Good spatial coherence allows the output to be focused by

a lens onto a spot with a greater intensity than dispersed

unfocused emission [34ś37]. This permits efficient cou-

pling of the optical output power into the fiber even when

https://doi.org/10.1515/eng-2020-0066


RZ Line Coding Scheme With Direct Laser Modulation for Upgrading Optical Transmission Systems | 547

Figure 1: Simulation model used in this work.

it has a low numerical aperture. Spatial fold matching to

the optical fiber can be obtained with the laser source but

not with an incoherent emitter [38ś40].

2 Model description and research

method

The previous model [13] comprises three main parts,

namely a transmitter with a laser rate equation as the opti-

cal source, a pseudo-random bit sequence as a generator,

and anNRZ pulse code. In the proposedmodel, we replace

the laser rate equation with two directly modulated lasers

passing through a wavelength-division multiplexing mul-

tiplexer (WDM MUX 2 × 1). We also replace the NRZ pulse

code with the RZ pulse code, and the pseudo-random bit

sequence is substitutedbyauser-definedbit sequence gen-

erator. The receiver of the previous model contains a pho-

todetector PIN and low-pass Bessel filter [13], but in the

proposed model we replace the photodetector PIN with a

photodetector avalanche photodiode (APD) and the Bessel

filter with a low-pass Butterworth filter.

An eye diagram analyzer is used to calculate the max-

imum quality factor (max Q-factor) and the minimum bit

rate (BER). To calculate these two parameters, we must

connect the three inputs of the eye diagram analyzer.

In this system, we connect the first input with the user-

defined bit sequence generator at the transmitter. The sec-

ond input is connected with the RZ pulse code (also at the

transmitter), and the third input is connectedwith the low-

pass Butterworth filter at the receiver.

3 Performance analysis with

discussions

The simulation results are obtained using the clarified sim-

ulation parameters in Table 1. Figure 1 shows the differ-

ences between theproposedandpreviousmodels. Thepro-

posed model comprises three parts. The first part is com-

posed of a transmitter that contains a user-defined bit se-

quence generatorwith a bit rate of 1.2 Gbps anddirect laser

modulation source operated at 1552.52 nm (i.e., a third-

generation fiber optics system) as the optical source.
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Table 1: List of operating simulation parameters for this study.

Value/unit Main parameters Components

1552.52 nm Operating wavelength Directly Modulated Laser Measured

10 dBm Operating power

10 dB Extinction ratio

300 mA Maximum current

1.2 Gbps Bit rate User-defined bit sequence generator

Exponential Rectangle shape RZ pulse code

10 GHz Bandwidth WDMMUX 2×1

10 km Length Optical fiber

0.2 dB/km Attenuation

1552.52 nm Reference wavelength

16.75 Ps/nm/km Dispersion

3 Gain APD

10 nA Dark current

1 A/W Responsivity

0 dB Loss Low Pass Butterworth Filter

100 dB Depth

The system supports a bit rate of up to 5 Gbps with the

RZ pulse code. These ingredients of the transmitter will

repeat to pass it with the other ingredients in a cascade

through aWDMMUX 2 × 1. The transmitter passes through

a 10-kmślong optical fiber that serves as the channel. The

chosen length provides a good result.

The receiver contains the photodetector APD, which

converts the light signal into electrical signals. It is oper-

ated at a gain of 3 and is connected to the low-pass But-

terworth filter, which is used to remove any ripples from

themain signal. The eye diagram analyzer is usedwith the

low-pass Butterworth filter to remove the ripples from the

electrical signal originating from the avalanche light de-

tector. The second input is taken from the RZ pulse code,

and the third input is sourced from the data generator (the

user-defined bit sequence generator). The eye diagram an-

alyzer is used to calculate the max Q-factor and the mini-

mum BER. The simulation variables used in this study are

provided in Table 1.

Figure 2 clarifies the relation between themaxQ-factor

and the fiber cable length. When the cable length in-

creases, the max Q-factor clearly decreases. Moreover, the

direct modulated laser source provides a better result than

the laser rate equations for the same fiber length. The re-

sults indicate that the max Q-factor is 531.12 and the min-

imum BER tends to zero for a fiber length of 10 km. The

max Q-factor is 387.17 and the minimum BER tends to zero

for a fiber length of 15 km. The max Q-factor is 260.169

and the minimum BER tends to zero when the fiber length

equals 20 km. At a fiber length of 25 km, the max Q-factor

Figure 2:Max Q-factor versus cable length as per the previous and

proposed models.

is 239.715, and the minimum BER tends to zero. The max

Q-factor is 148.3 and theminimumBER tends to zero when

the fiber length is 30 km.

Figure 3 shows the results of the calculations by the

eye diagram analyzer with the directly modulated laser

source along a cable length of 10 km. The max Q-factor is

531.12, and the minimum BER tends to zero. Both results

apply to a cable length of 10 km as well as to a light source

bit rate of 1.2 Gbps. Figure 4 displays the results of the

calculations by the eye diagram analyzer and the directly

modulated laser source for a cable length of 15 km. The

maxQ-factor is 348.17, and theminimumBER tends to zero.

These results apply for a cable length of 15 km at a bit rate

of 1.2 Gbps for the generator of a transmitter that passed
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Figure 3: Results of the eye diagram analyzer with the directly

modulated laser source along a cable length of 10 km.

Figure 4: Results of the eye diagram analyzer with the directly

modulated laser source along a cable length of 15 km.

through the optical source to the receiver within the fiber

optical cable.

Figure 5 shows the max Q-factor calculated by the eye

diagram analyzer. The max Q-factor is 260.169, and the

minimum BER tends to zero. These values apply to a cable

length of 20 km. Thus, the system provides good results

at a length of 20 km. Figure 6 displays the results of the

calculations by the eye diagram analyzer with the directly

modulated laser source along a cable length of 25 km. The

max Q-factor is 239.715, and the minimum BER is 0. These

results apply for a cable length of 25 km, and the bit rate of

the generator at the transmitter is 1.2 Gbps.

Figure 7 presents the results of the calculations by the

eye diagram analyzer with the directly modulated laser

Figure 5: Results of the eye diagram analyzer with the directly

modulated laser source along a cable length of 20 km.

Figure 6: Results of the eye diagram analyzer with the directly

modulated laser source along a cable length of 25 km.

Table 2:Max. Q-factor dependence on cable length.

Max. Q factor

(Proposed

model)

Max. Q factor

(Previous model [5])

Cable length

531.12 16.59 10 km

348.17 10.85 15 km

260.16 8.125 20 km

239.71 7.468 25 km

148.3 4.625 30 km

source for a cable length of 30 km. The max Q-factor is

148.3 and the minimum BER tends to zero. These results

apply to a cable length of 30 km and a bit rate of 1.2 Gbps.
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Figure 7: Results of the eye diagram analyzer with the directly

modulated laser source along a cable length of 30 km.

Figure 8:Max Q-factor versus fiber optic cable length for the pro-

posed model.

The proposedmodel thus outperforms the previousmodel

with respect to the max Q-factor for a cable length of 30

km. These results are calculated by an electrical visualizer,

namely the eye diagramanalyzer,whichuses the electrical

signal filtered by the low-pass Butterworth filter.

Figure 8 shows how the max Q-factor varies by fiber

cable length for lengths of up to 270 km. The results indi-

cate that the max Q-factor degrades with the increase in

cable length. The max Q-factor is approximately 7.543 for

long distances (of up to 270 km), indicating the need for

optical amplifiers. The dependence of the max Q-factor on

cable length is displayed in Table 2 for the proposed and

previous models.

4 Conclusion

This study demonstrated the efficient employment of a di-

rectly modulated laser source with the RZ coding scheme

to upgrade an optical transmission system with respect

to the max Q-factor and minimum BER. The max Q-factor

for the proposed simulationmodel reached 148.3, whereas

that of the previous model was 4.625 for the same optic

fiber channel length (up to 30 km). The proposedmodel al-

lows the cable fiber length to be extended to up to 270 km,

the corresponding max Q-factor and minimum BER being

7.543 and 2.543 × 10−12, respectively.
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