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ABSTRACT
In this paper, we consider the problem of maximizing the
throughput of Byzantine agreement, for two cases: i. com-
munication link’s capacity is fixed; and ii. the sum capacity
of all links in the system is fixed. Byzantine agreement is a
classical problem in distributed computing, with initial so-
lutions presented in the seminal work of Pease, Shostak and
Lamport. The notion of throughput here is similar to that
used in the networking/communications literature on uni-
cast or multicast traffic. In case i, we characterize the max-
imum achievable agreement throughput in four-node net-
works. In case ii, we identify sufficient condition for achiev-
ing agreement throughput R.

Categories and Subject Descriptors
C.2.4 [COMPUTER-COMMUNICATION NET-
WORKS]: Distributed Systems

General Terms
Algorithms, Reliability, Security, Theory

Keywords
Byzantine, agreement, wireless

1. INTRODUCTION
We consider the problem of characterizing the capacity

of Byzantine agreement, given the link capacity or sum ca-
pacity of the system is limited. Byzantine agreement is a
classical problem in distributed computing, with initial so-
lutions presented in the seminal work of Pease, Shostak and
Lamport [1]. Many variations on the Byzantine agreement
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problem have been introduced in the past, with some of the
variations also called consensus. We will use the following
definition of Byzantine agreement: Consider a network with
one node designated as the sender or source (S), and the
other nodes designated as the peers. The goal of Byzantine
agreement is for all the fault-free nodes to “agree on” the
value being sent by the sender, despite the possibility that
some of the nodes may be faulty. In particular, the following
conditions must be satisfied:

• Agreement: All fault-free peers must agree on an
identical value.

• Validity: If the sender is fault-free, then the agreed
value must be identical to the sender’s value.

• Termination: Agreement between fault-free peers is
eventually achieved.

Our goal in this work is to design algorithms that can
achieve maximum throughput, of agreement. When defining
throughput, the “value” referred in the above definition of
agreement is viewed as an infinite sequence of information
bits. We assume that the information bits have already been
compressed, such that for any subsequence of length l > 0,
the 2l possible sequences are sent by the sender with equal
probability. Thus, no set of information bits sent by the
sender contains useful information about other bits. This
assumption comes from the observation about “typical se-
quences” in Shannon’s work [3].

We also adopt the notion of channel capacity from the in-
formation theory literature [3]: tightest upper bound on the
amount of information that can be reliably transmitted over
a communications channel. Basically, for a link with capac-
ity z bits/unit time, by definition of link capacity, at most z
information bits can be“sent”per unit time - independent of
how the bits are encoded (e.g. the bits could be encoded as
a specific waveform, or as silenced interval). In the existing
works on Byzantine agreement, the capacity of links between
the nodes are assumed to be infinite implicitly. To the best
of our knowledge, we are the first one to study the problem
of Byzantine agreement when the links in the network have
finite, and maybe different, capacity.

At each peer, we view the agreed information as being
represented in an array of infinite length. Initially, none of
the bits in this array at a peer have been agreed upon. As
time progresses, the array is filled in with agreed bits. In
principle, the array may not necessarily be filled sequentially.
For instance, a peer may agree on bit number 3 before it is
able to agree on bit number 2. Once a peer agrees on any
bit, that agreed bit cannot be changed.

We assume that an agreement algorithm begins execution
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at time 0. The system is assumed to be synchronous. In
a given execution of an agreement algorithm, suppose that
by time t all the fault-free peers have agreed upon bits 0
through b(t)− 1, and at least one fault-free peer has not yet
agreed on bit number b(t). Then, the agreement throughput

is defined as limt→∞
b(t)
t
.

Capacity of agreement in a given network, for a given
sender and a given set of peers, is defined as the supremum
of all achievable agreement throughputs.

2. FIXED LINK CAPACITY
We first consider the problem under the constraint that

each point-to-point link in the system has a fixed finite ca-
pacity [2]. It is known that a network must contain at least
4 nodes for agreement to be achievable with a single Byzan-
tine failure. In this work, we only consider the case of 4
nodes when at most 1 node may suffer Byzantine failure.
The characterization of agreement capacity for the four-node
network is non-trivial and cannot be generalized to larger
networks directly. The design of capacity achieving algo-
rithms in larger networks (possibly with multiple failures) is
substantially more complex than the four-node case.

We consider a synchronous network of 4 nodes named S,
A, B and C, with node S acting as the sender, and the others
being the peers. At most one of these four nodes may be
faulty. The network is viewed as a directed graph, formed
by directed links between the nodes in the network, with
the capacity of each link being finite. The capacity of some
links may be 0, which implies that these links do not exist.
Let us call the incoming links at S as the uplinks (links AS,
BS and CS). We identify the following necessary conditions
for achieving agreement throughput of R bits/unit time.

• Necessary condition NC1: If any one peer is re-
moved from the network, the min-cut from the source
S to each remaining peer must be at least R.

• Necessary condition NC2: The max-flow to each
of the peers from the other peers, with the source re-
moved from the network, must be at least R.

• Necessary condition NC3: All incoming links to
the peers must exist (capacity> 0).

• Necessary condition NC4: The capacity of every
out-going link from S must be at least R, when there
is no uplink.

Our main results are the tightness of these conditions:

• With uplink(s): Agreement capacity of a four-node
network is the supremum over all throughputs R that
satisfy necessary conditions NC1, NC2, and NC3.

• With no uplink: Agreement capacity of a four-node
network is the supremum over all throughputs R that
satisfy necessary conditions NC1, NC2, NC3 and NC4.

2.1 Sketch of Capacity Achieving Algorithms
We prove our results by providing agreement algorithms

that can achieve throughput arbitrarily close to R, given
the corresponding conditions are satisfied. The algorithm
for the case of complete graphs is slightly different from the
one for incomplete graphs, and is easier to describe. For
brevity, we will only sketch the algorithm for the complete
graph. Interested readers are referred to our technical report
[2] for more details.

The proposed Byzantine agreement algorithm for the com-
plete graph proceeds in rounds. The units for rate R and

the various link capacities are assumed to be bits/time unit,
for a convenient choice of the time unit. We assume that
by a suitable choice of the time unit, the number R and the
various link capacities can be turned into integers. The algo-
rithm executes in multiple rounds, with the duration of each
round being approximately c time units. Note that in c time
units, a link with capacity z bits/time unit can carry z sym-
bols (or packets) from Galois field GF(2c). Computation is
assumed to require 0 time.

In Round 1, the source S transmits as many coded pack-
ets as possible to the peers, such that each coded packet is
a linear combination of R packets of data, and any subset of
R coded packets constitutes independent linear combina-
tions of the R data packets. As we know from the design of
Reed-Solomon codes, if c is chosen large enough, this linear
independence requirement can be satisfied. In round 2, each
peer relays as many distinct packets it receives from S in
round 1 to each of the other two peers. Then, each fault-
free peer checks if any node has misbehaved by trying to find
a unique solution for each subset of R packets from among
the packets received from the other three nodes in rounds 1
and 2. We can show that if a faulty node misbehaves, it will
be detected by at least one fault-free peer.

If a failure is detected, a broadcast phase is triggered,
and every node including S broadcasts all packets it has
sent and received during rounds 1 and 2 to the remaining 3
nodes, using the traditional Byzantine agreement algorithm,
in particular the algorithm by Pease, Shostak and Lamport
[1]. This is possible in the complete graphs. For incomplete
graphs with fewer uplinks, this part is more complicated and
is described in our technical report [2]. Based on the broad-
cast information, the fault-free nodes will be able to narrow
down the location of the faulty node into a set containing
at most 2 nodes. The operations after the first detection
are similar to what has been described above, except that
the schedule in round 2 may need to be modified depend-
ing on the narrowed down set of possibly faulty node. We
show that the faulty node will be identified if it misbehaves
for more than a finite number of times [2]. Once the faulty
node is identified, each fault-free peer can recover the correct
data from the packets from the other two fault-free nodes,
or terminates the algorithm if S is faulty.

In achieving throughput R, it will be necessary to have
multiple “generations” of packets in the network, with the
algorithm operating in a pipelined manner (one round per
pipeline stage). Agreement algorithm for one new gener-
ation of data of size Rc bits (or R symbols from GF(2c))
starts per round. By using a suitably large c, the overhead
for disseminating detection results and a finite number of
broadcast phases diminishes to 0 as time goes to infinity.
Hence, the throughput can be made arbitrarily close to R.

2.2 Discussion
While NC1 and NC2 can be easily generalized to larger

networks with multiple failures, they are not sufficient for
networks with more than 4 nodes. The following condition
must also be satisfied for achieving throughput R:

• Necessary condition NC5: If any node is removed
from the network, the sum capacity of all links in both
direction on any cut must be at least R.

NC5 is implied by NC1 and NC2 in four-node networks, but
not in larger networks.
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3. FIXED SUM CAPACITY
The communication model we used in [2] assumes commu-

nications over different links are point-to-point, and will not
interfere with each other, which is usually true in wired net-
works but not in wireless networks. The wireless medium
has two main characteristics that differentiate it from the
wire medium: (1) broadcast: the transmissions by a node
is not only received by the designated receiver, but may also
be overheard by near by nodes; (2) interference: trans-
missions from one node interfere with the transmission and
reception capabilities of other nodes.

We tackle the Byzantine agreement in wireless networks
by first focusing on the interference aspect of the wireless
medium. We consider a n-node single-hop-single-channel
system consists of one source and n − 1 peers, in which all
links have the same capacity C. For interference model, we
assume that at most one node can transmit at a time, oth-
erwise the transmissions collide and no data can be decoded
by any node in the network. We assume that all communica-
tion channels/links are private such that only the designated
receiver is able to retrieve the information from a successful
transmission. This can be achieved in spite of the broad-
cast nature of the wireless medium by assigning different
cryptographic keys to every pairs of nodes, and having the
transmitter encrypt the out-going data with the key shared
with the designated receiver. Otherwise we make no cryp-
tographic assumptions. We assume a centralized controller
that schedules transmissions in the networks, and every node
must follow the assigned schedule. In terms of the adversary,
we assume that the adversary has complete knowledge on
the Byzantine agreement algorithm and the information be-
ing sent by every node. The adversary can take over nodes
at any point during the algorithm, up to the point of tak-
ing over up to a t < n/3 nodes, including the source. The
compromised nodes must follow the schedule decided by the
centralized controller, but can engage in any other kind of
deviations from the algorithm, including false messages and
collusion. Given these assumptions above:

• We show that there exists an algorithm which com-
putes Byzantine agreement deterministically on an l-
bit message in a network with n nodes and at most

t < n/3 faulty nodes, and uses n(n−1)
n−t

l + l1/2O(n4)
bits of communication.

If we let l approach infinity and consider the average number
of bits used for agreeing on 1 bit, then we have the following
result on the sum capacity

• For the network with n nodes and at most t < n/3
faulty nodes to achieve agreement throughput of R
bits/unit time, it is sufficient to have sum capacity

C > n(n−1)
n−t

R.

3.1 Sketch of the Algorithm
The algorithm here is similar to the one we presented in

Section 2.1. In round 1, the source node divides (n − t)c
information bits into n− t packets of size c bits, each packet
being a symbol from GF(2c). The source node encodes the
n − t packets of data into 2(n − 1) packets, each of which
is obtained as a linear combination of the n − t packets of
data. Then the source node sends 2 coded packets to each
peer. In round 2, each peer sends the first packet received

from the source to every other peer. It is to be noted that
by the end of round 2, every fault-free peer has received n
coded packets. Similar to the algorithm in Section 2.1, we
can show that if the faulty nodes misbehave, at least one
fault-free peer will detect the failure.

If a failure is detected, the broadcast phase is carried out
in the same way as the algorithm in Section 2.1. Let us call
a pair of nodes (i, j) is marked as f if the fault-free nodes
can be sure that at least one of two nodes i, j is faulty. We
can show that after the broadcast phase, at least one pair of
nodes will be marked as f . In the subsequent generations,
the schedule is modified slightly such that there is no trans-
mission on the links between nodes i and j if the pair (i, j) is
marked as f , and any further misbehavior will be detected.
Every time a failure is detected, at least one more pair of
nodes will be marked as f after the corresponding broadcast
phase. Since a fault-free node can appear in at most t pairs
marked as f , all faulty nodes will be identified with at most
t(t+ 1) broadcast phases.

By a suitable choice of c, we are able to upper bound the
total number of bits communicated to achieve agreement of

an l-bit message by n(n−1)
n−t

l + l1/2O(n4). Hence, agreement

throughput ofR bits/unit time can be achieved with the sum

capacity of the system C to be arbitrarily close to n(n−1)
n−t

R
from above, by choosing a large enough l. The detailed
description of the algorithm and analysis can be found in
our recent technical report [4].

4. DISCUSSION
In this paper, we have investigated two extreme cases:

wired networks with point-to-point links, and single-hop wire-
less networks in which all links share the sum capacity. We
are currently working on solving Byzantine agreement under
more general model of the wireless medium.

In our other works [5, 6], we have explored the benefits of
the broadcast nature of the wireless medium for reliable uni-
cast/multicast in networks subject to Byzantine node fail-
ures.
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